SlideShare una empresa de Scribd logo
1 de 48
Descargar para leer sin conexión
Institute of Computer Science II
Computer Graphics
Realistic Object Appearance using
Bidirectional Texture Functions
Christopher Schwartz, Reinhard Klein
3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz1 20/10/2011
INTRODUCTION
3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz2 20/10/2011
Object Appearance
• Common presentation: Geometry (+ Texture)
• … but is this sufficient?
3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz3 20/10/2011
Geometry only With texture Correct appearance
Importance of Surface Appearance
• Same shape, different materials
• Different „look-and-feel“
• Important hints about the object
• Misleading vs. better understanding
3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz4 20/10/2011
Object Appearance
• Impression of reflection of
incident light
• Influenced by features on
different scales
• Macroscopic
• Mesoscopic
• Microscopic
• Viewpoint and
Illumination dependent
3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz5 20/10/2011
Form of Representation
Macroscopic scale
•3D shape
•Explicit representation
(e.g. polygon mesh)
Mesoscopic scale
•Individually resolved by
human perception
•Statistical representation
not accurate
•Explicit representation
too costly
Microscopic scale
•Alignment of microscopic
structures
•Statistical representation
(e.g. BRDF)
3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz6 20/10/2011
Bidirectional Reflectance Distribution Function
• Opaque, uniform
Materials
• No texture!
• Ratio of incident
irradiance to outgoing
radiance
• Defined over local
hemisphere
• Depends on
• Solid angle of light ωi
• Solid angle of view ωo
3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz7 20/10/2011
Bidirectional Reflectance Distribution Function
• Example BRDF
• sampled at discrete angles
3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz8 20/10/2011
ωi
ωo
BRDF TabulatedExample: BRDF on Sphere Discrete sample
positions on
Hemisphere
Specular reflection
Model-driven vs. Data-driven
• Matusik et al. 2003 [1]:
Measured BRDF ground-truth data
• 100 real world materials
• 1° resolution for view-
and light directions
• > 1,000,000 samples
• Ngan et al. 2005 [2]:
Experimental analysis
of BRDF models
3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz9 20/10/2011
Model-driven vs. Data-driven
3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz10 20/10/2011
Red phenolic
Measured distribution from [1]
Fitted model (Cook-Torrance) from [2]
Model-driven vs. Data-driven
3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz11 20/10/2011
Red phenolic
Measured distribution from [1]
Fitted model (Cook-Torrance) from [2]
Data-driven Reflectance
• Example Surface
with Meso structure
• Results are „ABRDFs“
(apparent BRDFs [3])
3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz12 20/10/2011
ωi
ωo
ωi
ωo
Specular reflection
Retro-reflection
Hard to fit with
analytical model
influence from
neighborhood
Model-driven Reflectance
• Loss of Mesoscale depth impression…
3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz13 20/10/2011
Fitted analytical SVBRDF Photograph
McAllister 2002 [10]
Data-driven Reflectance
3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz14 20/10/2011
Texture Mesoscale
approximated by
Bump-mapping
Data-Driven
(BTF)
Images taken from
Müller et al. 2005 [7]
Form of Representation
Macroscopic scale
•3D shape
•Explicit representation
(e.g. polygon mesh)
Mesoscopic scale
•Individually resolved by
human perception
•Statistical representation
not accurate
•Explicit representation
too costly
Microscopic scale
•Alignment of microscopic
structures
•Statistical representation
(e.g. BRDF)
3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz15 20/10/2011
Form of Representation
Macroscopic scale
•3D shape
•Explicit representation
(e.g. polygon mesh)
Mesoscopic scale
•Individually resolved by
human perception
•Statistical representation
not accurate
•Explicit representation
too costly
Microscopic scale
•Alignment of microscopic
structures
•Statistical representation
(e.g. BRDF)
3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz16 20/10/2011
Data-driven:
Image based
Form of Representation
Macroscopic scale
•3D shape
•Explicit representation
(e.g. polygon mesh)
Mesoscopic scale
•Individually resolved by
human perception
•Statistical representation
not accurate
•Explicit representation
too costly
Microscopic scale
•Alignment of microscopic
structures
•Statistical representation
(e.g. BRDF)
3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz17 20/10/2011
Bidirectional Texture Function
ACQUISITION
3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz18 20/10/2011
First use of BTF: CUReT Database
• 1996 – 1999 by Dana et al. [4]
• 61 materials
• 205 different view- and light directions
• 24-bit RGB images
 Manual placement of camera
 BTF only partially measured
3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz19 20/10/2011
University of Bonn BTF Database
• 2001 – 2003 Sarlette et al. [5]
• 6561 view and light directions
