SlideShare una empresa de Scribd logo
1 de 28
51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA
1er . Año Secundaria
OBJETIVOS ESPECÍFICOS
1. Entender la necesidad de extender el conjunto de los números naturales.
2. Analizar y reconocer el conjunto de los números enteros y representarlos en la recta numérica.
3. Reconocer números enteros opuestos.
4. Determinar el valor absoluto de números enteros.
5. Establecer las relaciones de orden entre números enteros.
PROCEDIMIENTOS
A. MOTIVACION
INTRODUCCION HISTORICA
La primera consideración sobre el número entero negativo no llega en el mundo occidental sino
hasta el siglo XVI como consecuencia de la solución de ecuaciones algebraicas. En oriente, en
cambio, durante el siglo IV ya manipulaban números positivos y negativos en los ábacos usando
bolas de diferentes colores.
El matemático alemán Kronecker afirmó: “El número natural lo creó Dios y todo lo demás es obra
de los hombres”. Si nos remitimos a tiempos remotos podemos encontrar que nuestros antepasados
utilizaban los números, según su necesidad, cuál era el contar los animales que poseían, la cantidad
de grano que almacenaban, etc. para lo cual era suficiente el conjunto de los números naturales.
Posteriormente el hombre ha ido ampliando sus necesidades en la utilización de los números y se ha
visto en la necesidad de ampliar el conjunto de los números naturales, como veremos más adelante.
CONTENIDO TEORICO
1. JUSTIFICACION PARA LA EXTENSIÓN DEL CONJUNTO DE LOS NUMEROS NATURALES
Por lo aprendido, en el módulo anterior: N = {0; 1; 2; 3; 4; 5;........}; cuya representación en la
semirecta es:
0 1 2 3 4 5 6 .....
También, quedó establecido que las operaciones de adición y multiplicación siempre son posibles
en N (definidas en N), esto es:
Propiedad de Clausura o cerradura:
∀ a; b ∈ N ⇒ (a + b) ∈ N
∀ a; b ∈ N ⇒ (a . b) ∈ N
Sin embargo, la operación de sustracción existe solamente en una forma muy restringida, es decir
sólo cuando el minuendo es mayor o igual que el sustraendo, y por lo tanto la sustracción no
verifica la clausuratividad en N. Por ejemplo:
15 – 7 = 8; 8 ∈N ⇒ M > S
12 – 12 = 0; 0 ∈ N ⇒ M = S
21 – 36 = x; x ∉ N ⇒ M < S
Se concluye:
- Con el conjunto de los números naturales (N), no es suficiente para realizar todas las
operaciones.
- Para que la sustracción siempre sea posible se hace necesario extender o ampliar el conjunto N a
otro conjunto de números en el cual la sustracción sea clausurativa.
- Se construye un nuevo conjunto de números que incluye al conjunto N. Cumpliéndose en este
nuevo conjunto las operaciones y propiedades de los naturales.
Además en este conjunto se establecen otras propiedades con las que será posible ampliar el
campo operatorio.
- Este nuevo conjunto de números se denomina conjunto de los números enteros, cuya notación
es Z.
2. Conjunto de los números enteros
Veamos los siguientes ejemplos:
37 – 29 = 8 ⇒ 37 = 8 + 29
25 – 25 = 0 ⇒ 25 = 25
12 – 56 = -44 ⇒ 12 = -44 + 56
2.1 Conjunto de los números enteros positivos
Al conjunto de los números enteros positivos se denota por +Z , siendo sus elementos las
diferencias de números naturales (a-b), tales que a > b.
NOTACION POR COMPRENSION
+Z = {a-b/a; b ∈ N ∧ a > b}
NOTACION POR EXTENSION
+Z = { .......;5;4;3;2;1 +++++ }
NOTACION POR CONVENIO MATEMATICO
+Z = {1; 2; 3; 4; 5; ....}
S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
CONJUNTO DE LOS NÚMEROS
51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA
1er . Año Secundaria
2.2 Conjunto unitario, elemento cero.
Este conjunto tiene como elemento al número cero (0), que se obtiene de la diferencia de
números naturales (a-b), tales que a = b.
{0} = {a-b/a; b ∈ N ∧ a = b}
El número entero cero no es positivo ni negativo, es decir:
0 ∉ +Z
0 ∉ −Z
2.3 Conjunto de los números enteros negativos
NOTACION POR COMPRENSION
−Z = {a-b/a; b ∈ N ∧ a < b}
NOTACION POR EXTENSION
−Z = { ...; ;1;2;3;4 −−−− }
2.4 Conjunto de los números enteros
Al conjunto de los números enteros se denota por Z, siendo sus elementos todas las
diferencias de números naturales, es decir, la reunión de los conjuntos antes mencionados,
cuya notación son:
POR COMPRENSION
Z = Z-
U {0} U +Z
POR EXTENSION
Z = { ..... ; ;3;2;1;0;1;2;3 +++−−− ; ......}
COROLARIO
Los números naturales forman un subconjunto de los números enteros. Luego:
ZN ⊂
Todo número natural es entero, pero no todo número entero es natural.
Ejemplo:
7 ∈ N ∧ 7 ∈ Z
-15 ∈ Z ∧ -15 ∉ N
REPRESENTACION GRAFICA DE Z
7
N
-15
Z
3. REPRESENTACION DE LOS NUMEROS ENTEROS EN LA RECTA NUMERICA
Se elige en la recta numérica un punto de origen, el que se le hace corresponder el número entero
cero.
0
A la derecha de cero se ubican a distancias iguales, los números enteros positivos.
0 +1 +2 .....+3 +4
A la izquierda de cero se ubican a distancias iguales, los números enteros negativos.
-4 -3 -2 -1 0 +1 +2 .....+3 +4.....
4. NUMEROS ENTEROS OPUESTOS
Establecida la correspondencia de cada número entero, con un punto de la recta, se observa que los
números enteros simétricos u opuestos ZyZ −+ , equidistan de cero (expresan igual
distancia al origen).
-4 -3 -2 -1 0 +1 +2 .....+3 +4.....
ORIGEN
NUMEROS ENTEROS OPUESTOS
S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA
1er . Año Secundaria
⇒ -2 y 2 son # Z opuestos.
5. VALOR ABSOLUTO: | |
El valor absoluto de un número es la distancia de dicho número al origen.
|a| ⇒ se lee: valor absoluto de a.
Recuerda
|a| =
a ; si: a > 0
0 ; si: a = 0
- a; si : a < 0
Ejemplos:
|7| = 7; (7 > 0)
|0| = 0
|-7| = 7; (-7 < 0)
De los ejemplos se concluye:
|a| nunca es un número negativo.
|a| es mayor o igual que cero.
|a| ≥ 0
5.1 APLICACIONES
1) Si |x| = 3, a qué números enteros representa x ?
Solución:
X es un número que dista 6 unidades del origen. Luego: X = {- 3; 3}
-4 -3 -2 -1 0 +1 +2 .....+3 +4.....
| ||3| →|-3|  ←→←|
2) Si |x| < 5, a qué números enteros representa X?
Solución:
X representa a todos los números enteros cuyas distancias al origen son menores que
cinco.
-4 -3 -2 -1 0 +1 +2 .....+3 +4.....
ORIGEN
Del gráfico: X = {-4; -3; -2; -1; 0; 1; 2; 3; 4}
3) Cuando afirmamos que |X| ≤ 5, a qué números enteros representa X?
Solución:
X representa a todos los números enteros cuyas distancias al origen son iguales o menores
que 5.
-4 -3 -2 -1 0 +1 +2 .....+3 +4.....
ORIGEN
Del gráfico: X = {-5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5}
4. Si |X| > 2, a qué números enteros representa X?
Solución
X representa a todos los enteros cuyas distancias al origen son mayores que 2.
-4 -3 -2 -1 0 +1 +2 .....+3 +4.....
ORIGEN
Del gráfico: X = {.....; -5; -4; -3; 3; 4; 5; .....}
5. Cuando afirmamos que |X| ≥ 2. ¿A qué números representa X?
Solución
X representa a todos los enteros cuyas distancias al origen son mayores o iguales que 2.
-4 -3 -2 -1 0 +1 +2 .....+3 +4.....
ORIGEN
Del gráfico: X = {.....; -4; -3; -2; 2; 3; 4; .....}
6. COMPARACION ENTRE NUMEROS ENTEROS
En la recta numérica para los números enteros:
S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA
1er . Año Secundaria
-4 -3 -2 -1 0 +1 +2 .....+3 +4..... -5 +5
De aquí se deducen las siguientes propiedades de comparación entre números enteros:
Propiedad 1: Cualquier número positivo es mayor que cero.
Propiedad 2: Cualquier número negativo es menor que cero.
Propiedad 3: Cualquier número positivo es mayor que cualquier número negativo.
Ejemplo: +1 > -1 000 000.
Propiedad 4: De dos números positivos es mayor el que tiene mayor valor absoluto.
Ejemplo: +50 > +12
Propiedad 5: De dos números negativos es mayor el que tiene menor valor absoluto.
Ejemplo: -16 > -58.
Escribe los símbolos <, = , > en el espacio que corresponde.
+127 ........ +132 +127 ........ +132
+19 ........ +7 |-7| ........ |7|
-11 ........ 0 -27 ........ -38
0 ........ -16 -124 ........ -178
8 ........ -26 -18 ........ 18
PRACTICA DE CLASE
A continuación proponemos una serie de ejercicios que te permitirán plasmar lo aprendido en la
sesión. ADELANTE.
1. Colocar verdadero (V) o falso (F), según corresponda:
-3 ∈ N ........ ( )
5 ∈ N ........ ( )
N ⊂ Z ........ ( )
-8 ⊂ Z ........ ( )
7 ∈ Z ........ ( )
0 ∈ Z ........ ( )
2. Determine el valor absoluto de:
|-5| = .......................
|+5| = .......................
|-7| = .......................
|0| = .......................
|-50| = .......................
|-16| + |-5| = .......................
|-233| + |+10| = .......................
|-7| - |3| = .......................
3. Escribir 6 pares de números opuestos:
a) ...................................... b) ...................................... c) ......................................
d) ...................................... e) ...................................... f) ......................................
4. En la recta numérica:
-4 -3 -2 -1 0 +1 +2 .....+3 +4..... -5 +5
R Q P N M A B C D E
Suponiendo que cada espacio mide 1 centímetro, entonces la distancia del punto:
D a cero es ......................... R es acero es .........................
M a cero es ......................... B es acero es .........................
E a cero es ......................... Q a cero es .........................
5. Dado |X| = 5. ¿Qué números enteros representa X? ¿Por qué?
6. Si |X| < 4. ¿A qué números enteros representa X? ¿Por qué?
7. Si |X| > 6. ¿A qué números enteros representa X? ¿Por qué?
8. Escribe el signo >, = ó <. Según corresponda en los espacios punteados.
a) –15 ........ -7 g) |-5| ........ |5|
b) 20 ........ +20 h) |-12| ........ |-18|
c) 12 ........ -12 i) |-15| ........ |+12|
S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA
1er . Año Secundaria
d) -32 ........ 20 j) 0 ........ -9
e) –1 ........ 0 k) -32 ........ -1
f) 0 ........ 11 l) |0| ........ |-3|
TAREA DOMICILIARIA
1. Ordenar de menor a mayor:
a) 10; -1; -8; +4; +7; -6; -9
b) –104; -26; -5; 0; -1; +1; +3; +30; -60; -24
c) –12; 13; +14; -7; -10; -1; 0
2. Ordenar en forma decreciente.
a) –4; -8; -13; 0; -7; +7; +16; -1
b) –26; -32; -5; 0; -1; +1; +3; +30; +19
3. Si |X| ≥ 4. ¿A qué números enteros representa X? ¿Por qué?
4. Si |X| ≤ 3. ¿A qué números enteros representa X? ¿Por qué?
5. Si |X| = 6. ¿A qué números enteros representa X? ¿Por qué?
6. Si |X| < 5. ¿A qué números enteros representa X? ¿Por qué?
7. Si |X| > 4. ¿A qué números enteros representa X? ¿Por qué?
8. Aplicando las propiedades de la Igualdad y Desigualdad, escribir la conclusión en cada
proposición?
a) Si: a = b y b = c. Se concluye: .................................
b) Si: -8 < -2 y -2 < 5. Se concluye: .................................
c) Si: -1 > -2 y -2 > -3. Se concluye: .................................
9. Escribe los símbolos <, =, > en el espacio que corresponde:
a) 215− ......... 0 g) |15| ......... |-15|
b) 22 ......... 4 h) |-21| ......... |-8|
c) 5 ......... -60/-12 i) |-1| ......... |2|
d) -32 ......... 23 j) 53 ......... -999
e) 30 ......... 081 k) -39 ......... 2
f) 0 ......... -58 l) |10| ......... |-31|
10. En la recta numérica:
-4 -3 -2 -1 0 +1 +2 .....+3 +4..... -5 +5
F G H I JA B C D E
Suponiendo que cada espacio mide 1 centímetro, entonces la distancia del punto:
E a cero es ..................... H a cero es .....................
I a cero es ..................... B a cero es .....................
A a cero es ..................... J a cero es .....................
E al punto J ..................... C al punto F .....................
F al punto J ..................... A al punto J .....................
B al punto H ..................... C al punto I .....................
S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA
1er . Año Secundaria
OBJETIVOS ESPECIFICOS:
1. Reconocer las propiedades de las operaciones entre números enteros.
2. Realizar operaciones de adición, sustracción, multiplicación, división, potenciación y radicación en
Z.
3. Realizar operaciones combinadas en Z teniendo en cuenta el orden operatorio, signos de agrupación
y propiedades.
PROCEDIMIENTOS
A. MOTIVACION:
En el presente módulo abordaremos el estudio de las diferentes operaciones que se pueden realizar
en el conjunto de los números enteros (Z), tales como: adición, sustracción, multiplicación, división,
potenciación y radicación.
Cuando realizamos el estudio del conjunto de los números naturales (N), ya habíamos abordado el
estudio de estas operaciones anteriormente mencionadas y como quiera que N está incluido en Z (N
⊂ Z), la noción general de las operaciones en N, así como las propiedades y principios; se cumplen
exactamente en Z, sin embargo Z tiene otras propiedades que le son propias.
B. CONTENIDO TEORICO:
OPERACIONES CON NUMEROS ENTEROS
I. ADICION DE NUMEROS ENTEROS
SUMAR números enteros en álgebra, significa combinarías para obtener un solo número que
represente el total de ellos o su efecto total.
Tratando de ser más objetivos en tu aprendizaje proponemos el siguiente ejemplo:
Elena dirige un negocio y diariamente ejecuta ventas donde se le podrían presentar las
siguientes situaciones: GANANCIAS y PÉRDIDAS.
Lo ejecutado por Elena lo detallamos en el cuadro adjunto, advirtiendo que a las ganancias y
pérdidas le asignamos números enteros positivos y negativos respectivamente.
DIA SITUACIONES SUMANDO
ALGEBRAICAMENTE
EFECTO
Lunes +15 +32 (+15) + (+32) = +47 Ganó
Martes -21 -10 (-21) + (-10) = -31 Perdió
Miércoles +52 -75 (+52) + (-75) = -23 Perdió
Jueves +127 -46 (+127) + (-46) = +81 Ganó
Viernes +89 -89 (+89) + (-89) = 0 Ni ganó Ni perdió
Del cuadro extraemos las siguientes reglas:
1. Para sumar números enteros que tienen el mismo signo, se suman sus valores absolutos y el
signo del resultado es el mismo que el de los sumandos.
Ejemplos:
(+15) + (+32) = +15 + +32 = +47
(-21) + (-10) = -21 + -10 = -31
2. Para sumar números enteros de distinto signo, se restan los valores absolutos de los números
dados (el mayor menos el menor) y se coloca al resultado el signo del número del mayor
valor absoluto.
Ejemplos:
(+52) + (-75) = +52 + -75 = -23
(+127) + (-46) = +127 + -46 = +81
De los ejemplos anteriores podemos extraer la siguiente conclusión:
a) Cuando sumamos enteros de igual signo, el resultado es otro número entero del mismo
signo.
FORMA PRACTICA
(+ ) + (+ ) = + 1. (+15) + (+32)
Suprimimos el operador y paréntesis.
+15 + 32 = +47
(- ) + (- ) = - 2. (-25) + (-10)
Suprimimos el operador y paréntesis.
-25 - 10 = -35
b) Cuando sumamos números enteros de distinto signo, el resultado lleva el signo del
número de mayor valor absoluto.
FORMA PRACTICA
S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
OPERACIONES CON
51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA
1er . Año Secundaria
(+ ) + (- ) = ? 1. (+52) + (-75)
Suprimimos el operador y paréntesis.
+52 - 75 = -23
(- ) + (+ ) = ? 2. +127 + -46
Suprimimos el operador.
127 - 46 = +81
c) Cuando sumamos números enteros, el resultado que se obtiene es otro número entero.
(La adición es cerrada en Z).
Z)ba(Zb,a ∈+⇒∈∀
II. SUSTRACCION DE NUMEROS ENTEROS
Enunciemos la siguiente regla: para efectuar la sustracción de dos números enteros, basta sumar al
minuendo el opuesto del sustraendo.
1) (-15) – (-7) 2) (+39) – (-58)
La sustracción convertida en adición: Transformando la sustracción en adición:
(-15) + (+7) = -8 (+39) + (+58) = +97
Así, la sustracción queda transformada en una adición de números enteros y la regla para resolverla
se dio anteriormente.
De los ejemplos expuestos podemos extraer las siguiente conclusión:
a) En la sustracción de números enteros, el resultado que se obtiene es otro número entero (la
sustracción es cerrada en Z).
Z)ba(Zb,a ∈−⇒∈∀
b) En la sustracción de números enteros, no se cumple la propiedad conmutativa.
Ejemplo:
(-15) – (-7) ≠ (-7) – (-15)
(-15) + (+7) ≠ (-7) + (+15)
- 8 ≠ +8
c) Ampliamos afirmando que en la sustracción de números enteros, no se cumple la propiedad
asociativa:
Ejemplo:
[ (+7) – (-11) ] – (-32) ≠ (+7) – [ (-11) – (-32) ]
[ (+7) + (+11) ] – (-32) ≠ (+7) – [ (-11) + (+32) ]
(+18) – (-32) ≠ (+7) – (+21)
(+18) + (+32) ≠ (+7) + (-21)
50 ≠ -14
OPERACIONES COMBINADAS DE ADICION Y SUSTRACCION EN Z
Veamos los ejemplos:
1) Efectuar: (+15) + (-11) – (+17) + (+5) – (-21)
Solución:
Expresando las sustracciones como adiciones:
(+15) + (-11) + (-17) + (+5) + (+21)
(+4) + (-17)
(-13) + (+5)
(-8) + (+21)
(+13)
OTRA FORMA:
(+15) + (-11) – (+17) + (+5) – (-21)
Expresando las sustracciones como adiciones:
(+15) + (-11) + (-17) + (+5) + (21)
Suprimiendo los operadores y paréntesis:
+15 – 11 – 17 + 5 + 21
Agrupamos los números positivos y negativos.
+15 + 5 + 21
+41
13
– 28
– 11-17
+ 15 – 11 – 17 + 5 + 21
+4 – 17
-13
-8 + 21
13
+ 5
2) Efectuar: -15 + {7 – 29 – [-16 – (8 – 3 – 5 + 7)] – 4}
S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA
1er . Año Secundaria
Solución:
Suprimimos el paréntesis (signo colector ubicado en la parte más interna); efectuando antes las
operaciones del interior, lo mismo aplicamos con el corchete y llave.
-15 + {7 – 29 – [-16 – (8 – 3 – 5 + 7) – 4}
- 15 + {7 – 29 – [-16 – (+7)] – 4}
-15 + {7 – 29 – [-23] – 4}
-15 + {7 – 29 + 23 – 4}
-3
7
-23
-15 – 3
-18
OTRA FORMA
Podemos ir suprimiendo los signos corchetes comenzando por la parte más interna y antes de operar
los números que se encuentran en su interior, así:
a) Si delante del paréntesis está el signo +, se suprime el paréntesis y los números del interior no
alteran su signo.
+ (+7 – 10 – 8) = +7 – 10 – 8
b) Si delante del paréntesis está el signo, se suprime el paréntesis y los números del interior se
alteran en su signo.
- (+7 – 10 – 8) = -7 + 10 + 8
Luego tenemos:
- 15 + {7 – 29 – [-16 – (8 – 3 – 5 + 7)] – 4}
- 15 + {7 – 29 – [-16 – 8 + 3 + 5 - 7)] – 4}
- 15 + {7 – 29 + 16 + 8 – 3 – 5 + 7 – 4}
- 15 + 7 – 29 + 16 + 8 – 3 – 5 + 7 – 4
Operamos los positivos y negativos por separado. (no se observa opuestos).
-15 – 29 – 3 – 5 – 4 + 7 + 16 + 8 + 7
-56 + 38
-18
III. MULTIPLICACION DE NUMEROS ENTEROS
Veamos: 13 + 13 + 13 + 13 + 13 = 5 . 13 = 65
5 veces
(-24) + (-24) + (-24) + (-24) + (-24) + .... + (-24) = 100 x (-24)
100 veces = (100) (-24)
= - 2400
Se observa que la adición de sumandos iguales, se puede expresar como una multiplicación del
sumando en referencia con las veces que éste se repite.
En la multiplicación de números enteros se pueden presentar distintas situaciones:
1. (+7) . (+8) = +56
(-11) . (-7) = +77
Si dos números enteros tienen el mismo signo, para multiplicarlos se multiplican sus valores
absolutos y el resultado es un número entero positivo.
2. (-15) (+7) = -105
(+13) (-6) = -78
Para multiplicar dos números enteros que tienen distinto signo, se multiplican sus valores
absolutos y el resultado es un número entero negativo.
En resumen:
(+a)(+b) = +p
(-a)(-b) = +p
(-a)(+b) = -p
(+a)(-b) = -p
= Resultado con signo +
= Resultado con signo -
Observaciones: Cuando existen más de dos factores, contamos cuántos de ellos son negativos.
Luego:
a) Si el resultado del conteo es impar, el resultado será negativo (-). Ejemplo:
(-2)(-3)(5)(- 4) = - 120
b) Si el resultado del conteo es un número par, el resultado será positivo (+). Ejemplo:
(-3)(3)(-4) = 60
IV. DIVISION DE NUMEROS ENTEROS
Veamos las divisiones:
S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA
1er . Año Secundaria
15 ÷ -3 = -5; porque 15 = (-5)(-3) ⇒ 15 es múltiplo de - 3
11 760 ÷ 245 = 48; porque 11 760 = (245)(48) ⇒ 11 760 es múltiplo de 245.
72 ÷ 7 = x ∉ Z; porque no existe número entero que multiplicado por 7 nos de como producto 72.
Por lo tanto 72 no es múltiplo de 7.
De los ejemplos anteriormente expuestos se concluye:
* La operación de división de números enteros no es clausurativa; no siempre se encuentra el entero
que multiplicado por el divisor, dé el dividendo.
* La división en el conjunto de los números enteros sólo será posible cuando el dividendo (D) sea
múltiplo del divisor (d) y éste diferente de CERO, con esta referencia se encontrará un número q
(cociente) tal que multiplicado por d, nos dé por producto el número D.
Simbólicamente:
Si D, d, q ∈ Z;
d
D
= q ↔ D = dq
Los elementos de la división son:
Dividendo (D).- Es la cantidad a ser dividida.
Divisor (d).- Indica el número de partes iguales en que debe dividirse el dividendo.
Cociente (q).- Es el número de elementos que resultan para cada una de las partes indicadas por el
divisor.
Además para indicar la operación de división se acostumbra usar:
bab/a
b
a
÷==
__ ; / ; ÷ estos signos representan al operador de la división leyéndose como “entre”.
Los números enteros pueden ser positivos o negativos, a efectos de realizar correctamente una
operación de división, es preciso tener en cuenta las siguientes reglas:
1. Para dividir dos números enteros del mismo signo se dividen sus valores absolutos del primero
por el segundo, y se antepone al cociente el signo más (+).
Ejemplos:
(+16) ÷ (+4) = +4
(-54) ÷ (-3) = +18
2. Para dividir dos números enteros de distintos signos se dividen sus valores absolutos del
primero por el segundo, y se antepone al cociente el signo menos (-).
Ejemplos:
(+52) ÷ (-4) = -13
(-16) ÷ (+2) = -8
Recordar:
Al dividir dos números enteros:
- Del mismo signo, el cociente es positivo.
- De distinto signo, el cociente es negativo.
Observaciones:
* El cero dividido por cualquier número entero distinto de cero es cero.
Ejemplo:
0
32
0
;
15
0
=
−
* Un número entero (distinto de cero) dividido por cero es una operación que carece de sentido.
Ejemplo:
0
17
Carecen de sentido
0
72−
Habiendo concluido el estudio de las operaciones básicas en Z, completa el siguiente cuadro escribe
la palabra NO cuando la operación no sea posible en los números enteros.
Elementos Operaciones Básicas
a b a + b a – b a . b a ÷ b
+72 +12 (+72)-(+12)=60
-54 -3
+205 -41 (+205)+(-41)=164
-72 +24
+39 1
20 20
0 -58
+17 0 NO
-5 +5 -25
Del cuadro anterior se concluye que la adición, sustracción y multiplicación son operaciones
cerradas en Z (su resultado es otro número entero), cumpliendo las siguientes propiedades:
S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA
1er . Año Secundaria
Propiedad de Clausura
∀ a ; b ∈ Z ⇒ (a + b) ∈ Z
