SlideShare a Scribd company logo
1 of 17
DE GUZMAN, John Wilbert
HIZON, Donn Angelo M.
PEDRIGAL, Ian Sygfryd
REYES, Mervick Ann B.
TINDUGAN, Farrah Kaye Z,
4 ChEB Group 8
#8.
A spherical furnace has an inside radius of 1 m, and an
outside radius of 1.2 m. The thermal conductivity of
the wall is 0.5 W/mK. The inside furnace
temperature is 1100oC and the outside surface is at
80oC.
 a. Calculate the total heat loss for 24hrs operation.
 b. What is the heat flux and temperature at a radius of
1.1 m?
Given: ri=1m ro=1.2m
k=0.5 W/mK
a.
For spherical section:
Am = 4 π ri ro
= 4 π (1) (1.2)
= 15.079 m2
Δ x = ro – ri
= 1.2 – 1
= 0.2 m
q = 38451.534 W
b.
= 2781.7873 W/m2
T’ = 543.70 oC
#16.
 (US) A large slab 1m thick is initially at a uniform
temperature of 150˚C. Suddenly its front face is exposed
to a fluid maintained at 250 ˚C, but its rear face
remained insulated. The fluid has a convective
coefficient of 40W/m2•K. Assume the solid has a thermal
diffusivity of 0.000025 m2/s and a thermal conductivity
of 20W/m•K.
 Using a numerical finite difference method with M=5 and
4 slices, construct a table for the temperature profile of
the slab up to a time of 4000 sec.
Given:
Δx= 0.25 m
Δx
1 2 3 4 f
insulation
q
Ta= 250˚C
α= 0.000025 m2/s
κ= 20 W/ m•K
h= 40 W/ m2•K
Required:
 Temp profile of time, t=4000s
Solution:
1 2 3 4 f
0 s
500 s
1000 s
1500 s
2000 s
2500 s
3000 s
3500 s
4000 s
WORKING EQUATIONS:
a. n=1 (CONVECTIVE)
t+ΔtT1= (1/5) [(2)(0.5)tTa + {5-[(2)(0.5)+2]}tT1 +2tT2]
t+ΔtT1= 50 + (0.4)tT1 +(0.4)tT2
b. n= 2 to 4
t+ΔtTn= (1/5) [tTn-1 + (5-2)tTn +tTn+1]
t+ΔtTn= (0.2)tTn-1 + (0.6)tTn +(0.2)tTn+1
c. n=f (INSULATION)
t+ΔtTf= (1/5) [(5-2)tTf + tTf-1]
t+ΔtTf= (0.6)tTf +(0.4) tTf-1
1 2 3 4 f
0 s 150 150 150 150 150
500 s 170 150 150 150 150
1000 s 178 154 150 150 150
1500 s 182.8 158 150.8 150 150
2000 s 186.32 161.52 152.08 150.16 150
2500 s 189.136 164.592 153.584 150.512 150.064
3000 s 191.4912 167.2992 155.1712 151.0368 150.2432
3500 s 193.5162 169.712 156.7699 151.705 150.5606
4000 s 195.2913 171.8844 158.3453 152.4891 151.0184
ANSWERS:
GEANKOPLIS:
Problem 4.1-1
Insulation in a Cold Room. Calculate the heat loss per m2 of
surface area for a temporary insulating wall of a food cold
storage room where the outside temperature is 299.9 K and
the inside temperature is 276.5 K. The wall is composed of 25.4
mm of corkboard having a k of 0.0433 W/m•K
Given:
Δx
Δx= 0.0254 m
T1= 299.9 K
T2= 276.5 K
Basis: A=1 m2
Req’d: q
q
q= 39.89 W/m2
Problem 5.3-6
A flat brick wall 1.0 ft thick is the lining on one side of a
furnace. If the wall is at uniform temperature of 100°F and
one side is suddenly exposed to a gas at 1100°F, calculate
the time for the furnace wall at a point 0.5 ft from the
surface to reach 500°F. The rear side of the wall is
insulated. The convection coefficient is 2.6 btu/h-ft2
-°F.
The physical properties of the brick are k=0.65 btu/h-ft-°F
and α=0.02 ft2/h.
brick wall
To=100F
q
required: time for the wall at a point 0.5ft from the surface to reach 500F
0.5ft
1.0 ft
furnace
T1= 1100F
Given:
 To= 100°F
 T1= 1100°F
 h= 2.6 btu/h-ft2
-°F
 k=0.65 btu/h-ft-°F
 α=0.02 ft2/h
 x1= 0.5 ft
Solution:
m= k/(hx1) =0.65/(2.6 x 05) = 0.5
Y= (Ti-T)/(T1-To) = (1100-500)/(1100-100) = 0.6
Plotting these on Fig.5.3-6(Heisler),
x≈ 0.4 x= αt/(x1)2
t = 0.4(x1)2/ α = 0.4(0.5)2/0.2 = 0.05h = 3mins