• 36-bit RGB images
• Fully automated
• 12 hrs
per acquisition
3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz20 20/10/2011
University of Bonn Multiview Dome
3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz21 20/10/2011
• 2004 – now by Sarlette et al.
• 22,801 view and light directions
• HDR images
• Fully automated
• No moving parts
• 2hrs per acquisition
First Capture of Complete Objects with BTF
• Furukawa et al. 2002 [6]
• Laser scanned geometry
• Separate BTF capture
 Very sparse sampling
 Alignment errors
3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz22 20/10/2011
Photograph Rendering
First Capture of Complete Objects with BTF
• Furukawa et al. 2002 [6]
• Laser scanned geometry
• Separate BTF capture
 Very sparse sampling
 Alignment errors
3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz23 20/10/2011
Photograph Rendering
Integrated Acquisition of Objects with BTF
• Müller et al. 2005 [7]
• Use University of Bonn Dome
• Dense sampling (22,801), 2hrs/acquisition
• Measurements integrated in one setup
• No registration necessary
• Geometry via Shape-from-Silhouette
3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz24 20/10/2011
Integrated Acquisition of Objects with BTF
• Müller et al. 2005
Drawbacks:
 No radiometric calibration
• Misleading colors
• Only LDR
 Shape-from-Silhouette
• Not automatable
• Coarse geometry
– Misleading Shape
– Blur due to misalignment
3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz25 20/10/2011
Example from Havemann et al. 2008 [12]
Integrated HQ Acquisition
• Holroyd et al. 2010 [17]
• Integrated setup
• Geometry with Structured Light
• 42 view and light directions
• 5hrs per acquisition
 Sparse sampling  Model-driven
• Fit Cook-torrance BRDFs
3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz26 20/10/2011
Photograph Rendering
Integrated HQ Acquisition
• Holroyd et al. 2010 [17]
• Integrated setup
• Geometry with Structured Light
• 42 view and light directions
• 5hrs per acquisition
 Sparse sampling  Model-driven
• Fit Cook-torrance BRDFs
3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz27 20/10/2011
Photograph Rendering
Integrated HQ Acquisition with BTF
• Schwartz et al. 2011 [8]
• Use University of Bonn Dome
• Extended with projectors for Structured Light
• integrated measurement
• Rapid: 3.7 hrs per acquisition
• Proper calibration and HDR
• Geometry: Weinmann et al. 2011 [11]
3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz28 20/10/2011
Visual Hull [7], [12] Laser Scan Proposed Method [11]
Quality
3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz29 20/10/2011
Faithfulness
3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz30 20/10/2011
Photographic
picture
(tonemapped HDR)
BTF + Geometry
Schwartz et al. 2011 [8]
(tonemapped HDR)
Polynomial Texture Maps
• Malzbender et al. 2001 [9]: PTM
• Image-based, Sampling of Light (ωi)
 Incomplete appearance information
• View-dependent part of reflectance missing
 For 3D Objects: only one fixed viewpoint
3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz31 20/10/2011
PTM
Texture
Faithfulness
3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz32 20/10/2011
Photographic
picture
(tonemapped HDR)
BTF + Geometry
Schwartz et al. 2011 [8]
(tonemapped HDR)
Polynomial Texture Map
Malzbender et al. 2001 [9]
(Single view and LDR!)
Multiview PTMs
• Gunawardane et al. 2009 [18]:
• PTMs from multiple viewpoints
 No macro scale
 interpolation of views via optical flow
 Limited amount of views
• Combining multiple objects is hard
• incorrect silhouttes, occlusion,
shadows, etc.
• Full light transport
(i.e. path-tracing)
not possible
33 20/10/2011
3D COFORM STAR – VAST 2011 Prato, Italy – Christopher
Schwartz
Full Light Transport with BTFs
3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz34 20/10/2011
Full Light Transport with BTFs
3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz35 20/10/2011
COMPRESSION, RENDERING AND
TRANSMISSION
3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz36 20/10/2011
Datasizes
• Schwartz et al. 2011 [8]:
• Uncompressed BTF:
≈ 500 GB per object
• Not feasible even for
offline rendering…
3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz37 20/10/2011
BTF Compression
• Fitting analytical models
• Wu et al. 2011 [15]: SPMM
• Model-driven…
• lost meso-structure
3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz38 20/10/2011
BTF
SPMM
BTF Compression
• High degree of
redundancy in the BTF
• Perform statistical
data analysis
• Find low dimensional basis
•  learn how to best describe the data
3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz39 20/10/2011
Compression using Statistical Analysis
• Organization of the discrete BTF
• As matrix • As Tensor
3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz40 20/10/2011
Angles ωi, ωo
Pixels(x,y,color)
Pixels (x,y)
ωo
Note:
Color (or wavelength) can be
additional dimension
Full Matrix Factorization
• E.g. Liu et al. 2004 [14]: FMF
• Representation is compact
and realtime renderable [5]
3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz41 20/10/2011
…
...
 