∀ a ; b ∈ Z ⇒ (a - b) ∈ Z
∀ a ; b ∈ Z ⇒ (a . b) ∈ Z
Propiedad Conmutativa
∀ a ; b ∈ Z ⇒ a + b = b + a
∀ a ; b ∈ Z ⇒ a . b = b . a
Propiedad Asociativa
∀ a ; b; c ∈ Z ⇒ (a + b) + c = a + (b + c)
∀ a ; b; c ∈ Z ⇒ (a . b) . c = (a . b) . c
Propiedad Distributiva
∀ a ; b; c ∈ Z ⇒ a . (b + c) = ab + ac, o también (b + c) . a = ba + ca
∀ a ; b; c ∈ Z ⇒
d
c
d
b
d
a
d
cba
++=
++
Elemento Neutro
∀ a ∈ Z ⇒ a + 0 = a, (El elemento neutro es CERO)
∀ a ∈ Z ⇒ a . 1 = a, (El elemento neutro es UNO)
V. POTENCIACION DE NUMEROS ENTEROS
Es una operación que consiste en elevar un número entero “b” a un exponente natural “n”, el cual
nos indica la calidad de veces que se repite la base entera como factor, hallando así el resultado
llamado Potencia.
Exponente (Número natural)
Base (Número Entero)
Potencia (resultado)
nb = P
Ejemplos:
2)7(+ = (+7)(+7) ⇒ 2)7(+ = +49
2 veces
5)3(+ = (+3) (+3) (+3) (+3) (+3) ⇒ 5)3(+ = +243
5 veces
6)2(− = (-2) (-2) (-2) (-2) (-2) (-2) ⇒ 6)2(− = +64
6 veces
3)3(− = (-3)(-3)(-3) ⇒ 3)3(− = -27
3 veces
Por lo mostrado en los grupos anteriores, es preciso tener en cuenta las siguientes reglas:
1) Si la base es positiva y el exponente cualquier número natural, el resultado es positivo:
Ejemplo:
4)5(+ = + 625
3)6(+ = + 216
2) Si la base es negativa y el exponente un número natural par, el resultado es positivo:
Ejemplo:
6)2(− = + 64
3) Si la base es negativa y el exponente un número natural impar, el resultado es negativo.
Ejemplo:
3)5(− = - 125
7)2(− = - 128
LEYES EXPONENCIALES DE LA POTENCIACION EN EL CONJUNTO DE NUMEROS ENTEROS
No Descripción Estructura Campo
numérico
01 Multiplicación de potencias de igual base
nmanaxma += a ∈ Z
m, n ∈ N
02 División de potencia de igual base
nmanama −=÷ a ∈ Z
m, n ∈ N
03 Potencias de un producto indicado
nbxnan)axb( = a, b ∈ Z
n ∈ N
04 Potencia de un cociente indicado
nbnan)ba( ÷=÷ a, b ∈ Z
n ∈ N
05 Potencia de una potencia
mxnan)ma( = a, b ∈ Z
m, n ∈ N
06 Potencia con exponente cero 10a = A ∈ Z
S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA
1er . Año Secundaria
a ≠ 0
Ejemplos:
a) 125732)5(7)5(3)5(2)5( =+++=+++
b) 13313)3(9)3)(3(3)3( −=−=−−−
c) 16216)2(475)2(4)2(7)2(5)2( =−=++−=−−−
d) 9232)3(46)3(4)3(6)3( ==+=−+=+÷+
e) 4096484)8(57)8(3)8(7)8( ==−=−−=−÷−
f) 0001005)10(712)10(7)10(12)10( −=−=−−=−÷−
g) 0964646)4(2x3)4(2]3)4[( ==−=−=−
h) 144236x4)2(36]4)2[( == (queda indicado)
i) 5)10(5)5x2(5)5(3)2( −=−=− = -100 000
j) 2)42(2)7x2x3(2)7)(22(2)3( −=−=− = 1 764
Nota: La potenciación es distributiva con respecto a la multiplicación y división.
VI. RADICACION DE NUMEROS ENTEROS
La radicación es la operación inversa a la potenciación que consiste en elevar un número entero “b”
a un exponente natural “n”, el cual nos indica la cantidad de veces que se repite la base entera como
factor, hallando así el resultado llamado potencia.
bn PPnb =⇒=
b : base b: raíz enésima (b ∈ Z)
n : base n: índice (n ∈ N, n > 1)
P : potencia P: radicando o cantidad subradical.
(P ∈ Z)
Nota:
- La potenciación es la operación que permite hallar la potencia conociendo la base y el exponente.
- La radicación es la operación que permite hallar la raíz enésima, conociendo el radicando y el
índice.
La raíz enésima de un número P es otro número b que elevado al exponente “n” nos reproduce P.
Simbólicamente:
Pnbbn P =⇒=
Ejemplos:
2
6
64 ±= ⇒ 646)2( =±
)3(
3
27 ±= ⇒ 273)3( =+
5
5
3125 −=− ⇒ 31255)5( −=−
Por lo mostrado en los ejemplos anteriores, es preciso tener en cuenta las siguientes reglas:
1. Cuando el radicando es un número entero positivo y el índice es un número natural par, hay dos
resultados que tienen el mismo valor absoluto y distinto signo. Ejemplos:
39 ±= Porque 92)3( =±
2
4
16 ±= Porque 164)2( =±
Recordar: Cuando el radicando es positivo y el índice par, se utiliza sólo la RAIZ POSITIVA
(por conveniencia) que se le conoce con el nombre de RAIZ ARITMETICA.
Es decir:
39 = 2
4
16 =
2. Cuando el radicando es un número entero positivo y el índice es un número impar, el resultado
o raíz hallada es positiva. Ejemplos:
3
3
27 += Porque 273)3( =+
2
5
32 += Porque 325)2( =+
3. Cuando el radicando es un número entero negativo y el índice es un número impar, el resultado
es un número negativo. Ejemplos:
5
5
1253 −=− Porque 12535)5( −=−
2
3
8 −=− Porque 83)2( −=−
4. Cuando el radicando es un número entero negativo y el índice es un número par, no tiene
solución en el conjunto de los números enteros. Ejemplos: 64− , no tiene solución en Z,
porque:
=− 64
288 ⇒ = 64
- 8 ⇒ 2)8(− = 64
⇒ 64 ≠ - 64
S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA
1er . Año Secundaria
A continuación veamos algunas leyes o propiedades de la radicación en el conjunto de los
números enteros.
1. RAIZ DE UN PRODUCTO INDICADO.- Se cumple la propiedad distributiva de la
radicación con respecto al producto indicado.
n
c.
n
b.
n
a
n
c.b.a =
Ejemplo:
3
8.
3
512.1253n
3
8.512).125( −=− = -5 . 8 . 2 = -80
Recíprocamente:
n
c.b.a
n
c.
n
b.
n
a =
Ejemplo:
3
4
81
4
)1).(27).(3(.
4
1.
4
27.
4
3 ==−−=−−
2. RAIZ DE UN COCIENTE INDICADO.- Se cumple la propiedad distributiva de la radicación
con respecto al cociente.
n
b
n
a
n
ba ÷=÷
Ejemplo:
224
3
8
3
64
3
864 −=−÷=−÷=−÷
Recíprocamente:
n
ba
n
b
n
a ÷=÷
Ejemplo:
416232232 ==÷=÷
3. PASAJE DE EXPONENTE E INDICE DE UN MIEMBRO A OTRO.- La operación contraria
a la potenciación. Si en una igualdad uno de los miembros tiene una raíz enésima, pasa al
otro miembro con la operación contraria; es decir, como potencia indicada y viceversa.
a) b
n
p = Por definición: pnb =
Ejemplo:
5
3
x = ⇒ x = 35 = 125
b) pnb = Por definición b
n
p =
Ejemplo:
5x = 32 ⇒ x = 5
32 = 2
RAIZ CUADRADA ENTERA
Hay muchos números enteros que no tienen raíz exacta, por que no existe ningún número entero
que elevado al cuadrado dé por resultado dicho número. Tal es el caso de 84 273; pero a
continuación se explica el modo práctico de conocer la raíz entera de él.
a) Separar el radicando en periodos de a dos cifras, comenzando por la derecha (no importa si
en la izquierda queda una sola cifra).
8 42 73
b) Extraer la raíz cuadrada del primer periodo de la izquierda (puede ser qué dé una o dos
cifras).
8 42 73 2
c) Elevar al cuadrado la raíz hallada y restar dicho valor al primer periodo.
Escribir a continuación del resto el segundo periodo y separar las cifras de las unidades.
8 42 73 2
-4
4 42
2 = 42
d) Hallar el duplo de la raíz. Dividir por este valor el número que queda a la izquierda de la
unidad separada.
8 42 73 2
-4
4 42
44:4 = 112.2 = 4
e) Escribir el valor del duplo de la raíz seguido del cociente hallado; multiplicando el número
formado por dicho cociente. (valor adecuado).
S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA
1er . Año Secundaria
8 42 73 2
-4
4 42
2.2 = 4
49:9 = 441
f) Restar el producto obtenido al número formado por el resto más el segundo periodo (si la
resta no fuera posible, se disminuye en uno el cociente).
Si la resta es posible, el cociente obtenido es la segunda cifra de la raíz.
8 42 73 2
-4
4 42
2.2 = 4
49:9 = 441
-4 41
1
g) Escribir a continuación del nuevo resto el siguiente periodo, volviéndose a repetir el
proceso.
8 42 73 290
-4
4 42
2.2 = 4
49:9 = 441
-4 41
1 73
1 73
0 00
2.29 = 58
580.0
Siempre debemos verificar que:
84 273 = 2290 + 173
84 273 = 84 100 + 173
Comprueba tu aprendizaje hallando la raíz cuadrada de los siguientes números.
a) 15 6661 b) 127 487 c) 1 253 456
PRACTICA DE CLASE
A continuación proponemos una serie de ejercicios, donde aplicarás las técnicas y procedimientos
para efectuar operaciones de adición y sustracción.
1. Halla el resultado de las siguientes operaciones:
a) + 8 + +9 = b) 6 + 18 = c) 25 + (-72) =
d) – 9 + (-7) = e) –16 + (-15) = f) –33 + (-28) =
g) 12 + (-9) = h) –27 + (+18) = i) –5 + 37 =
2. Escribe en los espacios en blanco, los números que faltan:
a) 5 + ...... = 9 b) +9 + ....... = -3 c) ....... + -7 = -3
d) –8 + ...... = -13 e) –9 + ....... = 15 f) ....... + 6 = -12
g) 4 + ...... = 17 h) –13 + ....... = 16 i) ....... + (-7) = -20
3. Hallar el resultado de:
a) –40 + (-30) + -80 = b) (-5) + (+8) + (+1) + (+2) + (-6) =
c) +36 + (+74) + 208 = d) –4 + (+9) + (-5) + (+10) + (-9) =
e) .3 + (-5) + (+4) + (-1) + 6 = f) +5 + +2 + -5 + -7 + -4 + -6 =
g) –36 + -112 + 144 + 50 = h) –240 + -1260 + +1550 =
4. Sabiendo que a = 12; b = -13; c = -24; d = +37; e = -58. Hallar el valor numérico de:
a) (a + b) + c b) (a + e) + c c) d + (b + c)
d) (c + e) + c e) (d + a) + b f) e + (d + c)
5. Sabiendo que: S = 36 + (-52) + (-7) C = -18 + (+16) + 5. Hallar el valor de :
S + C + (-17).
a) –37 b) –47 c) +5 d) –49 e) N.A.
6. Si A = 7 + (-49) + (+15) + (+18) + (-19) + (-25) + (+48) + (+2) y
B = -32 + (-9 + 14) + (-7) + (+6) + (+1). Hallar el valor de: (A + B + 20)
a) +8 b) +12 c) -15 d) –10 e) N.A.
7. Si E = a + 8; F = b + (-13) y sabiendo que a = -15; b = 19, entonces el valor numérico de E +
F + (-18) es:
a) –16 b) –19 c) 20 d) 3 e) N.A.
8. Completa el siguiente cuadro:
+ -15 +12 -51 -12 +15 24 -21 +37 -41 +42 -13
+21
-15
+24
-18
-54
22
-17
0
9. Halla el resultado de las siguientes operaciones:
S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA
1er . Año Secundaria
a) 8 + 15 = b) + 71 – (+38) = c) 94 – 36 =
d) –4 - +8 = e) 6 - -9 = f) – 3 – (+7) =
a) – 9 – (+12) = b) – 18 – (+17) = c) – 6 – (+18) =
PROBLEMAS PROPUESTOS
01.Si a = -17; b= 38; c = -81, entonces S = a – b + c. Hallar el valor de “x” en:
x + S = -150.
a) –12 b) –14 c) 14 d) 12 e) N.A.
02.Q = (p + n) – m + 473, siendo p = -302; m = 78; n = -105. Hallar el valor de “X” en:
Q – X = -96.
a) –108 b) 108 c) 104 d) -102 e) N.A.
03.(15 – M) – 32 = 64; (H + 5) – 62. Si A = M + H – 46. Hallar el valor de “A”.
a) 108 b) 104 c) 106 d) 102 e) N.A.
04. (z – 13) + 78 = -33 ; (-58 – y) + 98 = 27. Si B = z + y + 90, entonces el menor valor
entero que puede tomar |x| < B es:
a) –5 b) –3 c) -7 d) -4 e) N.A.
05.(p – 9) + 5 = -98; (k + 57) + -83 = 31. Si sumas (p + 100) con el opuesto de k obtienes:
a) –96 b) 94 c) 98 d) -92 e) - 51
06. Si:
a ∇ b =
a - 2b Si y sólo si a < b
a – b Si y sólo si a > b
Calcular: E = (7 ∇ 3) ∇ 2.
a) 4 b) - 4 c) 8 d) - 8 e) N.A.
07. Si:
= ac + bc + ab; hallar
1
9 3
a
b c
a) 37 b) 38 c) 39 d) 40 e) N.A.
08. Si:
A = [ 2)4(− (5) + 3 – ( 32 -6)] ÷ 3)3(− - 5 y B = {[[ 4)6(− - ( 213 )(5)] +
337)2( −− ]÷ 2}37
Hallar el valor numérico de: 25 )56B()5A( −++ .
a) -1480 b) -1810 c) -1790 d) 2061 e) N.A.
09. Si: E = -3(2) 2243 )2213(]11)35[( −+÷− ; F = [[2(-3) +
)22)(3(5)23(52]8 −+− ] + 19.
Hallar el valor de 023 ])250(F2)5E3[( +− .
a) 1 b) -1 c) -2 d) 0 e) N.A.
10. Si: P = 5]213)3453[(2)1(932[ ÷−−+−+− ; Q = -13 +
2}4)2(11]10)4435{[( −+÷+−
Hallar “x” en: 4(x+45) = PQ.
a) -36 b) -24 c) -12 d) -9 e) N.A.
TAREA DOMICILIARIA
01. Efectuar las siguientes operaciones combinadas:
a) )55()6(2)5( +−−− + (-3) + (+) – (+3)(-2)
b) 2)5(3)2(2)3(
3
27 −−−+−
S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA
1er . Año Secundaria
c) (-81) ÷ (+27)-(-7)(-2)+ 4x3)3(−
d) 2)7(− + (5)(2)(-3) + 2)5(−
e) 1214)2(3)3(2)3( +−+−−
f) )13()10)(4(3)2(x
5
32 −+−−+−−
g) )75(2)3(2)8(
3
27 −+−−+−
h) 2)3(
3 227 −÷ + [(-5)(-8) ÷ (-2) + 2)11(− - (-4)(-7)]
i) 2)5(
5 33125 ÷ - [(-5)(-3) – (-7 + 9 – 4 – 8)]
j) 3)16(3)32( −÷− – {-11 + 7 – [(-8)(-3)(-1)-(-54)]}
02. Si a = -2; b = - 3; c = 16; d = -8; e = 4.
Hallar el valor numérico de las siguientes expresiones:
a) ab – cd + 4
c2e −
b) ab + cd – {2e + 3
d + a – b}
c) cde + [a + b + c - 3
d - (a-b-c)]
d) 2)eab( + + 3
d – (abcd)
e) – b – [ae – cd + 2c2b2a ++ ]
f) )]2dbc4a(d[
5
de3a −+−−−−
g) ]dcae5bc2[
3
ec ÷−−−
h) 3d – 5a + 3
d - 1
OBJETIVOS ESPECIFICOS
1. Descubrir la necesidad de extender el conjunto Z.
2. Definir el conjunto Q de los números racionales y representarlos en la recta numérica, para un
posterior reconocimiento de las fracciones equivalentes y una comparación correcta entre dos
números racionales.
3. Reconocer las propiedades comunes de las operaciones entre números racionales.
PROCEDIMIENTOS
A. MOTIVACION
Hablar de números racionales es hablar de números fraccionarios o lo que se decía quebrados. El
primer conocimiento acerca de las fracciones se produce hacia el año 2000 a.C., en Egipto. Los
griegos, quince siglos después, elaboraron con acierto las teorías de egipcios y babilonios e hicieron
de ella una verdadera ciencia.
B. CONTENIDO TEORICO
CONJUNTO DE LOS NUMEROS ENTEROS
Recordando lo aprendido en el Módulo 2 tenemos:
Z = {...; -3; -2; -1; 0; 1; 2; 3; ...}
Siendo su representación en la recta numérica:
.....-3 -2 -1 0 1 2 3.....
En el conjunto de los números enteros, quedó establecido que las operaciones de Adición,
Sustracción y Multiplicación siempre son posibles en Z (definidos en Z), es decir:
PROPIEDAD DE CLAUSURA O CERRADURA
S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
CONJUNTO DE LOS NÚMEROS
51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA
1er . Año Secundaria
∀ a; b ∈ Z ⇒ (a + b) ∈ Z
∀ a; b ∈ Z ⇒ (a - b) ∈ Z
∀ a; b ∈ Z ⇒ (a . b) ∈ Z
En el conjunto de los números enteros, la operación división existe solamente en una forma muy
restringida; es decir, sólo será posible cuando el dividendo sea múltiplo del divisor y éste diferente de
cero, y por lo tanto afirmamos que la división no verifica la clausuratividad en Z, por ejemplo:
1) 58 : 29 = 2 ∈ Z porque 29 x 2 = 58
2) (-36) : (+9) = -4 ∈ Z porque (+9) x (-4) = -36
3) (-17) : (-5) = x ∉ Z ¡SE PRESENTA OTRA DIFICULTAD!
En el ejemplo (3), en el Conjunto de los Números Enteros NO EXISTE un número que multiplicado por
(-5) nos reproduzca como resultado (-17).
Ante esta nueva dificultad se concluye:
- El conjunto de los números enteros Z no es suficiente para operar con números.
- Para que la división siempre sea posible se requiere extender el conjunto de los números enteros Z a
otro conjunto en el cual la división sea clausurativa.
- Se construye un NUEVO CONJUNTO que incluye al conjunto de los números enteros Z.
Cumpliéndose en este nuevo conjunto las operaciones y propiedades de los enteros.
- Además en este NUEVO CONJUNTO se establecen otras propiedades con las que será posible
ampliar el campo operatorio.
- Este nuevo conjunto se denomina CONJUNTO DE LOS NUMEROS RACIONALES y se denota
por “Q”.
CONJUNTO DE LOS NUMEROS RACIONALES
El conjunto de los números racionales Q, tiene como elementos a todos los cocientes de números
enteros (donde el divisor es distinto de cero).
Q = {x/x = a/b, ∀ a; b ∈ Z, b ≠ 0}
Al cociente indicado de números enteros: a/b, se le conoce con el nombre de FRACCION.
Donde:
a
b
Numerador
Denominador
PRACTICA DE CLASE
1. Escribir 5 fracciones equivalentes de:
2
1
;
5
3
;
3
2 −
2. En cada caso, determine el valor de x, para obtener fracciones equivalentes:
a)
5
3
35
x
= b)
35
10
7
x
= c)
30
36
x
6 −
=
−
d)
18
x
x
2
=
e)
9
0
7
x
= f)
16
x
2
7
= g)
21
x
7
3
= h)
4
1x
10
5 +
=
3. Simplificar las fracciones:
;
40
18
;
48
12
;
36
24
;
30
25−
;
56
28
;
160
400
;
300
18
;
40
4
1440
38
;
360
64
4. Comparar las fracciones escribiendo el símbolo que corresponde:
a)
4
3
...
8
3
b)
4
5
...
13
5 −
c)
8
7
...
11
15
d)
15
11
...
15
7
5. Ordenar de menor a mayor las siguientes fracciones:
a)
9
6
;
7
4
;
5
2
b)
4
1
;
3
1
;
5
2−
c)
4
1
;
3
1
;
5
2−
d)
4
7
;
5
8
;
3
5
e)
7
5
;
3
1
;
2
5 −
f)
4
2
;
11
6
;
15
13 −−
6. Establecer el valor de verdad:
S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA
1er . Año Secundaria
a) Z ⊂ Q ........ ( ) b) N ⊂ Z ........ ( ) c) Q ⊂ N ........ ( )
d) 8 ∉ Q ........ ( ) e) –2/5 ∈ Z ........ ( ) f) –6 ∈ N ........ ( )
g) –16 ∈ Q ........ ( ) h) ∈ Q ........ ( )
7. Hallar el número de fracciones irreductibles de denominador 21 comprendidas entre 1/7 y 1/3.
8. Para que valor de “a”, la fracción 50a/a41 es propia e irreductible?
TAREA DOMICILIARIA
1. Ordenar las fracciones en forma creciente: 3/5; 4/7; 15/17; 10/21; 6/11.
2. ¿Cuántas fracciones irreductibles de denominador 12 existen entre 1/4 y 2/3 ?
a) 4 b) 3 c) 2 d) 1 e) N.A.
3. ¿Cuántas fracciones irreductibles de denominador 35 existen entre 3/5 y 6/7?
a) 2 b) 6 c) 5 d) 7 e) N.A.
4. El número de fracciones equivalentes a 22/36 que tiene por denominador un número de 3 cifras
múltiplo de 5 es:
a) 26 b) 30 c) 40 d) 50 e) N.A.
5. El numerador por el denominador de una fracción es 52 514.
¿Cuál es dicha fracción, si al simplificarla se obtiene 14/31?
a) 98/2388 b) 97/156 c) 154/341 d) 217/242 e) 151/344
6. Si ba/ab es equivalente a 5/6. Hallar el valor de a x b.
a) 10 b) 12 c) 15 d) 20 e) N.A.
7. ¿Cuál es el valor de “a” para que la fracción 498/a4a sea propia e irreductible?
a) 1 b) 2 c) 3 d) 4 e) 5
8. Si se quiere que la fracción N/D esté comprendida entre 1/2 y 2/3 cuando N = 12.
¿Cuántos valores enteros puede tener D?
a) 2 b) 3 c) 4 d) 5 e) N.A.
9. Hallar (a + b + c), sabiendo que la fracción bca/aab es equivalente a 75.
a) 16 b) 17 c) 18 d) 19 e) 20
S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA
1er . Año Secundaria
OPERACIONES CON NUMEROS RACIONALES
OBJETIVOS ESPECIFICOS:
1. Ejecutar correctamente las operaciones básicas de adición, sustracción, multiplicación y división,
trabajando con números racionales.
Aplica las propiedades de los números racionales en la solución de ejercicios.
PROCEDIMIENTOS:
A. MOTIVACION
Así como hemos podido calcular el resultado de sumar, restar, multiplicar y dividir números
naturales o enteros, es posible realizar estas mismas operaciones cuando se trabaja en el campo de
los números racionales o fraccionarios.
El propósito del presente módulo es estudiar los procedimientos a seguir para operar con números
racionales y comprender las propiedades que presentan las operaciones con dichos números.
CONTENIDO TEORICO
OPERACIONES CON NUMEROS RACIONALES
Enfocaremos nuestro estudio a los números racionales representados como fracción.
ADICION DE FRACCIONES
En la adición de fracciones pueden presentarse las siguientes situaciones:
A. ADICION DE FRACCIONES DEL MISMO DENOMINADOR
Ejemplo:
1) Sumar:
9
5
9
1
9
3
++
Solución: 1
9
9
9
513
==
++
2) Sumar:
13
8
13
2
13
7
13
3
+
−
+
−
+
Solución:
13
2
13
8273
=
+−+−+
De los ejemplos, se concluye:
Al efectuar la adición de fracciones del mismo denominador (fracciones homogéneas), se
suman los numeradores de las fracciones participantes y se coloca por denominador de esta
suma, el denominador común.
B. ADICION DE FRACCIONES CON DIFERENTE DENOMINADOR.- Para que se obtenga mayor
amplitud de criterio creemos conveniente exponerlo de la siguiente manera:
a) Fracciones con Denominadores que sean Primos entre sí
Ejemplos:
1) Sumar:
7
2
5
3
+
35 : 5 x 3 = 21
Solución: MCM(5; 7) = 35
35 : 7 x 2 = 10
Luego:
35
31
35
1021
=
+
Observación: El ejemplo anterior por presentar fracciones cuyos denominadores son
primos entre sí, se recomienda utilizar la forma práctica de los productos cruzados.
Veamos:
35
31
35
1021
7
2
5
3
=
+
=+
X
2) Efectuar:
3
2
2
1 −
+
Solución:
3
2
2
1 −
+ =
6
1
6
43
6
43 −
=
−
=
−+
3) Efectuar:
2
1
5
2
3
1
++
S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
CONJUNTO DE LOS NÚMEROS
51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA
1er . Año Secundaria
Solución: Como 3; 5 y 2 son PESI, se procede:
2
1
5
2
3
1
++ =
30
37
2x5x3
5x3x12x3x22x5x1
=
++
b) Fracciones cuyos denominadores no son Primos entre sí.
Ejemplos:
1) Sumar:
12
7
6
3
+
12 : 6 x 3 = 6
MCM(6;12) = 12
12 : 12 x 7 = 7
Luego:
12
7
6
3
+ =
12
13
12
76
=
+
2) Sumar:
14
9
4
3
7
1 −
+
−
+
−
Solución:
28 : 7 x -1 = -4
MCM(7; 4; 14) = 28 28 : 4 x –3 = -21
28 : 14 x –9 = -18
Luego:
14
9
4
3
7
1 −
+
−
+
−
=
28
43
28
18214 −
=
−−−
3) Sumar:
2
7
4
3
6
1
3
2
+
−
+
−
+
Solución: MCM(3; 6; 4; 2) = 12
2
7
4
3
6
1
3
2
+
−
+
−
+ =
4
13
12
39
12
42928
4
13
==
+−−
C. ADICION DE NUMEROS MIXTOS
Número Mixto.- Se llama número mixto a la suma de un número entero y una fracción:
En el número mixto está sobreentendido el signo, de la adición, razón por la cual se prescinde de él.
Ejemplo:
3
1
5 es un número mixto que indica:
3
1
5 +
Si se desea expresar un número mixto como fracción bastará con efectuar la suma que él indica.
3
1
5 =
3
1
5 + =
3
16
3
115
=
+
 FRACCION IMPROPIA
Recíprocamente, si a una fracción se lo quiere expresar como número mixto, bastará con dividir el
numerador por el denominador, así:
7
15
, es posible expresarlo como número mixto porque es
una fracción impropia.
Numerador
del número
racional
Denominador del
número racional
Número enteroResiduo
15 7
1 2
Luego:
7
15
=
7
1
2
¡Cuidado! Si la fracción impropia, es negativa, observa su transformación a número mixto.
9
58−
, ⇒
9
58−
= -6
9
4
6
9
4
−−=58 9
4 6
Con la aclaración anterior ampliaremos la transformación de un número mixto expresado como una
fracción común.
Veamos los ejemplos:
1)
5
37
5
27x5
5
2
7 =
+
=
S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA
1er . Año Secundaria
2)
3
7
3
12x3
3
1
2
−
=
−+−
=−
3)
4
27
4
36x4
4
3
6
−
=
−+−
=−
Ejemplos: 1) Sumar:
8
1
4
3
2
8
5
3 ++
Solución: A continuación mostramos dos formas distintas de solución:
Se suman los enteros y las fracciones
separadamente y luego se suman estos
resultados
Transformando previamente el número
mixto a fracción
3 + 2 +
8
1
4
3
8
5
++
5 +
4
3
8
6
+
5 +
4
3
4
3
+
5 +
4
6
5 +
2
3
5
2
3
=
3
8
1
4
3
2
8
5
++
8
1
4
11
8
29
++
8
12229 ++
2
3
5
2
13
8
52
=
1) Sumar: 7
3
2
6
1
2
2
1
4 −+
−
++
Solución:
Primera Forma: Segunda Forma:
4 + 2 + -7 +
3
2
6
1
2
1 −
++ 7
3
2
6
13
2
9
−+
−
++
-1 +
6
413 −+
-1 +
6
0
= -1
6
4241327 −−+
1
6
6
−=
−
SUSTRACCION DE FRACCIONES
La sustracción de fracciones equivale a efectuar la adición del minuendo con el opuesto del sustraendo.
Ejemplos:
1) Efectuar:
3
1
7
2
−
Solución:
Por definición:
3
1
7
2
− =
3
1
7
2 −
+
21
1
21
76 −
=
−+
Forma práctica:
3
1
7
2
− =
21
1
21
76 −
=
−
2) Efectuar:
4
1
2
3
1
5 −−
Solución:
Por definición:
4
1
2
3
1
5 −−
4
1
2
3
1
5 +
7 +
4
1
3
1
+
Forma práctica:
4
1
2
3
1
5 +
4
9
3
16
+
S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA
1er . Año Secundaria
7 +
12
7
7
12
7
12
7
7
12
91
12
2764
==
+
OPERACIONES COMBINADAS DE ADICION Y SUSTRACCION EN Q
Veamos los ejemplos:
1) Efectuar: 4 +
4
1
3
1
2
1
−−
Solución:
12
11
3
12
47
12
34648
==
−−+
2) Efectuar: 





