SlideShare una empresa de Scribd logo
1 de 51
Bayesian Methods in 
                  Reliability Engineering
                  R li bili E i       i
                              Charles Recchia
                             ©2012 ASQ & Presentation Charles
                              Presented live on Nov 15th, 2012




http://reliabilitycalendar.org/The_Rel
iability Calendar/Webinars_‐
       y_          /
_English/Webinars_‐_English.html
ASQ Reliability Division 
                  ASQ Reliability Division
                  English Webinar Series
                  English Webinar Series
                   One of the monthly webinars 
                   One of the monthly webinars
                     on topics of interest to 
                       reliability engineers.
                      To view recorded webinar (available to ASQ Reliability 
                                               (                           y
                          Division members only) visit asq.org/reliability

                   To sign up for the free and available to anyone live webinars 
                   To sign up for the free and available to anyone live webinars
                    visit reliabilitycalendar.org and select English Webinars to 
                              find links to register for upcoming events


http://reliabilitycalendar.org/The_Rel
iability Calendar/Webinars_‐
       y_          /
_English/Webinars_‐_English.html
Bayesian Methods in Reliability Engineering

      ASQ Reliability Division Webinar Program

                   Nov 15th 2012

        Charles H. Recchia, MBA, PhD
         Quality Support Group, Inc
   http://www.qualitysupportgroup.com/
   http://www qualitysupportgroup com/
BAYESIAN METHODS IN RELIABILITY ENGINEERING
 With product reliability demonstration test planning and execution interacting 
 heavily with cost, availability and schedule considerations, Bayesian methods 
 heavily with cost availability and schedule considerations Bayesian methods
 offer an intelligent way of incorporating engineering knowledge based on 
                                       y            p                  g
 historical information into data analysis and interpretation, resulting in an 
 overall more precise and less resource intensive failure rate estimation.  This talk 
 consists of three parts
       Introduction to Bayesian vs Frequentist statistical approaches
       Bayesian formalism for reliability estimation
       Product/component case studies and examples


Charles Recchia has more than two dozen years of fundamental research, technology/product 
development, and management experience with a special focus on reliability statistics of complex 
systems. He earned a doctorate in Condensed Matter Physics from Ohio State University, and a Master 
of Business Administration degree from Babson College. Dr. Recchia accrued reliability engineering 
 fB i       Ad i i       i d       f    B b     C ll     D R hi           d li bili       i    i
expertise at Intel, MKS Instruments and Saint‐Gobain Innovative Materials R&D, has served as adjunct 
professor at Wittenberg University, and is author of numerous peer‐reviewed technical papers and 
patents.  He is a senior member of ASQ, the American Physical Society, and serves on the Advisory 
            f                        f
Committee for the Boston Chapter of the IEEE Reliability Society.

11/15/2012                                              ASQ RD Webinar                                  2
Agenda
                     A d
• Bayesian vs. Frequentist Comparison

• Preliminary Example

• Conjugate Priors
  Conjugate Priors

• Test Time Examples
  Test Time Examples

• Q ti
  Question and Answer
             dA

11/15/2012             ASQ RD Webinar   3
11/15/2012   ASQ RD Webinar   4
Agenda
                     A d
• Bayesian vs. Frequentist Comparison

• Preliminary Example

• Conjugate Priors
  Conjugate Priors

• Test Time Examples
  Test Time Examples

• Q ti
  Question and Answer
             dA

11/15/2012             ASQ RD Webinar   5
A d
                     Agenda
• Bayesian vs. Frequentist Comparison

• Preliminary Example

• Conjugate Priors
  Conjugate Priors

• Test Time Examples
  Test Time Examples

• Q ti
  Question and Answer
             dA

11/15/2012             ASQ RD Webinar   6
When reliability follows the exponential TTF
When reliability follows the exponential TTF model (eg the flat
                                                       the flat 
constant failure rate portion of Bathtub Curve):

Classical Framework
      – The MTBF is one fixed unknown value ‐ there is no “probability” associated 
        with it
          ith it
      – Failure data from a test or observation period allows you to make 
        inferences about the value of the true unknown MTBF
      – No other data are used and no “judgment” ‐ the procedure is objective and 
        based solely on the test data and the assumed HPP model
Bayesian Framework
Bayesian Framework
      – The MTBF is a random quantity with a probability distribution
      – The particular piece of equipment or system you are testing “chooses” an 
        MTBF from this distribution and you observe failure data that follow an 
        MTBF f       hi di ib i          d      b      f il    d     h f ll
        HPP model with that MTBF
      – Prior to running the test, you already have some idea of what the MTBF 
        probability distribution looks like based on prior test data or an consensus 
        engineering judgment


11/15/2012                            ASQ RD Webinar                                    7
exponential distribution
               ti l di t ib ti
“non‐intuitive”
 non intuitive
Brains wired with 
                                     Planet = Earth
Normal Distribution σ ~ 0.1μ         6 draw sample.  
                                     Population mean height 5’11”
                                     Sample mean = ______




                                                               8
 5’9”   6’3”   5’10”   5’9”   6’0”   5’9”
ti l di t ib ti
             exponential distribution

                                                 Planet = Laitnenopxe
                                                 6 draw sample.  
                                                 Population mean height 5’11”
                                                 Sample mean = ______




11/15/2012            ASQ RD Webinar                                       9
4’11”         13’8”   7’11”            5’9”   2’5”   4”
Confidence vs. Credibility Intervals
   C fid          C dibilit I t      l




11/15/2012        ASQ RD Webinar          10
For and Against use of Bayesian Methodology
            g               y               gy
               PROs                                   CONs
    Uses prior information ‐ thi
    U      i i f      ti     this       Prior information may not be 
                                        Pi i f        ti          tb
"makes sense“                         accurate ‐ generating misleading 
   Less new testing may be 
   Less new testing may be            conclusions
needed to confirm a desired             Way of inputting prior information 
MTBF at a given confidence
MTBF at a given confidence            (choice of prior) may not be correct
                                      (choice of prior) may not be correct
   Confidence intervals are really    Customers may not accept validity of 
intervals for the (random) MTBF 
intervals for the (random) MTBF       prior data or engineering judgements
                                      prior data or engineering judgements
‐ sometimes called "credibility         Risk of perception that results 
intervals“                            aren't objective and don't stand by 
                                                j                        y
                                      themselves




11/15/2012                       ASQ RD Webinar                         11
Agenda
                     A d
• Bayesian vs. Frequentist Comparison

• Preliminary Example

• Conjugate Priors
  Conjugate Priors

• Test Time Examples
  Test Time Examples

• Q ti
  Question and Answer
             dA

11/15/2012             ASQ RD Webinar   12
Agenda
                     A d
• Bayesian vs. Frequentist Comparison

• Preliminary Example

• Conjugate Priors
  Conjugate Priors

• Test Time Examples
  Test Time Examples

• Q ti
  Question and Answer
             dA

11/15/2012             ASQ RD Webinar   13
Toy Hyperbolic Example
                      y yp             p
First day on the job as reliability engineer, you overhear three colleagues 
debating the MTBF for a product.
Evidently the engineer you are replacing had kept all his data on his now‐
destroyed C:drive and all that remains is “word of mouth” among his three 
remaining coworkers. 
             Waloddi: “I remember seeing 500 seconds written down 
             on his whiteboard.  I can still see it in my head.”
             Gertrude: “No W, that was 100 seconds!  His 
             handwriting was atrocious, but that definitely was a 1 
             not a 5.
             not a 5 ”
             Taiichi: “Agree with Gertrude.  It was 100 seconds.”
2 against 1.  That is all you have to go by.  Your manager needs an answer by end 
of day.  The ink on your badge hasn’t even dried yet.
 fd      Th i k            b d h ’t            di d t
What shall you do?  They measure product MTBF in seconds?




11/15/2012                             ASQ RD Webinar                          14
Bayesian Core Idea
                        Bayesian Core Idea
       What you knew 
       What you knew
       before WYKB.                                      New Data
          “Prior”




                         Best possible update of WYKB 
                          adjusted by the New Data.
                          adjusted by the New Data
                                  “Posterior”




11/15/2012                        ASQ RD Webinar                    15
λ   KOtG           λ   1        λ   2
             Failure Rate λ  (1/sec)         0.0022          0.0100       0.0020
                       MTTF (sec)        450                   100          500
                                       Prior g (λ )          0.667        0.333
                               P t i g (λ | t i )
                               Posterior                     0.204
                                                             0 204        0.796
                                                                          0 796
                                         Prior*Likelihood    3.66E‐21     1.43E‐20
                                       Lik lih d Π f ( i )
                                       Likelihood    (t      5.49E‐21
                                                             5 49E 21     1.43E‐18
                                                                          1 43E 18

                     average {t } 
                     average {t i } = 317
                             i         TTF data t i  (sec)    f 1(t i )    f 2(t i )
                             1               133             2.65E‐03     1.53E‐03
                             2               888             1.39E‐06     3.39E‐04
                             3               619             2.05E‐05     5.80E‐04
                             4                 8             9.23E‐03
                                                             9 23E 03     1.97E‐03
                                                                          1 97E 03
                             5                97             3.78E‐03     1.65E‐03
                             6               157             2.08E‐03     1.46E‐03

11/15/2012                                  ASQ RD Webinar                             16
λ   KOtG               λ   1      λ   2
             Failure Rate λ  (1/sec)       0.0022              0.0100     0.0020
                       MTTF (sec)        450                     100        500
                                       Prior g (λ )            0.667      0.333
                               P t i g (λ | t i )
                               Posterior                       0.204
                                                               0 204      0.796
                                                                          0 796
                                       Prior*Likelihood        3.66E‐21   1.43E‐20
        There is just enough time  1.43E‐18
        There is justLikenough) time21 1 43E 18
                           Likelihood Π f (
                               lih d       (t  5.49E‐21
                                               5 49E       i


        before end of day to collect 6 
             average {t } 
             average {t } = 317   i  y
                     i       TTF data t  (sec)  f (t )  f (t )
        time‐to‐fail (TTF) data points.1.53E‐03
                     1             133
                                                    i
                                               2.65E‐03
                                                                 1   i      2   i


