Planteamiento de hipotesis
Próxima SlideShare
Cargando en...5
×

¿Le gusta esto? Compártalo con su red

Compartir
  • Full Name Full Name Comment goes here.
    ¿Está seguro?
    Tu mensaje aparecerá aquí
    Be the first to comment
No Downloads

reproducciones

reproducciones totales
2,997
En SlideShare
2,997
De insertados
0
Número de insertados
0

Acciones

Compartido
Descargas
75
Comentarios
0
Me gusta
1

Insertados 0

No embeds

Denunciar contenido

Marcada como inapropiada Marcar como inapropiada
Marcar como inapropiada

Seleccione la razón para marcar esta presentación como inapropiada.

Cancelar
    No notes for slide

Transcript

  • 1. 114300-28575Facultad de Administración<br />Integrantes del equipo 2 de agencias de viaje:<br />Alarcón Coss Rubén<br />Barragán Malpica Ana Iris<br />Bautista Marroquin Anili <br />Becerra Simón Carlos Rafael<br />Meza Alarcón Uriel<br />Ramón Ortiz Edson Joaquín<br />Vásquez Lagunés Jesús<br />Tema: PLANTEAMIENTO DE HIPOTESIS EN UNA POBLACION PARA LA PROPORCION (ESTUDIOS >, <, ≠)<br />Materia:<br />Estadística inferencial<br />Carrera:<br />Administración de empresas turísticas<br />Bloque.<br />4°sem.<br />Turno:<br />Matutino<br />APLICACIÓN:<br />El uso y formulación correcta de las hipótesis le permiten al investigador poner a prueba aspectos de la realidad, disminuyendo la distorsión que pudieran producir sus propios deseos o gustos. Pueden ser sometidas a prueba y demostrarse como probablemente correctas o incorrectas sin que interfieran los valores o creencias del individuo.<br />GLOSARIO:<br />CONCEPTODEFINICIONTRADUCCIONPRUEBA DE HIPOTESISEstadística es una conjetura  de una o más poblaciones. Nunca se sabe con absoluta certeza la verdad o falsedad de una hipótesis estadística, a no ser que se examine la población entera. Esto por su puesto sería impráctico en la mayoría de las situaciones.Statistics is a guess of one or more populations. You never know with absolute certainty the truth or falsity of a statistical hypothesis, unless a review of the entire population. This of course would be impractical in most situations.HIPOTESIS NULARepresenta la hipótesis que mantendremos a no ser que los datos indiquen su falsedad. “Nula” debe entenderse en el sentido de “neutra “Represents the hypothesis that unless you keep the data indicate false. " None" should be understood in the sense of " neutral" NIVEL DE SIGNIFICANCIASe define normalmente una medida de discrepancia, entre los datos muéstrales y la hipótesis nula H0. Intuitivamente la discrepancia debe depender de la diferencia entre el valor del parámetro especificado por H0 y el valor del estimador calculado en la muestraIs normally a measure of discrepancy between the sample data and the null hypothesis H0. Intuitively, the discrepancy should depend on the difference between the value of the parameter specified by H0 and the value of the estimate calculated in the samplePROPORCIONLa fracción, porción relativa o porcentaje, que expresa la parte de la población o muestra que tiene un atributo particular de intereses The fraction, relative proportion or percentage that expresses the proportion of the population or sample that has a particular attribute of interest<br />FORMULARIO<br />OBTENCION DE LA HIPOTESIS EN UNA POBLACION PARA LA PROPOCIONCASOESTADISTICOΖexp Estadístico calculado = p-p0p0q0n Zteo Estadístico de Tablas= Z1-α/2 <br />INTRODUCCIÓN<br />El tema presentado corresponde al planteamiento de hipótesis para la proporción en 1 y en 2 poblaciones.<br />Proporción en este tema se puede definir como “una fracción, relación o porcentaje que indica la parte de la población o muestra que tiene una característica de interés particular.<br />Al igual que en otros estudios estadísticos, el planteamiento de hipótesis para la proporción cuenta con estudios bilaterales y unilaterales. Lo que se presenta ahora es precisamente cada uno de esos estudios.