+−−+
2
1
3
1
7
5
2
1
5
3
Solución:
Suprimiendo los signos de colección:
2
1
3
1
7
5
2
1
5
3
-+-+
opuestos
3
1
7
5
5
3
+− , denominadores primos entre sí.
3x7x5
7x5x13x5x53x7x3 +−
⇒
105
357563 +−
105
23
⇒ Es fracción propia y no se puede expresar como un número mixto.
3) Efectuar: 3+ 6
3
1
2
5
1
4
7
1
+−
Solución:
Sumando algebraicamente los enteros y fracciones en forma separada.
3 + 6 – 4 + 2 +
3
1
5
1
7
1
+−
7 +
105
352115 +−
= 7 +
105
29
= 7
105
29
4) Efectuar: A = 













−−−−+ 2
4
3
7
5
2
7
5
2
1
Solución:
Eliminamos los paréntesis: A = 





−−−−+ 2
4
3
7
5
2
7
5
2
1
Suprimimos los opuestos: A = 2
4
3
7
5
2
7
5
2
1
++−−+
Anulamos los opuestos: A =
4
3
2
1
+
Operamos empleando el MCM: A =
4
1
1
4
5
4
32
==
+
MULTIPLICACION DE FRACCIONES
Veamos: ejemplo:
S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA
1er . Año Secundaria
1) Efectuar:
105
16
3x5x7
1x8x2
3
1
x
5
8
x
7
2
==
Se observa que al multiplicar fracciones se obtiene como resultado (producto) otra fracción, cuyo
denominador es el resultado de multiplicar los numeradores y cuyo denominador es el resultado de
multiplicar los denominador.
Es decir:
f.d.b
e.c.a
f
e
.
d
c
.
b
a
=
2) Efectuar:
6
5
21
4
x
12
7
x
15
3
−−
Solución:
Simplificando: 54
1
6
1
5
3
21
1
4
1
4
12
1
7
3
15
1
3
=
−−
Del ejemplo anterior, concluimos:
- Siempre que sea posible, conviene simplificar antes de multiplicar.
- Si hay racionales negativas en la multiplicación, es necesario multiplicar sus signos, aplicando
correctamente la regla dada para los números enteros.
DIVISION DE FRACCIONES
Veamos los ejemplos:
1) Realizar:
11
18
:
11
45
Solución:
Cambiamos el operador de la división por el operador de la multiplicación e invirtiendo la fracción
divisor, así:
2
18
11
x
11
5
45
, se ha simplificado, luego:
2
5
11
18
11
45
=÷
Generalizando:
c
d
x
b
a
d
c
b
a
=÷
OTRA FORMA:
11
11
:
11
45
, se escribe:
Medios Extremos
45
11
18
11
18x11
11x45 Producto de extremos
Producto de medios
5
2
→
→
2
5
Generalizando: =÷
d
c
b
a
cxb
dxa
d
c
b
a
=
Efectuar:
6
1
3
1
2
1
5
3
+
−
Solución:
S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA
1er . Año Secundaria
Efectuando el numerador y denominador:
5
1
1
3x
5
10
1
2
6x1
6
3
10
1
6
12
10
56
===
+
−
¡IMPORTANTE!
- En la división de números racionales se obtiene otro número racional, eso implica que la división
en los racionales es clausurativa.
- Habiendo concluido el estudio de las operaciones básicas en Q, es necesario enunciar las
siguientes propiedades.
PROPIEDAD DE CLAUSURA
Si:
b
a
∈ Q y
d
c
∈ Q ⇒
b
a
+
d
c
∈ Q
Si:
b
a
∈ Q y
d
c
∈ Q ⇒
b
a
-
d
c
∈ Q
Si:
b
a
∈ Q y
d
c
∈ Q ⇒
b
a
x
d
c
∈ Q
Si:
b
a
∈ Q y
d
c
∈ Q ⇒
b
a
÷
d
c
∈ Q
PROPIEDAD CONMUTATIVA
b
a
d
c
d
c
b
a
+=+
b
a
x
d
c
d
c
x
b
a
=
PROPIEDAD ASOCIATIVA