More Related Content

What's hot

4 Ch Ea Grp1
4 Ch Ea Grp14 Ch Ea Grp1
4 Ch Ea Grp14ChEAB08
 
4B group 4
4B group 44B group 4
4B group 44ChEAB08
 
Group3(Conduction)
Group3(Conduction)Group3(Conduction)
Group3(Conduction)4ChEAB08
 
Group 7 4ChE A
Group 7 4ChE AGroup 7 4ChE A
Group 7 4ChE A4ChEAB08
 
4ChEB Group 6
4ChEB Group 64ChEB Group 6
4ChEB Group 64ChEAB08
 
4a group4 edited
4a group4 edited4a group4 edited
4a group4 edited4ChEAB08
 
group 3 4A
group 3 4Agroup 3 4A
group 3 4A4ChEAB08
 
Problem set 2 4b3
Problem set 2 4b3Problem set 2 4b3
Problem set 2 4b34ChEAB08
 
Group4 4 Ch E B
Group4 4 Ch E BGroup4 4 Ch E B
Group4 4 Ch E B4ChEAB08
 
Group 1 4 Ch Ea
Group 1 4 Ch EaGroup 1 4 Ch Ea
Group 1 4 Ch Ea4ChEAB08
 
Group 2 4ChE-B
Group 2 4ChE-BGroup 2 4ChE-B
Group 2 4ChE-B4ChEAB08
 
4ChEB G2 Unit Operations#2
4ChEB G2 Unit Operations#24ChEB G2 Unit Operations#2
4ChEB G2 Unit Operations#24ChEAB08
 
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 05 Assignment
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 05 AssignmentCH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 05 Assignment
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 05 Assignmentsemihypocrite
 
4cheagroup3
4cheagroup34cheagroup3
4cheagroup34ChEAB08
 

What's hot (18)

4 Ch Ea Grp1
4 Ch Ea Grp14 Ch Ea Grp1
4 Ch Ea Grp1
 
4a Group4
4a Group44a Group4
4a Group4
 
4B group 4
4B group 44B group 4
4B group 4
 
Group3(Conduction)
Group3(Conduction)Group3(Conduction)
Group3(Conduction)
 
Group 7 4ChE A
Group 7 4ChE AGroup 7 4ChE A
Group 7 4ChE A
 
4ChEB Group 6
4ChEB Group 64ChEB Group 6
4ChEB Group 6
 
4a group4 edited
4a group4 edited4a group4 edited
4a group4 edited
 
group 3 4A
group 3 4Agroup 3 4A
group 3 4A
 
Problem set 2 4b3
Problem set 2 4b3Problem set 2 4b3
Problem set 2 4b3
 
Group4 4 Ch E B
Group4 4 Ch E BGroup4 4 Ch E B
Group4 4 Ch E B
 
Unsteady State Basics
Unsteady State BasicsUnsteady State Basics
Unsteady State Basics
 