 
  
 
 
M
 
 
 
 
 
…V
Angular components
“Eigen-ABRDFs“
 
 
 
 
 
U …
Spatial components
“Eigen-Textures“SVD
T
M USV
Importance
Decorrelated Full Matrix Factorization
• Gero Müller 2009 [13]: DFMF
• Insight from image compression (e.g. JPEG)
• Human perception is more sensitive to variation in
intensity than color
• Also: chromacity in images exhibits less variation
• Decorrelate the BTF data into luminance and
chrominance
– BTFRGB  BTFY BTFU BTFV
• Use fewer components for chrominance channels U, V
3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz42 20/10/2011
FMF Rendering
• Uncompressed: ≈ 500GB
• Compressed: ≈ 640MB
• 32 components
• Even fits on the GPU
• Random access to BTF
• Angular combination
a = (ωi, ωo)
• Pixel p = (x,y)
3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz43 20/10/2011
components
Angular
component #1
Spatial
component #1
Angular
component #2
Spatial
component #2
…
…
pixelangles
BTF(a,p) = < , >
Interactive Inspection via GPU Rendering
3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz44 20/10/2011
Streaming of BTF over the Internet
• Schwartz et al. 2011 [16]:
• Spatial components
≈ natural images
• Angular components
≈ low frequency
• Apply additional wavelet
compression
3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz45 20/10/2011
0.4bpp
Wavelet
16bpp
Reference
Streaming of BTF over the Internet
3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz46 20/10/2011
0.87 MB
First renderable
version
1 MB 7 MB 46.4 MB
Fully
transmitted
534 GB
Reference
Questions?
Learn more about
BTFs for Cultural
Heritag on
Wednesday [8]
and Thursday [16]
3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz47 20/10/2011
References
[1] “A Data-Driven Reflectance Model”, Matusik W., Pfister H., Brand M. and McMillan L., ACM TOG 22, 3(2003),
759-769.
[2] “Experimental Analysis of BRDF models”, Ngan A., Durand F. and Matusik W., Proceedings of EGSR, 2005, 117-
226.
[3] „Image-based Rendering with Controllable Illumination“, Wong T., Heng P., Or S., and Ng W., Proceedings of
EGWR, 1997, 13-22
[4] „Reflectance and Texture of Real-World Surfaces “, Dana K.J., van Ginneken B., Nayar S.K. and Koenderink J.J.,
Proceedings of CVPR, 1997, 151-157
[5] „Efficient and Realistic Visualization of Cloth“, Sattler M., Sarlette R. and Klein R., Proceedings of EGSR, 2003
[6]„Appearance based object modeling using texture database: acquisition, compression and rendering“, Furukawa
R., Kawasaki H. Ikeuchi K. and Sakauchi M., Proceedings of EGRW 2002, 257-266
[7] „Rapid Synchronous Acquisition of Geometry and BTF for Cultural Heritage Artefacts“, Müller G., Bendels G.H.
and Klein R., Proceedings of VAST, 2005
[8] „Integrated High-Quality Acquisition of Geometry and Appearance for Cultural Heritage”, Schwartz C., Weinmann
W., Roland R. and Klein R., Proceedings of VAST, 2011
[9] „Polynomial Texture Maps“, Malzbender T., Gelb D. and Wolters H., Proceedings of SIGGRAPH, 2001
[10] „A Generalized Surface Appearance Representation For Computer Graphics“, McAllister D.K., PhD. Thesis,
University of North Carolina at Chapel Hill, 2002
[11] „A Multi-Camera, Multi-Projector Super-Resolution Framework for Structured Light“, Weinmann M., Schwartz
C., Ruiters R. and Klein R., Proceedings of 3DIMPVT, 2011, 397-404
[12] „The Presentation of Cultural Heritage Models in Epoch“, Havemann S., Settgast V., Fellner D., Willems G., Van
Gool, L., Müller G., Schneider M. and Klein R., EPOCH Conference on Open Digital CH Systems, 2008
[13] „Data-Driven Methods for Compression and Editing of Spatially Varying Appearance“, Müller G., PhD. Thesis,
University of Bonn, 2009
[14] „Synthesis and Rendering of Bidirectional Texture Functions on Arbitrary Surfaces“, Liu X., Hu Y., Zhang J. Tong
X., Guo B. and Shum H.-Y., IEEE Transactions on Visualization and Computer Graphics 10 (3), 2004, 278-289
[15] „A Sparse Parametric Mixture Model for BTF Compression, Editing and Rendering“, Wu H., Dorsey J. and
Rushmeier H., Computer Graphics Forum 30 (2), 2011, 465-473
[16] „WebGL-based Streaming and Presentation Framework for Bidirectional Texture Function“, Schwartz C., Ruiters
R., Weinmann M. and Klein R., Proceedings of VAST, 2011
[17] „A coaxial optica scanner for synchronous acquisition of 3D geometry and surface reflectance“, Holroyd M.,
Lawrence J. and Zickler T., ACM Trans. Graph. 29 (4), 2010
[18] „Optimized Image Sampling for View and Light Interpolation“, Gunawardane P., Wang O., Scher S., Rickards I.,
Davis J. And Malzbender T., Proceedings of VAST, 2009
[19] „Principles and practices of robust, photography-based digital imaging techniques for museums.“, Mudge M.,
Schroer C., Ear G., Martinez K., Pagi H., Toler-Franklin C., Rusinkiewicz S., Palma G., Wochowiak M., Ashley M.,
Matthews N., Noble T. and Dellepiane M., Proceedings of VAST, 2010
3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz48 20/10/2011