++=+





+
f
e
d
c
b
a
f
e
d
c
b
a






=





f
e
x
d
c
x
b
a
f
e
x
d
c
x
b
a
PROPIEDAD DISTRIBUTIVA
f
e
x
b
a
d
c
x
b
a
f
e
d
c
x
b
a
+=





+
ELEMENTO NEUTRO
b
a
b
0
b
a
=+
b
a
1.
b
a
=
ELEMENTO OPUESTO
0
b
a
b
a
=
−
+
Nota:
Si:
b
a
es un número racional,
b
a−
es su opuesto.
Si:
b
a−
es un número racional,
b
a
es su opuesto.
ELEMENTO INVERSO
1
a
b
x
b
a
=
Nota: Si: Si:
b
a
es un número racional diferente de cero,
a
b
es su inverso.
PRACTICA DE CLASE
S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA
1er . Año Secundaria
1. Efectuar las operaciones:
a)
6
5
5
1
+ d)
3
1
6
5
5
1
++ g)
5
2
5
4
5
1
5
6
−+++
b)
7
1
2
3
+ e)
3
1
7
3
− h)
14
13
14
11
14
9
+−+
c)
2
3
8
1
4
3
++ f)
8
1
2
3
− i)
50
41
50
37
50
21
50
13
−++
2. Efectuar las operaciones:
a)
75
7
60
37
150
58
25
14 −
−
−
+
−
+
b)
10
9
26
15
5
7
4
3 −
−
−
++
c)
10
3
9
8
15
7
++
d)
90
61
36
7
54
13
9
8
++−
3. Completar con fracciones según corresponda:
a) 3 +
4
1
= b) 6 +
5
3
= c) 1 -
5
3
= d) 1 -
3
4
=
4. Efectuar:
a)
4
1
3
3
1
5 + b)
20
1
6
13
4
9
10
3
2
5
1
6 +++
c)
3
1
48
4
3
16
4
5
21
2
1
34 −+−
5. Efectuar:
a)
3
10
x
8
3
x
5
4
e)
4
3
x
15
8
x
2
5
b)
18
7
x
10
9
x
3
20
f)
3
10
4
27
x
9
40
÷
c)
19
7
x
73
2
x
14
3
5x19
−
g)
5
1
x
22
14
11
8
x
8
7 −
÷
d)
7
4
2x
6
1
2x
9
5
1x
7
2
1 −− h)
42
3
x
38
21
19
34
x
17
2 −
÷
−
6. Halla los siguientes cocientes:
a)
28
9
7
3
÷ b)
7
5
21
13 −
÷ c)
45
13
30
−
÷ d) 36
20
29
−÷
e)
46
25
23
15 −
÷ f)
28
11
7
44 −
÷
−
g)
4
21
2
1
3 ÷ h)
5
1
1
3
1
2 ÷
i)
28
18
5
3
3 ÷− j)
3
1
5
2
1
4 −÷−
7. Efectuar:
a)
3
4
1
4
1
2
3
+ b)
3
1
4
2
3
5
4
−
+ c)
4
1
3
4
9
4
+
d)
2
3
4
3
2
6
+
e)
2
3
2
1
+
f) 2 +
3
4
1
2
3
+
g)
3
1
1
1
1
1
1
1
1
−
+
+
+
S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA
1er . Año Secundaria
TAREA DOMICILIARIA
1. Efectuar: 9:
10
3
x
8
5
a) 2/15 b) 1/16 c) 1/48 d) 5/24 e) N.A.
2. Efectuar:
7
4
4
7
4
2
8
5
3
9
4
1
2
5
1
3
1
++−
a) 1
2
1
b) 1
4
3
c) 1
4
1
d)
4
3
e)
16
3
2
3. Reducir:
11
1
1
1
1
1
1
1
1
+
−
+
+
+
a) 18/8 b) 11/8 c) 13/5 d) 11/5 e) N.A.
4. Simplificar:
1
7
4
2
3
7
3
5
2
1
4
2
5
4
3
2
1
2
3
8
−−
+−
−
−+
+−
a) 12 b) 12
45
38
c) 11
45
38
d)
45
38
e) N.A.
5. Efectuar:
5
2
5
1
1
4
1
1
3
1
1
2
1
1
5
1
1
4
1
1
3
1
1
2
1
1
+






−





+





−





+






+





−





+





−
a) 1 b) 2 c) 1/2 d) 1/3 e) 1/4
6. Simplificar:
6
1
5
1
4
1
3
1
2
+
+
+
+
a) 972/423 b) 421/972 c) 972/421 d) 870/321 e) N.A.
7. Reducir:
67
22
x
2
1
4
2
1
3
2
1
2
−
−
a) 55/67 b) 49/67 c) 2 d) 24/67 e) 1
8. Simplificar:
5
2
1
2
4
3
1
1
1
6
5
10
1
5
3
4
1
9
2
x
4
3
2
1
1
−+
÷





−+−
a) 1 b) 49/4 c) 39/4 d) 5 e) N.A.
S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA
1er . Año Secundaria
9. Hallar: E =
3
C
BA +
.
Si: A = 





−





−





−
4
1
1
3
1
1
2
1
1 B =
5/8
5/2
C = 1 +
2
1
a) 0 b) 1 c) 1/2 d) 2 e) N.A.
10. Efectuar:
2
1
1
6
12
5
x
5
4
x
3
1
1
9
÷
÷
a) 12 b) 3 c) 1/3 d) 1/12 e) N.A.
11. Efectuar:
2
1
4
1
3
1
1x
8
1
32
5
2
5
3
1
2
−
−
−
+
+
a) 12
12
1
b)
19
12
c)
9
145
d)
5
29
e) N.A.
PROPLEMAS PROPUESTOS
1. Efectuar:
3939
4545
2626
1212
1313
3131
E ++=
a) 1 b) 0 c) 4 d) 1/ 2 e) 11/ 7
2. ¿Qué número continua en la secuencia? 2; 2;
2
3
; 1;
8
5
; .....
a)3/ 8 b) 1/ 8 c) 1/ 4 d) 4/ 5 e) 3/ 4
3. La mitad de una fracción "m" es igual a 1/5 y la tercera parte de la otra "n" es igual también a 1/s;
entonces m + n = ?
a)2/ 5 b) 3/ 5 c) 1/ 2 d) 1 e) 2
4. ¿Qué número racional no corresponde a n, si:
2
1
n
8
1
<<
a)3/ 8 b) 1/ 4 c) 5/ 16 d) 3/ 5 e) 1/ 3
5. Hallar:
65
2
5
1
1
13
6
120
13
8
1
24
1
5
2
A
++
+++
=
a)
48
9
3 b)
48
13
c)
13
9
3 d)
2
1
e) 1
6. Simplificar: 





+÷








−=
10
1
6
1
3
4
1000
216
S 3
a)
2
1
b)
2
1
− c)
4
1
− d) 1 e)
4
3
7. Hallar: AB
,sabiendo que:
132
9
8
3
2
5
4
8A
−−−






−





−





=
3
3
9
3
B
−








=
S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA
1er . Año Secundaria
a) 1 b) 2 c) 8 d) 9 e) 16
8. ¿Cuál es la fracción equivalente a 70/ 98, tal que el producto de sus términos sea 315?. Dar la
diferencia de sus términos.
a) 18 b) 10 c) 12 d) 6 e) 8
9. Efectuar el producto: 





−





−





−





−=
100
1
1...
16
1
1
9
1
1
4
1
1P
a)
2
1
b)
20
11
c)
201
111
d)
101
99
e)
99
1
10. Una fracción se divide entre su inversa y da como resultado: 289/ 529. Halle la suma de los
términos de la fracción:
a) 36 b) 38 c) 40 d) 42 e) 44
11. Reducir:
1
11
11
yx
yx
−
−−
−−







 +
a)
x
1
b)
y
1
c)
xy
1
d)
yx
1
−
e)
99
1
12. Reducir:
2
1
1
1
3
1
3
1
−
+
+
a)
2
1
b)
3
1
c)
4
1
d)
3
5
e)
5
1
13. ¿Cuánto le falta a
11
4
para ser iguales a los
3
2
de los
7
5
de
11
6
de 7?
a)
9
8
b)
5
11
c)
3
8
d)
11
16
e)
11
9
14. ¿Qué fracción de 65 hay que añadirle a los
3
1
2 de
7
4
5 para que pueda ser igual a 130?
a)
5
9
b)
5
4
c)
7
9
d)
2
76
e)
9
4
15. Reducir:
( ) ( )
131)5,0(
12
15,01
27
1
5,0
1
25,012
P
−−−−
−−
−
−






−+





−
−+
=
a)
11
1
b)
11
1
− c)
2
1
− d)
2
1
e) N.a
16. Halla:
3
10
2
10
...
2
3
3
2
3
2
3
1
2
1
M −+−+−+−=
a)
6
50
b)
3
55
c)
2
17
d)
3
50
e)
6
55
17. ¿Cuál es el número que tiene 14 de diferencia entre sus 3/ 4 y sus 2/ 5?
a) 10 b) 30 c) 40 d) 15 e) 18
18. ¿Cuánto es un tercio más un medio de un tercio más un medio de diez?
a)
2
1
4 b) 4 c) 5 d)
2
1
5 e) otro valor
19. Simplificar la expresión:
9191
9999
273273
192192
919191
191919
P ++=
S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA
1er . Año Secundaria
a) 2 b)
91
73
c) 3,1

d) 51,0 e)
91
17
20. Calcular el valor de "S": ...
81
1
27
1
9
1
3
1
1S +++++=
a) 1 b) 3 c) 2 d)
2
3
e)
3
2
SOLUCIONARIO
Nº
EJERCICIOS PROPUESTOS
01 02
01. C C
02. B A
03. E D
04. D D
05. E B
06. D C
07. C B
08. D D
09. A B
10. D C
11. E
12. E
13. D
14. A
15. B
16. E
17. C
18. D
19. A
20. D
GRUPO EDUCATIVO INTEGRAL
copyright 2003
S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”

Más contenido relacionado

La actualidad más candente (20)

Alg(2) 4° 2 b
Alg(2) 4° 2 bAlg(2) 4° 2 b
Alg(2) 4° 2 b
 
2014 iii 06 teorema de resto 1
2014 iii 06 teorema de resto 12014 iii 06 teorema de resto 1
2014 iii 06 teorema de resto 1
 
U6 s3 ecuaciones de segundo grado
U6 s3  ecuaciones de segundo gradoU6 s3  ecuaciones de segundo grado
U6 s3 ecuaciones de segundo grado
 
Algebra 5° 4 b
Algebra 5° 4 bAlgebra 5° 4 b
Algebra 5° 4 b
 
Algebra(2) 5° 1 b
Algebra(2) 5° 1 bAlgebra(2) 5° 1 b
Algebra(2) 5° 1 b
 
Aritmetica san marco
Aritmetica san marcoAritmetica san marco
Aritmetica san marco
 
Aritmetica 4° 4 b
Aritmetica 4° 4 bAritmetica 4° 4 b
Aritmetica 4° 4 b
 
Series y Sucesiones
Series y Sucesiones Series y Sucesiones
Series y Sucesiones
 
Sucesiones Matemáticas
Sucesiones MatemáticasSucesiones Matemáticas
Sucesiones Matemáticas
 
Resumen psu matemáticas completo
Resumen psu matemáticas completoResumen psu matemáticas completo
Resumen psu matemáticas completo
 
Fracciones
FraccionesFracciones
Fracciones
 
Algebra
AlgebraAlgebra
Algebra
 
Divisibilidad i
Divisibilidad iDivisibilidad i
Divisibilidad i
 
1quincena7
1quincena71quincena7
1quincena7
 
Bloque2b series numericas
Bloque2b series numericasBloque2b series numericas
Bloque2b series numericas
 
Razonamiento matematico-manuel-covenas
Razonamiento matematico-manuel-covenasRazonamiento matematico-manuel-covenas
Razonamiento matematico-manuel-covenas
 
Sucesiones
SucesionesSucesiones
Sucesiones
 
03.11 Sucesiones
03.11 Sucesiones03.11 Sucesiones
03.11 Sucesiones
 
Divisibilidad algebraica
Divisibilidad algebraicaDivisibilidad algebraica
Divisibilidad algebraica
 
Algebra 3 expresiones algebraicas
Algebra 3 expresiones algebraicasAlgebra 3 expresiones algebraicas
Algebra 3 expresiones algebraicas
 

Destacado

Aritmetica
AritmeticaAritmetica
Aritmetica349juan
 
Capitulo 2 números enteros
Capitulo 2 números enteros Capitulo 2 números enteros
Capitulo 2 números enteros niella marialaura
 
Matematica
MatematicaMatematica
Matematica349juan
 
16728086 problemas-resueltos-de-conjunos
16728086 problemas-resueltos-de-conjunos16728086 problemas-resueltos-de-conjunos
16728086 problemas-resueltos-de-conjunospianist0990
 
Geometria(2 parte)
Geometria(2 parte)Geometria(2 parte)
Geometria(2 parte)349juan
 
Tema 04 función logaritmica
Tema 04 función logaritmicaTema 04 función logaritmica
Tema 04 función logaritmica349juan
 
Geometria
GeometriaGeometria
Geometria349juan
 
Tema 02 funciones en ir
Tema 02 funciones en irTema 02 funciones en ir
Tema 02 funciones en ir349juan
 
Tema 03 grafico de funciones en ir
Tema 03 grafico de funciones en irTema 03 grafico de funciones en ir
Tema 03 grafico de funciones en ir349juan
 
Rm (parte ii)
Rm (parte ii)Rm (parte ii)
Rm (parte ii)349juan
 
Aritmetica
AritmeticaAritmetica
Aritmetica349juan
 
Geometria(3 parte) 4° 1 b
Geometria(3 parte) 4° 1 bGeometria(3 parte) 4° 1 b
Geometria(3 parte) 4° 1 b349juan
 
Geometria
GeometriaGeometria
Geometria349juan
 
Algebra 5° 2 b
Algebra 5° 2 bAlgebra 5° 2 b
Algebra 5° 2 b349juan
 
Alg(1) 4° 2 b
Alg(1) 4° 2 bAlg(1) 4° 2 b
Alg(1) 4° 2 b349juan
 
Raz. matematico
Raz. matematicoRaz. matematico
Raz. matematico349juan
 
Rm2 4° 1 b
Rm2 4° 1 bRm2 4° 1 b
Rm2 4° 1 b349juan
 
Geometria(2 parte) 4° 1 b
Geometria(2 parte) 4° 1 bGeometria(2 parte) 4° 1 b
Geometria(2 parte) 4° 1 b349juan
 

Destacado (20)

Aritmetica
AritmeticaAritmetica
Aritmetica
 
Capitulo 2 números enteros
Capitulo 2 números enteros Capitulo 2 números enteros
Capitulo 2 números enteros
 
Matematica
MatematicaMatematica
Matematica
 
16728086 problemas-resueltos-de-conjunos
16728086 problemas-resueltos-de-conjunos16728086 problemas-resueltos-de-conjunos
16728086 problemas-resueltos-de-conjunos
 
Geometria(2 parte)
Geometria(2 parte)Geometria(2 parte)
Geometria(2 parte)
 
Tema 04 función logaritmica
Tema 04 función logaritmicaTema 04 función logaritmica
Tema 04 función logaritmica
 
Geometria
GeometriaGeometria
Geometria
 
Tema 02 funciones en ir
Tema 02 funciones en irTema 02 funciones en ir
Tema 02 funciones en ir
 
Tema 03 grafico de funciones en ir
Tema 03 grafico de funciones en irTema 03 grafico de funciones en ir
Tema 03 grafico de funciones en ir
 
Rm (parte ii)
Rm (parte ii)Rm (parte ii)
Rm (parte ii)
 
Algebra
AlgebraAlgebra
Algebra
 
Aritmetica
AritmeticaAritmetica
Aritmetica
 
Geometria(3 parte) 4° 1 b
Geometria(3 parte) 4° 1 bGeometria(3 parte) 4° 1 b
Geometria(3 parte) 4° 1 b
 
Geometria
GeometriaGeometria
Geometria
 
Algebra
AlgebraAlgebra
Algebra
 
Algebra 5° 2 b
Algebra 5° 2 bAlgebra 5° 2 b
Algebra 5° 2 b
 
Alg(1) 4° 2 b
Alg(1) 4° 2 bAlg(1) 4° 2 b
Alg(1) 4° 2 b
 
Raz. matematico
Raz. matematicoRaz. matematico
Raz. matematico
 
Rm2 4° 1 b
Rm2 4° 1 bRm2 4° 1 b
Rm2 4° 1 b
 
Geometria(2 parte) 4° 1 b
Geometria(2 parte) 4° 1 bGeometria(2 parte) 4° 1 b
Geometria(2 parte) 4° 1 b
 

Similar a Matematica 1º2 b

Similar a Matematica 1º2 b (20)

Numeros racionales
Numeros  racionalesNumeros  racionales
Numeros racionales
 
6º grado de primaria - Álgebra 2
6º grado de primaria - Álgebra 26º grado de primaria - Álgebra 2
6º grado de primaria - Álgebra 2
 
6º grado de Primaria - Álgebra 1
6º grado de Primaria - Álgebra 16º grado de Primaria - Álgebra 1
6º grado de Primaria - Álgebra 1
 
bloque 4
bloque 4bloque 4
bloque 4
 
R1 bloque 4
R1 bloque 4R1 bloque 4
R1 bloque 4
 
Lugo bloque 4
Lugo   bloque 4Lugo   bloque 4
Lugo bloque 4
 
Lugo bloque 4
Lugo   bloque 4Lugo   bloque 4
Lugo bloque 4
 
Hoja de trabajo 33
Hoja de trabajo 33Hoja de trabajo 33
Hoja de trabajo 33
 
Hoja de trabajo 33
Hoja de trabajo 33Hoja de trabajo 33
Hoja de trabajo 33
 
Hoja de trabajo 33
Hoja de trabajo 33Hoja de trabajo 33
Hoja de trabajo 33
 
Hoja de trabajo 33
Hoja de trabajo 33Hoja de trabajo 33
Hoja de trabajo 33
 
7°-Matemática-3.-Enteros-2019.pdf
7°-Matemática-3.-Enteros-2019.pdf7°-Matemática-3.-Enteros-2019.pdf
7°-Matemática-3.-Enteros-2019.pdf
 
Bloque 4-numeros con signos y sus operaciones
Bloque 4-numeros con signos y sus operacionesBloque 4-numeros con signos y sus operaciones
Bloque 4-numeros con signos y sus operaciones
 
5º numeros naturales
5º numeros naturales5º numeros naturales
5º numeros naturales
 
Tarea hoja 33,34,36
Tarea hoja 33,34,36Tarea hoja 33,34,36
Tarea hoja 33,34,36
 
Power 110811084534-phpapp02
Power 110811084534-phpapp02Power 110811084534-phpapp02
Power 110811084534-phpapp02
 
Power 110811084534-phpapp02
Power 110811084534-phpapp02Power 110811084534-phpapp02
Power 110811084534-phpapp02
 
Divisibilidad ii(crietrios de divisibilidad)
Divisibilidad ii(crietrios de divisibilidad)Divisibilidad ii(crietrios de divisibilidad)
Divisibilidad ii(crietrios de divisibilidad)
 
Números Complejos
Números ComplejosNúmeros Complejos
Números Complejos
 
Matematica trayecto inicial
Matematica trayecto inicialMatematica trayecto inicial
Matematica trayecto inicial
 

Más de 349juan

Taller de estrategias de comunicación y matemática
Taller de estrategias de comunicación y matemáticaTaller de estrategias de comunicación y matemática
Taller de estrategias de comunicación y matemática349juan
 