                              2               888              1.39E‐06   3.39E‐04
                              3               619              2.05E‐05   5.80E‐04
                              4                8               9.23E‐03
                                                               9 23E 03   1.97E‐03
                                                                          1 97E 03
        Let’s do that.        5               97               3.78E‐03   1.65E‐03
                              6               157              2.08E‐03   1.46E‐03

11/15/2012                                ASQ RD Webinar                             17
λ   KOtG           λ   1        λ   2
             Failure Rate λ  (1/sec)         0.0022          0.0100       0.0020
                       MTTF (sec)        450                   100          500
                                       Prior g (λ )          0.667        0.333
                               P t i g (λ | t i )
                               Posterior                     0.204
                                                             0 204        0.796
                                                                          0 796
                                         Prior*Likelihood    3.66E‐21     1.43E‐20
                                       Lik lih d Π f ( i )
                                       Likelihood    (t      5.49E‐21
                                                             5 49E 21     1.43E‐18
                                                                          1 43E 18

                     average {t } 
                     average {t i } = 317
                             i         TTF data t i  (sec)    f 1(t i )    f 2(t i )
                             1               133             2.65E‐03     1.53E‐03
                             2               888             1.39E‐06     3.39E‐04
                             3               619             2.05E‐05     5.80E‐04
                             4                 8             9.23E‐03
                                                             9 23E 03     1.97E‐03
                                                                          1 97E 03
                             5                97             3.78E‐03     1.65E‐03
                             6               157             2.08E‐03     1.46E‐03

11/15/2012                                  ASQ RD Webinar                             18
λ   KOtG            λ   1        λ   2
             Failure Rate λ  (1/sec)        0.0022           0.0100       0.0020
                       MTTF (sec)        450                   100          500
                                       Prior g (λ )          0.667        0.333
                               P t i g (λ | t i )
                               Posterior                     0.204
                                                             0 204        0.796
                                                                          0 796
                                                   How likely is this data?
                                        Prior*Likelihood   3.66E‐21   1.43E‐20
                                       Lik lih d Π f ( i ) 5 49E 21 what λ 18
                                       Likelihood  Depends on
                                                   Depends on what43E is!
                                                     (t    5.49E‐21   1.43E‐18
                                                                      1

                     average {t } 
                     average {t i } = 317
                             i         TTF data t i  (sec)    f 1(t i )    f 2(t i )
                             1               133             2.65E‐03     1.53E‐03
                             2               888             1.39E‐06     3.39E‐04
                             3               619             2.05E‐05     5.80E‐04
                             4                 8             9.23E‐03
                                                             9 23E 03     1.97E‐03
                                                                          1 97E 03
                             5                97             3.78E‐03     1.65E‐03
                             6               157             2.08E‐03     1.46E‐03

11/15/2012                                 ASQ RD Webinar                              19
λ   KOtG           λ   1        λ   2
             Failure Rate λ  (1/sec)         0.0022          0.0100       0.0020
                       MTTF (sec)        450                   100          500
                                       Prior g (λ )          0.667        0.333
                               P t i g (λ | t i )
                               Posterior                     0.204
                                                             0 204        0.796
                                                                          0 796
                                         Prior*Likelihood    3.66E‐21     1.43E‐20
                                       Lik lih d Π f ( i )
                                       Likelihood    (t      5.49E‐21
                                                             5 49E 21     1.43E‐18
                                                                          1 43E 18

                     average {t } 
                     average {t i } = 317
                             i         TTF data t i  (sec)    f 1(t i )    f 2(t i )
                             1               133             2.65E‐03     1.53E‐03
                             2               888             1.39E‐06     3.39E‐04
                             3               619             2.05E‐05     5.80E‐04
                             4                 8             9.23E‐03
                                                             9 23E 03     1.97E‐03
                                                                          1 97E 03
                             5                97             3.78E‐03     1.65E‐03
                             6               157             2.08E‐03     1.46E‐03

11/15/2012                                  ASQ RD Webinar                             20
λ   KOtG           λ   1        λ   2
             Failure Rate λ  (1/sec)         0.0022          0.0100       0.0020
                       MTTF (sec)        450                   100          500
                                       Prior g (λ )          0.667        0.333
                               P t i g (λ | t i )
                               Posterior                     0.204
                                                             0 204        0.796
                                                                          0 796
                                         Prior*Likelihood    3.66E‐21     1.43E‐20
                                       Lik lih d Π f ( i )
                                       Likelihood    (t      5.49E‐21
                                                             5 49E 21     1.43E‐18
                                                                          1 43E 18

                     average {t } 
                     average {t i } = 317
                             i         TTF data t i  (sec)    f 1(t i )    f 2(t i )
                             1               133             2.65E‐03     1.53E‐03
                             2               888             1.39E‐06     3.39E‐04
                             3               619             2.05E‐05     5.80E‐04
                             4                 8             9.23E‐03
                                                             9 23E 03     1.97E‐03
                                                                          1 97E 03
                             5                97             3.78E‐03     1.65E‐03
                             6               157             2.08E‐03     1.46E‐03

11/15/2012                                  ASQ RD Webinar                             21
λ   KOtG           λ   1        λ   2
             Failure Rate λ  (1/sec)         0.0022          0.0100       0.0020
                       MTTF (sec)        450                   100          500
                                       Prior g (λ )          0.667        0.333
                               P t i g (λ | t i )
                               Posterior                     0.204
                                                             0 204        0.796
                                                                          0 796
                                         Prior*Likelihood    3.66E‐21     1.43E‐20
                                       Lik lih d Π f ( i )
                                       Likelihood    (t      5.49E‐21
                                                             5 49E 21     1.43E‐18
                                                                          1 43E 18

                     average {t } 
                     average {t i } = 317
                             i         TTF data t i  (sec)    f 1(t i )    f 2(t i )
                             1               133             2.65E‐03     1.53E‐03
                             2               888             1.39E‐06     3.39E‐04
                             3               619             2.05E‐05     5.80E‐04
                             4                 8             9.23E‐03
                                                             9 23E 03     1.97E‐03
                                                                          1 97E 03
                             5                97             3.78E‐03     1.65E‐03
                             6               157             2.08E‐03     1.46E‐03

11/15/2012                                  ASQ RD Webinar                             22
λ   KOtG            λ   1        λ   2
           Failure Rate λ  (1/sec)     0.0022              0.0100       0.0020
         Shouldn t these  (sec)
         Shouldn’t these
                       MTTF             450                  100          500
         sum to 1 if they 
          are exhaustive 
                                      Prior g (λ )         0.667        0.333
           possibilities?    P t i g (λ | t i )
                             Posterior                     0.204
                                                           0 204        0.796
                                                                        0 796
                                   Prior*Likelihood        3.66E‐21     1.43E‐20
                                  Lik lih d Π f ( i )
                                  Likelihood    (t         5.49E‐21
                                                           5 49E 21     1.43E‐18
                                                                        1 43E 18

                   average {t } 
                   average {t i } = 317
                           i         TTF data t i  (sec)    f 1(t i )    f 2(t i )
                           1               133             2.65E‐03     1.53E‐03
                           2               888             1.39E‐06     3.39E‐04
                           3               619             2.05E‐05     5.80E‐04
                           4                 8             9.23E‐03
                                                           9 23E 03     1.97E‐03
                                                                        1 97E 03
                           5                97             3.78E‐03     1.65E‐03
                           6               157             2.08E‐03     1.46E‐03

11/15/2012                               ASQ RD Webinar                              23
λ   KOtG           λ   1        λ   2
             Failure Rate λ  (1/sec)         0.0022          0.0100       0.0020
                       MTTF (sec)        450                   100          500
                                       Prior g (λ )          0.667        0.333
                               P t i g (λ | t i )
                               Posterior                     0.204
                                                             0 204        0.796
                                                                          0 796
                                         Prior*Likelihood    3.66E‐21     1.43E‐20
                                       Lik lih d Π f ( i )
                                       Likelihood    (t      5.49E‐21
                                                             5 49E 21     1.43E‐18
                                                                          1 43E 18

                     average {t } 
                     average {t i } = 317
                             i         TTF data t i  (sec)    f 1(t i )    f 2(t i )
                             1               133             2.65E‐03     1.53E‐03
                             2               888             1.39E‐06     3.39E‐04
                             3               619             2.05E‐05     5.80E‐04
                             4                 8             9.23E‐03
                                                             9 23E 03     1.97E‐03
                                                                          1 97E 03
                             5                97             3.78E‐03     1.65E‐03
                             6               157             2.08E‐03     1.46E‐03

11/15/2012                                  ASQ RD Webinar                             24
go to the spreadsheet
             go to the spreadsheet




11/15/2012          ASQ RD Webinar   25
Agenda
                     A d
• Bayesian vs. Frequentist Comparison

• Preliminary Example

• Conjugate Priors
  Conjugate Priors

• Test Time Examples
  Test Time Examples

• Q ti
  Question and Answer
             dA

11/15/2012             ASQ RD Webinar   26
Agenda
                     A d
• Bayesian vs. Frequentist Comparison

• Preliminary Example

  Conjugate Priors
• Conjugate Priors

• Test Time Examples
  Test Time Examples

• Q ti
  Question and Answer
             dA

11/15/2012             ASQ RD Webinar   27
Conjugate Prior
             C j t Pi




11/15/2012        ASQ RD Webinar   28
Mean        λave = a/b
                    Variance   σ2 = a/b2



             In hierarchical Bayesian models, these hyperparameters 
             will be represented as distributions with priors/posteriors, etc
             will be represented as distributions with priors/posteriors etc
             and have hyperparameters of their own




11/15/2012           ASQ RD Webinar                                   29
Bayesian assumptions for the gamma 
      y           p       f      g
         exponential system model
1. Failure times for the system under investigation can be adequately 
   modeled by the exponential distribution with constant failure rate.
2. The MTBF for the system can be regarded as chosen from a prior 
   distribution model that is an analytic representation of our 
   distribution model that is an analytic representation of our
   previous information or judgments about the system's reliability. 
   The form of this prior model is the gamma distribution (the 
   conjugate prior for the exponential model). 
   The prior model is actually defined for λ = 1/MTBF.
3. Our prior knowledge is used to choose the gamma parameters 
3 O       i k     l d i        dt h        th                  t
   a and b for the prior distribution model for λ. There are a number 
   of ways to convert prior knowledge to gamma parameters.
         y             p             g     g       p



11/15/2012                    ASQ RD Webinar                         30
Gamma prior parameter method 1
             G       i         t     th d 1
1. If you have actual data from previous testing done on the 
   system (or a system believed to have the same reliability as the 
   system (or a system believed to have the same reliability as the
   one under investigation), this is the most credible prior 
   knowledge, and the easiest to use. Simply set the gamma 
   knowledge, and the easiest to use. Simply set the gamma
   parameter a equal to the total number of failures from all the 
   p e ous da a, a d se e pa a e e equa o e o a o a
   previous data, and set the parameter b equal to the total of all 
   the previous test hours.