<br />TEORIA:<br />Como se ha indicado anteriormente, nuestro objetivo al tomar una muestra es extraer alguna conclusión o inferencia sobre una población. En nuestro interés es conocer acerca de los parámetros que caracterizan la población en estudio. El único motivo para examinar muestras es que las poblaciones suelen ser demasiado grandes y costosas de estudiar.<br />La prueba de hipótesis es un procedimiento estadístico que comienza con una suposición que se hace con respecto a un parámetro de población, luego se recolectan datos de muestra, se producen estadísticas de muestra y se usa esta información para decidir qué tan probable es que sean correctas nuestras suposiciones acerca del parámetro de población en estudio.<br />Objetivo de la prueba de hipótesis<br />Decidir, basado en una muestra de una población, cuál de dos hipótesis complementarias<br />es cierta.<br />Las dos hipótesis complementarias se denominan hipótesis nula e hipótesis alternativa.<br />Conceptos Básicos:<br />Hipótesis Nula (H0)<br />Representa la hipótesis que mantendremos cierta a no ser que los datos indiquen su falsedad. Esta hipótesis nunca se considera aceptada, en realidad lo que se quiere decir es que no hay suficiente evidencia estadística para rechazarla por lo que aceptar H0 no garantiza que H0 sea cierta.<br />Hipótesis Alternativa (H1)<br />Hipótesis que se acepta cuando los datos no respaldan la hipótesis nula.<br />Tipos de pruebas<br />Metodología:<br />La lógica de una prueba de hipótesis es similar a la de un juicio penal, donde debe decidirse si el acusado es inocente o culpable y el juicio consiste en aportar evidencia para rechazar la hipótesis de inocencia más allá de cualquier duda razonable. Por su parte una prueba de hipótesis analiza si los datos observados permitan rechazar la hipótesis nula, comprobando si éstos tienen una probabilidad de aparecer lo suficientemente pequeña cuando es cierta la hipótesis nula.<br />Las etapas de una prueba de hipótesis son:<br />a) Definir la hipótesis nula a contrastar.<br />b) Definir una medida de discrepancia entre los datos muéstrales y la hipótesis Ho.<br />Supongamos que el parámetro de interés es la media de una población y que a partir de una muestra hemos obtenido su estimador x , entonces debemos medir de alguna manera la discrepancia entre ambos, que denotaremos como d(m , x) .<br />c) Decidir qué discrepancia consideramos inadmisibles con Ho, es decir, a partir de qué valor de d, la discrepancia es muy grande como para atribuirse al azar y considerar que Ho pueda ser cierta. Para ello debemos entonces:<br />· Tomar la muestra<br />· Calcular el estimador del parámetro, en nuestro ejemplo x<br />· Calcular la medida de discrepancia d.<br />· Tomar la decisión: Si d es “pequeña”, aceptar Ho, si es lo<br />“suficientemente “grande, rechazarla y aceptar H1.<br />Es por ello que necesitamos establecer una Regla de Decisión mediante la cual sea especificada:<br />a) La medida de discrepancia.<br />b) Un criterio que nos permita juzgar qué discrepancia son “demasiado grandes”<br />Tipos de pruebas<br />a) Pruebas de hipótesis de 2 extremos o bilaterales.<br />Es una prueba en la que H0 se rechaza si el valor de la muestra es significativamente mayor o menor que el valor hipotetizado del parámetro de población. Esta prueba<br />1082040179070involucra dos regiones de rechazo<br />b) Pruebas de hipótesis de 1 extremo o unilaterales. Es una prueba en la que sólo hay una región de rechazo, es decir, sólo nos interesa si el valor observado se desvía del valor hipotetizado en una dirección. Pueden ser:<br />b.1) Prueba de extremo inferior<br />Es una prueba en la que si hay un valor de muestra que se encuentra significativamente por debajo del valor de la población hipotetizado, nos llevará a rechazar la hipótesis nula. Gráficamente:<br />b.2) Prueba de extremo superior<br />Es una prueba en la que si hay un valor de muestra que se encuentra significativamente por encima del valor de la población hipotetizado, nos llevará a rechazar la hipótesis nula. Gráficamente:<br />Pasos Generales<br />1) Identificar si el parámetro de interés es 0 0 0 0 J =m oJ = p<br />2)Establecer las hipótesis correspondientes y el nivel de significancia.