Taller de estrategias de comunicación y matemática en el marco de las rutas d...
Taller de estrategias de comunicación y matemática en el marco de las rutas d...Taller de estrategias de comunicación y matemática en el marco de las rutas d...
Taller de estrategias de comunicación y matemática en el marco de las rutas d...349juan
 
Razonamiento matemtico nivel primaria
Razonamiento matemtico nivel primariaRazonamiento matemtico nivel primaria
Razonamiento matemtico nivel primaria349juan
 
Procesos didácticos y pedagógicos de una sesión de matemática
Procesos didácticos y pedagógicos de una sesión de matemáticaProcesos didácticos y pedagógicos de una sesión de matemática
Procesos didácticos y pedagógicos de una sesión de matemática349juan
 
Manual de tutoria y orientacion
Manual de tutoria y orientacionManual de tutoria y orientacion
Manual de tutoria y orientacion349juan
 
Cartilla minedu
Cartilla mineduCartilla minedu
Cartilla minedu349juan
 
Aprendiendo a-resolver-conflictos-en-las-instituciones-educativas
Aprendiendo a-resolver-conflictos-en-las-instituciones-educativasAprendiendo a-resolver-conflictos-en-las-instituciones-educativas
Aprendiendo a-resolver-conflictos-en-las-instituciones-educativas349juan
 
Simulacro examen docente a 2015
Simulacro examen docente a 2015Simulacro examen docente a 2015
Simulacro examen docente a 2015349juan
 
Simulacro de examen docente 2015
Simulacro de examen docente 2015Simulacro de examen docente 2015
Simulacro de examen docente 2015349juan
 
6 rutas del aprendizaje roxana dias (1)
6  rutas del aprendizaje   roxana dias (1)6  rutas del aprendizaje   roxana dias (1)
6 rutas del aprendizaje roxana dias (1)349juan
 
5 marco buen desempeño docente fidel soria cuellar
5  marco buen desempeño docente   fidel soria cuellar5  marco buen desempeño docente   fidel soria cuellar
5 marco buen desempeño docente fidel soria cuellar349juan
 
4 dcn y rutas de aprendizaje oscar tinoco gómez
4  dcn y rutas de aprendizaje   oscar tinoco gómez4  dcn y rutas de aprendizaje   oscar tinoco gómez
4 dcn y rutas de aprendizaje oscar tinoco gómez349juan
 
3 mapas de progreso gelvert estrada advíncula
3  mapas de progreso   gelvert estrada advíncula3  mapas de progreso   gelvert estrada advíncula
3 mapas de progreso gelvert estrada advíncula349juan
 
2 pen y marco curricular mauricio acevedo carrillo
2  pen y marco curricular   mauricio acevedo carrillo2  pen y marco curricular   mauricio acevedo carrillo
2 pen y marco curricular mauricio acevedo carrillo349juan
 
1 enfoque por competencias antuanet chirinos mendoza
1  enfoque por competencias   antuanet chirinos mendoza1  enfoque por competencias   antuanet chirinos mendoza
1 enfoque por competencias antuanet chirinos mendoza349juan
 
0 rutas emotivo afectivas - tania bornaz
0  rutas emotivo   afectivas - tania bornaz0  rutas emotivo   afectivas - tania bornaz
0 rutas emotivo afectivas - tania bornaz349juan
 
Orientaciones ebr
Orientaciones ebrOrientaciones ebr
Orientaciones ebr349juan
 
Formato de sesión de aprendizaje
Formato de sesión de aprendizajeFormato de sesión de aprendizaje
Formato de sesión de aprendizaje349juan
 
Fasciculo secundaria-matematica-vii
Fasciculo secundaria-matematica-viiFasciculo secundaria-matematica-vii
Fasciculo secundaria-matematica-vii349juan
 

Más de 349juan (20)

Taller de estrategias de comunicación y matemática
Taller de estrategias de comunicación y matemáticaTaller de estrategias de comunicación y matemática
Taller de estrategias de comunicación y matemática
 
Taller de estrategias de comunicación y matemática en el marco de las rutas d...
Taller de estrategias de comunicación y matemática en el marco de las rutas d...Taller de estrategias de comunicación y matemática en el marco de las rutas d...
Taller de estrategias de comunicación y matemática en el marco de las rutas d...
 
Razonamiento matemtico nivel primaria
Razonamiento matemtico nivel primariaRazonamiento matemtico nivel primaria
Razonamiento matemtico nivel primaria
 
Procesos didácticos y pedagógicos de una sesión de matemática
Procesos didácticos y pedagógicos de una sesión de matemáticaProcesos didácticos y pedagógicos de una sesión de matemática
Procesos didácticos y pedagógicos de una sesión de matemática
 
Manual de tutoria y orientacion
Manual de tutoria y orientacionManual de tutoria y orientacion
Manual de tutoria y orientacion
 
Etd esc
Etd escEtd esc
Etd esc
 
Cartilla minedu
Cartilla mineduCartilla minedu
Cartilla minedu
 
Aprendiendo a-resolver-conflictos-en-las-instituciones-educativas
Aprendiendo a-resolver-conflictos-en-las-instituciones-educativasAprendiendo a-resolver-conflictos-en-las-instituciones-educativas
Aprendiendo a-resolver-conflictos-en-las-instituciones-educativas
 
Simulacro examen docente a 2015
Simulacro examen docente a 2015Simulacro examen docente a 2015
Simulacro examen docente a 2015
 
Simulacro de examen docente 2015
Simulacro de examen docente 2015Simulacro de examen docente 2015
Simulacro de examen docente 2015
 
6 rutas del aprendizaje roxana dias (1)
6  rutas del aprendizaje   roxana dias (1)6  rutas del aprendizaje   roxana dias (1)
6 rutas del aprendizaje roxana dias (1)
 
5 marco buen desempeño docente fidel soria cuellar
5  marco buen desempeño docente   fidel soria cuellar5  marco buen desempeño docente   fidel soria cuellar
5 marco buen desempeño docente fidel soria cuellar
 
4 dcn y rutas de aprendizaje oscar tinoco gómez
4  dcn y rutas de aprendizaje   oscar tinoco gómez4  dcn y rutas de aprendizaje   oscar tinoco gómez
4 dcn y rutas de aprendizaje oscar tinoco gómez
 
3 mapas de progreso gelvert estrada advíncula
3  mapas de progreso   gelvert estrada advíncula3  mapas de progreso   gelvert estrada advíncula
3 mapas de progreso gelvert estrada advíncula
 
2 pen y marco curricular mauricio acevedo carrillo
2  pen y marco curricular   mauricio acevedo carrillo2  pen y marco curricular   mauricio acevedo carrillo
2 pen y marco curricular mauricio acevedo carrillo
 
1 enfoque por competencias antuanet chirinos mendoza
1  enfoque por competencias   antuanet chirinos mendoza1  enfoque por competencias   antuanet chirinos mendoza
1 enfoque por competencias antuanet chirinos mendoza
 
0 rutas emotivo afectivas - tania bornaz
0  rutas emotivo   afectivas - tania bornaz0  rutas emotivo   afectivas - tania bornaz
0 rutas emotivo afectivas - tania bornaz
 
Orientaciones ebr
Orientaciones ebrOrientaciones ebr
Orientaciones ebr
 
Formato de sesión de aprendizaje
Formato de sesión de aprendizajeFormato de sesión de aprendizaje
Formato de sesión de aprendizaje
 
Fasciculo secundaria-matematica-vii
Fasciculo secundaria-matematica-viiFasciculo secundaria-matematica-vii
Fasciculo secundaria-matematica-vii
 

Último

VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMALVOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMALEDUCCUniversidadCatl
 
PPT_Formación integral y educación CRESE (1).pdf
PPT_Formación integral y educación CRESE (1).pdfPPT_Formación integral y educación CRESE (1).pdf
PPT_Formación integral y educación CRESE (1).pdfEDILIAGAMBOA
 
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptxPPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptxOscarEduardoSanchezC
 
Uses of simple past and time expressions
Uses of simple past and time expressionsUses of simple past and time expressions
Uses of simple past and time expressionsConsueloSantana3
 
Fundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdfFundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdfsamyarrocha1
 
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptxc3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptxMartín Ramírez
 
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfTarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfManuel Molina
 
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docxPLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docxJUANSIMONPACHIN
 
Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024IES Vicent Andres Estelles
 
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfEstrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfAlfredoRamirez953210
 
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024gharce
 
PROGRAMACION ANUAL DE MATEMATICA 2024.docx
PROGRAMACION ANUAL DE MATEMATICA 2024.docxPROGRAMACION ANUAL DE MATEMATICA 2024.docx
PROGRAMACION ANUAL DE MATEMATICA 2024.docxEribertoPerezRamirez
 
LA OVEJITA QUE VINO A CENAR CUENTO INFANTIL.pdf
LA OVEJITA QUE VINO A CENAR CUENTO INFANTIL.pdfLA OVEJITA QUE VINO A CENAR CUENTO INFANTIL.pdf
LA OVEJITA QUE VINO A CENAR CUENTO INFANTIL.pdfNataliaMalky1
 
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptxLINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptxdanalikcruz2000
 
Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Angélica Soledad Vega Ramírez
 

Último (20)

VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMALVOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
 
PPT_Formación integral y educación CRESE (1).pdf
PPT_Formación integral y educación CRESE (1).pdfPPT_Formación integral y educación CRESE (1).pdf
PPT_Formación integral y educación CRESE (1).pdf
 
TL/CNL – 2.ª FASE .
TL/CNL – 2.ª FASE                       .TL/CNL – 2.ª FASE                       .
TL/CNL – 2.ª FASE .
 
Aedes aegypti + Intro to Coquies EE.pptx
Aedes aegypti + Intro to Coquies EE.pptxAedes aegypti + Intro to Coquies EE.pptx
Aedes aegypti + Intro to Coquies EE.pptx
 
DIA INTERNACIONAL DAS FLORESTAS .
DIA INTERNACIONAL DAS FLORESTAS         .DIA INTERNACIONAL DAS FLORESTAS         .
DIA INTERNACIONAL DAS FLORESTAS .
 
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptxPPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
 
Uses of simple past and time expressions
Uses of simple past and time expressionsUses of simple past and time expressions
Uses of simple past and time expressions
 
Fundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdfFundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdf
 
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptxc3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
 
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfTarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
 
PPTX: La luz brilla en la oscuridad.pptx
PPTX: La luz brilla en la oscuridad.pptxPPTX: La luz brilla en la oscuridad.pptx
PPTX: La luz brilla en la oscuridad.pptx
 
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docxPLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
 
La luz brilla en la oscuridad. Necesitamos luz
La luz brilla en la oscuridad. Necesitamos luzLa luz brilla en la oscuridad. Necesitamos luz
La luz brilla en la oscuridad. Necesitamos luz
 
Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024
 
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfEstrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
 
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
 
PROGRAMACION ANUAL DE MATEMATICA 2024.docx
PROGRAMACION ANUAL DE MATEMATICA 2024.docxPROGRAMACION ANUAL DE MATEMATICA 2024.docx
PROGRAMACION ANUAL DE MATEMATICA 2024.docx
 
LA OVEJITA QUE VINO A CENAR CUENTO INFANTIL.pdf
LA OVEJITA QUE VINO A CENAR CUENTO INFANTIL.pdfLA OVEJITA QUE VINO A CENAR CUENTO INFANTIL.pdf
LA OVEJITA QUE VINO A CENAR CUENTO INFANTIL.pdf
 
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptxLINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
 
Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...
 