11/15/2012                    ASQ RD Webinar                           31
Gamma prior parameter method 2
             Gamma prior parameter method 2
2. A consensus method for determining
2 A consensus method for determining a and b that works well is the following:
                                             that works well is the following: 
   Assemble a group of engineers who know the system and its sub‐components well 
   from a reliability viewpoint.
    A. Have the group reach agreement on a reasonable MTBF they expect the system to have. 
       They could each pick a number they would be willing to bet even money that the system 
       would either meet or miss, and the average or median of these numbers would be their 
       50% best guess for the MTBF. Or they could just discuss even‐money MTBF candidates until 
       a consensus is reached.
          p        p        g ,                    g g                            y p
    B. Repeat the process again, this time reaching agreement on a low MTBF they expect the 
       system to exceed. A "5%" value that they are "95% confident" the system will exceed (i.e., 
       they would give 19 to 1 odds) is a good choice. Or a "10%" value might be chosen (i.e., they 
              g                                                       )               p
       would give 9 to 1 odds the actual MTBF exceeds the low MTBF). Use whichever percentile 
       choice the group prefers.
    C. Call the reasonable MTBF MTBF50 and the low MTBF you are 95% confident the system will 
       exceedMTBF05. These two numbers uniquely determine gamma parameters a and b that
                      . These two numbers uniquely determine gamma parameters              that 
       have percentile values at the right locations
Called the 50/95 method (or the 50/90 method if one uses MTBF10 , etc.)

11/15/2012                                  ASQ RD Webinar                                         32
Gamma prior parameter method 3
  G       i         t     th d 3
3. Weak Prior Obtain consensus is on a reasonable 
   expected MTBF, called MTBF Next however the
   expected MTBF called MTBF50. Next, however, the 
   group decides they want a weak prior that will change 
   rapidly, based on new test data. If the prior parameter 
   rapidly based on new test data If the prior parameter
   "a" is set to 1, the gamma has a standard deviation 
   equal to its mean, which makes it spread out, or 
   equal to its mean which makes it spread out or
   "weak". To set the 50th percentile we have to 
   choose b = ln 2 × MTBF50
              = ln 2 ×

Note: During planning of Bayesian tests, this weak prior is 
actually a very friendly prior in terms of saving test time.
11/15/2012                ASQ RD Webinar                   33
Comments
                   C     t
Many variations are possible, based on the above 
three methods. For example, you might have prior 
three methods For example you might have prior
data from sources that you don't completely trust. Or 
you might question whether the data really apply to 
        i ht      ti    h th th d t         ll    l t
the system under investigation. You might decide to 
"weight" the prior data by .5, to "weaken" it. This can 
be implemented by setting a = .5 x the number of 
       p             y      g
fails in the prior data and b = .5 times the number of 
test hours. That spreads out the prior distribution 
test hours. That spreads out the prior distribution
more, and lets it react quicker to new test data.

11/15/2012              ASQ RD Webinar                34
New data is collected …
N d t i       ll t d
New information is combined with the gamma prior model to
p
produce a gamma posterior distribution.
           g        p
After a new test is run with
        T additional system operating hours, and
        r new failures,
The resultant posterior distribution for failure rate λ remains
gamma (conjugate remember?), with new parameters

a' = a + r
 '
b' = b + T
b' b + T
11/15/2012                 ASQ RD Webinar                    35
Reliability estimation with Bayesian gamma prior model




11/15/2012                    ASQ RD Webinar                     36
Example
                            p
• A group of engineers, discussing the reliability of a new
  piece of equipment decide to use the 50/95 method to
            equipment,
  convert their knowledge into a Bayesian gamma prior.
  Consensus is reached on a likely MTBF50 value of 600 hours
  and a low MTBF05 value of 250.
• RT is 600/250 = 2.4. Using software to find the root of a
            /               g
  univariate function, the gamma prior parameters were
  found to be a = 2.863 and b = 1522.46. The parameters will
  have (
  h     (approximately) a probability of 50% of b i b l
               i t l )       b bilit f          f being below
  1/600 = 0.001667 hours‐1 and a probability of 95% of being
  below 1/250 = 0 004 hours‐1. (The probabilities are based on
                 0.004
  the 0.001667 and 0.004 quantiles of a gamma distribution
  with shape parameter a = 2.863 and scale parameter b =
           p p                                  p
  1522.46 hours)

11/15/2012                 ASQ RD Webinar                    37
Agenda
                     A d
• Bayesian vs. Frequentist Comparison

• Preliminary Example

  Conjugate Priors
• Conjugate Priors

• Test Time Examples
  Test Time Examples

• Q ti
  Question and Answer
             dA

11/15/2012             ASQ RD Webinar   38
Agenda
                     A d
• Bayesian vs. Frequentist Comparison

• Preliminary Example

• Conjugate Priors
  Conjugate Priors

• Test Time Examples
  Test Time Examples

• Question and Answer
  Q ti       dA

11/15/2012             ASQ RD Webinar   39
Bayesian test plan
                                 y           p
Gamma prior parameters a and b have already been determined. Assume we have a given MTBF 
objective, M, and a desired confidence level of 100×(1‐ α). We want to confirm the system will have 
an MTBF of at least at the 100×(1‐ α) confidence level. Pick a number of failures, r, that we can 
an MTBF of at least M at the 100×(1 α) confidence level Pick a number of failures r that we can
allow on the test. 

We need a test time T such that we can observe up to r failures and still "pass" the test. If the test 
time is too long (or too short), we can iterate with a different choice of the test ends, the posterior 
gamma distribution will have (worst case ‐ assuming exactly r failures) new parameters of a ' = a + r, 
b' = b + T and passing the test means that the failure rate λ1‐ α, the upper 100×(1‐ α) percentile for the 
posterior gamma, has to equal the target failure rate 1/M. 

By definition, this is G ‐1(1‐ α; a', b'), with G ‐1 denoting the inverse of the gamma CDF distribution .

We can find the value of that satisfies 1(1‐ α;a b') = 1/M by trial and error. However, based on 
We can find the value of T that satisfies G ‐1(1 α;a', b ) = 1/M by trial and error However based on
the properties of the gamma distribution, it turns out that we can calculate T directly by using 
T = M×(G ‐1(1‐ α; a', 1)) ‐ b




  11/15/2012                                     ASQ RD Webinar                                             40
Special Case: a = 1 (The "Weak" Prior)
   p                  (                )

When the prior is a weak prior with a = 1, the Bayesian test is always 
shorter than the classical test. 
There is a very simple way to calculate the required Bayesian test time 
when the prior is a weak prior with a = 1. First calculate the 
classical/frequentist test time Call this Tc. The Bayesian test time T is
                      test time. Call this The Bayesian test time is 
just Tc minus the prior parameter b (i.e.,T = Tc ‐ b). If the b parameter 
was set equal to (ln 2) × MTBF50(where MTBF50 is the consensus 
choice for an "even money" MTBF), then T = T
choice for an "even money" MTBF) then T Tc ‐ (ln 2) × MTBF50This
                                                         2) ×        This 
shows that when a weak prior is used, the Bayesian test time is always 
less than the corresponding classical test time. That is why this prior is 
                     p       g                                 y    p
also known as a friendly prior.
This prior essentially sets the order of magnitude for the MTTF



11/15/2012                      ASQ RD Webinar                           41
Calculating a Bayesian Test Time
                       g     y

A new piece of equipment has to meet a MTBF requirement of 500 hours at 80 
% confidence. A group of engineers decide to use their collective experience to 
determine a Bayesian gamma prior using the 50/95 method described 
determine a Bayesian gamma prior using the 50/95 method described
in Section 2. They determine that the gamma prior parameters are a = 2.863 
and b = 1522.46 hrs.
Now they want to determine an appropriate test time so that they can confirm 
N th            tt d t       i              i t t t ti      th t th           fi
a MTBF of 500 with at least 80 % confidence, provided they have no more than 
two failures (r = 2).
We obtain a test time of 1756.117 hours using 500×(G ‐1(1‐0.2; 2.863+2, 1)) ‐
1522.46 
To compare this result to the classical test time required, which is 2140 hours 
To compare this result to the classical test time required, which is 2140 hours
for a non‐Bayesian test. The Bayesian test saves about 384 hours, or an 18 % 
savings. If the test is run for 1756 hours, with no more than two failures, then 
an MTBF of at least 500 hours has been confirmed at 80 % confidence.
an MTBF of at least 500 hours has been confirmed at 80 % confidence.
If, instead, the engineers had decided to use a weak prior with an MTBF50 of 
600, the required test time would have been 2140 ‐ 600 × ln 2 = 1724 hours

11/15/2012                         ASQ RD Webinar                              42
Post‐Test Analysis Example
             P t T tA l i E          l
• A system has completed a reliability test aimed at 
  confirming a 600 hour MTBF at an 80% confidence 
  confirming a 600 hour MTBF at an 80% confidence
  level. Before the test, a gamma prior with a = 2, b = 
  1400 was agreed upon, based on testing at the 
  1400 was agreed upon, based on testing at the
  vendor's location. Bayesian test planning 
  calculations, allowing up to 2 new failures, called 
  calculations, allowing up to 2 new failures, called
  for a test of 1909 hours. 
• When that test was run there actually were exactly
  When that test was run, there actually were exactly 
  two failures. What can be said about the reliability? 
  The posterior gamma CDF has parameters a = 4
  The posterior gamma CDF has parameters a' = 4 
  and b' = 3309. 

