SlideShare una empresa de Scribd logo
1 de 62
Descargar para leer sin conexión
Sulfur Dioxide and Public Health in
               China
               Cameron Ball 
    EECE Interna.onal Experience 2008 
             Research project 
Outline
•  Ques%ons to answer 
•  Introduc%on, background and significance 
•  Cri%que of HRA methods and suggested 
   improvements 
•  Data from sample studies 
•  Stressing the need for a comprehensive HRA 
   of SO2 in China 
•  Interven%ons 
Outline
•  Ques%ons to answer 
•  Introduc%on, background and significance 
•  Cri%que of HRA methods and suggested 
   improvement 
•  Data from sample studies 
•  Stressing the need for a comprehensive HRA 
   of SO2 in China 
•  Interven%ons 
Project Aims
      •  ASSESS THE STATE OF SO2 
         RESEARCH ON HEALTH EFFECTS 
         IN CHINA. 
      •  SUGGEST CONCRETE 
         IMPROVEMENTS FOR FUTURE 
         STUDIES. 
      •  IDENTIFY THE QUALITATIVE AND 
         QUANTITATIVE HEALTH RISKS 
         ASSOCIATED WITH SO2 IN 
         CHINA.  
      •  DETERMINE HOW TO DECREASE 
         HEALTH RISKS IN AN IMMEDIATE 
         AND PRAGMATIC MANNER. 
      •  PREDICT HOW THESE RISKS WILL 
         CHANGE IN THE FUTURE. 
Outline
•  Ques%ons to answer 
•  Introduc%on, background and significance 
•  Cri%que of HRA methods and suggested 
   improvements (longest sec%on) 
•  Data from sample studies 
•  Stressing the need for a comprehensive HRA 
   of SO2 in China 
•  Interven%ons 
Introduction
                                                                               !




•  China’s moderniza%on  CURRENT STATUS OF ENERGY USE AND
                  CHAPTER 2

                              AIR POLLUTION
•  GDP‐ 8‐9% increase per 
   year since 1978  Economic Development
                2.1 Rapid


•  Projected growth is 
              quot;#$%&! '(&! #$')*+,%'#*$! *-! &%*$*.#%! )&-*).! /$+! *0&$#$1! 0*2#%#&34! '(&! 5(#$&3&!
              &%*$*.6!(/3!&70&)#&$%&+!)/0#+!/$+!3#1$#-#%/$'!1)*8'(9!:(&!/$$,/2!;<=!1)*8'(!)/'&!
              )&/%(&+! >?@A! -)*.! B@C>! '*! DEEF9! G$! DEED4! 5(#$/H3! ;<=! &7%&&+&+! BE! ')#22#*$! IJK!

   staggering LBIJK! M! E9BD>! Nquot;<O4! /3! P#1,)&! D?B! 3(*839! G$! DEEF4! '(&! ;<=! 0&)! %/0#'/! #$! 5(#$/!
              8/3!BE4QRB!IJK9!
                                   16000
                                   14000
                                   12000
               GDP (billion RMB)




                                   10000
                                   8000
                                   6000
                                   4000
                                   2000
                                       0
                                       1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004

                                                                           Year
                                                                                                                      !
                                   P#1,)&!D?B!S#3'*)#%/2!;<=!;)*8'(!#$!5(#$/!Lquot;*,)%&3T!5(#$/!quot;'/'#3'#%/2!UV3')/%'!DEEQO!


              U-'&)!5(#$/!/+*0'&+!'(&!0*2#%6!*-!)&-*).!/$+!&%*$*.#%!2#V&)/2#W/'#*$4!/!%)*33?%&$',)6!
              &%*$*.#%! +&X&2*0.&$'! 3')/'&16! 8/3! +&X&2*0&+! '*! )&/2#W&! .*+&)$#W/'#*$! #$! '()&&!
              3'/1&39!:(&!1*/23!*-!'(&!-#)3'!/$+!3&%*$+!3'/1&3!8&)&!'*!3*2X&!'(&!0)*V2&.3!*-!-**+!/$+!
              %2*'(#$1! *-! '(&! &$'#)&! 5(#$&3&! 0&*02&! /$+! '*! &$/V2&! '(&.! '*! 2#X&! /! )&2/'#X&26!
I#'3!+,-,#+=/,+-!/#<,!-$16%,6!)/%'#A-!.1$1+,!,=&'&0%=!6,<,(&@0,'$!#'6!6,<,(&@,6!
6%..,+,'$! 6,<,(&@0,'$! -=,'#+%&-D! I&-$! &.! $/,-,! -=,'#+%&-! #+,! ;#-,6! &'! $/,! =&00&'!
;,(%,.!$/#$!&<,+!$/,!',H$!9:!3,#+-!)/%'#!?%((!=&'$%'1,!$&!6,<,(&@!%$-!,=&'&03!#$!#!/%*/!
*+&?$/!+#$,>!$/,!,=&'&0%=!*#@!;,$?,,'!)/%'#!#'6!6,<,(&@,6!=&1'$+%,-!?%((!;,!.1+$/,+!

                                   Projected GDP Growth
+,61=,6>! #'6! )/%'#! ?%((! ;,=&0,! &',! &.! $/,! $&@! ,=&'&0%=! =&1'$+%,-! %'! $/,! ?&+(6D!
J%*1+,! 9B9! -/&?-! -&0,! &.! $/,! @+%0#+3! +,-1($-! &.! $/,-,! 782! @+&G,=$%&'! -$16%,-D!
F==&+6%'*! $&! $/,-,! @+&G,=$%&'->! )/%'#A-! #''1#(! 782! *+&?$/! +#$,! ?%((! ;,! #;&1$! KL!
&<,+!$/,!',H$!9:!3,#+-D! !

                                  45000

                                                   Chinese Academy of Social Science, medium scenario, 1995
                                  40000
                                                   Chinese Academy of Sciences, 1995
                                  35000            Beijing University of Technology, 2000
   GDP (billion RMB, 2000price)




                                                   DRC, Medium scenario, 2003
                                  30000
                                                   ERI, medium scenario, 2003,
                                  25000


                                  20000


                                  15000


                                  10000

                                  5000


                                     0
                                     1990         1995        2000         2005        2010      2015        2020
                                                                           Year
                                                                                                                    !
                                          J%*1+,!9B9!M=&'&0%=!8,<,(&@0,'$!E+,'6!#'6!2+,6%=$%&'-!.&+!)/%'#!



2.2 Energy consumption status
01.$!/$%1quot;2K!761(&!6&,!3$+quot;.$!06$!,$+quot;(2!'&%)$,0!$($%)*!+quot;(,-.$%!1(!06$!Dquot;%'2!&90$%!
                             06$! H4I4K! 2-$! 0quot;! 06$! quot;#$%D6$'.1()! 1(+%$&,$! 1(! $($%)*! +quot;(,-./01quot;(4! L(! B;MCK! 06$!
                             quot;#$%&''! $($%)*! +quot;(,-./01quot;(! quot;9! 761(&! D&,! BJ4F! 31''1quot;(! =@4! L(! :CCCK! 06&0! 91)-%$!
                             1(+%$&,$2! 0quot;! <M4B! 31''1quot;(! =@4! N1)-%$! :O<! ,6quot;D,! 06$! 0quot;0&'! +quot;(,-./01quot;(! quot;9! /%1.&%*!
                             $($%)*!1(!761(&!9%quot;.!B;MC!0quot;!:CCP4!N%quot;.!:CCC!0quot;!:CCPK!761(&8,!$($%)*!+quot;(,-./01quot;(!
                             2$.quot;(,0%&0$2!$#$(!,0%quot;()$%!)%quot;D06!.quot;.$(0-.4!Q-%1()!061,!/$%1quot;2K!06$!quot;#$%&''!$($%)*!
                             +quot;(,-./01quot;(!1(+%$&,$2!3*!B;4F!31''1quot;(!=@K!%$/%$,$(01()!&(!&((-&'!1(+%$&,$!quot;9!BC4MRK!
                             S6$! $'&,01+10*! +quot;$991+1$(0 B ! D106! $+quot;(quot;.1+! 2$#$'quot;/.$(0! D&,! B4BF4! S6$,$! (-.3$%,!



              Energy Demands
                             ,6quot;D!06&0!10!D1''!3$+quot;.$!1(+%$&,1()'*!21991+-'0!9quot;%!761(&8,!$($%)*!,-//'*!0quot;!.$$0!06$!
                             2$.&(2,! quot;9! $+quot;(quot;.1+! 2$#$'quot;/.$(04! T$+&-,$! 761(&! 1,! $(0$%1()! 1(0quot;! 06$! /$%1quot;2! quot;9!
                             1(2-,0%1&'1U&01quot;(! quot;9! 6$&#*! 1(2-,0%*K! 06$! .&>quot;%10*! quot;9! 06$! 2quot;.1(&(0! 1(2-,0%1$,! 1(! 06$!
                             (&01quot;(&'!$+quot;(quot;.*!&%$!,01''!6$&#1'*!$($%)*O+quot;(,-.1()4!S61,!)$($%&0$,!-%)$(0!($$2,!9quot;%!
                             9-0-%$! $($%)*! ,-//'*4! L9! 761(&! &++quot;./'1,6$,! $+quot;(quot;.1+! .quot;2$%(1U&01quot;(! 3*! 06$! .122'$!
                             quot;9! 06$! :B,0! +$(0-%*K! 10! .-,0! 91(2! &! ($D! D&*! 0quot;! &+61$#$! $+quot;(quot;.1+! )%quot;D06! D106! 'quot;D$%!
                             $($%)*!&(2!%$,quot;-%+$!+quot;(,-./01quot;(!/$%!+&/10&!+quot;./&%$2!0quot;!06$!2$#$'quot;/$2!+quot;-(0%1$,4!


•  From 2000 to 2004, 




                                           Trillion RMB




                                                                                                                                     Billion GJ
                                                          16                                                                    70

                                                          14             )*+                                                    60


   average increase in 
                                                          12             +, - . 01 232, 401 56378. - 63
                                                                               /,                 9:
                                                                                                                                50
                                                          10
                                                                                                                                40
                                                          8

   energy usage was 10.8%                                 6

                                                          4
                                                                                                                                30

                                                                                                                                20



   per year.                                              2
                                                          0
                                                               !quot;#! #$    #%      #&    #quot;   quot;!   quot;$   quot;%   quot;&   quot;quot; '((! '(($
                                                                                                                                10

                                                                                                                                0




•  Efficiency is necessary,    !
                                                 N1)-%$!:O<!Squot;0&'!7quot;(,-./01quot;(!quot;9!V%1.&%*!W($%)*!1(!761(&! !


   but insufficient. 
                             (Sources: China Statistical Yearbook 2003 and data from the official website of China’s State
                             Statistical Administration)




•  With increased power 
                             2.3 Air quality status

                             L(!B;;FK!761(&!%$#1,$2!10,!50.quot;,/6$%1+!5.31$(0!X-&'10*!I0&(2&%2,K!&,!,6quot;D(!1(!S&3'$!

   output  increased 
                             :OB4! Y6$(! 06$! /quot;''-01quot;(! '$#$',! quot;9! &((-&'! &#$%&)$! Z[! +quot;(+$(0%&01quot;(! 3$0D$$(! B;;G!
                             &(2! :CCB! D$%$! &(&'*U$2K! 06$! B;M:! ,0&(2&%2,! D$%$! -,$2! 9quot;%! B;;G! /quot;''-0&(0!



   emissions. 
                             !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
                                   B
                                     ! W'&,01+10*!+quot;$991+1$(0]!06$!%&01quot;!quot;9!06$!1(+%$.$(0!quot;9!$($%)*!0quot;!06$!1(+%$.$(0!quot;9!=QV!



                             !                                                                                                                    B:
Atmospheric Brown Clouds 
•  Since 1950: 
   –  5x soot emissions 
   –  7x sulfur emissions 
•  95% sulfur emissions are 
   SO2 
•  Crea%on of ABC “hot spot” 
•  Impacts on agriculture, 
   hydrology, climate change, 
   etc. 
•  Great impact on health and 
   ecology (direct and indirect) 
ABCs
•  Dimming means 15 W/m2 less solar energy 
   shine on India and China than in 1950 (6% 
   decrease) 
•  Upper atmosphere warming by 20‐50% 
China is aging
       •  Older popula%ons much 
          more suscep%ble to air 
          pollu%on 
       •  Increasing age poses 
          great social challenge to 
          China 
Development Model
•  China is developing 
•  Model for other Asian 
   na%ons concerned 
   about health and 
   pollu%on associated 
   with coal 
•  Coal derived pollutants 
   important‐ cheap 
SO2 Background & Significance
               •  SO2 considered most 
                  dangerous gaseous 
                  pollutant 
               •  Sources: coal, oil, 
                  biofuels, nonferrous 
                  smel%ng 
               •  Soluble‐ 11.3g in 100ml 
                  H2O 
               •  De novo nuclea%on of 
                  H2SO4 par%culates 
Standards
•  SO2 level standards 
    –  China (Tsinghua, Peking, NREL, 2008) 
        •  Class I 
               –  Daily avg. ≤ 50μg/m3 
               –  Yearly avg. ≤ 20μg/m3 
        •  Class II 
               –  Daily avg. ≤ 150μg/m3 
               –  Yearly avg. ≤ 60μg/m3 
        •  Class III 
               –  Daily avg. ≤ 250μg/m3 
               –  Yearly avg. ≤ 100μg/m3 
    –  WHO (World Health Organiza%on, 2006) 
        •  Interim target 1 
               –  Daily avg. ≤ 125μ/m3 
        •  Interim target 2 
               –  Daily avg. ≤ 50μ/m3 
        •  WHO Guidelines, 2005 
               –  Daily avg. ≤ 20μ/m3 
               –  10‐minute avg. ≤ 500μ/m3 
Pass/Fail
•  2003‐ more than 26% of 
   Chinese ci%es s%ll failed 
   to meet class III 
   requirements.  
•  31.5% met class III 
   requirements but did 
   not meet class II 
   requirements  
50
                                                      SO2 Trends                              AIR QUALITY GUIDELINES



Fig. 10. The development of annual average sulfur dioxide concentrations in Chinese
cities from 1990 to 2002

                         120


                         100
 Concentration (µg/m3)




                         80


                         60
                                 Grade III standard

                         40

                                                                                                    Northern cities
                         20                                                                         Average
                                                                                                    Southern cities
                           0
                               1990           1992     1994      1996            1998            2000          2002

                                                                 Year

Source: Hao & Wang (45).



Fig. 11. Average concentrations of PM10, nitrogen dioxide, sulfur dioxide and ozone
at five Hong Kong monitoring stations

                         80
                                PM10                          Restriction on sulfur in fuel
SO2 Trends
•  Sulfur dioxide concentra%ons in China fell on 
   average by 44.3% (from 93 μg/m3 in 1990 to 
   52 μg/m3 in 2002)  
•  S%ll very high compared to most of the 
   developed world. 
J3361@*+,!-6!-./!/5*))*6+!*+7/+-6189!-./!/5*))*6+!@*)-1*A=-*6+!6<!-./!:6;;=-2+-)!*+!
K.*+2!*+!-./!A2)/!8/21!*)!).6?+!*+!I*,=1/!B>L'!G*,.!/5*))*6+)!6<!%MN9!OMN!2+@!4PN'B!
633=11/@!*+!-./!5*@@;/!2+@!/2)-!6<!K.*+29!?.*3.!.27/!12:*@;8!@/7/;6:*+,!/36+65*/)!
2+@!).6?!-./!3.2123-/1*)-*3)!6<!*+@=)-1*2;!/5*))*6+!2+@!1/)*@/+-*2;!/5*))*6+'!I61!%MN9!
                      SO Emissions Distribution
.*,.! /5*))*6+)! 633=11/@! *+! -./! )6=-.?/)-! 21/2)! ?./1/! .*,.! )=;<2-/! 36+-/+-! 362;! *)!
                           2
A=1+*+,'! I61! 4PN'B9! 5*@@;/! 2+@! /2)-/1+! K.*+2! ).6?/@! .*,.! /5*))*6+)! *+-/+)*-8! <61!
                          (approximate)
*+@=)-1*2;! 2+@! 1/)*@/+-*2;! /5*))*6+'! %6=-.?/)-! K.*+2! ).6?/@! /):/3*2;;8! .*,.!
/5*))*6+)!*+-/+)*-8!@=/!-6!-./!?*@/):1/2@!=)/!6<!A*6<=/;!*+!-./!1/)*@/+-*2;!)/3-61'! !




                                                                                        !