Matematica 1º2 b

  • 1. 51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA 1er . Año Secundaria OBJETIVOS ESPECÍFICOS 1. Entender la necesidad de extender el conjunto de los números naturales. 2. Analizar y reconocer el conjunto de los números enteros y representarlos en la recta numérica. 3. Reconocer números enteros opuestos. 4. Determinar el valor absoluto de números enteros. 5. Establecer las relaciones de orden entre números enteros. PROCEDIMIENTOS A. MOTIVACION INTRODUCCION HISTORICA La primera consideración sobre el número entero negativo no llega en el mundo occidental sino hasta el siglo XVI como consecuencia de la solución de ecuaciones algebraicas. En oriente, en cambio, durante el siglo IV ya manipulaban números positivos y negativos en los ábacos usando bolas de diferentes colores. El matemático alemán Kronecker afirmó: “El número natural lo creó Dios y todo lo demás es obra de los hombres”. Si nos remitimos a tiempos remotos podemos encontrar que nuestros antepasados utilizaban los números, según su necesidad, cuál era el contar los animales que poseían, la cantidad de grano que almacenaban, etc. para lo cual era suficiente el conjunto de los números naturales. Posteriormente el hombre ha ido ampliando sus necesidades en la utilización de los números y se ha visto en la necesidad de ampliar el conjunto de los números naturales, como veremos más adelante. CONTENIDO TEORICO 1. JUSTIFICACION PARA LA EXTENSIÓN DEL CONJUNTO DE LOS NUMEROS NATURALES Por lo aprendido, en el módulo anterior: N = {0; 1; 2; 3; 4; 5;........}; cuya representación en la semirecta es: 0 1 2 3 4 5 6 ..... También, quedó establecido que las operaciones de adición y multiplicación siempre son posibles en N (definidas en N), esto es: Propiedad de Clausura o cerradura: ∀ a; b ∈ N ⇒ (a + b) ∈ N ∀ a; b ∈ N ⇒ (a . b) ∈ N Sin embargo, la operación de sustracción existe solamente en una forma muy restringida, es decir sólo cuando el minuendo es mayor o igual que el sustraendo, y por lo tanto la sustracción no verifica la clausuratividad en N. Por ejemplo: 15 – 7 = 8; 8 ∈N ⇒ M > S 12 – 12 = 0; 0 ∈ N ⇒ M = S 21 – 36 = x; x ∉ N ⇒ M < S Se concluye: - Con el conjunto de los números naturales (N), no es suficiente para realizar todas las operaciones. - Para que la sustracción siempre sea posible se hace necesario extender o ampliar el conjunto N a otro conjunto de números en el cual la sustracción sea clausurativa. - Se construye un nuevo conjunto de números que incluye al conjunto N. Cumpliéndose en este nuevo conjunto las operaciones y propiedades de los naturales. Además en este conjunto se establecen otras propiedades con las que será posible ampliar el campo operatorio. - Este nuevo conjunto de números se denomina conjunto de los números enteros, cuya notación es Z. 2. Conjunto de los números enteros Veamos los siguientes ejemplos: 37 – 29 = 8 ⇒ 37 = 8 + 29 25 – 25 = 0 ⇒ 25 = 25 12 – 56 = -44 ⇒ 12 = -44 + 56 2.1 Conjunto de los números enteros positivos Al conjunto de los números enteros positivos se denota por +Z , siendo sus elementos las diferencias de números naturales (a-b), tales que a > b. NOTACION POR COMPRENSION +Z = {a-b/a; b ∈ N ∧ a > b} NOTACION POR EXTENSION +Z = { .......;5;4;3;2;1 +++++ } NOTACION POR CONVENIO MATEMATICO +Z = {1; 2; 3; 4; 5; ....} S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....” CONJUNTO DE LOS NÚMEROS
  • 2. 51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA 1er . Año Secundaria 2.2 Conjunto unitario, elemento cero. Este conjunto tiene como elemento al número cero (0), que se obtiene de la diferencia de números naturales (a-b), tales que a = b. {0} = {a-b/a; b ∈ N ∧ a = b} El número entero cero no es positivo ni negativo, es decir: 0 ∉ +Z 0 ∉ −Z 2.3 Conjunto de los números enteros negativos NOTACION POR COMPRENSION −Z = {a-b/a; b ∈ N ∧ a < b} NOTACION POR EXTENSION −Z = { ...; ;1;2;3;4 −−−− } 2.4 Conjunto de los números enteros Al conjunto de los números enteros se denota por Z, siendo sus elementos todas las diferencias de números naturales, es decir, la reunión de los conjuntos antes mencionados, cuya notación son: POR COMPRENSION Z = Z- U {0} U +Z POR EXTENSION Z = { ..... ; ;3;2;1;0;1;2;3 +++−−− ; ......} COROLARIO Los números naturales forman un subconjunto de los números enteros. Luego: ZN ⊂ Todo número natural es entero, pero no todo número entero es natural. Ejemplo: 7 ∈ N ∧ 7 ∈ Z -15 ∈ Z ∧ -15 ∉ N REPRESENTACION GRAFICA DE Z 7 N -15 Z 3. REPRESENTACION DE LOS NUMEROS ENTEROS EN LA RECTA NUMERICA Se elige en la recta numérica un punto de origen, el que se le hace corresponder el número entero cero. 0 A la derecha de cero se ubican a distancias iguales, los números enteros positivos. 0 +1 +2 .....+3 +4 A la izquierda de cero se ubican a distancias iguales, los números enteros negativos. -4 -3 -2 -1 0 +1 +2 .....+3 +4..... 4. NUMEROS ENTEROS OPUESTOS Establecida la correspondencia de cada número entero, con un punto de la recta, se observa que los números enteros simétricos u opuestos ZyZ −+ , equidistan de cero (expresan igual distancia al origen). -4 -3 -2 -1 0 +1 +2 .....+3 +4..... ORIGEN NUMEROS ENTEROS OPUESTOS S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
  • 3. 51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA 1er . Año Secundaria ⇒ -2 y 2 son # Z opuestos. 5. VALOR ABSOLUTO: | | El valor absoluto de un número es la distancia de dicho número al origen. |a| ⇒ se lee: valor absoluto de a. Recuerda |a| = a ; si: a > 0 0 ; si: a = 0 - a; si : a < 0 Ejemplos: |7| = 7; (7 > 0) |0| = 0 |-7| = 7; (-7 < 0) De los ejemplos se concluye: |a| nunca es un número negativo. |a| es mayor o igual que cero. |a| ≥ 0 5.1 APLICACIONES 1) Si |x| = 3, a qué números enteros representa x ? Solución: X es un número que dista 6 unidades del origen. Luego: X = {- 3; 3} -4 -3 -2 -1 0 +1 +2 .....+3 +4..... | ||3| →|-3|  ←→←| 2) Si |x| < 5, a qué números enteros representa X? Solución: X representa a todos los números enteros cuyas distancias al origen son menores que cinco. -4 -3 -2 -1 0 +1 +2 .....+3 +4..... ORIGEN Del gráfico: X = {-4; -3; -2; -1; 0; 1; 2; 3; 4} 3) Cuando afirmamos que |X| ≤ 5, a qué números enteros representa X? Solución: X representa a todos los números enteros cuyas distancias al origen son iguales o menores que 5. -4 -3 -2 -1 0 +1 +2 .....+3 +4..... ORIGEN Del gráfico: X = {-5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5} 4. Si |X| > 2, a qué números enteros representa X? Solución X representa a todos los enteros cuyas distancias al origen son mayores que 2. -4 -3 -2 -1 0 +1 +2 .....+3 +4..... ORIGEN Del gráfico: X = {.....; -5; -4; -3; 3; 4; 5; .....} 5. Cuando afirmamos que |X| ≥ 2. ¿A qué números representa X? Solución X representa a todos los enteros cuyas distancias al origen son mayores o iguales que 2. -4 -3 -2 -1 0 +1 +2 .....+3 +4..... ORIGEN Del gráfico: X = {.....; -4; -3; -2; 2; 3; 4; .....} 6. COMPARACION ENTRE NUMEROS ENTEROS En la recta numérica para los números enteros: S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
  • 4. 51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA 1er . Año Secundaria -4 -3 -2 -1 0 +1 +2 .....+3 +4..... -5 +5 De aquí se deducen las siguientes propiedades de comparación entre números enteros: Propiedad 1: Cualquier número positivo es mayor que cero. Propiedad 2: Cualquier número negativo es menor que cero. Propiedad 3: Cualquier número positivo es mayor que cualquier número negativo. Ejemplo: +1 > -1 000 000. Propiedad 4: De dos números positivos es mayor el que tiene mayor valor absoluto. Ejemplo: +50 > +12 Propiedad 5: De dos números negativos es mayor el que tiene menor valor absoluto. Ejemplo: -16 > -58. Escribe los símbolos <, = , > en el espacio que corresponde. +127 ........ +132 +127 ........ +132 +19 ........ +7 |-7| ........ |7| -11 ........ 0 -27 ........ -38 0 ........ -16 -124 ........ -178 8 ........ -26 -18 ........ 18 PRACTICA DE CLASE A continuación proponemos una serie de ejercicios que te permitirán plasmar lo aprendido en la sesión. ADELANTE. 1. Colocar verdadero (V) o falso (F), según corresponda: -3 ∈ N ........ ( ) 5 ∈ N ........ ( ) N ⊂ Z ........ ( ) -8 ⊂ Z ........ ( ) 7 ∈ Z ........ ( ) 0 ∈ Z ........ ( ) 2. Determine el valor absoluto de: |-5| = ....................... |+5| = ....................... |-7| = ....................... |0| = ....................... |-50| = ....................... |-16| + |-5| = ....................... |-233| + |+10| = ....................... |-7| - |3| = ....................... 3. Escribir 6 pares de números opuestos: a) ...................................... b) ...................................... c) ...................................... d) ...................................... e) ...................................... f) ...................................... 4. En la recta numérica: -4 -3 -2 -1 0 +1 +2 .....+3 +4..... -5 +5 R Q P N M A B C D E Suponiendo que cada espacio mide 1 centímetro, entonces la distancia del punto: D a cero es ......................... R es acero es ......................... M a cero es ......................... B es acero es ......................... E a cero es ......................... Q a cero es ......................... 5. Dado |X| = 5. ¿Qué números enteros representa X? ¿Por qué? 6. Si |X| < 4. ¿A qué números enteros representa X? ¿Por qué? 7. Si |X| > 6. ¿A qué números enteros representa X? ¿Por qué? 8. Escribe el signo >, = ó <. Según corresponda en los espacios punteados. a) –15 ........ -7 g) |-5| ........ |5| b) 20 ........ +20 h) |-12| ........ |-18| c) 12 ........ -12 i) |-15| ........ |+12| S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
  • 5. 51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA 1er . Año Secundaria d) -32 ........ 20 j) 0 ........ -9 e) –1 ........ 0 k) -32 ........ -1 f) 0 ........ 11 l) |0| ........ |-3| TAREA DOMICILIARIA 1. Ordenar de menor a mayor: a) 10; -1; -8; +4; +7; -6; -9 b) –104; -26; -5; 0; -1; +1; +3; +30; -60; -24 c) –12; 13; +14; -7; -10; -1; 0 2. Ordenar en forma decreciente. a) –4; -8; -13; 0; -7; +7; +16; -1 b) –26; -32; -5; 0; -1; +1; +3; +30; +19 3. Si |X| ≥ 4. ¿A qué números enteros representa X? ¿Por qué? 4. Si |X| ≤ 3. ¿A qué números enteros representa X? ¿Por qué? 5. Si |X| = 6. ¿A qué números enteros representa X? ¿Por qué? 6. Si |X| < 5. ¿A qué números enteros representa X? ¿Por qué? 7. Si |X| > 4. ¿A qué números enteros representa X? ¿Por qué? 8. Aplicando las propiedades de la Igualdad y Desigualdad, escribir la conclusión en cada proposición? a) Si: a = b y b = c. Se concluye: ................................. b) Si: -8 < -2 y -2 < 5. Se concluye: ................................. c) Si: -1 > -2 y -2 > -3. Se concluye: ................................. 9. Escribe los símbolos <, =, > en el espacio que corresponde: a) 215− ......... 0 g) |15| ......... |-15| b) 22 ......... 4 h) |-21| ......... |-8| c) 5 ......... -60/-12 i) |-1| ......... |2| d) -32 ......... 23 j) 53 ......... -999 e) 30 ......... 081 k) -39 ......... 2 f) 0 ......... -58 l) |10| ......... |-31| 10. En la recta numérica: -4 -3 -2 -1 0 +1 +2 .....+3 +4..... -5 +5 F G H I JA B C D E Suponiendo que cada espacio mide 1 centímetro, entonces la distancia del punto: E a cero es ..................... H a cero es ..................... I a cero es ..................... B a cero es ..................... A a cero es ..................... J a cero es ..................... E al punto J ..................... C al punto F ..................... F al punto J ..................... A al punto J ..................... B al punto H ..................... C al punto I ..................... S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
  • 6. 51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA 1er . Año Secundaria OBJETIVOS ESPECIFICOS: 1. Reconocer las propiedades de las operaciones entre números enteros. 2. Realizar operaciones de adición, sustracción, multiplicación, división, potenciación y radicación en Z. 3. Realizar operaciones combinadas en Z teniendo en cuenta el orden operatorio, signos de agrupación y propiedades. PROCEDIMIENTOS A. MOTIVACION: En el presente módulo abordaremos el estudio de las diferentes operaciones que se pueden realizar en el conjunto de los números enteros (Z), tales como: adición, sustracción, multiplicación, división, potenciación y radicación. Cuando realizamos el estudio del conjunto de los números naturales (N), ya habíamos abordado el estudio de estas operaciones anteriormente mencionadas y como quiera que N está incluido en Z (N ⊂ Z), la noción general de las operaciones en N, así como las propiedades y principios; se cumplen exactamente en Z, sin embargo Z tiene otras propiedades que le son propias. B. CONTENIDO TEORICO: OPERACIONES CON NUMEROS ENTEROS I. ADICION DE NUMEROS ENTEROS SUMAR números enteros en álgebra, significa combinarías para obtener un solo número que represente el total de ellos o su efecto total. Tratando de ser más objetivos en tu aprendizaje proponemos el siguiente ejemplo: Elena dirige un negocio y diariamente ejecuta ventas donde se le podrían presentar las siguientes situaciones: GANANCIAS y PÉRDIDAS. Lo ejecutado por Elena lo detallamos en el cuadro adjunto, advirtiendo que a las ganancias y pérdidas le asignamos números enteros positivos y negativos respectivamente. DIA SITUACIONES SUMANDO ALGEBRAICAMENTE EFECTO Lunes +15 +32 (+15) + (+32) = +47 Ganó Martes -21 -10 (-21) + (-10) = -31 Perdió Miércoles +52 -75 (+52) + (-75) = -23 Perdió Jueves +127 -46 (+127) + (-46) = +81 Ganó Viernes +89 -89 (+89) + (-89) = 0 Ni ganó Ni perdió Del cuadro extraemos las siguientes reglas: 1. Para sumar números enteros que tienen el mismo signo, se suman sus valores absolutos y el signo del resultado es el mismo que el de los sumandos. Ejemplos: (+15) + (+32) = +15 + +32 = +47 (-21) + (-10) = -21 + -10 = -31 2. Para sumar números enteros de distinto signo, se restan los valores absolutos de los números dados (el mayor menos el menor) y se coloca al resultado el signo del número del mayor valor absoluto. Ejemplos: (+52) + (-75) = +52 + -75 = -23 (+127) + (-46) = +127 + -46 = +81 De los ejemplos anteriores podemos extraer la siguiente conclusión: a) Cuando sumamos enteros de igual signo, el resultado es otro número entero del mismo signo. FORMA PRACTICA (+ ) + (+ ) = + 1. (+15) + (+32) Suprimimos el operador y paréntesis. +15 + 32 = +47 (- ) + (- ) = - 2. (-25) + (-10) Suprimimos el operador y paréntesis. -25 - 10 = -35 b) Cuando sumamos números enteros de distinto signo, el resultado lleva el signo del número de mayor valor absoluto. FORMA PRACTICA S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....” OPERACIONES CON
  • 7. 51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA 1er . Año Secundaria (+ ) + (- ) = ? 1. (+52) + (-75) Suprimimos el operador y paréntesis. +52 - 75 = -23 (- ) + (+ ) = ? 2. +127 + -46 Suprimimos el operador. 127 - 46 = +81 c) Cuando sumamos números enteros, el resultado que se obtiene es otro número entero. (La adición es cerrada en Z). Z)ba(Zb,a ∈+⇒∈∀ II. SUSTRACCION DE NUMEROS ENTEROS Enunciemos la siguiente regla: para efectuar la sustracción de dos números enteros, basta sumar al minuendo el opuesto del sustraendo. 1) (-15) – (-7) 2) (+39) – (-58) La sustracción convertida en adición: Transformando la sustracción en adición: (-15) + (+7) = -8 (+39) + (+58) = +97 Así, la sustracción queda transformada en una adición de números enteros y la regla para resolverla se dio anteriormente. De los ejemplos expuestos podemos extraer las siguiente conclusión: a) En la sustracción de números enteros, el resultado que se obtiene es otro número entero (la sustracción es cerrada en Z). Z)ba(Zb,a ∈−⇒∈∀ b) En la sustracción de números enteros, no se cumple la propiedad conmutativa. Ejemplo: (-15) – (-7) ≠ (-7) – (-15) (-15) + (+7) ≠ (-7) + (+15) - 8 ≠ +8 c) Ampliamos afirmando que en la sustracción de números enteros, no se cumple la propiedad asociativa: Ejemplo: [ (+7) – (-11) ] – (-32) ≠ (+7) – [ (-11) – (-32) ] [ (+7) + (+11) ] – (-32) ≠ (+7) – [ (-11) + (+32) ] (+18) – (-32) ≠ (+7) – (+21) (+18) + (+32) ≠ (+7) + (-21) 50 ≠ -14 OPERACIONES COMBINADAS DE ADICION Y SUSTRACCION EN Z Veamos los ejemplos: 1) Efectuar: (+15) + (-11) – (+17) + (+5) – (-21) Solución: Expresando las sustracciones como adiciones: (+15) + (-11) + (-17) + (+5) + (+21) (+4) + (-17) (-13) + (+5) (-8) + (+21) (+13) OTRA FORMA: (+15) + (-11) – (+17) + (+5) – (-21) Expresando las sustracciones como adiciones: (+15) + (-11) + (-17) + (+5) + (21) Suprimiendo los operadores y paréntesis: +15 – 11 – 17 + 5 + 21 Agrupamos los números positivos y negativos. +15 + 5 + 21 +41 13 – 28 – 11-17 + 15 – 11 – 17 + 5 + 21 +4 – 17 -13 -8 + 21 13 + 5 2) Efectuar: -15 + {7 – 29 – [-16 – (8 – 3 – 5 + 7)] – 4} S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