11/15/2012              ASQ RD Webinar                43
Bayesian solutions for arbitrary F(t)
  B    i     l ti    f     bit     F(t)
What about Weibull
Wh t b t W ib ll or other non‐exponential variable failure rate TTF 
                     th              ti l i bl f il          t TTF
distributions?
                                        3.50E‐02

                                        3.00E‐02

                                        2.50E‐02                                               β = 0.6

                                        2.00E‐02
                                        2 00E 02                                               β=08
                                                                                                 0.8
                         g(λ, β|data)                                                          β = 1.0
                                        1.50E‐02
                                                                                               β = 1.2
                                        1.00E‐02                                               β = 1.4
                                        5.00E‐03                                               β = 1.6

                                        0.00E+00
                                               0.0000   0.0020     0.0040    0.0060   0.0080

                                                                 λ (1/sec)



Conjugate priors only exist for Weibull when a subset of hyperparameters are 
Conjugate priors only exist for Weibull when a subset of hyperparameters are
known.  MCMC and Gibbs methods exist for sampling from higher dimensional 
posteriors  CDFs in multiple dimensions not as straightforward.  

11/15/2012                               ASQ RD Webinar                                                  44
References and Further Reading
      R f          d F th R di
• NIST/SEMATECH e‐Handbook of Statistical Methods, 
  http://www.itl.nist.gov/div898/handbook/, April (2012)
• Statistical Methods for Reliability Data, WQ Meeker and LA 
  Escobar (1998)
• Applied Reliability, 2nd edition, PA Tobias and DC Trindade
  (1995)
• Bayesian Reliability Analysis, HF Martz and RA Waller (1982)
• Methods for Statistical Analysis of Reliability and Life Data, 
  NR Mann, RE Schafer, and ND Singpurwalla (1974)
  NR M        RE S h f       d ND Si          ll
• Bayes is for the birds, RA Evans, IEEE Transactions on 
  Reliability R‐38, 401 (1989).
  R li bilit R 38 401 (1989)


11/15/2012                  ASQ RD Webinar                      45
11/15/2012   ASQ RD Webinar   46
Agenda
                     A d
• Bayesian vs. Frequentist Comparison

• Preliminary Example

• Conjugate Priors
  Conjugate Priors

• Test Time Examples
  Test Time Examples

• Question and Answer
  Q ti       dA

11/15/2012             ASQ RD Webinar   47
Agenda
                     A d
• Bayesian vs. Frequentist Comparison

• Preliminary Example

• Conjugate Priors
  Conjugate Priors

• Test Time Examples
  Test Time Examples

• Q ti       dA
  Question and Answer

11/15/2012             ASQ RD Webinar   48
Q&A




11/15/2012   ASQ RD Webinar   49

Más contenido relacionado

La actualidad más candente

Reducing Product Development Risk with Reliability Engineering Methods
Reducing Product Development Risk with Reliability Engineering MethodsReducing Product Development Risk with Reliability Engineering Methods
Reducing Product Development Risk with Reliability Engineering MethodsWilde Analysis Ltd.
 
Reliability engineering chapter-1csi
Reliability engineering chapter-1csiReliability engineering chapter-1csi
Reliability engineering chapter-1csiCharlton Inao
 
A Proposal for an Alternative to MTBF/MTTF
A Proposal for an Alternative to MTBF/MTTFA Proposal for an Alternative to MTBF/MTTF
A Proposal for an Alternative to MTBF/MTTFASQ Reliability Division
 
Corrective maintenance
Corrective maintenanceCorrective maintenance
Corrective maintenanceyashwanth6966
 
2013 asq field data analysis & statistical warranty forecasting
2013 asq field data analysis & statistical warranty forecasting2013 asq field data analysis & statistical warranty forecasting
2013 asq field data analysis & statistical warranty forecastingASQ Reliability Division
 
Reliability prediction of electronic components
Reliability prediction of electronic componentsReliability prediction of electronic components
Reliability prediction of electronic componentsPRANAY GUPTA
 
Lot-by-Lot Acceptance Sampling for Attributes
Lot-by-Lot Acceptance Sampling for AttributesLot-by-Lot Acceptance Sampling for Attributes
Lot-by-Lot Acceptance Sampling for AttributesParth Desani
 
Impact of censored data on reliability analysis
Impact of censored data on reliability analysisImpact of censored data on reliability analysis
Impact of censored data on reliability analysisASQ Reliability Division
 
Basics of Reliability Engineering
Basics of Reliability EngineeringBasics of Reliability Engineering
Basics of Reliability EngineeringAccendo Reliability
 
Session 4 Structural Model Evaluation
Session 4 Structural Model Evaluation Session 4 Structural Model Evaluation
Session 4 Structural Model Evaluation Dr. Firdaus Basbeth
 
Measurement Systems Analysis - Variable Gage R&R Study Metrics, Applications ...
Measurement Systems Analysis - Variable Gage R&R Study Metrics, Applications ...Measurement Systems Analysis - Variable Gage R&R Study Metrics, Applications ...
Measurement Systems Analysis - Variable Gage R&R Study Metrics, Applications ...Gabor Szabo, CQE
 
Reliability Centered Maintenance
Reliability Centered MaintenanceReliability Centered Maintenance
Reliability Centered MaintenanceRonald Shewchuk
 
NG BB 23 Measurement System Analysis - Introduction
NG BB 23 Measurement System Analysis - IntroductionNG BB 23 Measurement System Analysis - Introduction
NG BB 23 Measurement System Analysis - IntroductionLeanleaders.org
 

La actualidad más candente (20)

Reliability
ReliabilityReliability
Reliability
 
Reducing Product Development Risk with Reliability Engineering Methods
Reducing Product Development Risk with Reliability Engineering MethodsReducing Product Development Risk with Reliability Engineering Methods
Reducing Product Development Risk with Reliability Engineering Methods
 
Reliability Distributions
Reliability DistributionsReliability Distributions
Reliability Distributions
 
Reliability engineering chapter-1csi
Reliability engineering chapter-1csiReliability engineering chapter-1csi
Reliability engineering chapter-1csi
 
Introdution to POF reliability methods
Introdution to POF reliability methodsIntrodution to POF reliability methods
Introdution to POF reliability methods
 
A Proposal for an Alternative to MTBF/MTTF
A Proposal for an Alternative to MTBF/MTTFA Proposal for an Alternative to MTBF/MTTF
A Proposal for an Alternative to MTBF/MTTF
 
Corrective maintenance
Corrective maintenanceCorrective maintenance
Corrective maintenance
 
2013 asq field data analysis & statistical warranty forecasting
2013 asq field data analysis & statistical warranty forecasting2013 asq field data analysis & statistical warranty forecasting
2013 asq field data analysis & statistical warranty forecasting
 
Reliability prediction of electronic components
Reliability prediction of electronic componentsReliability prediction of electronic components
Reliability prediction of electronic components
 
Lot-by-Lot Acceptance Sampling for Attributes
Lot-by-Lot Acceptance Sampling for AttributesLot-by-Lot Acceptance Sampling for Attributes
Lot-by-Lot Acceptance Sampling for Attributes
 
Impact of censored data on reliability analysis
Impact of censored data on reliability analysisImpact of censored data on reliability analysis
Impact of censored data on reliability analysis
 
Basics of Reliability Engineering
Basics of Reliability EngineeringBasics of Reliability Engineering
Basics of Reliability Engineering
 
Fault tree analysis
Fault tree analysisFault tree analysis
Fault tree analysis
 
Session 4 Structural Model Evaluation
Session 4 Structural Model Evaluation Session 4 Structural Model Evaluation
Session 4 Structural Model Evaluation
 
Measurement Systems Analysis - Variable Gage R&R Study Metrics, Applications ...
Measurement Systems Analysis - Variable Gage R&R Study Metrics, Applications ...Measurement Systems Analysis - Variable Gage R&R Study Metrics, Applications ...
Measurement Systems Analysis - Variable Gage R&R Study Metrics, Applications ...
 
Reliability Centered Maintenance
Reliability Centered MaintenanceReliability Centered Maintenance
Reliability Centered Maintenance
 
NG BB 23 Measurement System Analysis - Introduction
NG BB 23 Measurement System Analysis - IntroductionNG BB 23 Measurement System Analysis - Introduction
NG BB 23 Measurement System Analysis - Introduction
 
Fault tree analysis
Fault tree analysisFault tree analysis
Fault tree analysis
 
RCM
RCMRCM
RCM
 
Condition monitoring
Condition monitoringCondition monitoring
Condition monitoring
 

Destacado

Dependency patterns for latent variable discovery
Dependency patterns for latent variable discovery Dependency patterns for latent variable discovery
Dependency patterns for latent variable discovery Bayesian Intelligence
 
General bayesian methods for typical reliability data analysis
General bayesian methods for typical reliability data analysisGeneral bayesian methods for typical reliability data analysis
General bayesian methods for typical reliability data analysisASQ Reliability Division
 
What does an odds ratio or relative risk mean?
What does an odds ratio or relative risk mean? What does an odds ratio or relative risk mean?
What does an odds ratio or relative risk mean? Terry Shaneyfelt
 
How to conclude online experiments in python
How to conclude online experiments in pythonHow to conclude online experiments in python
How to conclude online experiments in pythonVolodymyr Kazantsev
 
Bayesian networks in AI
Bayesian networks in AIBayesian networks in AI
Bayesian networks in AIByoung-Hee Kim
 

Destacado (7)

Dependency patterns for latent variable discovery
Dependency patterns for latent variable discovery Dependency patterns for latent variable discovery
Dependency patterns for latent variable discovery
 
General bayesian methods for typical reliability data analysis
General bayesian methods for typical reliability data analysisGeneral bayesian methods for typical reliability data analysis
General bayesian methods for typical reliability data analysis
 
What does an odds ratio or relative risk mean?
What does an odds ratio or relative risk mean? What does an odds ratio or relative risk mean?
What does an odds ratio or relative risk mean?
 