                                          quot;2&! ! %MN!
Major Indirect Effects of SO2 on Health
•  SO2 impact on environment and ecosystems 
   –  Via acid deposi%on 
       •  Water pollu%on 
       •  Soil acidifica%on 
       •  Plant life & Agriculture 
            –  Crop yields sensi%ve to pollu%on concentra%ons (especially Ozone) 
       •  Biodiveristy  
   –  Human health and animal health 
   –  Ecological or climate change 
       •  Rains shimed south in China due to ABCs 
•  Hindu Kush‐Himalayan‐Tibetan (HKHT) glacier retreat will 
   cause loss of 75% of snowcaps by 2050 
   –  large water shortages throughout India and East Asia.  
   –  Currently, about 80% of Western Tibetan glaciers are in retreat 
Outline
•  Ques%ons to answer 
•  Introduc%on, background and significance 
•  Cri%que of HRA methods and suggested 
   improvements 
•  Data from sample studies 
•  Stressing the need for a comprehensive HRA 
   of SO2 in China 
•  Interven%ons 
Study Types
•  Time series studies 
•  Toxological studies 
•  Cohort studies 
•  Mul%na%onal 
   metadata 
•  Interven%on 
   monitoring! 
Data Acquisition
–  Data collec%on (physical) 
   •  Loca%on in 3‐space 
   •  Loca%on rela%ve to sources 
         –  Shanghai 2008 study presents urban background measurements 
            from 6 fixed monitoring sites. 
               »  Six measurement sites used to study nine city districts. No 
                  informa%on on spa%al mapping provided (Kan, 2008). 
   •    Indoor vs. outdoor 
   •    Resolu%on requirements 
   •    Measurement equipment 
   •    Calcula%ons and valida%on for remote sensing 
   •    Regularity of posi%on and methods 
   •    Faithful recording 
   •    Appropriate for popula%on of study 
Data Acquisition
–  Data compila%on (literature) 
   •    Comprehensive search of literature 
   •    Considera%on of spa%otemporal con%nuity 
   •    Considera%on of variability of source data 
   •    Considera%on of source reliability 
   •    Data type considera%on and quality 
          –  AQI 
          –  Mean concentra%ons for provinces, etc. 
–  Data es%ma%on or modeling 
   •  Resolu%on requirements 
   •  Sectors of interest 
   •  Es%mate or measure a subset of a class of objects for extrapola%on 
      to other class members 
   •  Implementa%on of modeling of diffusion, terrain, climate 
Data Source reliability
–  Government data 
   •  SEPA versus USEPA or European organiza%ons 
       –  Censoring of data 
       –  Doctoring of data 
       –  Movement of measurement sites 
       –  Historical precedent within China 
            »  Cultural aspect of government structure and policy control. 
               Effect on trust of the government. 
–  Independent researcher data 
   •  Peer review 
   •  Errors included with results 
   •  No major conflicts of interest (usually) 
Time averaging
•  Time course of SO2 
   health effects 
   •  Effects can be seen within 
      minutes of increased 
      exposures 
•  Data compression for 
   manageability 
•  Compromise between 
   increased resolu%on and 
   feasibility  
GIS implementation or lack thereof
                   –  For berer correla%ons with 
                      exposure and increasing 
                      precision. 
                   –  Increasing accessibility to 
                      source data and methods. 
                   –  GIS has been implemented 
                      to study the spa%o‐
                      temporal distribu%on of 
                      SO2 throughout the 
                      Chengdu plain, although 
                      monitoring sta%ons used in 
                      the study experienced 
                      malfunc%ons and may not 
                      have been properly 
                      managed (Song, 2008).  
Suggested Improvements
•    Construc%on of online GIS database 
     for remote sensing data and high‐
     resolu%on city‐based data (from 
     monitoring sta%ons) along with 
     informa%on on hospital admissions 
     and deaths on a daily basis. System 
     would be automated. 
      –  Provide high resolu%on data for 
         correla%ons and ease of use 
      –  Could be validated by ground 
         measurements and calibrated by 
         atmospheric modeling 
•    Increasing accessibility to and 
     reliability of government data. 
      –  Shim governor’s no%on of informa%on 
         disclosure 
           •  Responsibility to people of China 
           •  Increasing access will result in berer 
              solu%ons to problem 
Exposure estimation methods
•  popula%on loca%on 
   –  rela%vely simple task to 
      locate households in China 
      due to great government 
      oversight, although data is 
      likely available only on a 
      case by case request from 
      regional offices. 

•  Although numbers of 
   individuals may be 
   obtained, informa%on on 
   age‐composi%on, 
   occupa%on, etc. missing. 
P',/Q!R./2:>!S/1/+294!T.1,-,),/U1!%AAD!&2'B/9,-'.!'.!;+1-9!/9'.'6-9!+.5!/./2:>!-.E'26+,-'.!
!




                                                                                                           !


                            V-:)2/!quot;F%!&'()*+,-'.!5/.1-,>!+.5!5-1,2-;),-'.!-.!74-.+!-.!%AAC!
!
                         Example of GIS use to catalog popula%on density 
T.!,4-1!4/+*,4!;/./E-,!+.+*>1-18!,4/!/0('1/5!('()*+,-'.!-1!,4/!<4'*/!('()*+,-'.8!-.9*)5-.:!2/1-5/.,1!*-=-.:!-.!
)2;+.! +.5! 2)2+*! +2/+1! -.! 74-.+#! W'</=/28! +6;-/.,! ('**),-'.! */=/*1! -.! ,4/! 2)2+*! +2/+! +2/! ).9*/+2! ;/9+)1/!
,4/2/! +2/! E/<! +-2! 6'.-,'2-.:! 1,+,-'.1! *'9+,/5! ,4/2/#! ! X'6/! 1,)5-/1! -.! 74-.+! 4+=/! 14'<.! ,4+,! -.5''2! +-2!
('**),-'.!-1!+!6'2/!-6('2,+.,!E+9,'2!-.!2)2+*!+2/+18!+.5!,4/!94+2+9,/2-1,-91!'E!2)2+*!'),5''2!+-2!('**),-'.!6+>!
Population, cont.
           –  Increase in migrant 
              popula%on and 
              economic development 
              •  Shim of popula%on from 
                 rural to urban 
              •  Architecture and customs 
                 bring different parerns of 
                 exposure to pollutants. 
           –  Hong Kong study (2003) 
              es%mated that its eight 
              monitoring sites covered 
              73% of the popula%on. 
Outdoor versus Indoor Exposure
•  Chinese spend more 
   %me outside 
•  Ven%la%on system 
   reduc%ons in pollutant 
   concentra%ons 
•  Solid fuel usage 
   complica%on 
•  Outdoor exercise 
•  Age‐bias: whole other 
   ball game 
10
between air pollution and daily mortality in                  have a cool-season maximum in Shanghai.                         elderly and the very young, are presumed to be
the cool season is consistent with several prior                  We found a greater effect of ambient air                    at greater risk for air pollution–related effects
studies in Hong Kong (Wong et al. 1999,                       pollution on total mortality in females than in                 (Gouveia and Fletcher 2000; Schwartz 2004).
2001) and Athens, Greece (Touloumi et al.                     males. Results of prior studies on sex-specific                  For the elderly, preexisting respiratory or
1996), but in contrast with others reporting                  acute effects of outdoor air pollution were dis-                cardiovascular conditions are more prevalent
greater effects in the warm season (Anderson                  cordant. For example, Ito and Thurston                          than in younger age groups; thus, there is


                                       Exposure based on SES
et al. 1996; Bell et al. 2005; Nawrot et al.                  (1996) found the highest risk of mortality                      some overlap between potentially susceptible
2007). In Shanghai, the concentrations of                     related with air pollution exposure among                       groups of older adults and people with heart
PM10, SO2, and NO2 were higher and more                       black women. Hong et al. (2002) found that                      or lung diseases.
variable in the cool season than in the warm                  elderly women were most susceptible to the                          It has long been known that SES can
season (Table 1). Because these three pollu-                  adverse effects of PM10 on the risk of acute                    affect health indicators such as mortality
        •     Loca%on of industry 
tants were highly correlated, greater effects
observed during the cool season may also be
                                                              mortality from stroke. However, Cakmak
                                                              et al. (2006) found that sex did not modify
                                                                                                                              (Mackenbach et al. 1997). Recently, studies
                                                                                                                              have started to examine the role of SES in

              Roadways 
due to other pollutants that were also at higher              the hospitalization risk of cardiac diseases due                the vulnerability of subpopulations to out-
        • 
levels during that season. In contrast, the O3                to air pollution exposure.                                      door air pollution, especially for particles
level was higher in the warm season than in                       The reasons for our sex-specific observa-                   and O3, although the results remain incon-
        •     Occupa%onal hazards 
the cool season, and our exposure–response
relationship also revealed a flatter slope at
                                                              tions are unclear and deserve further investiga-
                                                              tion. In Shanghai, females have a much lower
                                                                                                                              sistent (O’Neill et al. 2003). For example,
                                                                                                                              Zeka et al. (2006) found that individual-
        •     Educa%on may affect risk 
higher concentrations of O3 for both sexes
(data not shown). At higher concentrations,
                                                              smoking rate than males (0.6% in females vs.
                                                              50.6% in males) (Xu 2005). One study sug-
                                                                                                                              level education was inversely related to the
                                                                                                                              risk of mortality associated with PM 10.
                 –  Shanghai PAPA study suggests increase in risk of cardio and 
the risks of death could be reduced because
vulnerable subjects may have died before the
                                                              gested that effects of air pollution may be
                                                              stronger in nonsmokers than in smokers
                                                                                                                              Another cohort study with small-area meas-
                                                                                                                              ures of SES in Hamilton, Ontario, Canada,
                    pulmonary deaths based on educa%on level 
concentration reached the maximum level                       (Künzli et al. 2005). Oxidative and inflamma-                    found important modification of the particle
(Wong et al. 2001).                                           tory effects of smoking may dominate to such                    effects by social class (Finkelstein et al. 2003;

Table 4. Percent increase in number of deaths due to total, cardiovascular, and respiratory causes associated with a 10-µg/m3 increase in air pollutants by edu-
cational attainment.a
                        Educational          Mean daily                                                                  Pollutant
Mortality               attainment           deaths (n)                  PM10                             SO2                                NO2                            O3
Total                       Low                 67.3              0.33 (0.19 to 0.47)             1.19 (0.77 to 1.61)                1.27* (0.89 to 1.66)          0.26 (–0.09 to 0.60)
                            High                42.1              0.18 (0.01 to 0.36)             0.66 (0.16 to 1.17)                 0.62 (0.15 to 1.09)          0.30 (–0.11 to 0.71)
Cardiovascular              Low                 27.8              0.30 (0.10 to 0.51)             1.08 (0.47 to 1.69)                 1.15 (0.58 to 1.72)          0.39 (–0.13 to 0.90)
                            High                16.4              0.23 (–0.03 to 0.50)            0.57 (–0.20 to 1.35)                0.73 (0.01 to 1.45)          0.26 (–0.38 to 0.91)
Respiratory                 Low                  8.9              0.36 (0.00 to 0.72)             1.54 (0.43 to 2.66)                 1.59 (0.57 to 2.62)          0.20 (–0.74 to 1.16)
                            High                 5.4              0.02 (–0.43 to 0.47)            0.73 (–0.61 to 2.09)                0.34 (–0.89 to 1.60)         0.27 (–0.86 to 1.41)
aWe   used current day temperature and humidity (lag 0) and 2-day moving average of air pollutants concentrations (lag 01) and we a
                                                                                                                                  pplied 3 df to temperature and humidity. *Significantly
different from high educational attainment (p < 0.05).



1186                                                                                        VOLUME   116 | NUMBER 9 | September 2008 • Environmental Health Perspectives
are different, our results would be valid as long    CO, SO2, and PM10.                                                Effect modificat
as the exposures changed in the same direc-              Seasonal influences. The mortality effects                 (2005) reported incr
tion. The present daily time-series analysis         of CO, SO2, and PM10 appeared greater dur-                    in the elderly from
examines the effects of day-to-day differences       ing April–September, the colder months,                       Morbidity, Mortali
in air pollution, not absolute values.               although differences were significant for only                 Study of 95 U.S. citie
    Air pollution–related mortality. The pre-        PM10. Ilabaca et al. (1999) also reported a sea-              (2004) reported tha
sent findings averaged over seven urban centers       sonal modification of the PM 2.5 effect on                    associated with PM
are similar to those of previous air pollution       pediatric emergency department visits, greatest               Ilinois, appeared to

                          Seasonal Variations
studies in Chile. In 1989 and 1991, cardiac
and respiratory mortality were higher on days
of increased PM10 (Ostro et al. 1996). Ostro
et al. (1996) reported that a 10-µg/m3 change
                                                     in the colder months. In the present study, a
                                                     change in PM10 of about 85 µg/m3 was associ-
                                                     ated with a 12.2% change in mortality during
                                                     the warmer months and 1.3% in the colder
                                                                                                                   women but decrease
                                                                                                                   Filleul et al. (2004) re
                                                                                                                   air pollution mortalit
                                                                                                                   age, but it did not rea
in daily mean PM10 was associated with a 1%          months, using unconstrained distributed lags.                 statistical significanc
                                                                                                                   increased susceptibilit
Table 5. Percent change (t-ratio) in nonaccidental daily mortality associated with changes in pollutant            age (Gouveia and Fl
concentrations equivalent to population-weighted averages by cause of death, age at death, and season.             1998). We studied t
Classification                     PM10                  O3                 SO2                          CO         Compared with those
Cause of death                                                                                                     at least 85 years of a
 Nonaccidental                                                                                                     over twice as likely to
  Single-day lag                8.54 (5.14)          5.64 (2.78)         5.65 (4.97)              5.88 (6.42)      in PM10 and > 50%
  Distributed lag              11.68 (5.22)          4.38 (2.18)         9.28 (6.64)              9.39 (6.89)      increases in O3 and S
 Cardiac                                                                                                           tibility was further m
  Single-day lag               10.06 (3.25)          8.78 (2.42)         7.24 (3.55)              7.79 (4.56)      strained distributed la
  Distributed lag              13.33 (3.35)          2.30 (0.78)        10.53 (4.29)             11.22 (4.8)
 Respiratory
                                                                                                                   also observed a gener
  Single-day lag               18.58 (4.51)          8.21 (1.46)        12.45 (4.19)             12.93 (5.78)      in susceptibility with
  Distributed lag              29.66 (4.88)         15.63 (2.50)        20.44 (5.21)             21.31 (6.34)      groups. These finding
Age at death (years)                                                                                               mination of air qualit
 ≤ 64                                                                                                              protect the general po
  Single-day lag                4.53 (1.52)          4.96 (1.17)         4.77 (2.50)              4.10 (2.52)      cient to protect the el
  Distributed lag               4.26 (1.29)          1.84 (0.71)         4.27 (2.49)              4.76 (2.19)          In summary, mo
 65–74
  Single-day lag                9.47 (2.81)          8.00 (1.77)         5.99 (2.49)              6.24 (3.17)
                                                                                                                   data in Santiago, Chi
  Distributed lag              11.72 (3.01)          2.15 (0.86)         7.21 (2.55)              8.12 (3.88)      lution levels continue
 75–84                                                                                                             son with those in N
  Single-day lag               12.61 (3.80)          9.42 (2.28)         8.73 (4.00)              8.64 (4.82)      associated with strong
  Distributed lag              17.62 (3.72)          3.32 (0.92)        11.2 (4.25)              13.12 (5.12)      respiratory than c
 ≥ 85                                                                                                              increases in gases and
  Single-day lag               14.03 (3.87)          8.56 (2.02)         7.92 (3.23)              8.58 (4.45)      with increased mor
  Distributed lag              19.73 (3.75)          5.92 (1.92)        11.13 (4.38)             13.20 (4.82)
Season
                                                                                                                   elderly appear to be a
 April–September                                                                                                   who are younger. W
  Single-day lag                9.12 (3.35)          3.21 (1.14)         6.47 (3.92)              7.09 (4.02)      degree of susceptibilit
  Distributed lag              12.20 (3.75)          2.14 (1.25)        10.23 (4.72)              9.65 (4.50)      very elderly be invest
 October–March                                                                                                     to determine whether
  Single-day lag                0.60 (0.45)          6.19 (1.92)         2.62 (1.19)              5.45 (1.14)      able across different c
  Distributed lag               1.27 (1.46)          4.89 (1.82)         4.25 (1.75)              7.80 (1.89)      characteristics.