Más contenido relacionado

Similar a Realistic Object Appearance using Bidirectional Texture Functions

Similar a Realistic Object Appearance using Bidirectional Texture Functions (20)

3D processing and metadata ingestion at POLIMI, Gabriele Guidi, Sara Gonizzi ...
3D processing and metadata ingestion at POLIMI, Gabriele Guidi, Sara Gonizzi ...3D processing and metadata ingestion at POLIMI, Gabriele Guidi, Sara Gonizzi ...
3D processing and metadata ingestion at POLIMI, Gabriele Guidi, Sara Gonizzi ...
 
Stereo vision
Stereo visionStereo vision
Stereo vision
 
Standards and projects of SC 24/WG 9 on Metaverse and Interverse
Standards and projects of SC 24/WG 9 on Metaverse and InterverseStandards and projects of SC 24/WG 9 on Metaverse and Interverse
Standards and projects of SC 24/WG 9 on Metaverse and Interverse
 
Fast and Noise Robust Depth from Focus using Ring Difference Filter with Your...
Fast and Noise Robust Depth from Focus using Ring Difference Filter with Your...Fast and Noise Robust Depth from Focus using Ring Difference Filter with Your...
Fast and Noise Robust Depth from Focus using Ring Difference Filter with Your...
 
SB_Skills_Achievements
SB_Skills_AchievementsSB_Skills_Achievements
SB_Skills_Achievements
 
2D and 3D Presentation of Spatial Data: A Systematic Review
2D and 3D Presentation of Spatial Data: A Systematic Review2D and 3D Presentation of Spatial Data: A Systematic Review
2D and 3D Presentation of Spatial Data: A Systematic Review
 
ISM2014
ISM2014ISM2014
ISM2014
 
Point Cloud Stream on Spatial Mixed Reality: Toward Telepresence in Architect...
Point Cloud Stream on Spatial Mixed Reality: Toward Telepresence in Architect...Point Cloud Stream on Spatial Mixed Reality: Toward Telepresence in Architect...
Point Cloud Stream on Spatial Mixed Reality: Toward Telepresence in Architect...
 
A Ensemble Learning-based No Reference QoE Model for User Generated Contents
A Ensemble Learning-based No Reference QoE Model for User Generated ContentsA Ensemble Learning-based No Reference QoE Model for User Generated Contents
A Ensemble Learning-based No Reference QoE Model for User Generated Contents
 
Skyline, azimuth and altitude tools for archaeoastronomy
Skyline, azimuth and altitude tools for archaeoastronomySkyline, azimuth and altitude tools for archaeoastronomy
Skyline, azimuth and altitude tools for archaeoastronomy
 
Digital Image Correlation
Digital Image Correlation Digital Image Correlation
Digital Image Correlation
 
3D SLAM introcution& current status
3D SLAM introcution& current status3D SLAM introcution& current status
3D SLAM introcution& current status
 
“A Computer Vision System for Autonomous Satellite Maneuvering,” a Presentati...
“A Computer Vision System for Autonomous Satellite Maneuvering,” a Presentati...“A Computer Vision System for Autonomous Satellite Maneuvering,” a Presentati...
“A Computer Vision System for Autonomous Satellite Maneuvering,” a Presentati...
 