Odds ratio
Odds ratioOdds ratio
Odds ratio
 
How to conclude online experiments in python
How to conclude online experiments in pythonHow to conclude online experiments in python
How to conclude online experiments in python
 
Odds ratio
Odds ratioOdds ratio
Odds ratio
 
Bayesian networks in AI
Bayesian networks in AIBayesian networks in AI
Bayesian networks in AI
 

Similar a Bayesian methods in reliability engineering

Robust design and reliability engineering synergy webinar 2013 04 10
Robust design and reliability engineering synergy webinar   2013 04 10Robust design and reliability engineering synergy webinar   2013 04 10
Robust design and reliability engineering synergy webinar 2013 04 10ASQ Reliability Division
 
The proper analysis approach for life data
The proper analysis approach for life dataThe proper analysis approach for life data
The proper analysis approach for life dataASQ Reliability Division
 
Lead Time: What We Know About It...
Lead Time: What We Know About It...Lead Time: What We Know About It...
Lead Time: What We Know About It...azheglov
 
Pittsburgh Nonprofit Summit - Measuring Change - Supplemental Slides
Pittsburgh Nonprofit Summit - Measuring Change - Supplemental SlidesPittsburgh Nonprofit Summit - Measuring Change - Supplemental Slides
Pittsburgh Nonprofit Summit - Measuring Change - Supplemental SlidesGPNP
 
How to test a Mainframe Application
How to test a Mainframe ApplicationHow to test a Mainframe Application
How to test a Mainframe ApplicationMichael Erichsen
 
Verification and Validation with Innoslate Slide Deck
Verification and Validation with Innoslate Slide DeckVerification and Validation with Innoslate Slide Deck
Verification and Validation with Innoslate Slide DeckSarahCraig7
 
CWIN17 New-York / Drive continuous delivery with continous testing
CWIN17 New-York / Drive continuous delivery with continous testingCWIN17 New-York / Drive continuous delivery with continous testing
CWIN17 New-York / Drive continuous delivery with continous testingCapgemini
 
Approximate Continuous Query Answering Over Streams and Dynamic Linked Data Sets
Approximate Continuous Query Answering Over Streams and Dynamic Linked Data SetsApproximate Continuous Query Answering Over Streams and Dynamic Linked Data Sets
Approximate Continuous Query Answering Over Streams and Dynamic Linked Data SetsSoheila Dehghanzadeh
 
Drive Continuous Delivery With Continuous Testing
Drive Continuous Delivery With Continuous TestingDrive Continuous Delivery With Continuous Testing
Drive Continuous Delivery With Continuous TestingCA Technologies
 
Case Study: Nationwide Building Society's CA Test Data Manager Success Story
Case Study: Nationwide Building Society's CA Test Data Manager Success StoryCase Study: Nationwide Building Society's CA Test Data Manager Success Story
Case Study: Nationwide Building Society's CA Test Data Manager Success StoryCA Technologies
 
Discovering Wiiisdom Ops for Tableau
Discovering Wiiisdom Ops for TableauDiscovering Wiiisdom Ops for Tableau
Discovering Wiiisdom Ops for TableauWiiisdom
 
Visionbi Quality Gates
Visionbi Quality GatesVisionbi Quality Gates
Visionbi Quality GatesRam Yonish
 
'Stakeholder Engagement Shortcuts': Ilan Goldstein @ Colombo Agile Conference...
'Stakeholder Engagement Shortcuts': Ilan Goldstein @ Colombo Agile Conference...'Stakeholder Engagement Shortcuts': Ilan Goldstein @ Colombo Agile Conference...
'Stakeholder Engagement Shortcuts': Ilan Goldstein @ Colombo Agile Conference...ColomboCampsCommunity
 
Mit16 660 jiap12_3-5
Mit16 660 jiap12_3-5Mit16 660 jiap12_3-5
Mit16 660 jiap12_3-5khattak000
 
Intro to Agile Methods for Execs, Leaders, and Managers
Intro to Agile Methods for Execs, Leaders, and ManagersIntro to Agile Methods for Execs, Leaders, and Managers
Intro to Agile Methods for Execs, Leaders, and ManagersDavid Rico
 
Next Gen Continuous Delivery: Connecting Business Initiatives to the IT Roadmap
Next Gen Continuous Delivery: Connecting Business Initiatives to the IT RoadmapNext Gen Continuous Delivery: Connecting Business Initiatives to the IT Roadmap
Next Gen Continuous Delivery: Connecting Business Initiatives to the IT RoadmapHeadspring
 
Due 12 10 2016Week 10 Term PaperClick the link above to submit.docx
Due 12 10 2016Week 10 Term PaperClick the link above to submit.docxDue 12 10 2016Week 10 Term PaperClick the link above to submit.docx
Due 12 10 2016Week 10 Term PaperClick the link above to submit.docxsagarlesley
 

Similar a Bayesian methods in reliability engineering (20)

Robust design and reliability engineering synergy webinar 2013 04 10
Robust design and reliability engineering synergy webinar   2013 04 10Robust design and reliability engineering synergy webinar   2013 04 10
Robust design and reliability engineering synergy webinar 2013 04 10
 
The proper analysis approach for life data
The proper analysis approach for life dataThe proper analysis approach for life data
The proper analysis approach for life data
 
Lead Time: What We Know About It...
Lead Time: What We Know About It...Lead Time: What We Know About It...
Lead Time: What We Know About It...
 
Pittsburgh Nonprofit Summit - Measuring Change - Supplemental Slides
Pittsburgh Nonprofit Summit - Measuring Change - Supplemental SlidesPittsburgh Nonprofit Summit - Measuring Change - Supplemental Slides
Pittsburgh Nonprofit Summit - Measuring Change - Supplemental Slides
 
How to test a Mainframe Application
How to test a Mainframe ApplicationHow to test a Mainframe Application
How to test a Mainframe Application
 
Verification and Validation with Innoslate Slide Deck
Verification and Validation with Innoslate Slide DeckVerification and Validation with Innoslate Slide Deck
Verification and Validation with Innoslate Slide Deck
 
Early product reliability prediction
Early product reliability predictionEarly product reliability prediction
Early product reliability prediction
 
CWIN17 New-York / Drive continuous delivery with continous testing
CWIN17 New-York / Drive continuous delivery with continous testingCWIN17 New-York / Drive continuous delivery with continous testing
CWIN17 New-York / Drive continuous delivery with continous testing
 
Approximate Continuous Query Answering Over Streams and Dynamic Linked Data Sets
Approximate Continuous Query Answering Over Streams and Dynamic Linked Data SetsApproximate Continuous Query Answering Over Streams and Dynamic Linked Data Sets
Approximate Continuous Query Answering Over Streams and Dynamic Linked Data Sets
 
Drive Continuous Delivery With Continuous Testing
Drive Continuous Delivery With Continuous TestingDrive Continuous Delivery With Continuous Testing
Drive Continuous Delivery With Continuous Testing
 
Case Study: Nationwide Building Society's CA Test Data Manager Success Story
Case Study: Nationwide Building Society's CA Test Data Manager Success StoryCase Study: Nationwide Building Society's CA Test Data Manager Success Story
Case Study: Nationwide Building Society's CA Test Data Manager Success Story
 
Discovering Wiiisdom Ops for Tableau
Discovering Wiiisdom Ops for TableauDiscovering Wiiisdom Ops for Tableau
Discovering Wiiisdom Ops for Tableau
 
PEnDAR: software v&v for complex systems
PEnDAR: software v&v for complex systemsPEnDAR: software v&v for complex systems
PEnDAR: software v&v for complex systems
 
Visionbi Quality Gates
Visionbi Quality GatesVisionbi Quality Gates
Visionbi Quality Gates
 
'Stakeholder Engagement Shortcuts': Ilan Goldstein @ Colombo Agile Conference...
'Stakeholder Engagement Shortcuts': Ilan Goldstein @ Colombo Agile Conference...'Stakeholder Engagement Shortcuts': Ilan Goldstein @ Colombo Agile Conference...
'Stakeholder Engagement Shortcuts': Ilan Goldstein @ Colombo Agile Conference...
 