526                                                                                    VOLUME   115 |   NUMBER   4 | April 2007 • Environm
ARTICLES



Results                                                                                                                     the eight stations, except in one district, which only
In the first year after introduction of the intervention,                                                                   contributed 1·3% of total deaths covered by air-pollutant
mean fall in SO2 concentration at five stations was 53%                                                                     monitoring.
(table 1). Reduction in SO2 concentration was sustained                                                                        The average annual proportional change in number of
between 35% and 53% (mean 45%) of the mean value                                                                            deaths, for all causes and all ages, was an increase of 3·5%
before the intervention, over 5 years. At eight stations for                                                                per year in 1985–90, in accordance with the increase in
which complete data were available for up to 2·5 years,                                                                     size and ageing of the population. After the intervention
the average reduction in SO2 concentration over this
                                                                                                                                                  All causes
period was 50%.                                                                                                                            4000
   Mean concentration of sulphate in respirable
particulates at five stations for 2 years before the
intervention was 8·9 g/m3. This concentration fell by                                                                                      3000
15–23% for 2 years but rose again to between 110% and
114% of the concentration before 1990 in years 3–5 after
the intervention (data not shown). No significant change                                                                                   2000
in mean concentration of PM10 (p=0·926) and NO2
(p=0·205)—but a significant increase of O3 (p<0·0001)—
                                                                                                                                           1000
was noted over the 5 years after the restriction on fuel
sulphur content (figure 1).
   Over the 5 years before the intervention, number of                                                                                        0
deaths per month showed a stable seasonal pattern for all
causes and cardiorespiratory diseases. In the year after the
restriction on fuel sulphur content was introduced, the                                                                                           Respiratory
                                                                                                                                           1000
expected cool season peak was absent (figure 2).
   The noted seasonal mortality cycle closely fitted the
model for the 5 years before introduction of the                                                                                            750
intervention. In the first 12 months after the intervention,
amplitude of the cycle was low compared with that
predicted because of a striking reduction in deaths in the                                                                                  500
cool season (figure 3). This fall was associated with a
reduction in the warm to cool season mortality gradient,
                                                                                                                                            250
for every age-group, for all causes, respiratory, and
cardiovascular deaths. For example, the seasonal




                                                                                                                          Monthly deaths
percentage increase for all causes and all ages declined                                                                                      0
from the average 5-year baseline of 10·3% to 4·2% and
respiratory deaths from 20·3% to 5·3% (table 2). In
people aged 65 or older, seasonal deaths for all causes                                                                                           Cardiovascular
                                                                                                                                           1000
declined from 14·7% to 6·1% and respiratory deaths from
22·7% to 5·4%. No consistent change in seasonal pattern
of deaths in any age-group for neoplasms or other causes                                                                                    750
was noted. In the second 12 months a striking rebound in
deaths in the cool season deaths arose, followed by a
gradual return during years 3–5 to the seasonal pattern                                                                                     500
before intervention.
   The reduction in cool-season deaths in the first year
                                                                                                                                            250
after the intervention showed a consistent pattern across

                                                          PM10                                                                                0
                                                          NO2
                                                          SO4
                                                          SO2                                                                                     Neoplasms and other causes
                                                          O3                                                                               1000
                                  80                                                     12
Pollutant concentration ( g/m3)




                                                                                              SO4 concentration ( g/m3)




                                                                                                                                            750
                                  60
                                                                                         8

                                  40                                                                                                        500
                                                                                                                                                                                     Neoplasms
                                                                                                                                                                                     Other causes
                                                                                         4
                                  20                                                                                                        250


                                   0                                                     0                                                    0
                                                                                                                                               July,                    July,                       June,
                                       88        89    99
                                                         0          91 992 993 994 995                                                         1985                     1990                        1995
                                   19       19        1          19    1   1   1   1
                                                                      Year                                                  Figure 2: Number of deaths per month for all ages from
 Figure 1: Average of pollutant concentrations at five                                                                      July, 1985, to June, 1995, for all causes, respiratory,
 monitoring stations                                                                                                        cardiovascular, and neoplasms and other causes
 Vertical line represents date of introduction of fuel regulation.                                                          Vertical line represents date of introduction of fuel regulation.



  1648                                                                                                                                     THE LANCET • Vol 360 • November 23, 2002 • www.thelancet.com




                                   For personal use. Only reproduce with permission from The Lancet Publishing Group.
Suggested Improvements
–  The majority of studies assume that measured concentra%ons 
   are representa%ve of average concentra%ons over an en%re 
   region (which may be of varying size). Of course, this is not true, 
   but it is omen the only method available. The popula%on 
   distribu%on is some%mes geographically correlated with the 
   pollu%on distribu%on (study from San%ago, Chile). Other %mes, 
   it is disregarded, and the popula%on is thought of as a one‐
   dimensional parameter (PAPA studies).  
–  What needs to be done is to simultaneously increase the 
   resolu%on of pollu%on concentra%on data and make a concerted 
   effort to calculate exposure based upon the geographic overlay 
   of popula%on or popula%on density with pollu%on 
   concentra%ons. 
–  Rela%ve exposures based on popula%on surveys 
Improvements
–  Indoor vs. outdoor %me expenditures by the popula%on (while 
   preserving age classifica%ons) should be conducted by survey in 
   regions under study, along with indoor measurements, to more closely 
   approximate exposure.  
    •  Then modeling could be done to examine how change in habits or architecture 
       of a certain locale may lead to an indirect benefit in health for the en%re 
       region of interest. 
    •  Shanghai paper discussion reveals that 67.3% of Shanghai residents use air 
       condi%oning in the winter, while 96.7% do so in the summer. Thus, significant 
       increases in risk to health for 10 μg/m3 increases in pollutant concentra%ons 
       were only seen in cooler months, when the average temperature dropped 
       from 24.3 C to 11.2 C. For subtropical coastal ci%es in China, the parern of 
       staying indoors in the summer and opening windows in the cooler season may 
       be a regional varia%on in culture that affects exposure assessment (Kan, 2008). 
         –  Similar results were seen in papers from Hong Kong. (Hedley, 2002) 
         –  Personal experience in Shenzhen also leads me to this conclusion on cultural varia%on. 
         –  Opposite effects in Bangkok and Wuhan due to the rela%vely low incidence of air 
            condi%oning usage (Wong, 2008). 
•  Such improvements in understanding of 
   exposure are necessary for the normaliza%on 
   of %me series results, cross comparison, policy 
   crea%on, etc. 
C-R functions
y = B ⋅ eβ ⋅x                            •  Log‐linear regressions 
ln(y) = α + β ⋅ x                           common 
Δx  Δy = y − y0                         •  Non‐linear lsq curve 
    ∂y    ∂y     ∂y                         fisng 
dy = dx + dβ + dB
    ∂x    ∂β     ∂B                      •  Spline interpola%ons 
Δy = B(eβ ⋅x − eβ ⋅x0 )                  •  Ideally‐ spa%otemporal 
Δy = B ⋅ eβ ⋅x0 (e (β ⋅x −β ⋅x0 ) − 1)      C‐R func%ons integrated 
Δy = B ⋅ eβ ⋅x0 (eβ (x −x 0 ) − 1)          into GIS platorm. 


∴ Δy = y0 (eβ ⋅Δx − 1)
outdoor particulates in shopping areas were                                                        pattern is consistent with other reports in                                                                    In all cities in the PAPA study, the effects of
underestimated by the ambient monitoring sta-                                                      demonstrating a maximum at lag 1 day for                                                                   air pollution are stronger for cardiopulmonary
tions in Bangkok, and therefore that the excess                                                    most pollutants (Samoli et al. 2005, 2006).                                                                causes than for all natural causes. This is consis-
risk per air pollutant concentration would                                                         However, for O3, the effect estimates are maxi-                                                            tent with results from most North American
be higher than if it were a well-calibrated                                                        mal at longer lags, showing that the pattern is                                                            and Western European studies (Anderson et al.
             0.3                 Bangkok                                       0.3                     Hong Kong                                           0.3                          Bangkok                                  0.3                  Hong Kong
                    A                                                                                                                                                B
             0.2                                                               0.2                                                                         0.2                                                                   0.2




Log-risk




                                                                                                                                              Log-risk
             0.1                                                               0.1                                                                         0.1                                                                   0.1

             0.0                                                               0.0                                                                         0.0                                                                   0.0

            –0.1                                                              –0.1                                                                       –0.1                                                                  –0.1

                   20      40         60    80        100         120                 20     40        60      80        100     120    140                      0           10         20         30         40     50                0     20            40          60     80       100
                         NO2 concentration (µg/m3)                                         NO2 concentration (µg/m3)                                                         SO2 concentration (µg/m3)                                     SO2 concentration (µg/m3)
             0.3                 Shanghai                                      0.3                      Wuhan                                              0.3                                                                   0.3
                                                                                                                                                                                        Shanghai                                                       Wuhan

             0.2                                                               0.2                                                                         0.2                                                                   0.2
Log-risk




                                                                                                                                              Log-risk
             0.1                                                               0.1                                                                         0.1                                                                   0.1

             0.0                                                               0.0                                                                         0.0                                                                   0.0

            –0.1                                                              –0.1                                                                       –0.1                                                                  –0.1

                          50         100        150         200                       20      40        60          80         100     120                                        50               100             150                            50                 100       150
                         NO2 concentration (µg/m3)                                         NO2 concentration (µg/m3)                                                         SO2 concentration (µg/m3)                                     SO2 concentration (µg/m3)
            0.25                 Bangkok                                       0.25                     Hong Kong                                          0.20                             Bangkok                             0.20                   Hong Kong
                    C                                                                                                                                                    D
            0.20                                                               0.20                                                                        0.15                                                                 0.15
            0.15                                                               0.15
                                                                                                                                                           0.10                                                                 0.10




                                                                                                                                                Log-risk
 Log-risk




            0.10                                                               0.10
                                                                                                                                                           0.05                                                                 0.05
            0.05                                                               0.05
                                                                                                                                                           0.00                                                                 0.00
            0.00                                                               0.00
           –0.05                                                              –0.05                                                                      –0.05                                                                 –0.05

           –0.10                                                              –0.10                                                                      –0.10                                                                 –0.10
                   20    40     60     80   100 120         140         160                       50           100               150                                                   50               100              150           0    20        40        60     80    100     120
                        PM10 concentration (µg/m3)                                         PM10 concentration (µg/m3)                                                         O3 concentration (µg/m3)                                     O3 concentration (µg/m3)

            0.25                     Shanghai                                  0.25                         Wuhan                                          0.20                              Shanghai                           0.20                       Wuhan

            0.20                                                               0.20                                                                        0.15                                                                 0.15
            0.15                                                               0.15                                                                        0.10                                                                 0.10
                                                                                                                                                Log-risk
 Log-risk




            0.10                                                               0.10
                                                                                                                                                           0.05                                                                 0.05
            0.05                                                               0.05
                                                                                                                                                           0.00                                                                 0.00
            0.00                                                               0.00
                                                                                                                                                         –0.05                                                                 –0.05
           –0.05                                                              –0.05
                                                                                                                                                         –0.10                                                                 –0.10
           –0.10                                                              –0.10
                         100          200       300     400                                  100             200          300          400                           0            50         100         150       200                 0         50        100         150     200

                        PM10 concentration (µg/m3)                                         PM10 concentration (µg/m3)                                                         O3 concentration (µg/m3)                                     O3 concentration (µg/m3)

Figure 4. CR curves for all natural-cause mortality at all ages in all four cities for the average concentration of lag 0–1 days for NO (A), SO2 (B), PM10 (C), and O3 (D).
                                                                                                                                      2
The thin vertical lines represent the IQR of pollutant concentrations. The thick lines represent the WHO guidelines (WHO 2005)of 40 µg/m3 for 1-year averaging time
for NO2 (A), 20 µg/m 3 for 24-hr averaging time for SO (B), 20 µg/m3 for 1-year averaging time for PM (C), and 100 µg/m3 for daily maximum 8-hr mean for O (D).
                                                      2                                                10                                                        3



1200                                                                                                                                          VOLUME             116 | NUMBER 9 | September 2008 • Environmental Health Perspectives
centrations were expressed as the             cities, the effect estimates for PM10 were sensi-                                                  the concentrations (Figure 4). At all ages, tests
 e range (IQR; i.e., 75th per-                 tive to exclusion of the higher concentrations.                                                    for nonlinearity for the entire curve showed
  percentile), Bangkok estimates               For the Chinese cities, this increased the excess                                                  that linearity could not be rejected at the 5%
able to those of the three Chinese             risk > 20% for PM 10 , but in Bangkok the                                                          level for most of the associations between air
larly in all ages. Within cities, the          effect estimate decreased, with the excess risk                                                    pollution and mortality (data not shown).
es of different pollutants were also           changing from 1.25% to 0.73% per 10-µg/m3
o each other (data not shown).                 increase in average concentration of lag                                                           Discussion
ies, there was heterogeneity in
ates for NO 2 and PM 10 on all
  e mortality and for PM 10 on
                                                             Dependence on outcomes
                                               0–1 days (Table 4). Examination of the warm
                                               season (which varied for each city) resulted in
                                               significant increases in effect estimates for
                                                                                                                                                  Review of PAPA project results. In the city-
                                                                                                                                                  specific main effects for the five main health
                                                                                                                                                  outcomes under study, there were variations
 ar mortality (Table 3). For all               Bangkok and Wuhan but decreases in Hong                                                            in effect estimates between cities. For NO2
  mortality, the combined random               Kong and, to a lesser extent, in Shanghai                                                          the estimates were similar in magnitude and
  risk were 1.23, 1.00, 0.55, and
O2, SO2, PM10, and O3, respec-                                                                    NO2                                                         8                                SO2
values ≤ 0.05). The results for                                  4

 r mortality (Table 3) followed a
                                               Excess risk (%)




                                                                                                                                           Excess risk (%)
                                                                                                                                                              6
                                                                 3
milar pattern, with the highest
                                                                                                                                                              4
r 10-µg/m3 in Bangkok for PM10                                   2
in Wuhan for NO2 and SO2. All                                                                                                                                 2
demonstrated significant associa-                                 1

  ch pollutant except SO 2 in                                                                                                                                 0
                                                                 0
  O3 in Wuhan, whereas all of the                                     All ≥ 65 ≥ 75    All ≥ 65 ≥ 75     All ≥ 65 ≥ 75     All ≥ 65 ≥ 75                            All ≥ 65 ≥ 75    All ≥ 65 ≥ 75    All ≥ 65 ≥ 75      All ≥ 65 ≥ 75
timates were statistically signifi-                                  ages             ages              ages              ages                                     ages             ages             ages               ages
                                                                       Bangkok        Hong Kong          Shanghai             Wuhan                                  Bangkok         Hong Kong        Shanghai             Wuhan
ar pattern was shown for respira-
y, for which the highest estimates                                                                PM10                                                       2.5                               O3
n Wuhan for NO2 and SO2 and                                      3
                                                                                                                                                             2.0
or PM10 and O3. All the random
                                               Excess risk (%)




                                                                                                                                           Excess risk (%)
 tes were statistically significant at                            2                                                                                           1.5

except for O3.                                                                                                                                               1.0
 ag effects in the three Chinese                                 1
                                                                                                                                                             0.5
  few exceptions, the average lag
 ally generated the highest excess                               0                                                                                            0
r, for Bangkok the longer cumu-                                       All ≥ 65 ≥ 75    All ≥ 65 ≥ 75     All ≥ 65 ≥ 75     All ≥ 65 ≥ 75                            All ≥ 65 ≥ 75    All ≥ 65 ≥ 75    All ≥ 65 ≥ 75      All ≥ 65 ≥ 75
e of lag 0–4 days generated the                                      ages             ages              ages              ages                                     ages             ages             ages               ages

ss risk for all of the pollutants                                      Bangkok        Hong Kong          Shanghai             Wuhan                                  Bangkok         Hong Kong         Shanghai            Wuhan

  For the combined estimates,                  Figure 3. Excess risk (%) of mortality [point estimates (95% CIs)] for a 10-µg/m3 increase in average
 lag 0–1 days showed the highest               concentration of lag 0–1 days for three age groups.

s risk (ER; %) of mortality (95% CI) for a 10-µg/m3 increase in the average concentration of lag 0–1 days by main effect estimates of individual cities
random effects.
                                                                                                                                                                              Random effects                Random effects
                        Bangkok             Hong Kong                                      Shanghai                              Wuhan                                           (4 cities)                (3 Chinese cities)
     Pollutant    ER       95% CI        ER     95% CI                                  ER     95% CI                    ER         95% CI                                 ER         95% CI              ER       95% CI
 s     NO2       1.41    0.89 to 1.95   0.90                     0.58 to 1.23          0.97       0.66 to 1.27           1.97       1.31 to 2.63                          1.23      0.84 to 1.62*        1.19         0.71 to 1.66*
tions for each pollutant except SO 2 in                                                                                                                                         0
                                                                                   0
Bangkok and O3 in Wuhan, whereas all of the                                             All ≥ 65 ≥ 75    All ≥ 65 ≥ 75    All ≥ 65 ≥ 75      All ≥ 65 ≥ 75                            All ≥ 65 ≥ 75    All ≥ 65 ≥ 75    All ≥ 65 ≥ 75    All ≥ 65 ≥ 75
combined estimates were statistically signifi-                                         ages             ages             ages               ages                                     ages             ages             ages             ages
                                                                                         Bangkok        Hong Kong          Shanghai             Wuhan                                  Bangkok         Hong Kong        Shanghai           Wuhan
cant. A similar pattern was shown for respira-
tory mortality, for which the highest estimates                                                                     PM10                                                       2.5                               O3
were found in Wuhan for NO2 and SO2 and                                            3
                                                                                                                                                                               2.0
in Bangkok for PM10 and O3. All the random




                                                                 Excess risk (%)




                                                                                                                                                             Excess risk (%)
                                         Outcome dependency
effects estimates were statistically significant at                                 2                                                                                           1.5

the 5% level except for O3.                                                                                                                                                    1.0
    For the lag effects in the three Chinese                                       1
                                                                                                                                                                               0.5
cities, with a few exceptions, the average lag
0–1 days usually generated the highest excess                                      0                                                                                            0
risk. However, for Bangkok the longer cumu-                                             All ≥ 65 ≥ 75    All ≥ 65 ≥ 75    All ≥ 65 ≥ 75      All ≥ 65 ≥ 75                            All ≥ 65 ≥ 75    All ≥ 65 ≥ 75    All ≥ 65 ≥ 75    All ≥ 65 ≥ 75
lative average of lag 0–4 days generated the                                           ages             ages             ages               ages                                     ages             ages             ages             ages

highest excess risk for all of the pollutants                                            Bangkok        Hong Kong          Shanghai             Wuhan                                  Bangkok         Hong Kong         Shanghai          Wuhan

except SO 2 . For the combined estimates,                        Figure 3. Excess risk (%) of mortality [point estimates (95% CIs)] for a                                                                 10-µg/m3     increase in average
effects at the lag 0–1 days showed the highest                   concentration of lag 0–1 days for three age groups.