2013 Lecture3: AR Tracking
2013 Lecture3: AR Tracking 2013 Lecture3: AR Tracking
2013 Lecture3: AR Tracking
 
Pleiades - satellite imagery - very high resolution
Pleiades - satellite imagery - very high resolutionPleiades - satellite imagery - very high resolution
Pleiades - satellite imagery - very high resolution
 
A Survey of Compressed GPU-based Direct Volume Rendering
A Survey of Compressed GPU-based Direct Volume RenderingA Survey of Compressed GPU-based Direct Volume Rendering
A Survey of Compressed GPU-based Direct Volume Rendering
 
COMP 4010 Lecture10: AR Tracking
COMP 4010 Lecture10: AR TrackingCOMP 4010 Lecture10: AR Tracking
COMP 4010 Lecture10: AR Tracking
 
SIGGRAPH 2014 Course on Computational Cameras and Displays (part 1)
SIGGRAPH 2014 Course on Computational Cameras and Displays (part 1)SIGGRAPH 2014 Course on Computational Cameras and Displays (part 1)
SIGGRAPH 2014 Course on Computational Cameras and Displays (part 1)
 
2022 COMP4010 Lecture4: AR Interaction
2022 COMP4010 Lecture4: AR Interaction2022 COMP4010 Lecture4: AR Interaction
2022 COMP4010 Lecture4: AR Interaction
 
Comp4010 Lecture4 AR Tracking and Interaction
Comp4010 Lecture4 AR Tracking and InteractionComp4010 Lecture4 AR Tracking and Interaction
Comp4010 Lecture4 AR Tracking and Interaction
 

Más de Fraunhofer IGD, Competence Center "Interactive Engineering Technologies" (7)

3 d collections_brighton_2012.02.07
3 d collections_brighton_2012.02.073 d collections_brighton_2012.02.07
3 d collections_brighton_2012.02.07
 
3 d collections_brighton_2012.02.07
3 d collections_brighton_2012.02.073 d collections_brighton_2012.02.07
3 d collections_brighton_2012.02.07
 
Populating and Browsing 3D Collections
Populating and Browsing 3D CollectionsPopulating and Browsing 3D Collections
Populating and Browsing 3D Collections
 
Vast 2011 invited_talk_final_shown
Vast 2011 invited_talk_final_shownVast 2011 invited_talk_final_shown
Vast 2011 invited_talk_final_shown
 
Fdmu pro step_2010_final
Fdmu pro step_2010_finalFdmu pro step_2010_final
Fdmu pro step_2010_final
 
FunctionalDMU –virtuelle mechatronische Modelle werden erlebbar
FunctionalDMU –virtuelle mechatronische Modelle werden erlebbarFunctionalDMU –virtuelle mechatronische Modelle werden erlebbar
FunctionalDMU –virtuelle mechatronische Modelle werden erlebbar
 
3D-COFORM: Making 3D documentation an everyday choice for the Cultural Herita...
3D-COFORM: Making 3D documentation an everyday choice for the Cultural Herita...3D-COFORM: Making 3D documentation an everyday choice for the Cultural Herita...
3D-COFORM: Making 3D documentation an everyday choice for the Cultural Herita...
 

Último

Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
panagenda
 

Último (20)

Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot ModelNavi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Navi Mumbai Call Girls 🥰 8617370543 Service Offer VIP Hot Model
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...
Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...
Apidays Singapore 2024 - Scalable LLM APIs for AI and Generative AI Applicati...
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
Ransomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdfRansomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdf
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
 