<br />3)Calcular la medida de discrepancia o estadístico de muestra.<br />4)Buscar el valor del percentil, en dependencia de la distribución encontrada en 3.<br />5)Compare los valores, tomar la decisión e interpretar los resultados.<br />Fórmulas<br />Para 1 población:<br />Ζexp = p-p0p0q0n Estadístico Calculado <br /> <br />Zteo = Z1-α/2 Estadístico de tablas<br />REGLA DE DECISIÓN<br /> <br /> SI Zexp ≤ Zteo aceptamos H0<br /> SI Zexp > Zteo rechazamos H0 y aceptamos H1<br />Si el estadístico calculado tiene un resultado mayor al estadístico obtenido en las tablas, entonces la hipótesis H0 se rechaza.<br />EJEMPLO 1:<br />Una encuesta de opinión publica consulta a 400 varones y 600 mujeres acerca de un proyecto de exportación. El 70% de los varones y el 75% de las mujeres expresan su afirmación. Utilizando un nivel de significancia de 0.05, puede concluir que la diferencia observada es significativa.<br />H0: P1 = P2<br />H1: P1 ≠ P2 Zc = P1 – P2/Td <br />n1: 400 Td = ¶ (1 - ¶) (1/n1 + 1/n2) Zc = 1.77<br />n: 600 ¶ = (n1P1 + n2P2)/ n1 + n2 <br />p: 0.75<br />α: 0.05/2 Z tablas = 0.5 – (0.05/2)<br /> Z tablas = 0.475 = 1.96<br />Zc = 1.77 < Zt = 1.96, por lo tanto H0 no se rechaza. La diferencia observada es significativa.<br />EJEMPLO 2:<br />En una conferencia se anuncia que el 90% de los habitantes adultos en su municipio están a favor del proyecto de gobierno. Concluirá que la popularidad del proyecto ha sido exagerada por la autoridad. La muestra de 625 personas indica que 500 están a favor.<br />HO: p1  ≤  p2 Tp= Vπ(1-π<br />HI: p1 > p2 Zc= (p-HYPERLINK " http://es.wikipedia.org/wiki/Tabla_de_s%C3%ADmbolos_matem%C3%A1ticos" l " .CF.80" π) / Tp Zc= 1.66<br />n= 625 Ztablas= 0.5-0.01<br />π= 0.90 Zc = 1.66 < Zt=2.32, por lo tanto HO no se rechaza. La <br />P = 500/625 popularidad.<br />α = 0.01<br />EJEMPLO 3:<br />El 90% de los televisores de color no necesitan ninguna reparación durante sus 2 primeros años de funcionamiento. La PROFECO selecciona 100 televisiones y encuentran que 15 de ellos fueron reparados en los 2 primeros años. Manejara un nivel de con fianza del 95% y concluir, que decidirá PROFECO con respecto a la afirmación de Sony<br />HO: p1≥p2Zc= p1-p2/TpZc= -1.66<br />HI: p1 < p2 Td=π(1-π)(1/n1+1/n2)<br />n= 100π=(n1p1+n2p2)/n1+n2Ztablas=0.5-.05<br />π= .90Ztablas=0.45=1.64<br />P= 85 / 100Zc = 1.66 > Zt=1.64, por lo tanto HO se rechaza. La <br />α=.05 afirmación de Sony no es válida.<br />Ejercicio 1:<br />Se realizan 200 lanzamientos de una moneda y salen 120 caras, ¿podemos aceptar que la moneda no está trucada con un nivel de significación del 5%?<br />Ho: p=0,5 ; H1: p≠0,5<br />(Contraste bilateral)<br />Si Ho es cierta la distribución muestral es N(0,5;0,035) <br />Para = α0,05 α/2=0,025 zα/2=1,96 <br />Zona de aceptación<br />(0,5-1,96*0,035 ; 0,5+1,96*0,035)=<br />=(0,431;0,569)<br />La proporción de caras en la muestra ha sido 120/200=0,6 que no pertenece a la zona de aceptación, por lo que no aceptamos la hipótesis nula, es decir creemos que la moneda está trucada <br /> <br />Ejercicio 2:<br />Una máquina fabrica piezas de precisión y se garantiza que la proporción de piezas correctas producidas es al menos del 97%. Un cliente recibe un lote de 200 piezas y aparecen 8 piezas defectuosas; a un nivel de confianza del 95% ¿rechazará el lote por no cumplir las condiciones de la garantía?