Table 3. Excess risk (ER; %) of mortality (95% CI) for a 10-µg/m3 increase in the average concentration of lag 0–1 days by main effect estimates of individual cities
and combined random effects.
                                                                                                                                                                                                Random effects                Random effects
                                         Bangkok                 Hong Kong                                   Shanghai                              Wuhan                                           (4 cities)                (3 Chinese cities)
                      Pollutant    ER       95% CI            ER     95% CI                               ER     95% CI                    ER         95% CI                                 ER         95% CI              ER       95% CI
All natural causes      NO2       1.41    0.89 to 1.95      0.90 0.58 to 1.23                            0.97       0.66 to 1.27           1.97      1.31 to 2.63                           1.23       0.84 to 1.62*       1.19 0.71 to 1.66*
 (all ages)              SO2      1.61    0.08 to 3.16      0.87 0.38 to 1.36                            0.95       0.62 to 1.28           1.19      0.65 to 1.74                           1.00       0.75 to 1.24        0.98 0.74 to 1.23
                        PM10      1.25    0.82 to 1.69      0.53 0.26 to 0.81                            0.26       0.14 to 0.37           0.43      0.24 to 0.62                           0.55       0.26 to 0.85#       0.37 0.21 to 0.54
                         O3       0.63    0.30 to 0.95      0.32 0.01 to 0.62                            0.31       0.04 to 0.58           0.29     –0.05 to 0.63                           0.38       0.23 to 0.53        0.31 0.13 to 0.48
Cardiovascular          NO2       1.78    0.47 to 3.10      1.23 0.64 to 1.82                            1.01       0.55 to 1.47           2.12      1.18 to 3.06                           1.36       0.89 to 1.82        1.32 0.79 to 1.86
                         SO2      0.77   –2.98 to 4.67      1.19 0.29 to 2.10                            0.91       0.42 to 1.41           1.47      0.70 to 2.25                           1.09       0.71 to 1.47        1.09 0.72 to 1.47
                        PM10      1.90    0.80 to 3.01      0.61 0.11 to 1.10                            0.27       0.10 to 0.44           0.57      0.31 to 0.84                           0.58       0.22 to 0.93**      0.44 0.19 to 0.68
                          O3      0.82    0.03 to 1.63      0.62 0.06 to 1.19                            0.38      –0.03 to 0.80          –0.07     –0.53 to 0.39                           0.37       0.01 to 0.73        0.29 –0.09 to 0.68
Respiratory             NO2       1.05   –0.60 to 2.72      1.15 0.42 to 1.88                            1.22       0.42 to 2.01           3.68      1.77 to 5.63                           1.48       0.68 to 2.28        1.63 0.62 to 2.64*
                         SO2      1.66   –3.09 to 6.64      1.28 0.19 to 2.39                            1.37       0.51 to 2.23           2.11      0.60 to 3.65                           1.47       0.85 to 2.08        1.46 0.84 to 2.08
                        PM10      1.01   –0.36 to 2.40      0.83 0.23 to 1.44                            0.27      –0.01 to 0.56           0.87      0.34 to 1.41                           0.62       0.22 to 1.02        0.60 0.16 to 1.04
                          O3      0.89   –0.10 to 1.90      0.22 –0.46 to 0.91                           0.29      –0.44 to 1.03           0.12     –0.89 to 1.15                           0.34      –0.07 to 0.75        0.23 –0.22 to 0.68
p-Values (homogeneity test): *0.01 < p ≤ 0.05; **0.001 < p ≤ 0.01; and #p ≤ 0.001.



1198                                                                                                                VOLUME   116 | NUMBER 9 | September 2008 • Environmental Health Perspectives
Outcomes, cont.
•  Morbidity outcomes include: 
  –  decreases in ven%lator capacity 
  –  increases in specific airway resistance 
  –  Wheezing 
  –  shortness of breath 
  –  HRV 
  –  LBW, IUGR 
C-R uncertainties, complications
•  Slope varia%on at low 
   levels 
•  Toxicological uncertain%es 
•  Simplis%c data (pop, 
   pollutant) 
•  IQR and extrapola%on 
•  Mul%ple pollutants 
•  Local weather, pollu%on 
   mix 
•  Wish to produce 
   significant results 
   –  Gender study in Shanghai 
Gender in Shanghai
           –  Shanghai 2008 study claims to have 
              shown that SO2 produces greater 
              affect in females. However, the 
              data error is far too large to make 
              this conclusion (95% CI are [.43, 
              1.28] and [.62, 1.51] for males and 
              females, respec%vely). From an 
              objec%ve standpoint, berer data is 
              needed before such claims may be 
              made (Kan, 2008).  
                •  lack of consensus over whether 
                   gender is a determining factor in C‐R 
                   func%ons for SO2.  
                •  Thought that because 50% shanghai 
                   males smoke, and only .6% of 
                   females smoke, increase in pollu%on 
                   will be more dras%c for females. Also, 
                   PM (<1μm) deposi%on in respiratory 
                   tract is greater for females (Kan, 
                   2008). 
• Exclude monitoring stations with high traffic             org/members/2008/11257/suppl.pdf)]. Deaths                                                      showed a fairly similar pattern.
  sources (highest nitric oxide/nitrogen oxides            occurring at ≥ 65 years of age were less fre-                                                        We demonstrated the adequacy of the core
  ratio)                                                   quent in Bangkok (36%) than in the three                                                        models with partial autocorrelation function
• Assess warm season effect with dummy                     Chinese cities (72–84%).                                                                        plots of the residuals in the previous 2 days, all
  variables of seasons in the core model                        As indicated in Table 2 and Figure 2,                                                      within |0.1| [Supplemental Material, Figure 1
• Add temperature at average lag 1–2 days or               Wuhan showed the highest concentrations of                                                      (available online at http://www.ehponline.org/
  3–7 days into the model                                  PM 10 and O 3 , whereas Shanghai had the                                                        members/2008/11257/suppl.pdf)].
• Use a centered daily concentration of PM10               highest concentrations of NO2 and SO2. The                                                           In individual cities, for all natural causes at


                                                Extrapolation across cities
  (Wong et al. 2001)                                       latter was probably due to the significant local                                                 all ages (Table 3) the percentage of excess risk
• Use natural spline with degrees of freedom               contribution of power plants in Shanghai’s                                                      per 10-µg/m 3 associated with NO 2 ranged
  (df) of time trend per year, temperature, and            metropolitan area. To provide an indication of                                                  from 0.90 to 1.97 (all p-values ≤ 0.001); with
  humidity fixed at 8, 4, and 4, respectively               the relative magnitude of the pollution con-                                                    SO2, from 0.87 to 1.61 (all p-values ≤ 0.05);
• Use penalized spline instead of natural spline.          centrations in these four large Asian cities, we                                                with PM10, from 0.26 to 1.25 (all p-values
     Combined estimates of excess risk of mor-             compared them to the 20 largest cities in the                                                   ≤ 0.001); and with O3, from 0.31 to 0.63 (all
tality and their standard errors were calculated
                                                                                                                                                                    200
using a random-effects model. Estimates were                                         250
weighted by the inverse of the sum of within-
                                                        NO2 concentration (µg/m3)




                                                                                                                                        SO2 concentration (µg/m3)
and between-study variance.                                                          200                                                                            150
     Concentration–response curves for the
effect of each pollutant on each mortality out-                                      150
                                                                                                                                                                    100
come in the four cities were plotted. We
applied a natural spline smoother with 3 df on                                       100
the pollutant term. We assessed nonlinearity                                                                                                                        50
                                                                                     50
by testing the change of deviance between a
nonlinear pollutant (smoothed) model with
                                                                                      0                                                                              0
3 df and linear pollutant (unsmoothed) model
                                                                                           Bangkok     Hong Kong     Shanghai   Wuhan                                          Bangkok    Hong Kong     Shanghai     Wuhan
with 1 df.
     The main analyses and the combined
analysis were performed using R, version                                             600
                                                                                                                                                                    250
2.5.1 (R Development Core Team 2007). We
                                                        PM10 concentration (µg/m3)




                                                                                                                                        O3 concentration (µg/m3)
                                                                                     500
also used mgcv, a package in R.                                                                                                                                     200
                                                                                     400
Results                                                                                                                                                             150
Table 1 summarizes the mortality data for the                                        300

four cities, and Table 2 summarizes the pollu-                                       200
                                                                                                                                                                    100
tion and meteorological variables. The daily
mortality counts for all natural causes at all                                       100                                                                            50

ages for each city showed more marked sea-
                                                                                       0                                                                             0
sonal variations in the cities farther north.
Shanghai (mean daily deaths, 119; population,                                              Bangkok     Hong Kong     Shanghai   Wuhan                                          Bangkok    Hong Kong     Shanghai     Wuhan

7.0 million) and Bangkok (95; 6.8 million)                Figure 2. Box plots of the air pollutants for the four cities. Boxes indicate the interquartile range (25th per-
had higher daily numbers of deaths than Hong              centile–75th percentile); lines within boxes indicate medians; whiskers and circles below boxes represent
Kong (84; 6.7 million) and Wuhan (61;                     minimum values; and circles above boxes indicate maximum values.

Table 2. Summary statistics of air pollutant concentrations and meteorological conditions.
                          Mean                        Median                        IQR                                                                                                   Minimum, maximum
                       Hong                        Hong                        Hong                                                                                                        Hong
               Bangkok Kong Shanghai Wuhan Bangkok Kong Shanghai Wuhan Bangkok Kong Shanghai Wuhan                                                                         Bangkok         Kong      Shanghai          Wuhan
NO2 (µg/m3)     44.7    58.7    66.6     51.8    39.7                         56.4         62.5       47.2    23.1       24.4   29.0    24.0                              15.8, 139.6    10.3, 167.5   13.6, 253.7   19.2, 127.4
SO2 (µg/m3)     13.2    17.8    44.7     39.2    12.5                         14.7         40.0       32.5     5.5       12.6   28.7    30.8                               1.5, 61.2      1.4, 109.3    8.4, 183.3    5.3, 187.8
PM10 (µg/m3)    52.0    51.6   102.0    141.8    46.8                         45.5         84.0      130.2    20.9       34.9   72.0    80.2                              21.3, 169.2    13.7, 189.0   14.0, 566.8   24.8, 477.8
O3 (µg/m3)      59.4    36.7    63.4     85.7    54.4                         31.5         56.1       81.8    36.2       31.6   45.1    67.4                               8.2, 180.6     0.7, 195.0    5.3, 251.3    1.0, 258.5
Outline
•  Ques%ons to answer 
•  Introduc%on, background and significance 
•  Cri%que of HRA methods and suggested 
   improvements 
•  Data from sample studies 
•  Stressing the need for a comprehensive HRA 
   of SO2 in China 
•  Interven%ons 
people aged 65 or older, seasonal deaths for all causes                                                                   Cardiovascular
                                                                                                                    1000




                                                                                                              Mon
 declined from 14·7% to 6·1% and respiratory deaths from
 22·7% to 5·4%. No consistent change in seasonal pattern
 of deaths in any age-group for neoplasms or other causes                                                            750
 was noted. In the second 12 months a striking rebound in
 deaths in the cool season deaths arose, followed by a

Hong Kong Intervention
 gradual return during years 3–5 to the seasonal pattern                                                             500
 before intervention.
    The reduction in cool-season deaths in the first year
                                                                                                                     250
 after the intervention showed a consistent pattern across

                                                   PM10                                                                0
                                                   NO2
                                                   SO4
                                                   SO2                                                                     Neoplasms and other ca
                                                   O3                                                               1000
                                   80                                        12
 Pollutant concentration ( g/m3)




                                                                                  SO4 concentration ( g/m3)
                                                                                                                     750
                                   60
                                                                             8

                                   40                                                                                500

                                                                             4
                                   20                                                                                250


                                    0                                        0                                         0
                                          8                                                                             July,                         J
                                        98      89 990 991 992 993 994 995                                              1985                          1
                                    1         19   1   1   1   1   1   1
                                                          Year                                                Figure 2: Number of deaths per mo
  Figure 1: Average of pollutant concentrations at five                                                       July, 1985, to June, 1995, for all c
  monitoring stations                                                                                         cardiovascular, and neoplasms an
  Vertical line represents date of introduction of fuel regulation.                                           Vertical line represents date of introduc



   1648                                                                                                             THE LANCET • Vol 360 • Novemb
CSB Eece Presentation
CSB Eece Presentation
CSB Eece Presentation
CSB Eece Presentation
CSB Eece Presentation
CSB Eece Presentation
CSB Eece Presentation
CSB Eece Presentation
CSB Eece Presentation
CSB Eece Presentation
CSB Eece Presentation
CSB Eece Presentation
CSB Eece Presentation
CSB Eece Presentation
CSB Eece Presentation

Más contenido relacionado

La actualidad más candente

Geoff Mulgan on Austerity and Innovation - MaRS Global Leadership
Geoff Mulgan on Austerity and Innovation - MaRS Global Leadership Geoff Mulgan on Austerity and Innovation - MaRS Global Leadership
Geoff Mulgan on Austerity and Innovation - MaRS Global Leadership MaRS Discovery District
 
ពុទ្ធកិច្ច ៤៥ ព្រះវស្សា
ពុទ្ធកិច្ច ៤៥ ព្រះវស្សាពុទ្ធកិច្ច ៤៥ ព្រះវស្សា
ពុទ្ធកិច្ច ៤៥ ព្រះវស្សាVantha Kago
 
Mobile: The Market, The Web and Windows Phone’s Future
Mobile: The Market, The Web and Windows Phone’s Future Mobile: The Market, The Web and Windows Phone’s Future
Mobile: The Market, The Web and Windows Phone’s Future Jason Grigsby
 
Tweak Your Slides: Ten Design Principles for Educators (version 3.0)
Tweak Your Slides: Ten Design Principles for Educators (version 3.0)Tweak Your Slides: Ten Design Principles for Educators (version 3.0)
Tweak Your Slides: Ten Design Principles for Educators (version 3.0)Chiara Ojeda
 
Get Me a Mobile Strategy or You're Fired - Central Oregon Ad Fed
Get Me a Mobile Strategy or You're Fired  - Central Oregon Ad FedGet Me a Mobile Strategy or You're Fired  - Central Oregon Ad Fed
Get Me a Mobile Strategy or You're Fired - Central Oregon Ad FedJason Grigsby
 
Mobile Social Apps and Ads JP version
Mobile Social Apps and Ads JP versionMobile Social Apps and Ads JP version
Mobile Social Apps and Ads JP version01Booster
 
Innotech - Get Me a Mobile Strategy or You’re Fired!
Innotech - Get Me a Mobile Strategy or You’re Fired!Innotech - Get Me a Mobile Strategy or You’re Fired!
Innotech - Get Me a Mobile Strategy or You’re Fired!Jason Grigsby
 
Where 2.0 -- Get me a mobile strategy or you’re fired!
Where 2.0 -- Get me a mobile strategy or you’re fired!Where 2.0 -- Get me a mobile strategy or you’re fired!
Where 2.0 -- Get me a mobile strategy or you’re fired!Jason Grigsby
 
What 33 Successful Entrepreneurs Learned From Failure
What 33 Successful Entrepreneurs Learned From FailureWhat 33 Successful Entrepreneurs Learned From Failure
What 33 Successful Entrepreneurs Learned From FailureReferralCandy
 
Επισκόπηση νομοθεσίας 2007-2008
Επισκόπηση νομοθεσίας 2007-2008Επισκόπηση νομοθεσίας 2007-2008
Επισκόπηση νομοθεσίας 2007-2008itdevdamt
 
Findes der millioner i velfærdsteknologi?
Findes der millioner i velfærdsteknologi?Findes der millioner i velfærdsteknologi?
Findes der millioner i velfærdsteknologi?Lakeside A/S
 
General Introduction to ITA
General Introduction to ITAGeneral Introduction to ITA
General Introduction to ITADhawal Tank
 

La actualidad más candente (20)

Seeding Bugs To Find Bugs
Seeding Bugs To Find BugsSeeding Bugs To Find Bugs
Seeding Bugs To Find Bugs
 
Geoff Mulgan on Austerity and Innovation - MaRS Global Leadership
Geoff Mulgan on Austerity and Innovation - MaRS Global Leadership Geoff Mulgan on Austerity and Innovation - MaRS Global Leadership
Geoff Mulgan on Austerity and Innovation - MaRS Global Leadership
 
ពុទ្ធកិច្ច ៤៥ ព្រះវស្សា
ពុទ្ធកិច្ច ៤៥ ព្រះវស្សាពុទ្ធកិច្ច ៤៥ ព្រះវស្សា
ពុទ្ធកិច្ច ៤៥ ព្រះវស្សា
 
Mobile: The Market, The Web and Windows Phone’s Future
Mobile: The Market, The Web and Windows Phone’s Future Mobile: The Market, The Web and Windows Phone’s Future
Mobile: The Market, The Web and Windows Phone’s Future
 
Tweak Your Slides: Ten Design Principles for Educators (version 3.0)
Tweak Your Slides: Ten Design Principles for Educators (version 3.0)Tweak Your Slides: Ten Design Principles for Educators (version 3.0)
Tweak Your Slides: Ten Design Principles for Educators (version 3.0)
 
Get Me a Mobile Strategy or You're Fired - Central Oregon Ad Fed
Get Me a Mobile Strategy or You're Fired  - Central Oregon Ad FedGet Me a Mobile Strategy or You're Fired  - Central Oregon Ad Fed
Get Me a Mobile Strategy or You're Fired - Central Oregon Ad Fed
 
Mobile Social Apps and Ads JP version
Mobile Social Apps and Ads JP versionMobile Social Apps and Ads JP version
Mobile Social Apps and Ads JP version
 
Innotech - Get Me a Mobile Strategy or You’re Fired!
Innotech - Get Me a Mobile Strategy or You’re Fired!Innotech - Get Me a Mobile Strategy or You’re Fired!
Innotech - Get Me a Mobile Strategy or You’re Fired!
 