  • 8. 51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA 1er . Año Secundaria Solución: Suprimimos el paréntesis (signo colector ubicado en la parte más interna); efectuando antes las operaciones del interior, lo mismo aplicamos con el corchete y llave. -15 + {7 – 29 – [-16 – (8 – 3 – 5 + 7) – 4} - 15 + {7 – 29 – [-16 – (+7)] – 4} -15 + {7 – 29 – [-23] – 4} -15 + {7 – 29 + 23 – 4} -3 7 -23 -15 – 3 -18 OTRA FORMA Podemos ir suprimiendo los signos corchetes comenzando por la parte más interna y antes de operar los números que se encuentran en su interior, así: a) Si delante del paréntesis está el signo +, se suprime el paréntesis y los números del interior no alteran su signo. + (+7 – 10 – 8) = +7 – 10 – 8 b) Si delante del paréntesis está el signo, se suprime el paréntesis y los números del interior se alteran en su signo. - (+7 – 10 – 8) = -7 + 10 + 8 Luego tenemos: - 15 + {7 – 29 – [-16 – (8 – 3 – 5 + 7)] – 4} - 15 + {7 – 29 – [-16 – 8 + 3 + 5 - 7)] – 4} - 15 + {7 – 29 + 16 + 8 – 3 – 5 + 7 – 4} - 15 + 7 – 29 + 16 + 8 – 3 – 5 + 7 – 4 Operamos los positivos y negativos por separado. (no se observa opuestos). -15 – 29 – 3 – 5 – 4 + 7 + 16 + 8 + 7 -56 + 38 -18 III. MULTIPLICACION DE NUMEROS ENTEROS Veamos: 13 + 13 + 13 + 13 + 13 = 5 . 13 = 65 5 veces (-24) + (-24) + (-24) + (-24) + (-24) + .... + (-24) = 100 x (-24) 100 veces = (100) (-24) = - 2400 Se observa que la adición de sumandos iguales, se puede expresar como una multiplicación del sumando en referencia con las veces que éste se repite. En la multiplicación de números enteros se pueden presentar distintas situaciones: 1. (+7) . (+8) = +56 (-11) . (-7) = +77 Si dos números enteros tienen el mismo signo, para multiplicarlos se multiplican sus valores absolutos y el resultado es un número entero positivo. 2. (-15) (+7) = -105 (+13) (-6) = -78 Para multiplicar dos números enteros que tienen distinto signo, se multiplican sus valores absolutos y el resultado es un número entero negativo. En resumen: (+a)(+b) = +p (-a)(-b) = +p (-a)(+b) = -p (+a)(-b) = -p = Resultado con signo + = Resultado con signo - Observaciones: Cuando existen más de dos factores, contamos cuántos de ellos son negativos. Luego: a) Si el resultado del conteo es impar, el resultado será negativo (-). Ejemplo: (-2)(-3)(5)(- 4) = - 120 b) Si el resultado del conteo es un número par, el resultado será positivo (+). Ejemplo: (-3)(3)(-4) = 60 IV. DIVISION DE NUMEROS ENTEROS Veamos las divisiones: S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
  • 9. 51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA 1er . Año Secundaria 15 ÷ -3 = -5; porque 15 = (-5)(-3) ⇒ 15 es múltiplo de - 3 11 760 ÷ 245 = 48; porque 11 760 = (245)(48) ⇒ 11 760 es múltiplo de 245. 72 ÷ 7 = x ∉ Z; porque no existe número entero que multiplicado por 7 nos de como producto 72. Por lo tanto 72 no es múltiplo de 7. De los ejemplos anteriormente expuestos se concluye: * La operación de división de números enteros no es clausurativa; no siempre se encuentra el entero que multiplicado por el divisor, dé el dividendo. * La división en el conjunto de los números enteros sólo será posible cuando el dividendo (D) sea múltiplo del divisor (d) y éste diferente de CERO, con esta referencia se encontrará un número q (cociente) tal que multiplicado por d, nos dé por producto el número D. Simbólicamente: Si D, d, q ∈ Z; d D = q ↔ D = dq Los elementos de la división son: Dividendo (D).- Es la cantidad a ser dividida. Divisor (d).- Indica el número de partes iguales en que debe dividirse el dividendo. Cociente (q).- Es el número de elementos que resultan para cada una de las partes indicadas por el divisor. Además para indicar la operación de división se acostumbra usar: bab/a b a ÷== __ ; / ; ÷ estos signos representan al operador de la división leyéndose como “entre”. Los números enteros pueden ser positivos o negativos, a efectos de realizar correctamente una operación de división, es preciso tener en cuenta las siguientes reglas: 1. Para dividir dos números enteros del mismo signo se dividen sus valores absolutos del primero por el segundo, y se antepone al cociente el signo más (+). Ejemplos: (+16) ÷ (+4) = +4 (-54) ÷ (-3) = +18 2. Para dividir dos números enteros de distintos signos se dividen sus valores absolutos del primero por el segundo, y se antepone al cociente el signo menos (-). Ejemplos: (+52) ÷ (-4) = -13 (-16) ÷ (+2) = -8 Recordar: Al dividir dos números enteros: - Del mismo signo, el cociente es positivo. - De distinto signo, el cociente es negativo. Observaciones: * El cero dividido por cualquier número entero distinto de cero es cero. Ejemplo: 0 32 0 ; 15 0 = − * Un número entero (distinto de cero) dividido por cero es una operación que carece de sentido. Ejemplo: 0 17 Carecen de sentido 0 72− Habiendo concluido el estudio de las operaciones básicas en Z, completa el siguiente cuadro escribe la palabra NO cuando la operación no sea posible en los números enteros. Elementos Operaciones Básicas a b a + b a – b a . b a ÷ b +72 +12 (+72)-(+12)=60 -54 -3 +205 -41 (+205)+(-41)=164 -72 +24 +39 1 20 20 0 -58 +17 0 NO -5 +5 -25 Del cuadro anterior se concluye que la adición, sustracción y multiplicación son operaciones cerradas en Z (su resultado es otro número entero), cumpliendo las siguientes propiedades: S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
  • 10. 51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA 1er . Año Secundaria Propiedad de Clausura ∀ a ; b ∈ Z ⇒ (a + b) ∈ Z ∀ a ; b ∈ Z ⇒ (a - b) ∈ Z ∀ a ; b ∈ Z ⇒ (a . b) ∈ Z Propiedad Conmutativa ∀ a ; b ∈ Z ⇒ a + b = b + a ∀ a ; b ∈ Z ⇒ a . b = b . a Propiedad Asociativa ∀ a ; b; c ∈ Z ⇒ (a + b) + c = a + (b + c) ∀ a ; b; c ∈ Z ⇒ (a . b) . c = (a . b) . c Propiedad Distributiva ∀ a ; b; c ∈ Z ⇒ a . (b + c) = ab + ac, o también (b + c) . a = ba + ca ∀ a ; b; c ∈ Z ⇒ d c d b d a d cba ++= ++ Elemento Neutro ∀ a ∈ Z ⇒ a + 0 = a, (El elemento neutro es CERO) ∀ a ∈ Z ⇒ a . 1 = a, (El elemento neutro es UNO) V. POTENCIACION DE NUMEROS ENTEROS Es una operación que consiste en elevar un número entero “b” a un exponente natural “n”, el cual nos indica la calidad de veces que se repite la base entera como factor, hallando así el resultado llamado Potencia. Exponente (Número natural) Base (Número Entero) Potencia (resultado) nb = P Ejemplos: 2)7(+ = (+7)(+7) ⇒ 2)7(+ = +49 2 veces 5)3(+ = (+3) (+3) (+3) (+3) (+3) ⇒ 5)3(+ = +243 5 veces 6)2(− = (-2) (-2) (-2) (-2) (-2) (-2) ⇒ 6)2(− = +64 6 veces 3)3(− = (-3)(-3)(-3) ⇒ 3)3(− = -27 3 veces Por lo mostrado en los grupos anteriores, es preciso tener en cuenta las siguientes reglas: 1) Si la base es positiva y el exponente cualquier número natural, el resultado es positivo: Ejemplo: 4)5(+ = + 625 3)6(+ = + 216 2) Si la base es negativa y el exponente un número natural par, el resultado es positivo: Ejemplo: 6)2(− = + 64 3) Si la base es negativa y el exponente un número natural impar, el resultado es negativo. Ejemplo: 3)5(− = - 125 7)2(− = - 128 LEYES EXPONENCIALES DE LA POTENCIACION EN EL CONJUNTO DE NUMEROS ENTEROS No Descripción Estructura Campo numérico 01 Multiplicación de potencias de igual base nmanaxma += a ∈ Z m, n ∈ N 02 División de potencia de igual base nmanama −=÷ a ∈ Z m, n ∈ N 03 Potencias de un producto indicado nbxnan)axb( = a, b ∈ Z n ∈ N 04 Potencia de un cociente indicado nbnan)ba( ÷=÷ a, b ∈ Z n ∈ N 05 Potencia de una potencia mxnan)ma( = a, b ∈ Z m, n ∈ N 06 Potencia con exponente cero 10a = A ∈ Z S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
  • 11. 51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA 1er . Año Secundaria a ≠ 0 Ejemplos: a) 125732)5(7)5(3)5(2)5( =+++=+++ b) 13313)3(9)3)(3(3)3( −=−=−−− c) 16216)2(475)2(4)2(7)2(5)2( =−=++−=−−− d) 9232)3(46)3(4)3(6)3( ==+=−+=+÷+ e) 4096484)8(57)8(3)8(7)8( ==−=−−=−÷− f) 0001005)10(712)10(7)10(12)10( −=−=−−=−÷− g) 0964646)4(2x3)4(2]3)4[( ==−=−=− h) 144236x4)2(36]4)2[( == (queda indicado) i) 5)10(5)5x2(5)5(3)2( −=−=− = -100 000 j) 2)42(2)7x2x3(2)7)(22(2)3( −=−=− = 1 764 Nota: La potenciación es distributiva con respecto a la multiplicación y división. VI. RADICACION DE NUMEROS ENTEROS La radicación es la operación inversa a la potenciación que consiste en elevar un número entero “b” a un exponente natural “n”, el cual nos indica la cantidad de veces que se repite la base entera como factor, hallando así el resultado llamado potencia. bn PPnb =⇒= b : base b: raíz enésima (b ∈ Z) n : base n: índice (n ∈ N, n > 1) P : potencia P: radicando o cantidad subradical. (P ∈ Z) Nota: - La potenciación es la operación que permite hallar la potencia conociendo la base y el exponente. - La radicación es la operación que permite hallar la raíz enésima, conociendo el radicando y el índice. La raíz enésima de un número P es otro número b que elevado al exponente “n” nos reproduce P. Simbólicamente: Pnbbn P =⇒= Ejemplos: 2 6 64 ±= ⇒ 646)2( =± )3( 3 27 ±= ⇒ 273)3( =+ 5 5 3125 −=− ⇒ 31255)5( −=− Por lo mostrado en los ejemplos anteriores, es preciso tener en cuenta las siguientes reglas: 1. Cuando el radicando es un número entero positivo y el índice es un número natural par, hay dos resultados que tienen el mismo valor absoluto y distinto signo. Ejemplos: 39 ±= Porque 92)3( =± 2 4 16 ±= Porque 164)2( =± Recordar: Cuando el radicando es positivo y el índice par, se utiliza sólo la RAIZ POSITIVA (por conveniencia) que se le conoce con el nombre de RAIZ ARITMETICA. Es decir: 39 = 2 4 16 = 2. Cuando el radicando es un número entero positivo y el índice es un número impar, el resultado o raíz hallada es positiva. Ejemplos: 3 3 27 += Porque 273)3( =+ 2 5 32 += Porque 325)2( =+ 3. Cuando el radicando es un número entero negativo y el índice es un número impar, el resultado es un número negativo. Ejemplos: 5 5 1253 −=− Porque 12535)5( −=− 2 3 8 −=− Porque 83)2( −=− 4. Cuando el radicando es un número entero negativo y el índice es un número par, no tiene solución en el conjunto de los números enteros. Ejemplos: 64− , no tiene solución en Z, porque: =− 64 288 ⇒ = 64 - 8 ⇒ 2)8(− = 64 ⇒ 64 ≠ - 64 S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
  • 12. 51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA 1er . Año Secundaria A continuación veamos algunas leyes o propiedades de la radicación en el conjunto de los números enteros. 1. RAIZ DE UN PRODUCTO INDICADO.- Se cumple la propiedad distributiva de la radicación con respecto al producto indicado. n c. n b. n a n c.b.a = Ejemplo: 3 8. 3 512.1253n 3 8.512).125( −=− = -5 . 8 . 2 = -80 Recíprocamente: n c.b.a n c. n b. n a = Ejemplo: 3 4 81 4 )1).(27).(3(. 4 1. 4 27. 4 3 ==−−=−− 2. RAIZ DE UN COCIENTE INDICADO.- Se cumple la propiedad distributiva de la radicación con respecto al cociente. n b n a n ba ÷=÷ Ejemplo: 224 3 8 3 64 3 864 −=−÷=−÷=−÷ Recíprocamente: n ba n b n a ÷=÷ Ejemplo: 416232232 ==÷=÷ 3. PASAJE DE EXPONENTE E INDICE DE UN MIEMBRO A OTRO.- La operación contraria a la potenciación. Si en una igualdad uno de los miembros tiene una raíz enésima, pasa al otro miembro con la operación contraria; es decir, como potencia indicada y viceversa. a) b n p = Por definición: pnb = Ejemplo: 5 3 x = ⇒ x = 35 = 125 b) pnb = Por definición b n p = Ejemplo: 5x = 32 ⇒ x = 5 32 = 2 RAIZ CUADRADA ENTERA Hay muchos números enteros que no tienen raíz exacta, por que no existe ningún número entero que elevado al cuadrado dé por resultado dicho número. Tal es el caso de 84 273; pero a continuación se explica el modo práctico de conocer la raíz entera de él. a) Separar el radicando en periodos de a dos cifras, comenzando por la derecha (no importa si en la izquierda queda una sola cifra). 8 42 73 b) Extraer la raíz cuadrada del primer periodo de la izquierda (puede ser qué dé una o dos cifras). 8 42 73 2 c) Elevar al cuadrado la raíz hallada y restar dicho valor al primer periodo. Escribir a continuación del resto el segundo periodo y separar las cifras de las unidades. 8 42 73 2 -4 4 42 2 = 42 d) Hallar el duplo de la raíz. Dividir por este valor el número que queda a la izquierda de la unidad separada. 8 42 73 2 -4 4 42 44:4 = 112.2 = 4 e) Escribir el valor del duplo de la raíz seguido del cociente hallado; multiplicando el número formado por dicho cociente. (valor adecuado). S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
  • 13. 51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA 1er . Año Secundaria 8 42 73 2 -4 4 42 2.2 = 4 49:9 = 441 f) Restar el producto obtenido al número formado por el resto más el segundo periodo (si la resta no fuera posible, se disminuye en uno el cociente). Si la resta es posible, el cociente obtenido es la segunda cifra de la raíz. 8 42 73 2 -4 4 42 2.2 = 4 49:9 = 441 -4 41 1 g) Escribir a continuación del nuevo resto el siguiente periodo, volviéndose a repetir el proceso. 8 42 73 290 -4 4 42 2.2 = 4 49:9 = 441 -4 41 1 73 1 73 0 00 2.29 = 58 580.0 Siempre debemos verificar que: 84 273 = 2290 + 173 84 273 = 84 100 + 173 Comprueba tu aprendizaje hallando la raíz cuadrada de los siguientes números. a) 15 6661 b) 127 487 c) 1 253 456 PRACTICA DE CLASE A continuación proponemos una serie de ejercicios, donde aplicarás las técnicas y procedimientos para efectuar operaciones de adición y sustracción. 1. Halla el resultado de las siguientes operaciones: a) + 8 + +9 = b) 6 + 18 = c) 25 + (-72) = d) – 9 + (-7) = e) –16 + (-15) = f) –33 + (-28) = g) 12 + (-9) = h) –27 + (+18) = i) –5 + 37 = 2. Escribe en los espacios en blanco, los números que faltan: a) 5 + ...... = 9 b) +9 + ....... = -3 c) ....... + -7 = -3 d) –8 + ...... = -13 e) –9 + ....... = 15 f) ....... + 6 = -12 g) 4 + ...... = 17 h) –13 + ....... = 16 i) ....... + (-7) = -20 3. Hallar el resultado de: a) –40 + (-30) + -80 = b) (-5) + (+8) + (+1) + (+2) + (-6) = c) +36 + (+74) + 208 = d) –4 + (+9) + (-5) + (+10) + (-9) = e) .3 + (-5) + (+4) + (-1) + 6 = f) +5 + +2 + -5 + -7 + -4 + -6 = g) –36 + -112 + 144 + 50 = h) –240 + -1260 + +1550 = 4. Sabiendo que a = 12; b = -13; c = -24; d = +37; e = -58. Hallar el valor numérico de: a) (a + b) + c b) (a + e) + c c) d + (b + c) d) (c + e) + c e) (d + a) + b f) e + (d + c) 5. Sabiendo que: S = 36 + (-52) + (-7) C = -18 + (+16) + 5. Hallar el valor de : S + C + (-17). a) –37 b) –47 c) +5 d) –49 e) N.A. 6. Si A = 7 + (-49) + (+15) + (+18) + (-19) + (-25) + (+48) + (+2) y B = -32 + (-9 + 14) + (-7) + (+6) + (+1). Hallar el valor de: (A + B + 20) a) +8 b) +12 c) -15 d) –10 e) N.A. 7. Si E = a + 8; F = b + (-13) y sabiendo que a = -15; b = 19, entonces el valor numérico de E + F + (-18) es: a) –16 b) –19 c) 20 d) 3 e) N.A. 8. Completa el siguiente cuadro: + -15 +12 -51 -12 +15 24 -21 +37 -41 +42 -13 +21 -15 +24 -18 -54 22 -17 0 9. Halla el resultado de las siguientes operaciones: S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
  • 14. 51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA 1er . Año Secundaria a) 8 + 15 = b) + 71 – (+38) = c) 94 – 36 = d) –4 - +8 = e) 6 - -9 = f) – 3 – (+7) = a) – 9 – (+12) = b) – 18 – (+17) = c) – 6 – (+18) = PROBLEMAS PROPUESTOS 01.Si a = -17; b= 38; c = -81, entonces S = a – b + c. Hallar el valor de “x” en: x + S = -150. a) –12 b) –14 c) 14 d) 12 e) N.A. 02.Q = (p + n) – m + 473, siendo p = -302; m = 78; n = -105. Hallar el valor de “X” en: Q – X = -96. a) –108 b) 108 c) 104 d) -102 e) N.A. 03.(15 – M) – 32 = 64; (H + 5) – 62. Si A = M + H – 46. Hallar el valor de “A”. a) 108 b) 104 c) 106 d) 102 e) N.A. 04. (z – 13) + 78 = -33 ; (-58 – y) + 98 = 27. Si B = z + y + 90, entonces el menor valor entero que puede tomar |x| < B es: a) –5 b) –3 c) -7 d) -4 e) N.A. 05.(p – 9) + 5 = -98; (k + 57) + -83 = 31. Si sumas (p + 100) con el opuesto de k obtienes: a) –96 b) 94 c) 98 d) -92 e) - 51 06. Si: a ∇ b = a - 2b Si y sólo si a < b a – b Si y sólo si a > b Calcular: E = (7 ∇ 3) ∇ 2. a) 4 b) - 4 c) 8 d) - 8 e) N.A. 07. Si: = ac + bc + ab; hallar 1 9 3 a b c a) 37 b) 38 c) 39 d) 40 e) N.A. 08. Si: A = [ 2)4(− (5) + 3 – ( 32 -6)] ÷ 3)3(− - 5 y B = {[[ 4)6(− - ( 213 )(5)] + 337)2( −− ]÷ 2}37 Hallar el valor numérico de: 25 )56B()5A( −++ . a) -1480 b) -1810 c) -1790 d) 2061 e) N.A. 09. Si: E = -3(2) 2243 )2213(]11)35[( −+÷− ; F = [[2(-3) + )22)(3(5)23(52]8 −+− ] + 19. Hallar el valor de 023 ])250(F2)5E3[( +− . a) 1 b) -1 c) -2 d) 0 e) N.A. 10. Si: P = 5]213)3453[(2)1(932[ ÷−−+−+− ; Q = -13 + 2}4)2(11]10)4435{[( −+÷+− Hallar “x” en: 4(x+45) = PQ. a) -36 b) -24 c) -12 d) -9 e) N.A. TAREA DOMICILIARIA 01. Efectuar las siguientes operaciones combinadas: a) )55()6(2)5( +−−− + (-3) + (+) – (+3)(-2) b) 2)5(3)2(2)3( 3 27 −−−+− S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
  • 15. 51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA 1er . Año Secundaria c) (-81) ÷ (+27)-(-7)(-2)+ 4x3)3(− d) 2)7(− + (5)(2)(-3) + 2)5(− e) 1214)2(3)3(2)3( +−+−− f) )13()10)(4(3)2(x 5 32 −+−−+−− g) )75(2)3(2)8( 3 27 −+−−+− h) 2)3( 3 227 −÷ + [(-5)(-8) ÷ (-2) + 2)11(− - (-4)(-7)] i) 2)5( 5 33125 ÷ - [(-5)(-3) – (-7 + 9 – 4 – 8)] j) 3)16(3)32( −÷− – {-11 + 7 – [(-8)(-3)(-1)-(-54)]} 02. Si a = -2; b = - 3; c = 16; d = -8; e = 4. Hallar el valor numérico de las siguientes expresiones: a) ab – cd + 4 c2e − b) ab + cd – {2e + 3 d + a – b} c) cde + [a + b + c - 3 d - (a-b-c)] d) 2)eab( + + 3 d – (abcd) e) – b – [ae – cd + 2c2b2a ++ ] f) )]2dbc4a(d[ 5 de3a −+−−−− g) ]dcae5bc2[ 3 ec ÷−−− h) 3d – 5a + 3 d - 1 OBJETIVOS ESPECIFICOS 1. Descubrir la necesidad de extender el conjunto Z. 2. Definir el conjunto Q de los números racionales y representarlos en la recta numérica, para un posterior reconocimiento de las fracciones equivalentes y una comparación correcta entre dos números racionales. 3. Reconocer las propiedades comunes de las operaciones entre números racionales. PROCEDIMIENTOS A. MOTIVACION Hablar de números racionales es hablar de números fraccionarios o lo que se decía quebrados. El primer conocimiento acerca de las fracciones se produce hacia el año 2000 a.C., en Egipto. Los griegos, quince siglos después, elaboraron con acierto las teorías de egipcios y babilonios e hicieron de ella una verdadera ciencia. B. CONTENIDO TEORICO CONJUNTO DE LOS NUMEROS ENTEROS Recordando lo aprendido en el Módulo 2 tenemos: Z = {...; -3; -2; -1; 0; 1; 2; 3; ...} Siendo su representación en la recta numérica: .....-3 -2 -1 0 1 2 3..... En el conjunto de los números enteros, quedó establecido que las operaciones de Adición, Sustracción y Multiplicación siempre son posibles en Z (definidos en Z), es decir: PROPIEDAD DE CLAUSURA O CERRADURA S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....” CONJUNTO DE LOS NÚMEROS