<br />Ho: p³ 0,97 ; H1: p<0,97 <br />(contraste unilateral)<br />La distribución muestral es <br />N(0,97;0,01) <br />Para α=0,05 zα=1,645 <br />zona de aceptación<br />(0,97 - 1,645*0,01 ; + ∞) = (0,95 ; +∞)<br />La proporción de piezas correctas en la muestra es p´=192/200=0,96 y como 0,96Î(0,95; +¥) se acepta la hipótesis nula y por tanto el lote. <br />EJERCICIO 3.<br />El peso en libras de una muestra aleatoria de bebés de seis meses siguen una distribución<br />Normal con una desviación de 1.21 libras. Según se ha establecido, en promedio un bebé<br />de esta edad debe pesar alrededor de 14 libras. Un pediatra sin embargo considera que<br />ahora los bebés han variado su peso y para ello ha considerado el peso de 100 bebés de<br />esta edad obteniendo un peso medio de 14.3 libras. Con un nivel de confianza del 5% ,<br />pruebe si el pediatra tiene razón en lo planteado<br />Solución:<br />1. Datos:<br />En este caso conocemos la varianza de la población,s = 1.21, además<br />0 m = 14 libra, x = 14.3 libras, n = 100 y a = 0.05<br />2. Hipótesis:<br />Ho :m = 14 libras H1 : m ¹ 14 libras<br />3. Estadístico de Prueba:<br />4 .Percentil:<br />t0.975 (99) =1.98 como n> 30<br />z0.975 = 1.96<br />5. Justificación y decisión:<br />2.5>1.96 por lo tanto se rechaza Ho y se concluye con un nivel de significancia del 0.05<br />que el peso promedio de todos los bebés de seis meses ha variado según las pruebas<br />disponibles.<br />EJERCICIO 4:<br /> Históricamente la proporción de clientes que compran con tarjeta de crédito en una<br />determinada tienda es como mínimo del 25%, sin embargo la dueña de la tienda piensa<br />que esta cifra ha disminuido significativamente. De los últimas 1122 clientes 242<br />compraron con tarjeta de crédito<br />¿Se está cumpliendo lo que piensa la dueña?.<br />Sol: región de rechazo, si tiene razón la dueña<br />EJERCICIO 5:<br />Se sabe que la desviación típica de las notas de cierto examen de Matemáticas es 2,4. Para una muestra de 36 estudiantes se obtuvo una nota media de 5,6. ¿Sirven estos datos para confirmar la hipótesis de que la nota media del examen fue de 6, con un nivel de confianza del 95%? <br />1. Enunciamos las hipótesis nula y alternativa:<br />H0 : μ = 6      La nota media no ha variado.<br />H1 : μ ≠ 6       La nota media ha variado.<br />2. Zona de aceptación <br />Para α = 0.05, le corresponde un valor crítico: zα/2 = 1.96.<br />Determinamos el intervalo de confianza para la media:<br />(6-1,96 ·  0,4 ; 6+1,96 ·  0,4) = (5,22 ; 6,78)<br />3. Verificación. <br />Valor obtenido de la media de la muestra: 5,6 .<br />4. Decisión<br />Aceptamos la hipótesis nula H0, con un nivel de significación del 5%.<br />EJERCICIO 6:<br />Un sociólogo ha pronosticado, que en una determinada ciudad, el nivel de abstención en las próximas elecciones será del 40% como mínimo. Se elige al azar una muestra aleatoria de 200 individuos, con derecho a voto, 75 de los cuales estarían dispuestos a votar. Determinar con un nivel de significación del 1%, si se puede admitir el pronóstico.<br />1. Enunciamos las hipótesis nula y alternativa:<br />H0 : μ ≥ 0.40      La abstención será como mínimo del 40%.<br />H1 : μ < 0.40     La abstención será como máximo del 40%; <br />2. Zona de aceptación <br />Para α = 0.01, le corresponde un valor crítico: zα = 2.33.<br />Determinamos el intervalo de confianza para la media:<br />3.Verificación. <br />4.Decisión<br />Aceptamos la hipótesis nula H0. Podemos afirmar, con un nivel de significación del 1%, que la  La abstención será como mínimo del 40%. <br />EJERCICIO 7:<br />El expendio Pollos Deliciosos asegura que 90% de sus órdenes se entregan en menos de 10 minutos. En una muestra de 100 órdenes, 82 se entregaron dentro de ese lapso. Puede concluirse en el nivel de significancia 0,01, que menos de 90% de las órdenes se entregan en menos de 10 minutos?