Biz model for haptics technology
Biz model for haptics technologyBiz model for haptics technology
Biz model for haptics technology
 
Where 2.0 -- Get me a mobile strategy or you’re fired!
Where 2.0 -- Get me a mobile strategy or you’re fired!Where 2.0 -- Get me a mobile strategy or you’re fired!
Where 2.0 -- Get me a mobile strategy or you’re fired!
 
What 33 Successful Entrepreneurs Learned From Failure
What 33 Successful Entrepreneurs Learned From FailureWhat 33 Successful Entrepreneurs Learned From Failure
What 33 Successful Entrepreneurs Learned From Failure
 
Vietnam Retail Store Statistic 2021
Vietnam Retail Store Statistic 2021Vietnam Retail Store Statistic 2021
Vietnam Retail Store Statistic 2021
 
greek broadband 2008
greek broadband 2008greek broadband 2008
greek broadband 2008
 
Taureau Ailé
Taureau AiléTaureau Ailé
Taureau Ailé
 
hdemia1
hdemia1hdemia1
hdemia1
 
Επισκόπηση νομοθεσίας 2007-2008
Επισκόπηση νομοθεσίας 2007-2008Επισκόπηση νομοθεσίας 2007-2008
Επισκόπηση νομοθεσίας 2007-2008
 
Nhd 2010-10
Nhd 2010-10Nhd 2010-10
Nhd 2010-10
 
Findes der millioner i velfærdsteknologi?
Findes der millioner i velfærdsteknologi?Findes der millioner i velfærdsteknologi?
Findes der millioner i velfærdsteknologi?
 
General Introduction to ITA
General Introduction to ITAGeneral Introduction to ITA
General Introduction to ITA
 
Exec ed june '10 ss
Exec ed june '10 ssExec ed june '10 ss
Exec ed june '10 ss
 

Similar a CSB Eece Presentation

Al Fazl International - 19th February 2016 Weekly UK
Al Fazl International - 19th  February  2016 Weekly UKAl Fazl International - 19th  February  2016 Weekly UK
Al Fazl International - 19th February 2016 Weekly UKmuzaffertahir9
 
Impacts of collaborative consumption on traditional industries: scenarios for...
Impacts of collaborative consumption on traditional industries: scenarios for...Impacts of collaborative consumption on traditional industries: scenarios for...
Impacts of collaborative consumption on traditional industries: scenarios for...David Chapuis
 
MAP TERM PAPER - MOTOROLA 68040
MAP TERM PAPER - MOTOROLA 68040MAP TERM PAPER - MOTOROLA 68040
MAP TERM PAPER - MOTOROLA 68040Poojan Jhaveri
 
وزە نوێبوەکان (وزەی با)
وزە نوێبوەکان (وزەی با)وزە نوێبوەکان (وزەی با)
وزە نوێبوەکان (وزەی با)Bahzad5
 
وزه‌ى با Wind energy كارۆ هه‌واى وزةى با كارؤ هةواى وزەی با - وزەی هەوا ...
وزه‌ى با Wind energy كارۆ هه‌واى  وزةى با    كارؤ هةواى  وزەی با - وزەی هەوا ...وزه‌ى با Wind energy كارۆ هه‌واى  وزةى با    كارؤ هةواى  وزەی با - وزەی هەوا ...
وزه‌ى با Wind energy كارۆ هه‌واى وزةى با كارؤ هةواى وزەی با - وزەی هەوا ...Rawaz Jalal
 
Al Fazl International - 15th January 2016 Weekly UK
Al Fazl International - 15th  January  2016 Weekly UKAl Fazl International - 15th  January  2016 Weekly UK
Al Fazl International - 15th January 2016 Weekly UKmuzaffertahir9
 
Compassionate seattle-speakers-panelists-2010 b(2)
Compassionate seattle-speakers-panelists-2010 b(2)Compassionate seattle-speakers-panelists-2010 b(2)
Compassionate seattle-speakers-panelists-2010 b(2)Compassion Action Network
 
Building A Database Driven Website Using Php & My Sql
Building A Database Driven Website Using Php & My SqlBuilding A Database Driven Website Using Php & My Sql
Building A Database Driven Website Using Php & My Sqlyufypang
 
Articulo 416 LeCrim. La dispensa de la Obligación de Declarar.
Articulo 416 LeCrim. La dispensa de la Obligación de Declarar.Articulo 416 LeCrim. La dispensa de la Obligación de Declarar.
Articulo 416 LeCrim. La dispensa de la Obligación de Declarar.owaj
 
How THE One Creates A Better World Through Its Organizational Culture
How THE One Creates A Better World Through Its Organizational CultureHow THE One Creates A Better World Through Its Organizational Culture
How THE One Creates A Better World Through Its Organizational CultureScholar Consultants
 
Al Fazl International - 25th MArch 2016 Weekly UK
Al Fazl International - 25th MArch  2016 Weekly UKAl Fazl International - 25th MArch  2016 Weekly UK
Al Fazl International - 25th MArch 2016 Weekly UKmuzaffertahir9
 
Limites et perspectives du cinéma d'horreur français
Limites et perspectives du cinéma d'horreur françaisLimites et perspectives du cinéma d'horreur français
Limites et perspectives du cinéma d'horreur françaisAmauryPascaud
 
Apoli: Louise Grassov ja Cities for People
Apoli: Louise Grassov ja Cities for PeopleApoli: Louise Grassov ja Cities for People
Apoli: Louise Grassov ja Cities for PeopleDemos Helsinki
 
Ledtalks vsl lighting
Ledtalks vsl lightingLedtalks vsl lighting
Ledtalks vsl lightingRolandSyntens
 

Similar a CSB Eece Presentation (20)

ESWC 2009 Lightning Talks
ESWC 2009 Lightning TalksESWC 2009 Lightning Talks
ESWC 2009 Lightning Talks
 
Al Fazl International - 19th February 2016 Weekly UK
Al Fazl International - 19th  February  2016 Weekly UKAl Fazl International - 19th  February  2016 Weekly UK
Al Fazl International - 19th February 2016 Weekly UK
 
Impacts of collaborative consumption on traditional industries: scenarios for...
Impacts of collaborative consumption on traditional industries: scenarios for...Impacts of collaborative consumption on traditional industries: scenarios for...
Impacts of collaborative consumption on traditional industries: scenarios for...
 
MAP TERM PAPER - MOTOROLA 68040
MAP TERM PAPER - MOTOROLA 68040MAP TERM PAPER - MOTOROLA 68040
MAP TERM PAPER - MOTOROLA 68040
 
وزە نوێبوەکان (وزەی با)
وزە نوێبوەکان (وزەی با)وزە نوێبوەکان (وزەی با)
وزە نوێبوەکان (وزەی با)
 
Treball espai familiar
Treball espai familiarTreball espai familiar
Treball espai familiar
 
وزه‌ى با Wind energy كارۆ هه‌واى وزةى با كارؤ هةواى وزەی با - وزەی هەوا ...
وزه‌ى با Wind energy كارۆ هه‌واى  وزةى با    كارؤ هةواى  وزەی با - وزەی هەوا ...وزه‌ى با Wind energy كارۆ هه‌واى  وزةى با    كارؤ هةواى  وزەی با - وزەی هەوا ...
وزه‌ى با Wind energy كارۆ هه‌واى وزةى با كارؤ هةواى وزەی با - وزەی هەوا ...
 
Al Fazl International - 15th January 2016 Weekly UK
Al Fazl International - 15th  January  2016 Weekly UKAl Fazl International - 15th  January  2016 Weekly UK
Al Fazl International - 15th January 2016 Weekly UK
 
Compassionate seattle-speakers-panelists-2010 b(2)
Compassionate seattle-speakers-panelists-2010 b(2)Compassionate seattle-speakers-panelists-2010 b(2)
Compassionate seattle-speakers-panelists-2010 b(2)
 
Building A Database Driven Website Using Php & My Sql
Building A Database Driven Website Using Php & My SqlBuilding A Database Driven Website Using Php & My Sql
Building A Database Driven Website Using Php & My Sql
 
Mobile Banking
Mobile BankingMobile Banking
Mobile Banking
 
Turi Z 201304
Turi Z 201304Turi Z 201304
Turi Z 201304
 
Articulo 416 LeCrim. La dispensa de la Obligación de Declarar.
Articulo 416 LeCrim. La dispensa de la Obligación de Declarar.Articulo 416 LeCrim. La dispensa de la Obligación de Declarar.
Articulo 416 LeCrim. La dispensa de la Obligación de Declarar.
 
How THE One Creates A Better World Through Its Organizational Culture
How THE One Creates A Better World Through Its Organizational CultureHow THE One Creates A Better World Through Its Organizational Culture
How THE One Creates A Better World Through Its Organizational Culture
 
Al Fazl International - 25th MArch 2016 Weekly UK
Al Fazl International - 25th MArch  2016 Weekly UKAl Fazl International - 25th MArch  2016 Weekly UK
Al Fazl International - 25th MArch 2016 Weekly UK
 
Zharfan comments
Zharfan commentsZharfan comments
Zharfan comments
 
Limites et perspectives du cinéma d'horreur français
Limites et perspectives du cinéma d'horreur françaisLimites et perspectives du cinéma d'horreur français
Limites et perspectives du cinéma d'horreur français
 
Apoli: Louise Grassov ja Cities for People
Apoli: Louise Grassov ja Cities for PeopleApoli: Louise Grassov ja Cities for People
Apoli: Louise Grassov ja Cities for People
 
OpenSSO Microsoft Interop
OpenSSO Microsoft InteropOpenSSO Microsoft Interop
OpenSSO Microsoft Interop
 
Ledtalks vsl lighting
Ledtalks vsl lightingLedtalks vsl lighting
Ledtalks vsl lighting
 

Último

Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management SystemChristalin Nelson
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptxiammrhaywood
 
Dust Of Snow By Robert Frost Class-X English CBSE
Dust Of Snow By Robert Frost Class-X English CBSEDust Of Snow By Robert Frost Class-X English CBSE
Dust Of Snow By Robert Frost Class-X English CBSEaurabinda banchhor
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
Measures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped dataMeasures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped dataBabyAnnMotar
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfErwinPantujan2
 
ROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxVanesaIglesias10
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
Presentation Activity 2. Unit 3 transv.pptx
Presentation Activity 2. Unit 3 transv.pptxPresentation Activity 2. Unit 3 transv.pptx
Presentation Activity 2. Unit 3 transv.pptxRosabel UA
 
Millenials and Fillennials (Ethical Challenge and Responses).pptx
Millenials and Fillennials (Ethical Challenge and Responses).pptxMillenials and Fillennials (Ethical Challenge and Responses).pptx
Millenials and Fillennials (Ethical Challenge and Responses).pptxJanEmmanBrigoli
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxlancelewisportillo
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptxmary850239
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4JOYLYNSAMANIEGO
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfJemuel Francisco
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfVanessa Camilleri
 

Último (20)

Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management System
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
 
Dust Of Snow By Robert Frost Class-X English CBSE
Dust Of Snow By Robert Frost Class-X English CBSEDust Of Snow By Robert Frost Class-X English CBSE
Dust Of Snow By Robert Frost Class-X English CBSE
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
Measures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped dataMeasures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped data
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
 
ROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptx
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
Presentation Activity 2. Unit 3 transv.pptx
Presentation Activity 2. Unit 3 transv.pptxPresentation Activity 2. Unit 3 transv.pptx
Presentation Activity 2. Unit 3 transv.pptx
 
Millenials and Fillennials (Ethical Challenge and Responses).pptx
Millenials and Fillennials (Ethical Challenge and Responses).pptxMillenials and Fillennials (Ethical Challenge and Responses).pptx
Millenials and Fillennials (Ethical Challenge and Responses).pptx
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
 
Paradigm shift in nursing research by RS MEHTA
Paradigm shift in nursing research by RS MEHTAParadigm shift in nursing research by RS MEHTA
Paradigm shift in nursing research by RS MEHTA
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdf
 