Group 1 4 Ch Ea
Group 1 4 Ch EaGroup 1 4 Ch Ea
Group 1 4 Ch Ea
 
Group 2 4ChE-B
Group 2 4ChE-BGroup 2 4ChE-B
Group 2 4ChE-B
 
4ChEB G2 Unit Operations#2
4ChEB G2 Unit Operations#24ChEB G2 Unit Operations#2
4ChEB G2 Unit Operations#2
 
Hw.1
Hw.1Hw.1
Hw.1
 
4b Group1
4b Group14b Group1
4b Group1
 
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 05 Assignment
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 05 AssignmentCH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 05 Assignment
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 05 Assignment
 
4cheagroup3
4cheagroup34cheagroup3
4cheagroup3
 

Viewers also liked

Group 5 4ChE-A
Group 5 4ChE-AGroup 5 4ChE-A
Group 5 4ChE-A4ChEAB08
 
4b group 1 edited
4b group 1 edited4b group 1 edited
4b group 1 edited4ChEAB08
 
4 A Group 8
4 A Group 84 A Group 8
4 A Group 84ChEAB08
 
Transport Processes and Unit Operation -SOLUTION MANUAL-Geankoplis
Transport Processes and Unit Operation -SOLUTION MANUAL-GeankoplisTransport Processes and Unit Operation -SOLUTION MANUAL-Geankoplis
Transport Processes and Unit Operation -SOLUTION MANUAL-GeankoplisRinka Meari
 
6th ed solution manual---fundamentals-of-heat-and-mass-transfer
6th ed solution manual---fundamentals-of-heat-and-mass-transfer6th ed solution manual---fundamentals-of-heat-and-mass-transfer
6th ed solution manual---fundamentals-of-heat-and-mass-transferRonald Tenesaca
 
122357866 transport-processes-and-separation-process-principles-solutions-manual
122357866 transport-processes-and-separation-process-principles-solutions-manual122357866 transport-processes-and-separation-process-principles-solutions-manual
122357866 transport-processes-and-separation-process-principles-solutions-manualNovi Yantika
 

Viewers also liked (7)

4BGroup3
4BGroup34BGroup3
4BGroup3
 
Group 5 4ChE-A
Group 5 4ChE-AGroup 5 4ChE-A
Group 5 4ChE-A
 
4b group 1 edited
4b group 1 edited4b group 1 edited
4b group 1 edited
 
4 A Group 8
4 A Group 84 A Group 8
4 A Group 8
 
Transport Processes and Unit Operation -SOLUTION MANUAL-Geankoplis
Transport Processes and Unit Operation -SOLUTION MANUAL-GeankoplisTransport Processes and Unit Operation -SOLUTION MANUAL-Geankoplis
Transport Processes and Unit Operation -SOLUTION MANUAL-Geankoplis
 
6th ed solution manual---fundamentals-of-heat-and-mass-transfer
6th ed solution manual---fundamentals-of-heat-and-mass-transfer6th ed solution manual---fundamentals-of-heat-and-mass-transfer
6th ed solution manual---fundamentals-of-heat-and-mass-transfer
 
122357866 transport-processes-and-separation-process-principles-solutions-manual
122357866 transport-processes-and-separation-process-principles-solutions-manual122357866 transport-processes-and-separation-process-principles-solutions-manual
122357866 transport-processes-and-separation-process-principles-solutions-manual
 