<br /> <br /> <br />EJERCICIO  8:<br />Un artículo reciente, publicado en el diario USA today, indica que solo a uno de cada tres egresados de una universidad les espera un puesto de trabajo. En una investigación a 200 egresados recientes de su universidad, se encontró que 80 tenían un puesto de trabajo. Puede concluirse en el nivel de significancia 0,02, que en su universidad la proporción de estudiantes que tienen trabajo es mayor?<br />  <br /> <br /> <br />EJERCICIO 9:<br />A una muestra a nivel nacional (en Estados Unidos) de ciudadanos influyentes de los partidos republicano y demócrata, se les preguntó entre otras cosas, si estaban de acuerdo con la disminución de los estándares ambientales para permitir el uso del carbón con alto contenido de azufre como combustible. Los resultados fueron:<br />                                       Republicanos                Demócratas Cantidad muestreada              1000Cantidad a favor                       200  800 168<br />Al nivel de significancia 0,02, puede decirse que hay una proporción mayor de Demócratas a favor de reducir los estándares?<br /> <br />EJERCICIO 10:<br />El peso en libras de una muestra aleatoria de bebés de seis meses siguen una distribución normal con una desviación de 1.21 libras. Según se ha establecido, en promedio un bebé de esta edad debe pesar alrededor de 14 libras. Un pediatra sin embargo considera que ahora los bebés han variado su peso y para ello ha considerado el peso de 100 bebés de esta edad obteniendo un peso medio de 14.3 libras. Con un nivel de confianza del 5%, pruebe si el pediatra tiene razón en lo planteado.<br />Datos:1.21x = 14.3 libras n = 100= 14 libra= 0.05Hipótesis:Ho: = 14 librasH1: 14 librasZt = 1.96Formula y sustitución:z= x- μ0σnz= 14.3- 141.21100=2.5Zc > Zt2.5 > 1.96Con un nivel de confianza del 5% se concluye que el peso promedio de todos los bebes de seis mese ha variado según las pruebas disponibles, por lo tanto Ho se rechaza.<br />EJERCICIO 11:<br />Históricamente la proporción de clientes que compran con tarjeta de crédito en una determinada tienda es como mínimo del 25%, sin embargo la dueña de la tienda piensa que esta cifra ha disminuido significativamente. De los últimas 1122 clientes 242 compraron con tarjeta de crédito; si  ¿Se está cumpliendo lo que piensa la dueña?<br />Datos:p p0 = 0.25 n = 1122= 0.10Hipótesis:Ho : p 0.25H1 : p 0.25Formula y sustitución:z= p- P0p01-p0nz= .215- .25.251- .251122=-2.31Zc > Zt2.31>1.29Con un nivel de confianza del 10% se comprueba que la cifra ha disminuido significativamente por lo que Ho se rechaza.<br />EJEMPLO 12:<br /> Se afirma que, de todas las familias que salen de Cumana por lo menos el 30 % se mudan a Maracaibo. Si una muestra de 600 mudanzas tomada al azar de los registros de la Alcaldía de Cumana revela que de los permisos de mudanza autorizados 153 fueron para Maracaibo, pruebe la hipótesis nula p = 0.30 contra la hipótesis alternativa p < 30 con un nivel de significancia del 1 %.<br />SOLUCIÓN: Para calcular la proporción p lo primero que se ha de hacer es determinar la proporción, luego se plantea una hipótesis unilateral con un nivel de significancia al 1%.<br /> <br />Hipótesis:<br />Regla de decisión o Región crítica: Se rechaza la Hipótesis nula si: es decir,.<br /> <br />Aplicando formula se tiene:<br />O también Aplicando:<br />Conclusión: Como es menor que , es decir,, se rechaza con un nivel de significancia de 0.01. Esto se puede observar en la grafica D en donde cae fuera del área de aceptación, por lo tanto, se cumple que , es decir, menos del 30 % de las familias que salen de Cumana, se mudan a Maracaibo. <br />EJEMPLO 13:<br /> Se sabe que el 10 % de los fumadores prefieren la marca de cigarrillo Malboro. Después de una campaña publicitaria del cigarrillo Malboro, se entrevistaron a 200 fumadores para determinar la eficiencia de la campaña publicitaria. El resultado de la muestra realizada detecto un total de 26 personas que fumaban Malboro. ¿Pueden considerarse que esos datos presentan evidencia suficiente para indicar que hubo un aumento en la aceptación del cigarrillo Malboro. Obtenga las conclusiones del planteamiento desarrollando un contraste de hipótesis con un nivel de significancia del 5 %.