CSB Eece Presentation

  • 1. Sulfur Dioxide and Public Health in China Cameron Ball  EECE Interna.onal Experience 2008  Research project 
  • 2. Outline •  Ques%ons to answer  •  Introduc%on, background and significance  •  Cri%que of HRA methods and suggested  improvements  •  Data from sample studies  •  Stressing the need for a comprehensive HRA  of SO2 in China  •  Interven%ons 
  • 3. Outline •  Ques%ons to answer  •  Introduc%on, background and significance  •  Cri%que of HRA methods and suggested  improvement  •  Data from sample studies  •  Stressing the need for a comprehensive HRA  of SO2 in China  •  Interven%ons 
  • 4. Project Aims •  ASSESS THE STATE OF SO2  RESEARCH ON HEALTH EFFECTS  IN CHINA.  •  SUGGEST CONCRETE  IMPROVEMENTS FOR FUTURE  STUDIES.  •  IDENTIFY THE QUALITATIVE AND  QUANTITATIVE HEALTH RISKS  ASSOCIATED WITH SO2 IN  CHINA.   •  DETERMINE HOW TO DECREASE  HEALTH RISKS IN AN IMMEDIATE  AND PRAGMATIC MANNER.  •  PREDICT HOW THESE RISKS WILL  CHANGE IN THE FUTURE. 
  • 5. Outline •  Ques%ons to answer  •  Introduc%on, background and significance  •  Cri%que of HRA methods and suggested  improvements (longest sec%on)  •  Data from sample studies  •  Stressing the need for a comprehensive HRA  of SO2 in China  •  Interven%ons 
  • 6. Introduction ! •  China’s moderniza%on  CURRENT STATUS OF ENERGY USE AND CHAPTER 2 AIR POLLUTION •  GDP‐ 8‐9% increase per  year since 1978  Economic Development 2.1 Rapid •  Projected growth is  quot;#$%&! '(&! #$')*+,%'#*$! *-! &%*$*.#%! )&-*).! /$+! *0&$#$1! 0*2#%#&34! '(&! 5(#$&3&! &%*$*.6!(/3!&70&)#&$%&+!)/0#+!/$+!3#1$#-#%/$'!1)*8'(9!:(&!/$$,/2!;<=!1)*8'(!)/'&! )&/%(&+! >?@A! -)*.! B@C>! '*! DEEF9! G$! DEED4! 5(#$/H3! ;<=! &7%&&+&+! BE! ')#22#*$! IJK! staggering LBIJK! M! E9BD>! Nquot;<O4! /3! P#1,)&! D?B! 3(*839! G$! DEEF4! '(&! ;<=! 0&)! %/0#'/! #$! 5(#$/! 8/3!BE4QRB!IJK9! 16000 14000 12000 GDP (billion RMB) 10000 8000 6000 4000 2000 0 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 Year ! P#1,)&!D?B!S#3'*)#%/2!;<=!;)*8'(!#$!5(#$/!Lquot;*,)%&3T!5(#$/!quot;'/'#3'#%/2!UV3')/%'!DEEQO! U-'&)!5(#$/!/+*0'&+!'(&!0*2#%6!*-!)&-*).!/$+!&%*$*.#%!2#V&)/2#W/'#*$4!/!%)*33?%&$',)6! &%*$*.#%! +&X&2*0.&$'! 3')/'&16! 8/3! +&X&2*0&+! '*! )&/2#W&! .*+&)$#W/'#*$! #$! '()&&! 3'/1&39!:(&!1*/23!*-!'(&!-#)3'!/$+!3&%*$+!3'/1&3!8&)&!'*!3*2X&!'(&!0)*V2&.3!*-!-**+!/$+! %2*'(#$1! *-! '(&! &$'#)&! 5(#$&3&! 0&*02&! /$+! '*! &$/V2&! '(&.! '*! 2#X&! /! )&2/'#X&26!
  • 7. I#'3!+,-,#+=/,+-!/#<,!-$16%,6!)/%'#A-!.1$1+,!,=&'&0%=!6,<,(&@0,'$!#'6!6,<,(&@,6! 6%..,+,'$! 6,<,(&@0,'$! -=,'#+%&-D! I&-$! &.! $/,-,! -=,'#+%&-! #+,! ;#-,6! &'! $/,! =&00&'! ;,(%,.!$/#$!&<,+!$/,!',H$!9:!3,#+-!)/%'#!?%((!=&'$%'1,!$&!6,<,(&@!%$-!,=&'&03!#$!#!/%*/! *+&?$/!+#$,>!$/,!,=&'&0%=!*#@!;,$?,,'!)/%'#!#'6!6,<,(&@,6!=&1'$+%,-!?%((!;,!.1+$/,+! Projected GDP Growth +,61=,6>! #'6! )/%'#! ?%((! ;,=&0,! &',! &.! $/,! $&@! ,=&'&0%=! =&1'$+%,-! %'! $/,! ?&+(6D! J%*1+,! 9B9! -/&?-! -&0,! &.! $/,! @+%0#+3! +,-1($-! &.! $/,-,! 782! @+&G,=$%&'! -$16%,-D! F==&+6%'*! $&! $/,-,! @+&G,=$%&'->! )/%'#A-! #''1#(! 782! *+&?$/! +#$,! ?%((! ;,! #;&1$! KL! &<,+!$/,!',H$!9:!3,#+-D! ! 45000 Chinese Academy of Social Science, medium scenario, 1995 40000 Chinese Academy of Sciences, 1995 35000 Beijing University of Technology, 2000 GDP (billion RMB, 2000price) DRC, Medium scenario, 2003 30000 ERI, medium scenario, 2003, 25000 20000 15000 10000 5000 0 1990 1995 2000 2005 2010 2015 2020 Year ! J%*1+,!9B9!M=&'&0%=!8,<,(&@0,'$!E+,'6!#'6!2+,6%=$%&'-!.&+!)/%'#! 2.2 Energy consumption status
  • 8. 01.$!/$%1quot;2K!761(&!6&,!3$+quot;.$!06$!,$+quot;(2!'&%)$,0!$($%)*!+quot;(,-.$%!1(!06$!Dquot;%'2!&90$%! 06$! H4I4K! 2-$! 0quot;! 06$! quot;#$%D6$'.1()! 1(+%$&,$! 1(! $($%)*! +quot;(,-./01quot;(4! L(! B;MCK! 06$! quot;#$%&''! $($%)*! +quot;(,-./01quot;(! quot;9! 761(&! D&,! BJ4F! 31''1quot;(! =@4! L(! :CCCK! 06&0! 91)-%$! 1(+%$&,$2! 0quot;! <M4B! 31''1quot;(! =@4! N1)-%$! :O<! ,6quot;D,! 06$! 0quot;0&'! +quot;(,-./01quot;(! quot;9! /%1.&%*! $($%)*!1(!761(&!9%quot;.!B;MC!0quot;!:CCP4!N%quot;.!:CCC!0quot;!:CCPK!761(&8,!$($%)*!+quot;(,-./01quot;(! 2$.quot;(,0%&0$2!$#$(!,0%quot;()$%!)%quot;D06!.quot;.$(0-.4!Q-%1()!061,!/$%1quot;2K!06$!quot;#$%&''!$($%)*! +quot;(,-./01quot;(!1(+%$&,$2!3*!B;4F!31''1quot;(!=@K!%$/%$,$(01()!&(!&((-&'!1(+%$&,$!quot;9!BC4MRK! S6$! $'&,01+10*! +quot;$991+1$(0 B ! D106! $+quot;(quot;.1+! 2$#$'quot;/.$(0! D&,! B4BF4! S6$,$! (-.3$%,! Energy Demands ,6quot;D!06&0!10!D1''!3$+quot;.$!1(+%$&,1()'*!21991+-'0!9quot;%!761(&8,!$($%)*!,-//'*!0quot;!.$$0!06$! 2$.&(2,! quot;9! $+quot;(quot;.1+! 2$#$'quot;/.$(04! T$+&-,$! 761(&! 1,! $(0$%1()! 1(0quot;! 06$! /$%1quot;2! quot;9! 1(2-,0%1&'1U&01quot;(! quot;9! 6$&#*! 1(2-,0%*K! 06$! .&>quot;%10*! quot;9! 06$! 2quot;.1(&(0! 1(2-,0%1$,! 1(! 06$! (&01quot;(&'!$+quot;(quot;.*!&%$!,01''!6$&#1'*!$($%)*O+quot;(,-.1()4!S61,!)$($%&0$,!-%)$(0!($$2,!9quot;%! 9-0-%$! $($%)*! ,-//'*4! L9! 761(&! &++quot;./'1,6$,! $+quot;(quot;.1+! .quot;2$%(1U&01quot;(! 3*! 06$! .122'$! quot;9! 06$! :B,0! +$(0-%*K! 10! .-,0! 91(2! &! ($D! D&*! 0quot;! &+61$#$! $+quot;(quot;.1+! )%quot;D06! D106! 'quot;D$%! $($%)*!&(2!%$,quot;-%+$!+quot;(,-./01quot;(!/$%!+&/10&!+quot;./&%$2!0quot;!06$!2$#$'quot;/$2!+quot;-(0%1$,4! •  From 2000 to 2004,  Trillion RMB Billion GJ 16 70 14 )*+ 60 average increase in  12 +, - . 01 232, 401 56378. - 63 /, 9: 50 10 40 8 energy usage was 10.8%  6 4 30 20 per year.  2 0 !quot;#! #$ #% #& #quot; quot;! quot;$ quot;% quot;& quot;quot; '((! '(($ 10 0 •  Efficiency is necessary,  ! N1)-%$!:O<!Squot;0&'!7quot;(,-./01quot;(!quot;9!V%1.&%*!W($%)*!1(!761(&! ! but insufficient.  (Sources: China Statistical Yearbook 2003 and data from the official website of China’s State Statistical Administration) •  With increased power  2.3 Air quality status L(!B;;FK!761(&!%$#1,$2!10,!50.quot;,/6$%1+!5.31$(0!X-&'10*!I0&(2&%2,K!&,!,6quot;D(!1(!S&3'$! output  increased  :OB4! Y6$(! 06$! /quot;''-01quot;(! '$#$',! quot;9! &((-&'! &#$%&)$! Z[! +quot;(+$(0%&01quot;(! 3$0D$$(! B;;G! &(2! :CCB! D$%$! &(&'*U$2K! 06$! B;M:! ,0&(2&%2,! D$%$! -,$2! 9quot;%! B;;G! /quot;''-0&(0! emissions.  !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! B ! W'&,01+10*!+quot;$991+1$(0]!06$!%&01quot;!quot;9!06$!1(+%$.$(0!quot;9!$($%)*!0quot;!06$!1(+%$.$(0!quot;9!=QV! ! B:
  • 9. Atmospheric Brown Clouds  •  Since 1950:  –  5x soot emissions  –  7x sulfur emissions  •  95% sulfur emissions are  SO2  •  Crea%on of ABC “hot spot”  •  Impacts on agriculture,  hydrology, climate change,  etc.  •  Great impact on health and  ecology (direct and indirect) 
  • 10. ABCs •  Dimming means 15 W/m2 less solar energy  shine on India and China than in 1950 (6%  decrease)  •  Upper atmosphere warming by 20‐50% 
  • 11. China is aging •  Older popula%ons much  more suscep%ble to air  pollu%on  •  Increasing age poses  great social challenge to  China 
  • 12. Development Model •  China is developing  •  Model for other Asian  na%ons concerned  about health and  pollu%on associated  with coal  •  Coal derived pollutants  important‐ cheap 
  • 13. SO2 Background & Significance •  SO2 considered most  dangerous gaseous  pollutant  •  Sources: coal, oil,  biofuels, nonferrous  smel%ng  •  Soluble‐ 11.3g in 100ml  H2O  •  De novo nuclea%on of  H2SO4 par%culates 
  • 14. Standards •  SO2 level standards  –  China (Tsinghua, Peking, NREL, 2008)  •  Class I  –  Daily avg. ≤ 50μg/m3  –  Yearly avg. ≤ 20μg/m3  •  Class II  –  Daily avg. ≤ 150μg/m3  –  Yearly avg. ≤ 60μg/m3  •  Class III  –  Daily avg. ≤ 250μg/m3  –  Yearly avg. ≤ 100μg/m3  –  WHO (World Health Organiza%on, 2006)  •  Interim target 1  –  Daily avg. ≤ 125μ/m3  •  Interim target 2  –  Daily avg. ≤ 50μ/m3  •  WHO Guidelines, 2005  –  Daily avg. ≤ 20μ/m3  –  10‐minute avg. ≤ 500μ/m3 
  • 15. Pass/Fail •  2003‐ more than 26% of  Chinese ci%es s%ll failed  to meet class III  requirements.   •  31.5% met class III  requirements but did  not meet class II  requirements  
  • 16. 50 SO2 Trends AIR QUALITY GUIDELINES Fig. 10. The development of annual average sulfur dioxide concentrations in Chinese cities from 1990 to 2002 120 100 Concentration (µg/m3) 80 60 Grade III standard 40 Northern cities 20 Average Southern cities 0 1990 1992 1994 1996 1998 2000 2002 Year Source: Hao & Wang (45). Fig. 11. Average concentrations of PM10, nitrogen dioxide, sulfur dioxide and ozone at five Hong Kong monitoring stations 80 PM10 Restriction on sulfur in fuel
  • 17. SO2 Trends •  Sulfur dioxide concentra%ons in China fell on  average by 44.3% (from 93 μg/m3 in 1990 to  52 μg/m3 in 2002)   •  S%ll very high compared to most of the  developed world. 
  • 18. J3361@*+,!-6!-./!/5*))*6+!*+7/+-6189!-./!/5*))*6+!@*)-1*A=-*6+!6<!-./!:6;;=-2+-)!*+! K.*+2!*+!-./!A2)/!8/21!*)!).6?+!*+!I*,=1/!B>L'!G*,.!/5*))*6+)!6<!%MN9!OMN!2+@!4PN'B! 633=11/@!*+!-./!5*@@;/!2+@!/2)-!6<!K.*+29!?.*3.!.27/!12:*@;8!@/7/;6:*+,!/36+65*/)! 2+@!).6?!-./!3.2123-/1*)-*3)!6<!*+@=)-1*2;!/5*))*6+!2+@!1/)*@/+-*2;!/5*))*6+'!I61!%MN9! SO Emissions Distribution .*,.! /5*))*6+)! 633=11/@! *+! -./! )6=-.?/)-! 21/2)! ?./1/! .*,.! )=;<2-/! 36+-/+-! 362;! *)! 2 A=1+*+,'! I61! 4PN'B9! 5*@@;/! 2+@! /2)-/1+! K.*+2! ).6?/@! .*,.! /5*))*6+)! *+-/+)*-8! <61! (approximate) *+@=)-1*2;! 2+@! 1/)*@/+-*2;! /5*))*6+'! %6=-.?/)-! K.*+2! ).6?/@! /):/3*2;;8! .*,.! /5*))*6+)!*+-/+)*-8!@=/!-6!-./!?*@/):1/2@!=)/!6<!A*6<=/;!*+!-./!1/)*@/+-*2;!)/3-61'! ! ! quot;2&! ! %MN!
  • 19. Major Indirect Effects of SO2 on Health •  SO2 impact on environment and ecosystems  –  Via acid deposi%on  •  Water pollu%on  •  Soil acidifica%on  •  Plant life & Agriculture  –  Crop yields sensi%ve to pollu%on concentra%ons (especially Ozone)  •  Biodiveristy   –  Human health and animal health  –  Ecological or climate change  •  Rains shimed south in China due to ABCs  •  Hindu Kush‐Himalayan‐Tibetan (HKHT) glacier retreat will  cause loss of 75% of snowcaps by 2050  –  large water shortages throughout India and East Asia.   –  Currently, about 80% of Western Tibetan glaciers are in retreat 
  • 20. Outline •  Ques%ons to answer  •  Introduc%on, background and significance  •  Cri%que of HRA methods and suggested  improvements  •  Data from sample studies  •  Stressing the need for a comprehensive HRA  of SO2 in China  •  Interven%ons 
  • 21. Study Types •  Time series studies  •  Toxological studies  •  Cohort studies  •  Mul%na%onal  metadata  •  Interven%on  monitoring! 
  • 22. Data Acquisition –  Data collec%on (physical)  •  Loca%on in 3‐space  •  Loca%on rela%ve to sources  –  Shanghai 2008 study presents urban background measurements  from 6 fixed monitoring sites.  »  Six measurement sites used to study nine city districts. No  informa%on on spa%al mapping provided (Kan, 2008).  •  Indoor vs. outdoor  •  Resolu%on requirements  •  Measurement equipment  •  Calcula%ons and valida%on for remote sensing  •  Regularity of posi%on and methods  •  Faithful recording  •  Appropriate for popula%on of study 
  • 23. Data Acquisition –  Data compila%on (literature)  •  Comprehensive search of literature  •  Considera%on of spa%otemporal con%nuity  •  Considera%on of variability of source data  •  Considera%on of source reliability  •  Data type considera%on and quality  –  AQI  –  Mean concentra%ons for provinces, etc.  –  Data es%ma%on or modeling  •  Resolu%on requirements  •  Sectors of interest  •  Es%mate or measure a subset of a class of objects for extrapola%on  to other class members  •  Implementa%on of modeling of diffusion, terrain, climate 
  • 24. Data Source reliability –  Government data  •  SEPA versus USEPA or European organiza%ons  –  Censoring of data  –  Doctoring of data  –  Movement of measurement sites  –  Historical precedent within China  »  Cultural aspect of government structure and policy control.  Effect on trust of the government.  –  Independent researcher data  •  Peer review  •  Errors included with results  •  No major conflicts of interest (usually) 
  • 25. Time averaging •  Time course of SO2  health effects  •  Effects can be seen within  minutes of increased  exposures  •  Data compression for  manageability  •  Compromise between  increased resolu%on and  feasibility  
  • 26. GIS implementation or lack thereof –  For berer correla%ons with  exposure and increasing  precision.  –  Increasing accessibility to  source data and methods.  –  GIS has been implemented  to study the spa%o‐ temporal distribu%on of  SO2 throughout the  Chengdu plain, although  monitoring sta%ons used in  the study experienced  malfunc%ons and may not  have been properly  managed (Song, 2008).  
  • 27. Suggested Improvements •  Construc%on of online GIS database  for remote sensing data and high‐ resolu%on city‐based data (from  monitoring sta%ons) along with  informa%on on hospital admissions  and deaths on a daily basis. System  would be automated.  –  Provide high resolu%on data for  correla%ons and ease of use  –  Could be validated by ground  measurements and calibrated by  atmospheric modeling  •  Increasing accessibility to and  reliability of government data.  –  Shim governor’s no%on of informa%on  disclosure  •  Responsibility to people of China  •  Increasing access will result in berer  solu%ons to problem 
  • 28. Exposure estimation methods •  popula%on loca%on  –  rela%vely simple task to  locate households in China  due to great government  oversight, although data is  likely available only on a  case by case request from  regional offices.  •  Although numbers of  individuals may be  obtained, informa%on on  age‐composi%on,  occupa%on, etc. missing. 
  • 29. P',/Q!R./2:>!S/1/+294!T.1,-,),/U1!%AAD!&2'B/9,-'.!'.!;+1-9!/9'.'6-9!+.5!/./2:>!-.E'26+,-'.! ! ! V-:)2/!quot;F%!&'()*+,-'.!5/.1-,>!+.5!5-1,2-;),-'.!-.!74-.+!-.!%AAC! ! Example of GIS use to catalog popula%on density  T.!,4-1!4/+*,4!;/./E-,!+.+*>1-18!,4/!/0('1/5!('()*+,-'.!-1!,4/!<4'*/!('()*+,-'.8!-.9*)5-.:!2/1-5/.,1!*-=-.:!-.! )2;+.! +.5! 2)2+*! +2/+1! -.! 74-.+#! W'</=/28! +6;-/.,! ('**),-'.! */=/*1! -.! ,4/! 2)2+*! +2/+! +2/! ).9*/+2! ;/9+)1/! ,4/2/! +2/! E/<! +-2! 6'.-,'2-.:! 1,+,-'.1! *'9+,/5! ,4/2/#! ! X'6/! 1,)5-/1! -.! 74-.+! 4+=/! 14'<.! ,4+,! -.5''2! +-2! ('**),-'.!-1!+!6'2/!-6('2,+.,!E+9,'2!-.!2)2+*!+2/+18!+.5!,4/!94+2+9,/2-1,-91!'E!2)2+*!'),5''2!+-2!('**),-'.!6+>!
  • 30. Population, cont. –  Increase in migrant  popula%on and  economic development  •  Shim of popula%on from  rural to urban  •  Architecture and customs  bring different parerns of  exposure to pollutants.  –  Hong Kong study (2003)  es%mated that its eight  monitoring sites covered  73% of the popula%on. 
  • 31. Outdoor versus Indoor Exposure •  Chinese spend more  %me outside  •  Ven%la%on system  reduc%ons in pollutant  concentra%ons  •  Solid fuel usage  complica%on  •  Outdoor exercise  •  Age‐bias: whole other  ball game 