  • 16. 51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA 1er . Año Secundaria ∀ a; b ∈ Z ⇒ (a + b) ∈ Z ∀ a; b ∈ Z ⇒ (a - b) ∈ Z ∀ a; b ∈ Z ⇒ (a . b) ∈ Z En el conjunto de los números enteros, la operación división existe solamente en una forma muy restringida; es decir, sólo será posible cuando el dividendo sea múltiplo del divisor y éste diferente de cero, y por lo tanto afirmamos que la división no verifica la clausuratividad en Z, por ejemplo: 1) 58 : 29 = 2 ∈ Z porque 29 x 2 = 58 2) (-36) : (+9) = -4 ∈ Z porque (+9) x (-4) = -36 3) (-17) : (-5) = x ∉ Z ¡SE PRESENTA OTRA DIFICULTAD! En el ejemplo (3), en el Conjunto de los Números Enteros NO EXISTE un número que multiplicado por (-5) nos reproduzca como resultado (-17). Ante esta nueva dificultad se concluye: - El conjunto de los números enteros Z no es suficiente para operar con números. - Para que la división siempre sea posible se requiere extender el conjunto de los números enteros Z a otro conjunto en el cual la división sea clausurativa. - Se construye un NUEVO CONJUNTO que incluye al conjunto de los números enteros Z. Cumpliéndose en este nuevo conjunto las operaciones y propiedades de los enteros. - Además en este NUEVO CONJUNTO se establecen otras propiedades con las que será posible ampliar el campo operatorio. - Este nuevo conjunto se denomina CONJUNTO DE LOS NUMEROS RACIONALES y se denota por “Q”. CONJUNTO DE LOS NUMEROS RACIONALES El conjunto de los números racionales Q, tiene como elementos a todos los cocientes de números enteros (donde el divisor es distinto de cero). Q = {x/x = a/b, ∀ a; b ∈ Z, b ≠ 0} Al cociente indicado de números enteros: a/b, se le conoce con el nombre de FRACCION. Donde: a b Numerador Denominador PRACTICA DE CLASE 1. Escribir 5 fracciones equivalentes de: 2 1 ; 5 3 ; 3 2 − 2. En cada caso, determine el valor de x, para obtener fracciones equivalentes: a) 5 3 35 x = b) 35 10 7 x = c) 30 36 x 6 − = − d) 18 x x 2 = e) 9 0 7 x = f) 16 x 2 7 = g) 21 x 7 3 = h) 4 1x 10 5 + = 3. Simplificar las fracciones: ; 40 18 ; 48 12 ; 36 24 ; 30 25− ; 56 28 ; 160 400 ; 300 18 ; 40 4 1440 38 ; 360 64 4. Comparar las fracciones escribiendo el símbolo que corresponde: a) 4 3 ... 8 3 b) 4 5 ... 13 5 − c) 8 7 ... 11 15 d) 15 11 ... 15 7 5. Ordenar de menor a mayor las siguientes fracciones: a) 9 6 ; 7 4 ; 5 2 b) 4 1 ; 3 1 ; 5 2− c) 4 1 ; 3 1 ; 5 2− d) 4 7 ; 5 8 ; 3 5 e) 7 5 ; 3 1 ; 2 5 − f) 4 2 ; 11 6 ; 15 13 −− 6. Establecer el valor de verdad: S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
  • 17. 51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA 1er . Año Secundaria a) Z ⊂ Q ........ ( ) b) N ⊂ Z ........ ( ) c) Q ⊂ N ........ ( ) d) 8 ∉ Q ........ ( ) e) –2/5 ∈ Z ........ ( ) f) –6 ∈ N ........ ( ) g) –16 ∈ Q ........ ( ) h) ∈ Q ........ ( ) 7. Hallar el número de fracciones irreductibles de denominador 21 comprendidas entre 1/7 y 1/3. 8. Para que valor de “a”, la fracción 50a/a41 es propia e irreductible? TAREA DOMICILIARIA 1. Ordenar las fracciones en forma creciente: 3/5; 4/7; 15/17; 10/21; 6/11. 2. ¿Cuántas fracciones irreductibles de denominador 12 existen entre 1/4 y 2/3 ? a) 4 b) 3 c) 2 d) 1 e) N.A. 3. ¿Cuántas fracciones irreductibles de denominador 35 existen entre 3/5 y 6/7? a) 2 b) 6 c) 5 d) 7 e) N.A. 4. El número de fracciones equivalentes a 22/36 que tiene por denominador un número de 3 cifras múltiplo de 5 es: a) 26 b) 30 c) 40 d) 50 e) N.A. 5. El numerador por el denominador de una fracción es 52 514. ¿Cuál es dicha fracción, si al simplificarla se obtiene 14/31? a) 98/2388 b) 97/156 c) 154/341 d) 217/242 e) 151/344 6. Si ba/ab es equivalente a 5/6. Hallar el valor de a x b. a) 10 b) 12 c) 15 d) 20 e) N.A. 7. ¿Cuál es el valor de “a” para que la fracción 498/a4a sea propia e irreductible? a) 1 b) 2 c) 3 d) 4 e) 5 8. Si se quiere que la fracción N/D esté comprendida entre 1/2 y 2/3 cuando N = 12. ¿Cuántos valores enteros puede tener D? a) 2 b) 3 c) 4 d) 5 e) N.A. 9. Hallar (a + b + c), sabiendo que la fracción bca/aab es equivalente a 75. a) 16 b) 17 c) 18 d) 19 e) 20 S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
  • 18. 51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA 1er . Año Secundaria OPERACIONES CON NUMEROS RACIONALES OBJETIVOS ESPECIFICOS: 1. Ejecutar correctamente las operaciones básicas de adición, sustracción, multiplicación y división, trabajando con números racionales. Aplica las propiedades de los números racionales en la solución de ejercicios. PROCEDIMIENTOS: A. MOTIVACION Así como hemos podido calcular el resultado de sumar, restar, multiplicar y dividir números naturales o enteros, es posible realizar estas mismas operaciones cuando se trabaja en el campo de los números racionales o fraccionarios. El propósito del presente módulo es estudiar los procedimientos a seguir para operar con números racionales y comprender las propiedades que presentan las operaciones con dichos números. CONTENIDO TEORICO OPERACIONES CON NUMEROS RACIONALES Enfocaremos nuestro estudio a los números racionales representados como fracción. ADICION DE FRACCIONES En la adición de fracciones pueden presentarse las siguientes situaciones: A. ADICION DE FRACCIONES DEL MISMO DENOMINADOR Ejemplo: 1) Sumar: 9 5 9 1 9 3 ++ Solución: 1 9 9 9 513 == ++ 2) Sumar: 13 8 13 2 13 7 13 3 + − + − + Solución: 13 2 13 8273 = +−+−+ De los ejemplos, se concluye: Al efectuar la adición de fracciones del mismo denominador (fracciones homogéneas), se suman los numeradores de las fracciones participantes y se coloca por denominador de esta suma, el denominador común. B. ADICION DE FRACCIONES CON DIFERENTE DENOMINADOR.- Para que se obtenga mayor amplitud de criterio creemos conveniente exponerlo de la siguiente manera: a) Fracciones con Denominadores que sean Primos entre sí Ejemplos: 1) Sumar: 7 2 5 3 + 35 : 5 x 3 = 21 Solución: MCM(5; 7) = 35 35 : 7 x 2 = 10 Luego: 35 31 35 1021 = + Observación: El ejemplo anterior por presentar fracciones cuyos denominadores son primos entre sí, se recomienda utilizar la forma práctica de los productos cruzados. Veamos: 35 31 35 1021 7 2 5 3 = + =+ X 2) Efectuar: 3 2 2 1 − + Solución: 3 2 2 1 − + = 6 1 6 43 6 43 − = − = −+ 3) Efectuar: 2 1 5 2 3 1 ++ S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....” CONJUNTO DE LOS NÚMEROS
  • 19. 51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA 1er . Año Secundaria Solución: Como 3; 5 y 2 son PESI, se procede: 2 1 5 2 3 1 ++ = 30 37 2x5x3 5x3x12x3x22x5x1 = ++ b) Fracciones cuyos denominadores no son Primos entre sí. Ejemplos: 1) Sumar: 12 7 6 3 + 12 : 6 x 3 = 6 MCM(6;12) = 12 12 : 12 x 7 = 7 Luego: 12 7 6 3 + = 12 13 12 76 = + 2) Sumar: 14 9 4 3 7 1 − + − + − Solución: 28 : 7 x -1 = -4 MCM(7; 4; 14) = 28 28 : 4 x –3 = -21 28 : 14 x –9 = -18 Luego: 14 9 4 3 7 1 − + − + − = 28 43 28 18214 − = −−− 3) Sumar: 2 7 4 3 6 1 3 2 + − + − + Solución: MCM(3; 6; 4; 2) = 12 2 7 4 3 6 1 3 2 + − + − + = 4 13 12 39 12 42928 4 13 == +−− C. ADICION DE NUMEROS MIXTOS Número Mixto.- Se llama número mixto a la suma de un número entero y una fracción: En el número mixto está sobreentendido el signo, de la adición, razón por la cual se prescinde de él. Ejemplo: 3 1 5 es un número mixto que indica: 3 1 5 + Si se desea expresar un número mixto como fracción bastará con efectuar la suma que él indica. 3 1 5 = 3 1 5 + = 3 16 3 115 = +  FRACCION IMPROPIA Recíprocamente, si a una fracción se lo quiere expresar como número mixto, bastará con dividir el numerador por el denominador, así: 7 15 , es posible expresarlo como número mixto porque es una fracción impropia. Numerador del número racional Denominador del número racional Número enteroResiduo 15 7 1 2 Luego: 7 15 = 7 1 2 ¡Cuidado! Si la fracción impropia, es negativa, observa su transformación a número mixto. 9 58− , ⇒ 9 58− = -6 9 4 6 9 4 −−=58 9 4 6 Con la aclaración anterior ampliaremos la transformación de un número mixto expresado como una fracción común. Veamos los ejemplos: 1) 5 37 5 27x5 5 2 7 = + = S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
  • 20. 51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA 1er . Año Secundaria 2) 3 7 3 12x3 3 1 2 − = −+− =− 3) 4 27 4 36x4 4 3 6 − = −+− =− Ejemplos: 1) Sumar: 8 1 4 3 2 8 5 3 ++ Solución: A continuación mostramos dos formas distintas de solución: Se suman los enteros y las fracciones separadamente y luego se suman estos resultados Transformando previamente el número mixto a fracción 3 + 2 + 8 1 4 3 8 5 ++ 5 + 4 3 8 6 + 5 + 4 3 4 3 + 5 + 4 6 5 + 2 3 5 2 3 = 3 8 1 4 3 2 8 5 ++ 8 1 4 11 8 29 ++ 8 12229 ++ 2 3 5 2 13 8 52 = 1) Sumar: 7 3 2 6 1 2 2 1 4 −+ − ++ Solución: Primera Forma: Segunda Forma: 4 + 2 + -7 + 3 2 6 1 2 1 − ++ 7 3 2 6 13 2 9 −+ − ++ -1 + 6 413 −+ -1 + 6 0 = -1 6 4241327 −−+ 1 6 6 −= − SUSTRACCION DE FRACCIONES La sustracción de fracciones equivale a efectuar la adición del minuendo con el opuesto del sustraendo. Ejemplos: 1) Efectuar: 3 1 7 2 − Solución: Por definición: 3 1 7 2 − = 3 1 7 2 − + 21 1 21 76 − = −+ Forma práctica: 3 1 7 2 − = 21 1 21 76 − = − 2) Efectuar: 4 1 2 3 1 5 −− Solución: Por definición: 4 1 2 3 1 5 −− 4 1 2 3 1 5 + 7 + 4 1 3 1 + Forma práctica: 4 1 2 3 1 5 + 4 9 3 16 + S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
  • 21. 51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA 1er . Año Secundaria 7 + 12 7 7 12 7 12 7 7 12 91 12 2764 == + OPERACIONES COMBINADAS DE ADICION Y SUSTRACCION EN Q Veamos los ejemplos: 1) Efectuar: 4 + 4 1 3 1 2 1 −− Solución: 12 11 3 12 47 12 34648 == −−+ 2) Efectuar:       +−−+ 2 1 3 1 7 5 2 1 5 3 Solución: Suprimiendo los signos de colección: 2 1 3 1 7 5 2 1 5 3 -+-+ opuestos 3 1 7 5 5 3 +− , denominadores primos entre sí. 3x7x5 7x5x13x5x53x7x3 +− ⇒ 105 357563 +− 105 23 ⇒ Es fracción propia y no se puede expresar como un número mixto. 3) Efectuar: 3+ 6 3 1 2 5 1 4 7 1 +− Solución: Sumando algebraicamente los enteros y fracciones en forma separada. 3 + 6 – 4 + 2 + 3 1 5 1 7 1 +− 7 + 105 352115 +− = 7 + 105 29 = 7 105 29 4) Efectuar: A =               −−−−+ 2 4 3 7 5 2 7 5 2 1 Solución: Eliminamos los paréntesis: A =       −−−−+ 2 4 3 7 5 2 7 5 2 1 Suprimimos los opuestos: A = 2 4 3 7 5 2 7 5 2 1 ++−−+ Anulamos los opuestos: A = 4 3 2 1 + Operamos empleando el MCM: A = 4 1 1 4 5 4 32 == + MULTIPLICACION DE FRACCIONES Veamos: ejemplo: S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
  • 22. 51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA 1er . Año Secundaria 1) Efectuar: 105 16 3x5x7 1x8x2 3 1 x 5 8 x 7 2 == Se observa que al multiplicar fracciones se obtiene como resultado (producto) otra fracción, cuyo denominador es el resultado de multiplicar los numeradores y cuyo denominador es el resultado de multiplicar los denominador. Es decir: f.d.b e.c.a f e . d c . b a = 2) Efectuar: 6 5 21 4 x 12 7 x 15 3 −− Solución: Simplificando: 54 1 6 1 5 3 21 1 4 1 4 12 1 7 3 15 1 3 = −− Del ejemplo anterior, concluimos: - Siempre que sea posible, conviene simplificar antes de multiplicar. - Si hay racionales negativas en la multiplicación, es necesario multiplicar sus signos, aplicando correctamente la regla dada para los números enteros. DIVISION DE FRACCIONES Veamos los ejemplos: 1) Realizar: 11 18 : 11 45 Solución: Cambiamos el operador de la división por el operador de la multiplicación e invirtiendo la fracción divisor, así: 2 18 11 x 11 5 45 , se ha simplificado, luego: 2 5 11 18 11 45 =÷ Generalizando: c d x b a d c b a =÷ OTRA FORMA: 11 11 : 11 45 , se escribe: Medios Extremos 45 11 18 11 18x11 11x45 Producto de extremos Producto de medios 5 2 → → 2 5 Generalizando: =÷ d c b a cxb dxa d c b a = Efectuar: 6 1 3 1 2 1 5 3 + − Solución: S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
  • 23. 51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA 1er . Año Secundaria Efectuando el numerador y denominador: 5 1 1 3x 5 10 1 2 6x1 6 3 10 1 6 12 10 56 === + − ¡IMPORTANTE! - En la división de números racionales se obtiene otro número racional, eso implica que la división en los racionales es clausurativa. - Habiendo concluido el estudio de las operaciones básicas en Q, es necesario enunciar las siguientes propiedades. PROPIEDAD DE CLAUSURA Si: b a ∈ Q y d c ∈ Q ⇒ b a + d c ∈ Q Si: b a ∈ Q y d c ∈ Q ⇒ b a - d c ∈ Q Si: b a ∈ Q y d c ∈ Q ⇒ b a x d c ∈ Q Si: b a ∈ Q y d c ∈ Q ⇒ b a ÷ d c ∈ Q PROPIEDAD CONMUTATIVA b a d c d c b a +=+ b a x d c d c x b a = PROPIEDAD ASOCIATIVA       ++=+      + f e d c b a f e d c b a       =      f e x d c x b a f e x d c x b a PROPIEDAD DISTRIBUTIVA f e x b a d c x b a f e d c x b a +=      + ELEMENTO NEUTRO b a b 0 b a =+ b a 1. b a = ELEMENTO OPUESTO 0 b a b a = − + Nota: Si: b a es un número racional, b a− es su opuesto. Si: b a− es un número racional, b a es su opuesto. ELEMENTO INVERSO 1 a b x b a = Nota: Si: Si: b a es un número racional diferente de cero, a b es su inverso. PRACTICA DE CLASE S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
  • 24. 51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA 1er . Año Secundaria 1. Efectuar las operaciones: a) 6 5 5 1 + d) 3 1 6 5 5 1 ++ g) 5 2 5 4 5 1 5 6 −+++ b) 7 1 2 3 + e) 3 1 7 3 − h) 14 13 14 11 14 9 +−+ c) 2 3 8 1 4 3 ++ f) 8 1 2 3 − i) 50 41 50 37 50 21 50 13 −++ 2. Efectuar las operaciones: a) 75 7 60 37 150 58 25 14 − − − + − + b) 10 9 26 15 5 7 4 3 − − − ++ c) 10 3 9 8 15 7 ++ d) 90 61 36 7 54 13 9 8 ++− 3. Completar con fracciones según corresponda: a) 3 + 4 1 = b) 6 + 5 3 = c) 1 - 5 3 = d) 1 - 3 4 = 4. Efectuar: a) 4 1 3 3 1 5 + b) 20 1 6 13 4 9 10 3 2 5 1 6 +++ c) 3 1 48 4 3 16 4 5 21 2 1 34 −+− 5. Efectuar: a) 3 10 x 8 3 x 5 4 e) 4 3 x 15 8 x 2 5 b) 18 7 x 10 9 x 3 20 f) 3 10 4 27 x 9 40 ÷ c) 19 7 x 73 2 x 14 3 5x19 − g) 5 1 x 22 14 11 8 x 8 7 − ÷ d) 7 4 2x 6 1 2x 9 5 1x 7 2 1 −− h) 42 3 x 38 21 19 34 x 17 2 − ÷ − 6. Halla los siguientes cocientes: a) 28 9 7 3 ÷ b) 7 5 21 13 − ÷ c) 45 13 30 − ÷ d) 36 20 29 −÷ e) 46 25 23 15 − ÷ f) 28 11 7 44 − ÷ − g) 4 21 2 1 3 ÷ h) 5 1 1 3 1 2 ÷ i) 28 18 5 3 3 ÷− j) 3 1 5 2 1 4 −÷− 7. Efectuar: a) 3 4 1 4 1 2 3 + b) 3 1 4 2 3 5 4 − + c) 4 1 3 4 9 4 + d) 2 3 4 3 2 6 + e) 2 3 2 1 + f) 2 + 3 4 1 2 3 + g) 3 1 1 1 1 1 1 1 1 − + + + S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
  • 25. 51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA 1er . Año Secundaria TAREA DOMICILIARIA 1. Efectuar: 9: 10 3 x 8 5 a) 2/15 b) 1/16 c) 1/48 d) 5/24 e) N.A. 2. Efectuar: 7 4 4 7 4 2 8 5 3 9 4 1 2 5 1 3 1 ++− a) 1 2 1 b) 1 4 3 c) 1 4 1 d) 4 3 e) 16 3 2 3. Reducir: 11 1 1 1 1 1 1 1 1 + − + + + a) 18/8 b) 11/8 c) 13/5 d) 11/5 e) N.A. 4. Simplificar: 1 7 4 2 3 7 3 5 2 1 4 2 5 4 3 2 1 2 3 8 −− +− − −+ +− a) 12 b) 12 45 38 c) 11 45 38 d) 45 38 e) N.A. 5. Efectuar: 5 2 5 1 1 4 1 1 3 1 1 2 1 1 5 1 1 4 1 1 3 1 1 2 1 1 +       −      +      −      +       +      −      +      − a) 1 b) 2 c) 1/2 d) 1/3 e) 1/4 6. Simplificar: 6 1 5 1 4 1 3 1 2 + + + + a) 972/423 b) 421/972 c) 972/421 d) 870/321 e) N.A. 7. Reducir: 67 22 x 2 1 4 2 1 3 2 1 2 − − a) 55/67 b) 49/67 c) 2 d) 24/67 e) 1 8. Simplificar: 5 2 1 2 4 3 1 1 1 6 5 10 1 5 3 4 1 9 2 x 4 3 2 1 1 −+ ÷      −+− a) 1 b) 49/4 c) 39/4 d) 5 e) N.A. S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
  • 26. 51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA 1er . Año Secundaria 9. Hallar: E = 3 C BA + . Si: A =       −      −      − 4 1 1 3 1 1 2 1 1 B = 5/8 5/2 C = 1 + 2 1 a) 0 b) 1 c) 1/2 d) 2 e) N.A. 10. Efectuar: 2 1 1 6 12 5 x 5 4 x 3 1 1 9 ÷ ÷ a) 12 b) 3 c) 1/3 d) 1/12 e) N.A. 11. Efectuar: 2 1 4 1 3 1 1x 8 1 32 5 2 5 3 1 2 − − − + + a) 12 12 1 b) 19 12 c) 9 145 d) 5 29 e) N.A. PROPLEMAS PROPUESTOS 1. Efectuar: 3939 4545 2626 1212 1313 3131 E ++= a) 1 b) 0 c) 4 d) 1/ 2 e) 11/ 7 2. ¿Qué número continua en la secuencia? 2; 2; 2 3 ; 1; 8 5 ; ..... a)3/ 8 b) 1/ 8 c) 1/ 4 d) 4/ 5 e) 3/ 4 3. La mitad de una fracción "m" es igual a 1/5 y la tercera parte de la otra "n" es igual también a 1/s; entonces m + n = ? a)2/ 5 b) 3/ 5 c) 1/ 2 d) 1 e) 2 4. ¿Qué número racional no corresponde a n, si: 2 1 n 8 1 << a)3/ 8 b) 1/ 4 c) 5/ 16 d) 3/ 5 e) 1/ 3 5. Hallar: 65 2 5 1 1 13 6 120 13 8 1 24 1 5 2 A ++ +++ = a) 48 9 3 b) 48 13 c) 13 9 3 d) 2 1 e) 1 6. Simplificar:       +÷         −= 10 1 6 1 3 4 1000 216 S 3 a) 2 1 b) 2 1 − c) 4 1 − d) 1 e) 4 3 7. Hallar: AB ,sabiendo que: 132 9 8 3 2 5 4 8A −−−       −      −      = 3 3 9 3 B −         = S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
  • 27. 51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA 1er . Año Secundaria a) 1 b) 2 c) 8 d) 9 e) 16 8. ¿Cuál es la fracción equivalente a 70/ 98, tal que el producto de sus términos sea 315?. Dar la diferencia de sus términos. a) 18 b) 10 c) 12 d) 6 e) 8 9. Efectuar el producto:       −      −      −      −= 100 1 1... 16 1 1 9 1 1 4 1 1P a) 2 1 b) 20 11 c) 201 111 d) 101 99 e) 99 1 10. Una fracción se divide entre su inversa y da como resultado: 289/ 529. Halle la suma de los términos de la fracción: a) 36 b) 38 c) 40 d) 42 e) 44 11. Reducir: 1 11 11 yx yx − −− −−         + a) x 1 b) y 1 c) xy 1 d) yx 1 − e) 99 1 12. Reducir: 2 1 1 1 3 1 3 1 − + + a) 2 1 b) 3 1 c) 4 1 d) 3 5 e) 5 1 13. ¿Cuánto le falta a 11 4 para ser iguales a los 3 2 de los 7 5 de 11 6 de 7? a) 9 8 b) 5 11 c) 3 8 d) 11 16 e) 11 9 14. ¿Qué fracción de 65 hay que añadirle a los 3 1 2 de 7 4 5 para que pueda ser igual a 130? a) 5 9 b) 5 4 c) 7 9 d) 2 76 e) 9 4 15. Reducir: ( ) ( ) 131)5,0( 12 15,01 27 1 5,0 1 25,012 P −−−− −− − −       −+      − −+ = a) 11 1 b) 11 1 − c) 2 1 − d) 2 1 e) N.a 16. Halla: 3 10 2 10 ... 2 3 3 2 3 2 3 1 2 1 M −+−+−+−= a) 6 50 b) 3 55 c) 2 17 d) 3 50 e) 6 55 17. ¿Cuál es el número que tiene 14 de diferencia entre sus 3/ 4 y sus 2/ 5? a) 10 b) 30 c) 40 d) 15 e) 18 18. ¿Cuánto es un tercio más un medio de un tercio más un medio de diez? a) 2 1 4 b) 4 c) 5 d) 2 1 5 e) otro valor 19. Simplificar la expresión: 9191 9999 273273 192192 919191 191919 P ++= S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”
  • 28. 51 52COLEGIO DE CIENCIAS LORD KELVIN 1er. Año Secundaria MATEMÁTICA 1er . Año Secundaria a) 2 b) 91 73 c) 3,1  d) 51,0 e) 91 17 20. Calcular el valor de "S": ... 81 1 27 1 9 1 3 1 1S +++++= a) 1 b) 3 c) 2 d) 2 3 e) 3 2 SOLUCIONARIO Nº EJERCICIOS PROPUESTOS 01 02 01. C C 02. B A 03. E D 04. D D 05. E B 06. D C 07. C B 08. D D 09. A B 10. D C 11. E 12. E 13. D 14. A 15. B 16. E 17. C 18. D 19. A 20. D GRUPO EDUCATIVO INTEGRAL copyright 2003 S1MA32B “El nuevo símbolo de una buena educación....” S1MA32B “El nuevo símbolo de una buena educación....”