Realistic Object Appearance using Bidirectional Texture Functions

  • 1. Institute of Computer Science II Computer Graphics Realistic Object Appearance using Bidirectional Texture Functions Christopher Schwartz, Reinhard Klein 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz1 20/10/2011
  • 2. INTRODUCTION 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz2 20/10/2011
  • 3. Object Appearance • Common presentation: Geometry (+ Texture) • … but is this sufficient? 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz3 20/10/2011 Geometry only With texture Correct appearance
  • 4. Importance of Surface Appearance • Same shape, different materials • Different „look-and-feel“ • Important hints about the object • Misleading vs. better understanding 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz4 20/10/2011
  • 5. Object Appearance • Impression of reflection of incident light • Influenced by features on different scales • Macroscopic • Mesoscopic • Microscopic • Viewpoint and Illumination dependent 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz5 20/10/2011
  • 6. Form of Representation Macroscopic scale •3D shape •Explicit representation (e.g. polygon mesh) Mesoscopic scale •Individually resolved by human perception •Statistical representation not accurate •Explicit representation too costly Microscopic scale •Alignment of microscopic structures •Statistical representation (e.g. BRDF) 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz6 20/10/2011
  • 7. Bidirectional Reflectance Distribution Function • Opaque, uniform Materials • No texture! • Ratio of incident irradiance to outgoing radiance • Defined over local hemisphere • Depends on • Solid angle of light ωi • Solid angle of view ωo 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz7 20/10/2011
  • 8. Bidirectional Reflectance Distribution Function • Example BRDF • sampled at discrete angles 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz8 20/10/2011 ωi ωo BRDF TabulatedExample: BRDF on Sphere Discrete sample positions on Hemisphere Specular reflection
  • 9. Model-driven vs. Data-driven • Matusik et al. 2003 [1]: Measured BRDF ground-truth data • 100 real world materials • 1° resolution for view- and light directions • > 1,000,000 samples • Ngan et al. 2005 [2]: Experimental analysis of BRDF models 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz9 20/10/2011
  • 10. Model-driven vs. Data-driven 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz10 20/10/2011 Red phenolic Measured distribution from [1] Fitted model (Cook-Torrance) from [2]
  • 11. Model-driven vs. Data-driven 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz11 20/10/2011 Red phenolic Measured distribution from [1] Fitted model (Cook-Torrance) from [2]
  • 12. Data-driven Reflectance • Example Surface with Meso structure • Results are „ABRDFs“ (apparent BRDFs [3]) 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz12 20/10/2011 ωi ωo ωi ωo Specular reflection Retro-reflection Hard to fit with analytical model influence from neighborhood
  • 13. Model-driven Reflectance • Loss of Mesoscale depth impression… 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz13 20/10/2011 Fitted analytical SVBRDF Photograph McAllister 2002 [10]
  • 14. Data-driven Reflectance 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz14 20/10/2011 Texture Mesoscale approximated by Bump-mapping Data-Driven (BTF) Images taken from Müller et al. 2005 [7]
  • 15. Form of Representation Macroscopic scale •3D shape •Explicit representation (e.g. polygon mesh) Mesoscopic scale •Individually resolved by human perception •Statistical representation not accurate •Explicit representation too costly Microscopic scale •Alignment of microscopic structures •Statistical representation (e.g. BRDF) 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz15 20/10/2011
  • 16. Form of Representation Macroscopic scale •3D shape •Explicit representation (e.g. polygon mesh) Mesoscopic scale •Individually resolved by human perception •Statistical representation not accurate •Explicit representation too costly Microscopic scale •Alignment of microscopic structures •Statistical representation (e.g. BRDF) 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz16 20/10/2011 Data-driven: Image based
  • 17. Form of Representation Macroscopic scale •3D shape •Explicit representation (e.g. polygon mesh) Mesoscopic scale •Individually resolved by human perception •Statistical representation not accurate •Explicit representation too costly Microscopic scale •Alignment of microscopic structures •Statistical representation (e.g. BRDF) 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz17 20/10/2011 Bidirectional Texture Function
  • 18. ACQUISITION 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz18 20/10/2011
  • 19. First use of BTF: CUReT Database • 1996 – 1999 by Dana et al. [4] • 61 materials • 205 different view- and light directions • 24-bit RGB images  Manual placement of camera  BTF only partially measured 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz19 20/10/2011