  • 32. 10 between air pollution and daily mortality in have a cool-season maximum in Shanghai. elderly and the very young, are presumed to be the cool season is consistent with several prior We found a greater effect of ambient air at greater risk for air pollution–related effects studies in Hong Kong (Wong et al. 1999, pollution on total mortality in females than in (Gouveia and Fletcher 2000; Schwartz 2004). 2001) and Athens, Greece (Touloumi et al. males. Results of prior studies on sex-specific For the elderly, preexisting respiratory or 1996), but in contrast with others reporting acute effects of outdoor air pollution were dis- cardiovascular conditions are more prevalent greater effects in the warm season (Anderson cordant. For example, Ito and Thurston than in younger age groups; thus, there is Exposure based on SES et al. 1996; Bell et al. 2005; Nawrot et al. (1996) found the highest risk of mortality some overlap between potentially susceptible 2007). In Shanghai, the concentrations of related with air pollution exposure among groups of older adults and people with heart PM10, SO2, and NO2 were higher and more black women. Hong et al. (2002) found that or lung diseases. variable in the cool season than in the warm elderly women were most susceptible to the It has long been known that SES can season (Table 1). Because these three pollu- adverse effects of PM10 on the risk of acute affect health indicators such as mortality •  Loca%on of industry  tants were highly correlated, greater effects observed during the cool season may also be mortality from stroke. However, Cakmak et al. (2006) found that sex did not modify (Mackenbach et al. 1997). Recently, studies have started to examine the role of SES in Roadways  due to other pollutants that were also at higher the hospitalization risk of cardiac diseases due the vulnerability of subpopulations to out- •  levels during that season. In contrast, the O3 to air pollution exposure. door air pollution, especially for particles level was higher in the warm season than in The reasons for our sex-specific observa- and O3, although the results remain incon- •  Occupa%onal hazards  the cool season, and our exposure–response relationship also revealed a flatter slope at tions are unclear and deserve further investiga- tion. In Shanghai, females have a much lower sistent (O’Neill et al. 2003). For example, Zeka et al. (2006) found that individual- •  Educa%on may affect risk  higher concentrations of O3 for both sexes (data not shown). At higher concentrations, smoking rate than males (0.6% in females vs. 50.6% in males) (Xu 2005). One study sug- level education was inversely related to the risk of mortality associated with PM 10. –  Shanghai PAPA study suggests increase in risk of cardio and  the risks of death could be reduced because vulnerable subjects may have died before the gested that effects of air pollution may be stronger in nonsmokers than in smokers Another cohort study with small-area meas- ures of SES in Hamilton, Ontario, Canada, pulmonary deaths based on educa%on level  concentration reached the maximum level (Künzli et al. 2005). Oxidative and inflamma- found important modification of the particle (Wong et al. 2001). tory effects of smoking may dominate to such effects by social class (Finkelstein et al. 2003; Table 4. Percent increase in number of deaths due to total, cardiovascular, and respiratory causes associated with a 10-µg/m3 increase in air pollutants by edu- cational attainment.a Educational Mean daily Pollutant Mortality attainment deaths (n) PM10 SO2 NO2 O3 Total Low 67.3 0.33 (0.19 to 0.47) 1.19 (0.77 to 1.61) 1.27* (0.89 to 1.66) 0.26 (–0.09 to 0.60) High 42.1 0.18 (0.01 to 0.36) 0.66 (0.16 to 1.17) 0.62 (0.15 to 1.09) 0.30 (–0.11 to 0.71) Cardiovascular Low 27.8 0.30 (0.10 to 0.51) 1.08 (0.47 to 1.69) 1.15 (0.58 to 1.72) 0.39 (–0.13 to 0.90) High 16.4 0.23 (–0.03 to 0.50) 0.57 (–0.20 to 1.35) 0.73 (0.01 to 1.45) 0.26 (–0.38 to 0.91) Respiratory Low 8.9 0.36 (0.00 to 0.72) 1.54 (0.43 to 2.66) 1.59 (0.57 to 2.62) 0.20 (–0.74 to 1.16) High 5.4 0.02 (–0.43 to 0.47) 0.73 (–0.61 to 2.09) 0.34 (–0.89 to 1.60) 0.27 (–0.86 to 1.41) aWe used current day temperature and humidity (lag 0) and 2-day moving average of air pollutants concentrations (lag 01) and we a pplied 3 df to temperature and humidity. *Significantly different from high educational attainment (p < 0.05). 1186 VOLUME 116 | NUMBER 9 | September 2008 • Environmental Health Perspectives
  • 33. are different, our results would be valid as long CO, SO2, and PM10. Effect modificat as the exposures changed in the same direc- Seasonal influences. The mortality effects (2005) reported incr tion. The present daily time-series analysis of CO, SO2, and PM10 appeared greater dur- in the elderly from examines the effects of day-to-day differences ing April–September, the colder months, Morbidity, Mortali in air pollution, not absolute values. although differences were significant for only Study of 95 U.S. citie Air pollution–related mortality. The pre- PM10. Ilabaca et al. (1999) also reported a sea- (2004) reported tha sent findings averaged over seven urban centers sonal modification of the PM 2.5 effect on associated with PM are similar to those of previous air pollution pediatric emergency department visits, greatest Ilinois, appeared to Seasonal Variations studies in Chile. In 1989 and 1991, cardiac and respiratory mortality were higher on days of increased PM10 (Ostro et al. 1996). Ostro et al. (1996) reported that a 10-µg/m3 change in the colder months. In the present study, a change in PM10 of about 85 µg/m3 was associ- ated with a 12.2% change in mortality during the warmer months and 1.3% in the colder women but decrease Filleul et al. (2004) re air pollution mortalit age, but it did not rea in daily mean PM10 was associated with a 1% months, using unconstrained distributed lags. statistical significanc increased susceptibilit Table 5. Percent change (t-ratio) in nonaccidental daily mortality associated with changes in pollutant age (Gouveia and Fl concentrations equivalent to population-weighted averages by cause of death, age at death, and season. 1998). We studied t Classification PM10 O3 SO2 CO Compared with those Cause of death at least 85 years of a Nonaccidental over twice as likely to Single-day lag 8.54 (5.14) 5.64 (2.78) 5.65 (4.97) 5.88 (6.42) in PM10 and > 50% Distributed lag 11.68 (5.22) 4.38 (2.18) 9.28 (6.64) 9.39 (6.89) increases in O3 and S Cardiac tibility was further m Single-day lag 10.06 (3.25) 8.78 (2.42) 7.24 (3.55) 7.79 (4.56) strained distributed la Distributed lag 13.33 (3.35) 2.30 (0.78) 10.53 (4.29) 11.22 (4.8) Respiratory also observed a gener Single-day lag 18.58 (4.51) 8.21 (1.46) 12.45 (4.19) 12.93 (5.78) in susceptibility with Distributed lag 29.66 (4.88) 15.63 (2.50) 20.44 (5.21) 21.31 (6.34) groups. These finding Age at death (years) mination of air qualit ≤ 64 protect the general po Single-day lag 4.53 (1.52) 4.96 (1.17) 4.77 (2.50) 4.10 (2.52) cient to protect the el Distributed lag 4.26 (1.29) 1.84 (0.71) 4.27 (2.49) 4.76 (2.19) In summary, mo 65–74 Single-day lag 9.47 (2.81) 8.00 (1.77) 5.99 (2.49) 6.24 (3.17) data in Santiago, Chi Distributed lag 11.72 (3.01) 2.15 (0.86) 7.21 (2.55) 8.12 (3.88) lution levels continue 75–84 son with those in N Single-day lag 12.61 (3.80) 9.42 (2.28) 8.73 (4.00) 8.64 (4.82) associated with strong Distributed lag 17.62 (3.72) 3.32 (0.92) 11.2 (4.25) 13.12 (5.12) respiratory than c ≥ 85 increases in gases and Single-day lag 14.03 (3.87) 8.56 (2.02) 7.92 (3.23) 8.58 (4.45) with increased mor Distributed lag 19.73 (3.75) 5.92 (1.92) 11.13 (4.38) 13.20 (4.82) Season elderly appear to be a April–September who are younger. W Single-day lag 9.12 (3.35) 3.21 (1.14) 6.47 (3.92) 7.09 (4.02) degree of susceptibilit Distributed lag 12.20 (3.75) 2.14 (1.25) 10.23 (4.72) 9.65 (4.50) very elderly be invest October–March to determine whether Single-day lag 0.60 (0.45) 6.19 (1.92) 2.62 (1.19) 5.45 (1.14) able across different c Distributed lag 1.27 (1.46) 4.89 (1.82) 4.25 (1.75) 7.80 (1.89) characteristics. 526 VOLUME 115 | NUMBER 4 | April 2007 • Environm
  • 34. ARTICLES Results the eight stations, except in one district, which only In the first year after introduction of the intervention, contributed 1·3% of total deaths covered by air-pollutant mean fall in SO2 concentration at five stations was 53% monitoring. (table 1). Reduction in SO2 concentration was sustained The average annual proportional change in number of between 35% and 53% (mean 45%) of the mean value deaths, for all causes and all ages, was an increase of 3·5% before the intervention, over 5 years. At eight stations for per year in 1985–90, in accordance with the increase in which complete data were available for up to 2·5 years, size and ageing of the population. After the intervention the average reduction in SO2 concentration over this All causes period was 50%. 4000 Mean concentration of sulphate in respirable particulates at five stations for 2 years before the intervention was 8·9 g/m3. This concentration fell by 3000 15–23% for 2 years but rose again to between 110% and 114% of the concentration before 1990 in years 3–5 after the intervention (data not shown). No significant change 2000 in mean concentration of PM10 (p=0·926) and NO2 (p=0·205)—but a significant increase of O3 (p<0·0001)— 1000 was noted over the 5 years after the restriction on fuel sulphur content (figure 1). Over the 5 years before the intervention, number of 0 deaths per month showed a stable seasonal pattern for all causes and cardiorespiratory diseases. In the year after the restriction on fuel sulphur content was introduced, the Respiratory 1000 expected cool season peak was absent (figure 2). The noted seasonal mortality cycle closely fitted the model for the 5 years before introduction of the 750 intervention. In the first 12 months after the intervention, amplitude of the cycle was low compared with that predicted because of a striking reduction in deaths in the 500 cool season (figure 3). This fall was associated with a reduction in the warm to cool season mortality gradient, 250 for every age-group, for all causes, respiratory, and cardiovascular deaths. For example, the seasonal Monthly deaths percentage increase for all causes and all ages declined 0 from the average 5-year baseline of 10·3% to 4·2% and respiratory deaths from 20·3% to 5·3% (table 2). In people aged 65 or older, seasonal deaths for all causes Cardiovascular 1000 declined from 14·7% to 6·1% and respiratory deaths from 22·7% to 5·4%. No consistent change in seasonal pattern of deaths in any age-group for neoplasms or other causes 750 was noted. In the second 12 months a striking rebound in deaths in the cool season deaths arose, followed by a gradual return during years 3–5 to the seasonal pattern 500 before intervention. The reduction in cool-season deaths in the first year 250 after the intervention showed a consistent pattern across PM10 0 NO2 SO4 SO2 Neoplasms and other causes O3 1000 80 12 Pollutant concentration ( g/m3) SO4 concentration ( g/m3) 750 60 8 40 500 Neoplasms Other causes 4 20 250 0 0 0 July, July, June, 88 89 99 0 91 992 993 994 995 1985 1990 1995 19 19 1 19 1 1 1 1 Year Figure 2: Number of deaths per month for all ages from Figure 1: Average of pollutant concentrations at five July, 1985, to June, 1995, for all causes, respiratory, monitoring stations cardiovascular, and neoplasms and other causes Vertical line represents date of introduction of fuel regulation. Vertical line represents date of introduction of fuel regulation. 1648 THE LANCET • Vol 360 • November 23, 2002 • www.thelancet.com For personal use. Only reproduce with permission from The Lancet Publishing Group.
  • 35. Suggested Improvements –  The majority of studies assume that measured concentra%ons  are representa%ve of average concentra%ons over an en%re  region (which may be of varying size). Of course, this is not true,  but it is omen the only method available. The popula%on  distribu%on is some%mes geographically correlated with the  pollu%on distribu%on (study from San%ago, Chile). Other %mes,  it is disregarded, and the popula%on is thought of as a one‐ dimensional parameter (PAPA studies).   –  What needs to be done is to simultaneously increase the  resolu%on of pollu%on concentra%on data and make a concerted  effort to calculate exposure based upon the geographic overlay  of popula%on or popula%on density with pollu%on  concentra%ons.  –  Rela%ve exposures based on popula%on surveys 
  • 36. Improvements –  Indoor vs. outdoor %me expenditures by the popula%on (while  preserving age classifica%ons) should be conducted by survey in  regions under study, along with indoor measurements, to more closely  approximate exposure.   •  Then modeling could be done to examine how change in habits or architecture  of a certain locale may lead to an indirect benefit in health for the en%re  region of interest.  •  Shanghai paper discussion reveals that 67.3% of Shanghai residents use air  condi%oning in the winter, while 96.7% do so in the summer. Thus, significant  increases in risk to health for 10 μg/m3 increases in pollutant concentra%ons  were only seen in cooler months, when the average temperature dropped  from 24.3 C to 11.2 C. For subtropical coastal ci%es in China, the parern of  staying indoors in the summer and opening windows in the cooler season may  be a regional varia%on in culture that affects exposure assessment (Kan, 2008).  –  Similar results were seen in papers from Hong Kong. (Hedley, 2002)  –  Personal experience in Shenzhen also leads me to this conclusion on cultural varia%on.  –  Opposite effects in Bangkok and Wuhan due to the rela%vely low incidence of air  condi%oning usage (Wong, 2008). 
  • 37. •  Such improvements in understanding of  exposure are necessary for the normaliza%on  of %me series results, cross comparison, policy  crea%on, etc. 
  • 38. C-R functions y = B ⋅ eβ ⋅x •  Log‐linear regressions  ln(y) = α + β ⋅ x common  Δx  Δy = y − y0 •  Non‐linear lsq curve  ∂y ∂y ∂y fisng  dy = dx + dβ + dB ∂x ∂β ∂B •  Spline interpola%ons  Δy = B(eβ ⋅x − eβ ⋅x0 ) •  Ideally‐ spa%otemporal  Δy = B ⋅ eβ ⋅x0 (e (β ⋅x −β ⋅x0 ) − 1) C‐R func%ons integrated  Δy = B ⋅ eβ ⋅x0 (eβ (x −x 0 ) − 1) into GIS platorm.  ∴ Δy = y0 (eβ ⋅Δx − 1)