4ChEB Group 8

  • 1. DE GUZMAN, John Wilbert HIZON, Donn Angelo M. PEDRIGAL, Ian Sygfryd REYES, Mervick Ann B. TINDUGAN, Farrah Kaye Z, 4 ChEB Group 8
  • 2. #8. A spherical furnace has an inside radius of 1 m, and an outside radius of 1.2 m. The thermal conductivity of the wall is 0.5 W/mK. The inside furnace temperature is 1100oC and the outside surface is at 80oC.  a. Calculate the total heat loss for 24hrs operation.  b. What is the heat flux and temperature at a radius of 1.1 m?
  • 4. a. For spherical section: Am = 4 π ri ro = 4 π (1) (1.2) = 15.079 m2 Δ x = ro – ri = 1.2 – 1 = 0.2 m
  • 7. #16.  (US) A large slab 1m thick is initially at a uniform temperature of 150˚C. Suddenly its front face is exposed to a fluid maintained at 250 ˚C, but its rear face remained insulated. The fluid has a convective coefficient of 40W/m2•K. Assume the solid has a thermal diffusivity of 0.000025 m2/s and a thermal conductivity of 20W/m•K.  Using a numerical finite difference method with M=5 and 4 slices, construct a table for the temperature profile of the slab up to a time of 4000 sec.
  • 8. Given: Δx= 0.25 m Δx 1 2 3 4 f insulation q Ta= 250˚C α= 0.000025 m2/s κ= 20 W/ m•K h= 40 W/ m2•K
  • 9. Required:  Temp profile of time, t=4000s Solution:
  • 10. 1 2 3 4 f 0 s 500 s 1000 s 1500 s 2000 s 2500 s 3000 s 3500 s 4000 s
  • 11. WORKING EQUATIONS: a. n=1 (CONVECTIVE) t+ΔtT1= (1/5) [(2)(0.5)tTa + {5-[(2)(0.5)+2]}tT1 +2tT2] t+ΔtT1= 50 + (0.4)tT1 +(0.4)tT2 b. n= 2 to 4 t+ΔtTn= (1/5) [tTn-1 + (5-2)tTn +tTn+1] t+ΔtTn= (0.2)tTn-1 + (0.6)tTn +(0.2)tTn+1 c. n=f (INSULATION) t+ΔtTf= (1/5) [(5-2)tTf + tTf-1] t+ΔtTf= (0.6)tTf +(0.4) tTf-1
  • 12. 1 2 3 4 f 0 s 150 150 150 150 150 500 s 170 150 150 150 150 1000 s 178 154 150 150 150 1500 s 182.8 158 150.8 150 150 2000 s 186.32 161.52 152.08 150.16 150 2500 s 189.136 164.592 153.584 150.512 150.064 3000 s 191.4912 167.2992 155.1712 151.0368 150.2432 3500 s 193.5162 169.712 156.7699 151.705 150.5606 4000 s 195.2913 171.8844 158.3453 152.4891 151.0184 ANSWERS:
  • 13. GEANKOPLIS: Problem 4.1-1 Insulation in a Cold Room. Calculate the heat loss per m2 of surface area for a temporary insulating wall of a food cold storage room where the outside temperature is 299.9 K and the inside temperature is 276.5 K. The wall is composed of 25.4 mm of corkboard having a k of 0.0433 W/m•K Given: Δx Δx= 0.0254 m T1= 299.9 K T2= 276.5 K Basis: A=1 m2 Req’d: q q q= 39.89 W/m2
  • 14. Problem 5.3-6 A flat brick wall 1.0 ft thick is the lining on one side of a furnace. If the wall is at uniform temperature of 100°F and one side is suddenly exposed to a gas at 1100°F, calculate the time for the furnace wall at a point 0.5 ft from the surface to reach 500°F. The rear side of the wall is insulated. The convection coefficient is 2.6 btu/h-ft2 -°F. The physical properties of the brick are k=0.65 btu/h-ft-°F and α=0.02 ft2/h.
  • 15. brick wall To=100F q required: time for the wall at a point 0.5ft from the surface to reach 500F 0.5ft 1.0 ft furnace T1= 1100F
  • 16. Given:  To= 100°F  T1= 1100°F  h= 2.6 btu/h-ft2 -°F  k=0.65 btu/h-ft-°F  α=0.02 ft2/h  x1= 0.5 ft
  • 17. Solution: m= k/(hx1) =0.65/(2.6 x 05) = 0.5 Y= (Ti-T)/(T1-To) = (1100-500)/(1100-100) = 0.6 Plotting these on Fig.5.3-6(Heisler), x≈ 0.4 x= αt/(x1)2 t = 0.4(x1)2/ α = 0.4(0.5)2/0.2 = 0.05h = 3mins