  • 20. University of Bonn BTF Database • 2001 – 2003 Sarlette et al. [5] • 6561 view and light directions • 36-bit RGB images • Fully automated • 12 hrs per acquisition 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz20 20/10/2011
  • 21. University of Bonn Multiview Dome 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz21 20/10/2011 • 2004 – now by Sarlette et al. • 22,801 view and light directions • HDR images • Fully automated • No moving parts • 2hrs per acquisition
  • 22. First Capture of Complete Objects with BTF • Furukawa et al. 2002 [6] • Laser scanned geometry • Separate BTF capture  Very sparse sampling  Alignment errors 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz22 20/10/2011 Photograph Rendering
  • 23. First Capture of Complete Objects with BTF • Furukawa et al. 2002 [6] • Laser scanned geometry • Separate BTF capture  Very sparse sampling  Alignment errors 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz23 20/10/2011 Photograph Rendering
  • 24. Integrated Acquisition of Objects with BTF • Müller et al. 2005 [7] • Use University of Bonn Dome • Dense sampling (22,801), 2hrs/acquisition • Measurements integrated in one setup • No registration necessary • Geometry via Shape-from-Silhouette 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz24 20/10/2011
  • 25. Integrated Acquisition of Objects with BTF • Müller et al. 2005 Drawbacks:  No radiometric calibration • Misleading colors • Only LDR  Shape-from-Silhouette • Not automatable • Coarse geometry – Misleading Shape – Blur due to misalignment 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz25 20/10/2011 Example from Havemann et al. 2008 [12]
  • 26. Integrated HQ Acquisition • Holroyd et al. 2010 [17] • Integrated setup • Geometry with Structured Light • 42 view and light directions • 5hrs per acquisition  Sparse sampling  Model-driven • Fit Cook-torrance BRDFs 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz26 20/10/2011 Photograph Rendering
  • 27. Integrated HQ Acquisition • Holroyd et al. 2010 [17] • Integrated setup • Geometry with Structured Light • 42 view and light directions • 5hrs per acquisition  Sparse sampling  Model-driven • Fit Cook-torrance BRDFs 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz27 20/10/2011 Photograph Rendering
  • 28. Integrated HQ Acquisition with BTF • Schwartz et al. 2011 [8] • Use University of Bonn Dome • Extended with projectors for Structured Light • integrated measurement • Rapid: 3.7 hrs per acquisition • Proper calibration and HDR • Geometry: Weinmann et al. 2011 [11] 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz28 20/10/2011 Visual Hull [7], [12] Laser Scan Proposed Method [11]
  • 29. Quality 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz29 20/10/2011
  • 30. Faithfulness 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz30 20/10/2011 Photographic picture (tonemapped HDR) BTF + Geometry Schwartz et al. 2011 [8] (tonemapped HDR)
  • 31. Polynomial Texture Maps • Malzbender et al. 2001 [9]: PTM • Image-based, Sampling of Light (ωi)  Incomplete appearance information • View-dependent part of reflectance missing  For 3D Objects: only one fixed viewpoint 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz31 20/10/2011 PTM Texture
  • 32. Faithfulness 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz32 20/10/2011 Photographic picture (tonemapped HDR) BTF + Geometry Schwartz et al. 2011 [8] (tonemapped HDR) Polynomial Texture Map Malzbender et al. 2001 [9] (Single view and LDR!)
  • 33. Multiview PTMs • Gunawardane et al. 2009 [18]: • PTMs from multiple viewpoints  No macro scale  interpolation of views via optical flow  Limited amount of views • Combining multiple objects is hard • incorrect silhouttes, occlusion, shadows, etc. • Full light transport (i.e. path-tracing) not possible 33 20/10/2011 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz
  • 34. Full Light Transport with BTFs 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz34 20/10/2011
  • 35. Full Light Transport with BTFs 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz35 20/10/2011
  • 36. COMPRESSION, RENDERING AND TRANSMISSION 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz36 20/10/2011
  • 37. Datasizes • Schwartz et al. 2011 [8]: • Uncompressed BTF: ≈ 500 GB per object • Not feasible even for offline rendering… 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz37 20/10/2011
  • 38. BTF Compression • Fitting analytical models • Wu et al. 2011 [15]: SPMM • Model-driven… • lost meso-structure 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz38 20/10/2011 BTF SPMM
  • 39. BTF Compression • High degree of redundancy in the BTF • Perform statistical data analysis • Find low dimensional basis •  learn how to best describe the data 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz39 20/10/2011
  • 40. Compression using Statistical Analysis • Organization of the discrete BTF • As matrix • As Tensor 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz40 20/10/2011 Angles ωi, ωo Pixels(x,y,color) Pixels (x,y) ωo Note: Color (or wavelength) can be additional dimension