Mit16 660 jiap12_3-5
Mit16 660 jiap12_3-5Mit16 660 jiap12_3-5
Mit16 660 jiap12_3-5
 
Essentials for Reliability Practitioners
Essentials for Reliability PractitionersEssentials for Reliability Practitioners
Essentials for Reliability Practitioners
 
Intro to Agile Methods for Execs, Leaders, and Managers
Intro to Agile Methods for Execs, Leaders, and ManagersIntro to Agile Methods for Execs, Leaders, and Managers
Intro to Agile Methods for Execs, Leaders, and Managers
 
Next Gen Continuous Delivery: Connecting Business Initiatives to the IT Roadmap
Next Gen Continuous Delivery: Connecting Business Initiatives to the IT RoadmapNext Gen Continuous Delivery: Connecting Business Initiatives to the IT Roadmap
Next Gen Continuous Delivery: Connecting Business Initiatives to the IT Roadmap
 
Due 12 10 2016Week 10 Term PaperClick the link above to submit.docx
Due 12 10 2016Week 10 Term PaperClick the link above to submit.docxDue 12 10 2016Week 10 Term PaperClick the link above to submit.docx
Due 12 10 2016Week 10 Term PaperClick the link above to submit.docx
 

Más de ASQ Reliability Division

Root Cause Analysis: Think Again! - by Kevin Stewart
Root Cause Analysis: Think Again! - by Kevin StewartRoot Cause Analysis: Think Again! - by Kevin Stewart
Root Cause Analysis: Think Again! - by Kevin StewartASQ Reliability Division
 
Dynamic vs. Traditional Probabilistic Risk Assessment Methodologies - by Huai...
Dynamic vs. Traditional Probabilistic Risk Assessment Methodologies - by Huai...Dynamic vs. Traditional Probabilistic Risk Assessment Methodologies - by Huai...
Dynamic vs. Traditional Probabilistic Risk Assessment Methodologies - by Huai...ASQ Reliability Division
 
Efficient Reliability Demonstration Tests - by Guangbin Yang
Efficient Reliability Demonstration Tests - by Guangbin YangEfficient Reliability Demonstration Tests - by Guangbin Yang
Efficient Reliability Demonstration Tests - by Guangbin YangASQ Reliability Division
 
Reliability Modeling Using Degradation Data - by Harry Guo
Reliability Modeling Using Degradation Data - by Harry GuoReliability Modeling Using Degradation Data - by Harry Guo
Reliability Modeling Using Degradation Data - by Harry GuoASQ Reliability Division
 
Reliability Division Webinar Series - Innovation: Quality for Tomorrow
Reliability Division Webinar Series -  Innovation: Quality for TomorrowReliability Division Webinar Series -  Innovation: Quality for Tomorrow
Reliability Division Webinar Series - Innovation: Quality for TomorrowASQ Reliability Division
 
A multi phase decision on reliability growth with latent failure modes
A multi phase decision on reliability growth with latent failure modesA multi phase decision on reliability growth with latent failure modes
A multi phase decision on reliability growth with latent failure modesASQ Reliability Division
 
ASQ RD Webinar: Design for reliability a roadmap for design robustness
ASQ RD Webinar: Design for reliability   a roadmap for design robustnessASQ RD Webinar: Design for reliability   a roadmap for design robustness
ASQ RD Webinar: Design for reliability a roadmap for design robustnessASQ Reliability Division
 
ASQ RD Webinar: Improved QFN Reliability Process
ASQ RD Webinar: Improved QFN Reliability Process ASQ RD Webinar: Improved QFN Reliability Process
ASQ RD Webinar: Improved QFN Reliability Process ASQ Reliability Division
 
Data Acquisition: A Key Challenge for Quality and Reliability Improvement
Data Acquisition: A Key Challenge for Quality and Reliability ImprovementData Acquisition: A Key Challenge for Quality and Reliability Improvement
Data Acquisition: A Key Challenge for Quality and Reliability ImprovementASQ Reliability Division
 
A Novel View of Applying FMECA to Software Engineering
A Novel View of Applying FMECA to Software EngineeringA Novel View of Applying FMECA to Software Engineering
A Novel View of Applying FMECA to Software EngineeringASQ Reliability Division
 
Astr2013 tutorial by mike silverman of ops a la carte 40 years of halt, wha...
Astr2013 tutorial by mike silverman of ops a la carte   40 years of halt, wha...Astr2013 tutorial by mike silverman of ops a la carte   40 years of halt, wha...
Astr2013 tutorial by mike silverman of ops a la carte 40 years of halt, wha...ASQ Reliability Division
 
Comparing Individual Reliability to Population Reliability for Aging Systems
Comparing Individual Reliability to Population Reliability for Aging SystemsComparing Individual Reliability to Population Reliability for Aging Systems
Comparing Individual Reliability to Population Reliability for Aging SystemsASQ Reliability Division
 
Cost optimized reliability test planning rev 7
Cost optimized reliability test planning rev 7Cost optimized reliability test planning rev 7
Cost optimized reliability test planning rev 7ASQ Reliability Division
 
Introduction to Vibration Qualification Testing
Introduction to Vibration Qualification TestingIntroduction to Vibration Qualification Testing
Introduction to Vibration Qualification TestingASQ Reliability Division
 
Operational Excellence: Managing Change and Avoiding the Yo-Yo Effect
Operational Excellence: Managing Change and Avoiding the Yo-Yo EffectOperational Excellence: Managing Change and Avoiding the Yo-Yo Effect
Operational Excellence: Managing Change and Avoiding the Yo-Yo EffectASQ Reliability Division
 

Más de ASQ Reliability Division (20)

On Duty Cycle Concept in Reliability
On Duty Cycle Concept in ReliabilityOn Duty Cycle Concept in Reliability
On Duty Cycle Concept in Reliability
 
Thermodynamic Reliability
Thermodynamic  ReliabilityThermodynamic  Reliability
Thermodynamic Reliability
 
Root Cause Analysis: Think Again! - by Kevin Stewart
Root Cause Analysis: Think Again! - by Kevin StewartRoot Cause Analysis: Think Again! - by Kevin Stewart
Root Cause Analysis: Think Again! - by Kevin Stewart
 
Dynamic vs. Traditional Probabilistic Risk Assessment Methodologies - by Huai...
Dynamic vs. Traditional Probabilistic Risk Assessment Methodologies - by Huai...Dynamic vs. Traditional Probabilistic Risk Assessment Methodologies - by Huai...
Dynamic vs. Traditional Probabilistic Risk Assessment Methodologies - by Huai...
 
Efficient Reliability Demonstration Tests - by Guangbin Yang
Efficient Reliability Demonstration Tests - by Guangbin YangEfficient Reliability Demonstration Tests - by Guangbin Yang
Efficient Reliability Demonstration Tests - by Guangbin Yang
 
Reliability Modeling Using Degradation Data - by Harry Guo
Reliability Modeling Using Degradation Data - by Harry GuoReliability Modeling Using Degradation Data - by Harry Guo
Reliability Modeling Using Degradation Data - by Harry Guo
 
Reliability Division Webinar Series - Innovation: Quality for Tomorrow
Reliability Division Webinar Series -  Innovation: Quality for TomorrowReliability Division Webinar Series -  Innovation: Quality for Tomorrow
Reliability Division Webinar Series - Innovation: Quality for Tomorrow
 
A multi phase decision on reliability growth with latent failure modes
A multi phase decision on reliability growth with latent failure modesA multi phase decision on reliability growth with latent failure modes
A multi phase decision on reliability growth with latent failure modes
 
Reliably Solving Intractable Problems
Reliably Solving Intractable ProblemsReliably Solving Intractable Problems
Reliably Solving Intractable Problems
 
Reliably producing breakthroughs
Reliably producing breakthroughsReliably producing breakthroughs
Reliably producing breakthroughs
 
ASQ RD Webinar: Design for reliability a roadmap for design robustness
ASQ RD Webinar: Design for reliability   a roadmap for design robustnessASQ RD Webinar: Design for reliability   a roadmap for design robustness
ASQ RD Webinar: Design for reliability a roadmap for design robustness
 
ASQ RD Webinar: Improved QFN Reliability Process
ASQ RD Webinar: Improved QFN Reliability Process ASQ RD Webinar: Improved QFN Reliability Process
ASQ RD Webinar: Improved QFN Reliability Process
 
Data Acquisition: A Key Challenge for Quality and Reliability Improvement
Data Acquisition: A Key Challenge for Quality and Reliability ImprovementData Acquisition: A Key Challenge for Quality and Reliability Improvement
Data Acquisition: A Key Challenge for Quality and Reliability Improvement
 
A Novel View of Applying FMECA to Software Engineering
A Novel View of Applying FMECA to Software EngineeringA Novel View of Applying FMECA to Software Engineering
A Novel View of Applying FMECA to Software Engineering
 
Astr2013 tutorial by mike silverman of ops a la carte 40 years of halt, wha...
Astr2013 tutorial by mike silverman of ops a la carte   40 years of halt, wha...Astr2013 tutorial by mike silverman of ops a la carte   40 years of halt, wha...
Astr2013 tutorial by mike silverman of ops a la carte 40 years of halt, wha...
 
Comparing Individual Reliability to Population Reliability for Aging Systems
Comparing Individual Reliability to Population Reliability for Aging SystemsComparing Individual Reliability to Population Reliability for Aging Systems
Comparing Individual Reliability to Population Reliability for Aging Systems
 
Cost optimized reliability test planning rev 7
Cost optimized reliability test planning rev 7Cost optimized reliability test planning rev 7
Cost optimized reliability test planning rev 7
 
Plan a more effective rdt
Plan a more effective rdtPlan a more effective rdt
Plan a more effective rdt
 
Introduction to Vibration Qualification Testing
Introduction to Vibration Qualification TestingIntroduction to Vibration Qualification Testing
Introduction to Vibration Qualification Testing
 
Operational Excellence: Managing Change and Avoiding the Yo-Yo Effect
Operational Excellence: Managing Change and Avoiding the Yo-Yo EffectOperational Excellence: Managing Change and Avoiding the Yo-Yo Effect
Operational Excellence: Managing Change and Avoiding the Yo-Yo Effect
 

Último

Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024Lonnie McRorey
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024Stephanie Beckett
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyAlfredo García Lavilla
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubKalema Edgar
 
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage CostLeverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage CostZilliz
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii SoldatenkoFwdays
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Enterprise Knowledge
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity PlanDatabarracks
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piececharlottematthew16
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Manik S Magar
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationSlibray Presentation
 

Último (20)

Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easy
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding Club
 
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage CostLeverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity Plan
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piece
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck Presentation
 