<br />SOLUCIÓN: Para resolver el problema se plantea una hipótesis altenativa unilateral por la derecha. Por tabla se sabe que al 5 % por la derecha .<br />Datos:.<br />Hipótesis:<br />Regla de decisión o Región crítica: Se rechaza la Hipótesis nula si ,es decir, .<br /> <br />Aplicando formula se tiene:<br />Conclusión: Como es menor que , es decir,, se acepta con un nivel de significancia de 0.05. Esto se puede observar en la grafica A en donde cae dentro del área de aceptación, por lo tanto, el 10 % de los fumadores prefieren Malboro, lo que indica que la campaña publicitaria no fue efectiva ya que de haberlo sido se hubiese aceptado la hipótesis <br /> <br />EJEMPLO 14: <br />Un fabricante de semiconductores produce controladores que se emplean en el sistema eléctrico de vehículos. El cliente requiere que la proporción de controladores defectuosos no sea mayor de 0.05, y que el fabricante demuestre estas características del proceso de fabricación con este nivel de calidad, con un nivel de significancia del 5 %. El fabricante de semiconductores toma una muestra aleatoria de 200 dispositivos y encuentra que 4 de ellos son defectuosos. ¿El fabricante puede demostrar al cliente la calidad exigida? Saque sus conclusiones.<br />SOLUCIÓN: para resolver el problema hay que plantear una hipótesis alternativa unilateral de una cola por la izquierda es decir, p< 0.05 y para ello se busca en la tabla el valor de .<br />Datos: <br />Hipótesis:<br />Regla de decisión o Región crítica: Se rechaza la Hipótesis nula si ,es decir,.<br /> <br />Aplicando formula se tiene:<br />Conclusión: Como es menor que , es decir,, se rechaza con un nivel de significancia de 0.05. Esto se puede observar en la grafica A en donde cae fuera del área de aceptación, por lo tanto, se acepta y se concluye que la proporción de artículos defectuosos es menor del 5 %, como quería el cliente. <br />EJEMPLO 15: <br />Se ha afirmado que por lo menos el 60 % de los alumnos de primero y segundo semestre de un Tecnológico prefieren estudiar a partir de las dos de la madrugada. Si 4 de una muestra de alumnos de primero y segundo semestre de n =14 tomadas al azar, afirman estudiar a partir de las dos de la madrugada, pruebe con un nivel de significancia del 5 % si se debe aceptar la hipótesis nula p≥0.60 contra la hipótesis alternativa p<0.60.<br />Datos: <br />SOLUCIÓN: Por tabla al 0.05 de significancia se sabe que la hipótesis alternativa unilateral por la izquierda es .<br />Hipótesis:<br />Regla de decisión o Región crítica: Se rechaza la Hipótesis nula si ,es decir,.<br /> <br />Aplicando formula se tiene:<br />Conclusión: Como es menor que , es decir,, se rechaza con un nivel de significancia de 0.05. Esto se puede observar en la grafica A en donde cae fuera del área de aceptación, por lo tanto, se acepta y se concluye que la proporción de estudiantes del primero y segundo semestre que prefieren estudiar a partir de las dos de la madrugada es menor del 60 %. <br />BIBLIOGRAFIA:<br />http://www.monografias.com/trabajos30/prueba-de-hipotesis/prueba-de-hipotesis.shtml<br />http://www.monografias.com/trabajos17/pruebas-de-hipotesis/pruebas-de-hipotesis.shtml<br />http://www.uaq.mx/matematicas/estadisticas/xu5.html<br />http://www.google.com.mx/#hl=es&source=hp&q=formulas+para+la+hipotesis+de+una+poblacion+para+la+proporcion&aq=o&aqi=&aql=&oq=&gs_rfai=&fp=d10292ead3547438<br />