  • 41. Full Matrix Factorization • E.g. Liu et al. 2004 [14]: FMF • Representation is compact and realtime renderable [5] 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz41 20/10/2011 … ...            M           …V Angular components “Eigen-ABRDFs“           U … Spatial components “Eigen-Textures“SVD T M USV Importance
  • 42. Decorrelated Full Matrix Factorization • Gero Müller 2009 [13]: DFMF • Insight from image compression (e.g. JPEG) • Human perception is more sensitive to variation in intensity than color • Also: chromacity in images exhibits less variation • Decorrelate the BTF data into luminance and chrominance – BTFRGB  BTFY BTFU BTFV • Use fewer components for chrominance channels U, V 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz42 20/10/2011
  • 43. FMF Rendering • Uncompressed: ≈ 500GB • Compressed: ≈ 640MB • 32 components • Even fits on the GPU • Random access to BTF • Angular combination a = (ωi, ωo) • Pixel p = (x,y) 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz43 20/10/2011 components Angular component #1 Spatial component #1 Angular component #2 Spatial component #2 … … pixelangles BTF(a,p) = < , >
  • 44. Interactive Inspection via GPU Rendering 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz44 20/10/2011
  • 45. Streaming of BTF over the Internet • Schwartz et al. 2011 [16]: • Spatial components ≈ natural images • Angular components ≈ low frequency • Apply additional wavelet compression 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz45 20/10/2011 0.4bpp Wavelet 16bpp Reference
  • 46. Streaming of BTF over the Internet 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz46 20/10/2011 0.87 MB First renderable version 1 MB 7 MB 46.4 MB Fully transmitted 534 GB Reference
  • 47. Questions? Learn more about BTFs for Cultural Heritag on Wednesday [8] and Thursday [16] 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz47 20/10/2011
  • 48. References [1] “A Data-Driven Reflectance Model”, Matusik W., Pfister H., Brand M. and McMillan L., ACM TOG 22, 3(2003), 759-769. [2] “Experimental Analysis of BRDF models”, Ngan A., Durand F. and Matusik W., Proceedings of EGSR, 2005, 117- 226. [3] „Image-based Rendering with Controllable Illumination“, Wong T., Heng P., Or S., and Ng W., Proceedings of EGWR, 1997, 13-22 [4] „Reflectance and Texture of Real-World Surfaces “, Dana K.J., van Ginneken B., Nayar S.K. and Koenderink J.J., Proceedings of CVPR, 1997, 151-157 [5] „Efficient and Realistic Visualization of Cloth“, Sattler M., Sarlette R. and Klein R., Proceedings of EGSR, 2003 [6]„Appearance based object modeling using texture database: acquisition, compression and rendering“, Furukawa R., Kawasaki H. Ikeuchi K. and Sakauchi M., Proceedings of EGRW 2002, 257-266 [7] „Rapid Synchronous Acquisition of Geometry and BTF for Cultural Heritage Artefacts“, Müller G., Bendels G.H. and Klein R., Proceedings of VAST, 2005 [8] „Integrated High-Quality Acquisition of Geometry and Appearance for Cultural Heritage”, Schwartz C., Weinmann W., Roland R. and Klein R., Proceedings of VAST, 2011 [9] „Polynomial Texture Maps“, Malzbender T., Gelb D. and Wolters H., Proceedings of SIGGRAPH, 2001 [10] „A Generalized Surface Appearance Representation For Computer Graphics“, McAllister D.K., PhD. Thesis, University of North Carolina at Chapel Hill, 2002 [11] „A Multi-Camera, Multi-Projector Super-Resolution Framework for Structured Light“, Weinmann M., Schwartz C., Ruiters R. and Klein R., Proceedings of 3DIMPVT, 2011, 397-404 [12] „The Presentation of Cultural Heritage Models in Epoch“, Havemann S., Settgast V., Fellner D., Willems G., Van Gool, L., Müller G., Schneider M. and Klein R., EPOCH Conference on Open Digital CH Systems, 2008 [13] „Data-Driven Methods for Compression and Editing of Spatially Varying Appearance“, Müller G., PhD. Thesis, University of Bonn, 2009 [14] „Synthesis and Rendering of Bidirectional Texture Functions on Arbitrary Surfaces“, Liu X., Hu Y., Zhang J. Tong X., Guo B. and Shum H.-Y., IEEE Transactions on Visualization and Computer Graphics 10 (3), 2004, 278-289 [15] „A Sparse Parametric Mixture Model for BTF Compression, Editing and Rendering“, Wu H., Dorsey J. and Rushmeier H., Computer Graphics Forum 30 (2), 2011, 465-473 [16] „WebGL-based Streaming and Presentation Framework for Bidirectional Texture Function“, Schwartz C., Ruiters R., Weinmann M. and Klein R., Proceedings of VAST, 2011 [17] „A coaxial optica scanner for synchronous acquisition of 3D geometry and surface reflectance“, Holroyd M., Lawrence J. and Zickler T., ACM Trans. Graph. 29 (4), 2010 [18] „Optimized Image Sampling for View and Light Interpolation“, Gunawardane P., Wang O., Scher S., Rickards I., Davis J. And Malzbender T., Proceedings of VAST, 2009 [19] „Principles and practices of robust, photography-based digital imaging techniques for museums.“, Mudge M., Schroer C., Ear G., Martinez K., Pagi H., Toler-Franklin C., Rusinkiewicz S., Palma G., Wochowiak M., Ashley M., Matthews N., Noble T. and Dellepiane M., Proceedings of VAST, 2010 3D COFORM STAR – VAST 2011 Prato, Italy – Christopher Schwartz48 20/10/2011