  • 39. outdoor particulates in shopping areas were pattern is consistent with other reports in In all cities in the PAPA study, the effects of underestimated by the ambient monitoring sta- demonstrating a maximum at lag 1 day for air pollution are stronger for cardiopulmonary tions in Bangkok, and therefore that the excess most pollutants (Samoli et al. 2005, 2006). causes than for all natural causes. This is consis- risk per air pollutant concentration would However, for O3, the effect estimates are maxi- tent with results from most North American be higher than if it were a well-calibrated mal at longer lags, showing that the pattern is and Western European studies (Anderson et al. 0.3 Bangkok 0.3 Hong Kong 0.3 Bangkok 0.3 Hong Kong A B 0.2 0.2 0.2 0.2 Log-risk Log-risk 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 –0.1 –0.1 –0.1 –0.1 20 40 60 80 100 120 20 40 60 80 100 120 140 0 10 20 30 40 50 0 20 40 60 80 100 NO2 concentration (µg/m3) NO2 concentration (µg/m3) SO2 concentration (µg/m3) SO2 concentration (µg/m3) 0.3 Shanghai 0.3 Wuhan 0.3 0.3 Shanghai Wuhan 0.2 0.2 0.2 0.2 Log-risk Log-risk 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 –0.1 –0.1 –0.1 –0.1 50 100 150 200 20 40 60 80 100 120 50 100 150 50 100 150 NO2 concentration (µg/m3) NO2 concentration (µg/m3) SO2 concentration (µg/m3) SO2 concentration (µg/m3) 0.25 Bangkok 0.25 Hong Kong 0.20 Bangkok 0.20 Hong Kong C D 0.20 0.20 0.15 0.15 0.15 0.15 0.10 0.10 Log-risk Log-risk 0.10 0.10 0.05 0.05 0.05 0.05 0.00 0.00 0.00 0.00 –0.05 –0.05 –0.05 –0.05 –0.10 –0.10 –0.10 –0.10 20 40 60 80 100 120 140 160 50 100 150 50 100 150 0 20 40 60 80 100 120 PM10 concentration (µg/m3) PM10 concentration (µg/m3) O3 concentration (µg/m3) O3 concentration (µg/m3) 0.25 Shanghai 0.25 Wuhan 0.20 Shanghai 0.20 Wuhan 0.20 0.20 0.15 0.15 0.15 0.15 0.10 0.10 Log-risk Log-risk 0.10 0.10 0.05 0.05 0.05 0.05 0.00 0.00 0.00 0.00 –0.05 –0.05 –0.05 –0.05 –0.10 –0.10 –0.10 –0.10 100 200 300 400 100 200 300 400 0 50 100 150 200 0 50 100 150 200 PM10 concentration (µg/m3) PM10 concentration (µg/m3) O3 concentration (µg/m3) O3 concentration (µg/m3) Figure 4. CR curves for all natural-cause mortality at all ages in all four cities for the average concentration of lag 0–1 days for NO (A), SO2 (B), PM10 (C), and O3 (D). 2 The thin vertical lines represent the IQR of pollutant concentrations. The thick lines represent the WHO guidelines (WHO 2005)of 40 µg/m3 for 1-year averaging time for NO2 (A), 20 µg/m 3 for 24-hr averaging time for SO (B), 20 µg/m3 for 1-year averaging time for PM (C), and 100 µg/m3 for daily maximum 8-hr mean for O (D). 2 10 3 1200 VOLUME 116 | NUMBER 9 | September 2008 • Environmental Health Perspectives
  • 40. centrations were expressed as the cities, the effect estimates for PM10 were sensi- the concentrations (Figure 4). At all ages, tests e range (IQR; i.e., 75th per- tive to exclusion of the higher concentrations. for nonlinearity for the entire curve showed percentile), Bangkok estimates For the Chinese cities, this increased the excess that linearity could not be rejected at the 5% able to those of the three Chinese risk > 20% for PM 10 , but in Bangkok the level for most of the associations between air larly in all ages. Within cities, the effect estimate decreased, with the excess risk pollution and mortality (data not shown). es of different pollutants were also changing from 1.25% to 0.73% per 10-µg/m3 o each other (data not shown). increase in average concentration of lag Discussion ies, there was heterogeneity in ates for NO 2 and PM 10 on all e mortality and for PM 10 on Dependence on outcomes 0–1 days (Table 4). Examination of the warm season (which varied for each city) resulted in significant increases in effect estimates for Review of PAPA project results. In the city- specific main effects for the five main health outcomes under study, there were variations ar mortality (Table 3). For all Bangkok and Wuhan but decreases in Hong in effect estimates between cities. For NO2 mortality, the combined random Kong and, to a lesser extent, in Shanghai the estimates were similar in magnitude and risk were 1.23, 1.00, 0.55, and O2, SO2, PM10, and O3, respec- NO2 8 SO2 values ≤ 0.05). The results for 4 r mortality (Table 3) followed a Excess risk (%) Excess risk (%) 6 3 milar pattern, with the highest 4 r 10-µg/m3 in Bangkok for PM10 2 in Wuhan for NO2 and SO2. All 2 demonstrated significant associa- 1 ch pollutant except SO 2 in 0 0 O3 in Wuhan, whereas all of the All ≥ 65 ≥ 75 All ≥ 65 ≥ 75 All ≥ 65 ≥ 75 All ≥ 65 ≥ 75 All ≥ 65 ≥ 75 All ≥ 65 ≥ 75 All ≥ 65 ≥ 75 All ≥ 65 ≥ 75 timates were statistically signifi- ages ages ages ages ages ages ages ages Bangkok Hong Kong Shanghai Wuhan Bangkok Hong Kong Shanghai Wuhan ar pattern was shown for respira- y, for which the highest estimates PM10 2.5 O3 n Wuhan for NO2 and SO2 and 3 2.0 or PM10 and O3. All the random Excess risk (%) Excess risk (%) tes were statistically significant at 2 1.5 except for O3. 1.0 ag effects in the three Chinese 1 0.5 few exceptions, the average lag ally generated the highest excess 0 0 r, for Bangkok the longer cumu- All ≥ 65 ≥ 75 All ≥ 65 ≥ 75 All ≥ 65 ≥ 75 All ≥ 65 ≥ 75 All ≥ 65 ≥ 75 All ≥ 65 ≥ 75 All ≥ 65 ≥ 75 All ≥ 65 ≥ 75 e of lag 0–4 days generated the ages ages ages ages ages ages ages ages ss risk for all of the pollutants Bangkok Hong Kong Shanghai Wuhan Bangkok Hong Kong Shanghai Wuhan For the combined estimates, Figure 3. Excess risk (%) of mortality [point estimates (95% CIs)] for a 10-µg/m3 increase in average lag 0–1 days showed the highest concentration of lag 0–1 days for three age groups. s risk (ER; %) of mortality (95% CI) for a 10-µg/m3 increase in the average concentration of lag 0–1 days by main effect estimates of individual cities random effects. Random effects Random effects Bangkok Hong Kong Shanghai Wuhan (4 cities) (3 Chinese cities) Pollutant ER 95% CI ER 95% CI ER 95% CI ER 95% CI ER 95% CI ER 95% CI s NO2 1.41 0.89 to 1.95 0.90 0.58 to 1.23 0.97 0.66 to 1.27 1.97 1.31 to 2.63 1.23 0.84 to 1.62* 1.19 0.71 to 1.66*
  • 41. tions for each pollutant except SO 2 in 0 0 Bangkok and O3 in Wuhan, whereas all of the All ≥ 65 ≥ 75 All ≥ 65 ≥ 75 All ≥ 65 ≥ 75 All ≥ 65 ≥ 75 All ≥ 65 ≥ 75 All ≥ 65 ≥ 75 All ≥ 65 ≥ 75 All ≥ 65 ≥ 75 combined estimates were statistically signifi- ages ages ages ages ages ages ages ages Bangkok Hong Kong Shanghai Wuhan Bangkok Hong Kong Shanghai Wuhan cant. A similar pattern was shown for respira- tory mortality, for which the highest estimates PM10 2.5 O3 were found in Wuhan for NO2 and SO2 and 3 2.0 in Bangkok for PM10 and O3. All the random Excess risk (%) Excess risk (%) Outcome dependency effects estimates were statistically significant at 2 1.5 the 5% level except for O3. 1.0 For the lag effects in the three Chinese 1 0.5 cities, with a few exceptions, the average lag 0–1 days usually generated the highest excess 0 0 risk. However, for Bangkok the longer cumu- All ≥ 65 ≥ 75 All ≥ 65 ≥ 75 All ≥ 65 ≥ 75 All ≥ 65 ≥ 75 All ≥ 65 ≥ 75 All ≥ 65 ≥ 75 All ≥ 65 ≥ 75 All ≥ 65 ≥ 75 lative average of lag 0–4 days generated the ages ages ages ages ages ages ages ages highest excess risk for all of the pollutants Bangkok Hong Kong Shanghai Wuhan Bangkok Hong Kong Shanghai Wuhan except SO 2 . For the combined estimates, Figure 3. Excess risk (%) of mortality [point estimates (95% CIs)] for a 10-µg/m3 increase in average effects at the lag 0–1 days showed the highest concentration of lag 0–1 days for three age groups. Table 3. Excess risk (ER; %) of mortality (95% CI) for a 10-µg/m3 increase in the average concentration of lag 0–1 days by main effect estimates of individual cities and combined random effects. Random effects Random effects Bangkok Hong Kong Shanghai Wuhan (4 cities) (3 Chinese cities) Pollutant ER 95% CI ER 95% CI ER 95% CI ER 95% CI ER 95% CI ER 95% CI All natural causes NO2 1.41 0.89 to 1.95 0.90 0.58 to 1.23 0.97 0.66 to 1.27 1.97 1.31 to 2.63 1.23 0.84 to 1.62* 1.19 0.71 to 1.66* (all ages) SO2 1.61 0.08 to 3.16 0.87 0.38 to 1.36 0.95 0.62 to 1.28 1.19 0.65 to 1.74 1.00 0.75 to 1.24 0.98 0.74 to 1.23 PM10 1.25 0.82 to 1.69 0.53 0.26 to 0.81 0.26 0.14 to 0.37 0.43 0.24 to 0.62 0.55 0.26 to 0.85# 0.37 0.21 to 0.54 O3 0.63 0.30 to 0.95 0.32 0.01 to 0.62 0.31 0.04 to 0.58 0.29 –0.05 to 0.63 0.38 0.23 to 0.53 0.31 0.13 to 0.48 Cardiovascular NO2 1.78 0.47 to 3.10 1.23 0.64 to 1.82 1.01 0.55 to 1.47 2.12 1.18 to 3.06 1.36 0.89 to 1.82 1.32 0.79 to 1.86 SO2 0.77 –2.98 to 4.67 1.19 0.29 to 2.10 0.91 0.42 to 1.41 1.47 0.70 to 2.25 1.09 0.71 to 1.47 1.09 0.72 to 1.47 PM10 1.90 0.80 to 3.01 0.61 0.11 to 1.10 0.27 0.10 to 0.44 0.57 0.31 to 0.84 0.58 0.22 to 0.93** 0.44 0.19 to 0.68 O3 0.82 0.03 to 1.63 0.62 0.06 to 1.19 0.38 –0.03 to 0.80 –0.07 –0.53 to 0.39 0.37 0.01 to 0.73 0.29 –0.09 to 0.68 Respiratory NO2 1.05 –0.60 to 2.72 1.15 0.42 to 1.88 1.22 0.42 to 2.01 3.68 1.77 to 5.63 1.48 0.68 to 2.28 1.63 0.62 to 2.64* SO2 1.66 –3.09 to 6.64 1.28 0.19 to 2.39 1.37 0.51 to 2.23 2.11 0.60 to 3.65 1.47 0.85 to 2.08 1.46 0.84 to 2.08 PM10 1.01 –0.36 to 2.40 0.83 0.23 to 1.44 0.27 –0.01 to 0.56 0.87 0.34 to 1.41 0.62 0.22 to 1.02 0.60 0.16 to 1.04 O3 0.89 –0.10 to 1.90 0.22 –0.46 to 0.91 0.29 –0.44 to 1.03 0.12 –0.89 to 1.15 0.34 –0.07 to 0.75 0.23 –0.22 to 0.68 p-Values (homogeneity test): *0.01 < p ≤ 0.05; **0.001 < p ≤ 0.01; and #p ≤ 0.001. 1198 VOLUME 116 | NUMBER 9 | September 2008 • Environmental Health Perspectives
  • 42. Outcomes, cont. •  Morbidity outcomes include:  –  decreases in ven%lator capacity  –  increases in specific airway resistance  –  Wheezing  –  shortness of breath  –  HRV  –  LBW, IUGR 
  • 43. C-R uncertainties, complications •  Slope varia%on at low  levels  •  Toxicological uncertain%es  •  Simplis%c data (pop,  pollutant)  •  IQR and extrapola%on  •  Mul%ple pollutants  •  Local weather, pollu%on  mix  •  Wish to produce  significant results  –  Gender study in Shanghai 
  • 44. Gender in Shanghai –  Shanghai 2008 study claims to have  shown that SO2 produces greater  affect in females. However, the  data error is far too large to make  this conclusion (95% CI are [.43,  1.28] and [.62, 1.51] for males and  females, respec%vely). From an  objec%ve standpoint, berer data is  needed before such claims may be  made (Kan, 2008).   •  lack of consensus over whether  gender is a determining factor in C‐R  func%ons for SO2.   •  Thought that because 50% shanghai  males smoke, and only .6% of  females smoke, increase in pollu%on  will be more dras%c for females. Also,  PM (<1μm) deposi%on in respiratory  tract is greater for females (Kan,  2008). 
  • 45. • Exclude monitoring stations with high traffic org/members/2008/11257/suppl.pdf)]. Deaths showed a fairly similar pattern. sources (highest nitric oxide/nitrogen oxides occurring at ≥ 65 years of age were less fre- We demonstrated the adequacy of the core ratio) quent in Bangkok (36%) than in the three models with partial autocorrelation function • Assess warm season effect with dummy Chinese cities (72–84%). plots of the residuals in the previous 2 days, all variables of seasons in the core model As indicated in Table 2 and Figure 2, within |0.1| [Supplemental Material, Figure 1 • Add temperature at average lag 1–2 days or Wuhan showed the highest concentrations of (available online at http://www.ehponline.org/ 3–7 days into the model PM 10 and O 3 , whereas Shanghai had the members/2008/11257/suppl.pdf)]. • Use a centered daily concentration of PM10 highest concentrations of NO2 and SO2. The In individual cities, for all natural causes at Extrapolation across cities (Wong et al. 2001) latter was probably due to the significant local all ages (Table 3) the percentage of excess risk • Use natural spline with degrees of freedom contribution of power plants in Shanghai’s per 10-µg/m 3 associated with NO 2 ranged (df) of time trend per year, temperature, and metropolitan area. To provide an indication of from 0.90 to 1.97 (all p-values ≤ 0.001); with humidity fixed at 8, 4, and 4, respectively the relative magnitude of the pollution con- SO2, from 0.87 to 1.61 (all p-values ≤ 0.05); • Use penalized spline instead of natural spline. centrations in these four large Asian cities, we with PM10, from 0.26 to 1.25 (all p-values Combined estimates of excess risk of mor- compared them to the 20 largest cities in the ≤ 0.001); and with O3, from 0.31 to 0.63 (all tality and their standard errors were calculated 200 using a random-effects model. Estimates were 250 weighted by the inverse of the sum of within- NO2 concentration (µg/m3) SO2 concentration (µg/m3) and between-study variance. 200 150 Concentration–response curves for the effect of each pollutant on each mortality out- 150 100 come in the four cities were plotted. We applied a natural spline smoother with 3 df on 100 the pollutant term. We assessed nonlinearity 50 50 by testing the change of deviance between a nonlinear pollutant (smoothed) model with 0 0 3 df and linear pollutant (unsmoothed) model Bangkok Hong Kong Shanghai Wuhan Bangkok Hong Kong Shanghai Wuhan with 1 df. The main analyses and the combined analysis were performed using R, version 600 250 2.5.1 (R Development Core Team 2007). We PM10 concentration (µg/m3) O3 concentration (µg/m3) 500 also used mgcv, a package in R. 200 400 Results 150 Table 1 summarizes the mortality data for the 300 four cities, and Table 2 summarizes the pollu- 200 100 tion and meteorological variables. The daily mortality counts for all natural causes at all 100 50 ages for each city showed more marked sea- 0 0 sonal variations in the cities farther north. Shanghai (mean daily deaths, 119; population, Bangkok Hong Kong Shanghai Wuhan Bangkok Hong Kong Shanghai Wuhan 7.0 million) and Bangkok (95; 6.8 million) Figure 2. Box plots of the air pollutants for the four cities. Boxes indicate the interquartile range (25th per- had higher daily numbers of deaths than Hong centile–75th percentile); lines within boxes indicate medians; whiskers and circles below boxes represent Kong (84; 6.7 million) and Wuhan (61; minimum values; and circles above boxes indicate maximum values. Table 2. Summary statistics of air pollutant concentrations and meteorological conditions. Mean Median IQR Minimum, maximum Hong Hong Hong Hong Bangkok Kong Shanghai Wuhan Bangkok Kong Shanghai Wuhan Bangkok Kong Shanghai Wuhan Bangkok Kong Shanghai Wuhan NO2 (µg/m3) 44.7 58.7 66.6 51.8 39.7 56.4 62.5 47.2 23.1 24.4 29.0 24.0 15.8, 139.6 10.3, 167.5 13.6, 253.7 19.2, 127.4 SO2 (µg/m3) 13.2 17.8 44.7 39.2 12.5 14.7 40.0 32.5 5.5 12.6 28.7 30.8 1.5, 61.2 1.4, 109.3 8.4, 183.3 5.3, 187.8 PM10 (µg/m3) 52.0 51.6 102.0 141.8 46.8 45.5 84.0 130.2 20.9 34.9 72.0 80.2 21.3, 169.2 13.7, 189.0 14.0, 566.8 24.8, 477.8 O3 (µg/m3) 59.4 36.7 63.4 85.7 54.4 31.5 56.1 81.8 36.2 31.6 45.1 67.4 8.2, 180.6 0.7, 195.0 5.3, 251.3 1.0, 258.5
  • 46. Outline •  Ques%ons to answer  •  Introduc%on, background and significance  •  Cri%que of HRA methods and suggested  improvements  •  Data from sample studies  •  Stressing the need for a comprehensive HRA  of SO2 in China  •  Interven%ons 
  • 47. people aged 65 or older, seasonal deaths for all causes Cardiovascular 1000 Mon declined from 14·7% to 6·1% and respiratory deaths from 22·7% to 5·4%. No consistent change in seasonal pattern of deaths in any age-group for neoplasms or other causes 750 was noted. In the second 12 months a striking rebound in deaths in the cool season deaths arose, followed by a Hong Kong Intervention gradual return during years 3–5 to the seasonal pattern 500 before intervention. The reduction in cool-season deaths in the first year 250 after the intervention showed a consistent pattern across PM10 0 NO2 SO4 SO2 Neoplasms and other ca O3 1000 80 12 Pollutant concentration ( g/m3) SO4 concentration ( g/m3) 750 60 8 40 500 4 20 250 0 0 0 8 July, J 98 89 990 991 992 993 994 995 1985 1 1 19 1 1 1 1 1 1 Year Figure 2: Number of deaths per mo Figure 1: Average of pollutant concentrations at five July, 1985, to June, 1995, for all c monitoring stations cardiovascular, and neoplasms an Vertical line represents date of introduction of fuel regulation. Vertical line represents date of introduc 1648 THE LANCET • Vol 360 • Novemb