Bayesian methods in reliability engineering

  • 1. Bayesian Methods in  Reliability Engineering R li bili E i i Charles Recchia ©2012 ASQ & Presentation Charles Presented live on Nov 15th, 2012 http://reliabilitycalendar.org/The_Rel iability Calendar/Webinars_‐ y_ / _English/Webinars_‐_English.html
  • 2. ASQ Reliability Division  ASQ Reliability Division English Webinar Series English Webinar Series One of the monthly webinars  One of the monthly webinars on topics of interest to  reliability engineers. To view recorded webinar (available to ASQ Reliability  ( y Division members only) visit asq.org/reliability To sign up for the free and available to anyone live webinars  To sign up for the free and available to anyone live webinars visit reliabilitycalendar.org and select English Webinars to  find links to register for upcoming events http://reliabilitycalendar.org/The_Rel iability Calendar/Webinars_‐ y_ / _English/Webinars_‐_English.html
  • 3. Bayesian Methods in Reliability Engineering ASQ Reliability Division Webinar Program Nov 15th 2012 Charles H. Recchia, MBA, PhD Quality Support Group, Inc http://www.qualitysupportgroup.com/ http://www qualitysupportgroup com/
  • 4. BAYESIAN METHODS IN RELIABILITY ENGINEERING With product reliability demonstration test planning and execution interacting  heavily with cost, availability and schedule considerations, Bayesian methods  heavily with cost availability and schedule considerations Bayesian methods offer an intelligent way of incorporating engineering knowledge based on  y p g historical information into data analysis and interpretation, resulting in an  overall more precise and less resource intensive failure rate estimation.  This talk  consists of three parts Introduction to Bayesian vs Frequentist statistical approaches Bayesian formalism for reliability estimation Product/component case studies and examples Charles Recchia has more than two dozen years of fundamental research, technology/product  development, and management experience with a special focus on reliability statistics of complex  systems. He earned a doctorate in Condensed Matter Physics from Ohio State University, and a Master  of Business Administration degree from Babson College. Dr. Recchia accrued reliability engineering  fB i Ad i i i d f B b C ll D R hi d li bili i i expertise at Intel, MKS Instruments and Saint‐Gobain Innovative Materials R&D, has served as adjunct  professor at Wittenberg University, and is author of numerous peer‐reviewed technical papers and  patents.  He is a senior member of ASQ, the American Physical Society, and serves on the Advisory  f f Committee for the Boston Chapter of the IEEE Reliability Society. 11/15/2012 ASQ RD Webinar 2
  • 5. Agenda A d • Bayesian vs. Frequentist Comparison • Preliminary Example • Conjugate Priors Conjugate Priors • Test Time Examples Test Time Examples • Q ti Question and Answer dA 11/15/2012 ASQ RD Webinar 3
  • 6. 11/15/2012 ASQ RD Webinar 4
  • 7. Agenda A d • Bayesian vs. Frequentist Comparison • Preliminary Example • Conjugate Priors Conjugate Priors • Test Time Examples Test Time Examples • Q ti Question and Answer dA 11/15/2012 ASQ RD Webinar 5
  • 8. A d Agenda • Bayesian vs. Frequentist Comparison • Preliminary Example • Conjugate Priors Conjugate Priors • Test Time Examples Test Time Examples • Q ti Question and Answer dA 11/15/2012 ASQ RD Webinar 6
  • 9. When reliability follows the exponential TTF When reliability follows the exponential TTF model (eg the flat the flat  constant failure rate portion of Bathtub Curve): Classical Framework – The MTBF is one fixed unknown value ‐ there is no “probability” associated  with it ith it – Failure data from a test or observation period allows you to make  inferences about the value of the true unknown MTBF – No other data are used and no “judgment” ‐ the procedure is objective and  based solely on the test data and the assumed HPP model Bayesian Framework Bayesian Framework – The MTBF is a random quantity with a probability distribution – The particular piece of equipment or system you are testing “chooses” an  MTBF from this distribution and you observe failure data that follow an  MTBF f hi di ib i d b f il d h f ll HPP model with that MTBF – Prior to running the test, you already have some idea of what the MTBF  probability distribution looks like based on prior test data or an consensus  engineering judgment 11/15/2012 ASQ RD Webinar 7
  • 10. exponential distribution ti l di t ib ti “non‐intuitive” non intuitive Brains wired with  Planet = Earth Normal Distribution σ ~ 0.1μ 6 draw sample.   Population mean height 5’11” Sample mean = ______ 8 5’9” 6’3” 5’10” 5’9” 6’0” 5’9”
  • 11. ti l di t ib ti exponential distribution Planet = Laitnenopxe 6 draw sample.   Population mean height 5’11” Sample mean = ______ 11/15/2012 ASQ RD Webinar 9 4’11” 13’8” 7’11” 5’9” 2’5” 4”
  • 12. Confidence vs. Credibility Intervals C fid C dibilit I t l 11/15/2012 ASQ RD Webinar 10
  • 13. For and Against use of Bayesian Methodology g y gy PROs CONs Uses prior information ‐ thi U i i f ti this  Prior information may not be  Pi i f ti tb "makes sense“ accurate ‐ generating misleading  Less new testing may be  Less new testing may be conclusions needed to confirm a desired  Way of inputting prior information  MTBF at a given confidence MTBF at a given confidence (choice of prior) may not be correct (choice of prior) may not be correct Confidence intervals are really  Customers may not accept validity of  intervals for the (random) MTBF  intervals for the (random) MTBF prior data or engineering judgements prior data or engineering judgements ‐ sometimes called "credibility  Risk of perception that results  intervals“ aren't objective and don't stand by  j y themselves 11/15/2012 ASQ RD Webinar 11
  • 14. Agenda A d • Bayesian vs. Frequentist Comparison • Preliminary Example • Conjugate Priors Conjugate Priors • Test Time Examples Test Time Examples • Q ti Question and Answer dA 11/15/2012 ASQ RD Webinar 12
  • 15. Agenda A d • Bayesian vs. Frequentist Comparison • Preliminary Example • Conjugate Priors Conjugate Priors • Test Time Examples Test Time Examples • Q ti Question and Answer dA 11/15/2012 ASQ RD Webinar 13
  • 16. Toy Hyperbolic Example y yp p First day on the job as reliability engineer, you overhear three colleagues  debating the MTBF for a product. Evidently the engineer you are replacing had kept all his data on his now‐ destroyed C:drive and all that remains is “word of mouth” among his three  remaining coworkers.  Waloddi: “I remember seeing 500 seconds written down  on his whiteboard.  I can still see it in my head.” Gertrude: “No W, that was 100 seconds!  His  handwriting was atrocious, but that definitely was a 1  not a 5. not a 5 ” Taiichi: “Agree with Gertrude.  It was 100 seconds.” 2 against 1.  That is all you have to go by.  Your manager needs an answer by end  of day.  The ink on your badge hasn’t even dried yet. fd Th i k b d h ’t di d t What shall you do?  They measure product MTBF in seconds? 11/15/2012 ASQ RD Webinar 14
  • 17. Bayesian Core Idea Bayesian Core Idea What you knew  What you knew before WYKB.   New Data “Prior” Best possible update of WYKB  adjusted by the New Data. adjusted by the New Data “Posterior” 11/15/2012 ASQ RD Webinar 15
  • 18. λ KOtG λ 1 λ 2 Failure Rate λ  (1/sec) 0.0022 0.0100 0.0020 MTTF (sec) 450 100 500 Prior g (λ ) 0.667 0.333 P t i g (λ | t i ) Posterior 0.204 0 204 0.796 0 796 Prior*Likelihood 3.66E‐21 1.43E‐20 Lik lih d Π f ( i ) Likelihood  (t 5.49E‐21 5 49E 21 1.43E‐18 1 43E 18 average {t }  average {t i } = 317 i TTF data t i  (sec) f 1(t i ) f 2(t i ) 1 133 2.65E‐03 1.53E‐03 2 888 1.39E‐06 3.39E‐04 3 619 2.05E‐05 5.80E‐04 4 8 9.23E‐03 9 23E 03 1.97E‐03 1 97E 03 5 97 3.78E‐03 1.65E‐03 6 157 2.08E‐03 1.46E‐03 11/15/2012 ASQ RD Webinar 16
  • 19. λ KOtG λ 1 λ 2 Failure Rate λ  (1/sec) 0.0022 0.0100 0.0020 MTTF (sec) 450 100 500 Prior g (λ ) 0.667 0.333 P t i g (λ | t i ) Posterior 0.204 0 204 0.796 0 796 Prior*Likelihood 3.66E‐21 1.43E‐20 There is just enough time  1.43E‐18 There is justLikenough) time21 1 43E 18 Likelihood Π f ( lih d (t 5.49E‐21 5 49E i before end of day to collect 6  average {t }  average {t } = 317 i y i TTF data t  (sec) f (t ) f (t ) time‐to‐fail (TTF) data points.1.53E‐03 1 133 i 2.65E‐03 1 i 2 i 2 888 1.39E‐06 3.39E‐04 3 619 2.05E‐05 5.80E‐04 4 8 9.23E‐03 9 23E 03 1.97E‐03 1 97E 03 Let’s do that. 5 97 3.78E‐03 1.65E‐03 6 157 2.08E‐03 1.46E‐03 11/15/2012 ASQ RD Webinar 17
  • 20. λ KOtG λ 1 λ 2 Failure Rate λ  (1/sec) 0.0022 0.0100 0.0020 MTTF (sec) 450 100 500 Prior g (λ ) 0.667 0.333 P t i g (λ | t i ) Posterior 0.204 0 204 0.796 0 796 Prior*Likelihood 3.66E‐21 1.43E‐20 Lik lih d Π f ( i ) Likelihood  (t 5.49E‐21 5 49E 21 1.43E‐18 1 43E 18 average {t }  average {t i } = 317 i TTF data t i  (sec) f 1(t i ) f 2(t i ) 1 133 2.65E‐03 1.53E‐03 2 888 1.39E‐06 3.39E‐04 3 619 2.05E‐05 5.80E‐04 4 8 9.23E‐03 9 23E 03 1.97E‐03 1 97E 03 5 97 3.78E‐03 1.65E‐03 6 157 2.08E‐03 1.46E‐03 11/15/2012 ASQ RD Webinar 18
  • 21. λ KOtG λ 1 λ 2 Failure Rate λ  (1/sec) 0.0022 0.0100 0.0020 MTTF (sec) 450 100 500 Prior g (λ ) 0.667 0.333 P t i g (λ | t i ) Posterior 0.204 0 204 0.796 0 796 How likely is this data? Prior*Likelihood 3.66E‐21 1.43E‐20 Lik lih d Π f ( i ) 5 49E 21 what λ 18 Likelihood  Depends on Depends on what43E is! (t 5.49E‐21 1.43E‐18 1 average {t }  average {t i } = 317 i TTF data t i  (sec) f 1(t i ) f 2(t i ) 1 133 2.65E‐03 1.53E‐03 2 888 1.39E‐06 3.39E‐04 3 619 2.05E‐05 5.80E‐04 4 8 9.23E‐03 9 23E 03 1.97E‐03 1 97E 03 5 97 3.78E‐03 1.65E‐03 6 157 2.08E‐03 1.46E‐03 11/15/2012 ASQ RD Webinar 19
  • 22. λ KOtG λ 1 λ 2 Failure Rate λ  (1/sec) 0.0022 0.0100 0.0020 MTTF (sec) 450 100 500 Prior g (λ ) 0.667 0.333 P t i g (λ | t i ) Posterior 0.204 0 204 0.796 0 796 Prior*Likelihood 3.66E‐21 1.43E‐20 Lik lih d Π f ( i ) Likelihood  (t 5.49E‐21 5 49E 21 1.43E‐18 1 43E 18 average {t }  average {t i } = 317 i TTF data t i  (sec) f 1(t i ) f 2(t i ) 1 133 2.65E‐03 1.53E‐03 2 888 1.39E‐06 3.39E‐04 3 619 2.05E‐05 5.80E‐04 4 8 9.23E‐03 9 23E 03 1.97E‐03 1 97E 03 5 97 3.78E‐03 1.65E‐03 6 157 2.08E‐03 1.46E‐03 11/15/2012 ASQ RD Webinar 20
  • 23. λ KOtG λ 1 λ 2 Failure Rate λ  (1/sec) 0.0022 0.0100 0.0020 MTTF (sec) 450 100 500 Prior g (λ ) 0.667 0.333 P t i g (λ | t i ) Posterior 0.204 0 204 0.796 0 796 Prior*Likelihood 3.66E‐21 1.43E‐20 Lik lih d Π f ( i ) Likelihood  (t 5.49E‐21 5 49E 21 1.43E‐18 1 43E 18 average {t }  average {t i } = 317 i TTF data t i  (sec) f 1(t i ) f 2(t i ) 1 133 2.65E‐03 1.53E‐03 2 888 1.39E‐06 3.39E‐04 3 619 2.05E‐05 5.80E‐04 4 8 9.23E‐03 9 23E 03 1.97E‐03 1 97E 03 5 97 3.78E‐03 1.65E‐03 6 157 2.08E‐03 1.46E‐03 11/15/2012 ASQ RD Webinar 21
  • 24. λ KOtG λ 1 λ 2 Failure Rate λ  (1/sec) 0.0022 0.0100 0.0020 MTTF (sec) 450 100 500 Prior g (λ ) 0.667 0.333 P t i g (λ | t i ) Posterior 0.204 0 204 0.796 0 796 Prior*Likelihood 3.66E‐21 1.43E‐20 Lik lih d Π f ( i ) Likelihood  (t 5.49E‐21 5 49E 21 1.43E‐18 1 43E 18 average {t }  average {t i } = 317 i TTF data t i  (sec) f 1(t i ) f 2(t i ) 1 133 2.65E‐03 1.53E‐03 2 888 1.39E‐06 3.39E‐04 3 619 2.05E‐05 5.80E‐04 4 8 9.23E‐03 9 23E 03 1.97E‐03 1 97E 03 5 97 3.78E‐03 1.65E‐03 6 157 2.08E‐03 1.46E‐03 11/15/2012 ASQ RD Webinar 22
  • 25. λ KOtG λ 1 λ 2 Failure Rate λ  (1/sec) 0.0022 0.0100 0.0020 Shouldn t these  (sec) Shouldn’t these MTTF 450 100 500 sum to 1 if they  are exhaustive  Prior g (λ ) 0.667 0.333 possibilities? P t i g (λ | t i ) Posterior 0.204 0 204 0.796 0 796 Prior*Likelihood 3.66E‐21 1.43E‐20 Lik lih d Π f ( i ) Likelihood  (t 5.49E‐21 5 49E 21 1.43E‐18 1 43E 18 average {t }  average {t i } = 317 i TTF data t i  (sec) f 1(t i ) f 2(t i ) 1 133 2.65E‐03 1.53E‐03 2 888 1.39E‐06 3.39E‐04 3 619 2.05E‐05 5.80E‐04 4 8 9.23E‐03 9 23E 03 1.97E‐03 1 97E 03 5 97 3.78E‐03 1.65E‐03 6 157 2.08E‐03 1.46E‐03 11/15/2012 ASQ RD Webinar 23
  • 26. λ KOtG λ 1 λ 2 Failure Rate λ  (1/sec) 0.0022 0.0100 0.0020 MTTF (sec) 450 100 500 Prior g (λ ) 0.667 0.333 P t i g (λ | t i ) Posterior 0.204 0 204 0.796 0 796 Prior*Likelihood 3.66E‐21 1.43E‐20 Lik lih d Π f ( i ) Likelihood  (t 5.49E‐21 5 49E 21 1.43E‐18 1 43E 18 average {t }  average {t i } = 317 i TTF data t i  (sec) f 1(t i ) f 2(t i ) 1 133 2.65E‐03 1.53E‐03 2 888 1.39E‐06 3.39E‐04 3 619 2.05E‐05 5.80E‐04 4 8 9.23E‐03 9 23E 03 1.97E‐03 1 97E 03 5 97 3.78E‐03 1.65E‐03 6 157 2.08E‐03 1.46E‐03 11/15/2012 ASQ RD Webinar 24
  • 27. go to the spreadsheet go to the spreadsheet 11/15/2012 ASQ RD Webinar 25
  • 28. Agenda A d • Bayesian vs. Frequentist Comparison • Preliminary Example • Conjugate Priors Conjugate Priors • Test Time Examples Test Time Examples • Q ti Question and Answer dA 11/15/2012 ASQ RD Webinar 26
  • 29. Agenda A d • Bayesian vs. Frequentist Comparison • Preliminary Example Conjugate Priors • Conjugate Priors • Test Time Examples Test Time Examples • Q ti Question and Answer dA 11/15/2012 ASQ RD Webinar 27
  • 30. Conjugate Prior C j t Pi 11/15/2012 ASQ RD Webinar 28
  • 31. Mean λave = a/b Variance   σ2 = a/b2 In hierarchical Bayesian models, these hyperparameters  will be represented as distributions with priors/posteriors, etc will be represented as distributions with priors/posteriors etc and have hyperparameters of their own 11/15/2012 ASQ RD Webinar 29
  • 32. Bayesian assumptions for the gamma  y p f g exponential system model 1. Failure times for the system under investigation can be adequately  modeled by the exponential distribution with constant failure rate. 2. The MTBF for the system can be regarded as chosen from a prior  distribution model that is an analytic representation of our  distribution model that is an analytic representation of our previous information or judgments about the system's reliability.  The form of this prior model is the gamma distribution (the  conjugate prior for the exponential model).  The prior model is actually defined for λ = 1/MTBF. 3. Our prior knowledge is used to choose the gamma parameters  3 O i k l d i dt h th t a and b for the prior distribution model for λ. There are a number  of ways to convert prior knowledge to gamma parameters. y p g g p 11/15/2012 ASQ RD Webinar 30
  • 33. Gamma prior parameter method 1 G i t th d 1 1. If you have actual data from previous testing done on the  system (or a system believed to have the same reliability as the  system (or a system believed to have the same reliability as the one under investigation), this is the most credible prior  knowledge, and the easiest to use. Simply set the gamma  knowledge, and the easiest to use. Simply set the gamma parameter a equal to the total number of failures from all the  p e ous da a, a d se e pa a e e equa o e o a o a previous data, and set the parameter b equal to the total of all  the previous test hours. 11/15/2012 ASQ RD Webinar 31
  • 34. Gamma prior parameter method 2 Gamma prior parameter method 2 2. A consensus method for determining 2 A consensus method for determining a and b that works well is the following: that works well is the following:  Assemble a group of engineers who know the system and its sub‐components well  from a reliability viewpoint. A. Have the group reach agreement on a reasonable MTBF they expect the system to have.  They could each pick a number they would be willing to bet even money that the system  would either meet or miss, and the average or median of these numbers would be their  50% best guess for the MTBF. Or they could just discuss even‐money MTBF candidates until  a consensus is reached. p p g , g g y p B. Repeat the process again, this time reaching agreement on a low MTBF they expect the  system to exceed. A "5%" value that they are "95% confident" the system will exceed (i.e.,  they would give 19 to 1 odds) is a good choice. Or a "10%" value might be chosen (i.e., they  g ) p would give 9 to 1 odds the actual MTBF exceeds the low MTBF). Use whichever percentile  choice the group prefers. C. Call the reasonable MTBF MTBF50 and the low MTBF you are 95% confident the system will  exceedMTBF05. These two numbers uniquely determine gamma parameters a and b that . These two numbers uniquely determine gamma parameters that  have percentile values at the right locations Called the 50/95 method (or the 50/90 method if one uses MTBF10 , etc.) 11/15/2012 ASQ RD Webinar 32
  • 35. Gamma prior parameter method 3 G i t th d 3 3. Weak Prior Obtain consensus is on a reasonable  expected MTBF, called MTBF Next however the expected MTBF called MTBF50. Next, however, the  group decides they want a weak prior that will change  rapidly, based on new test data. If the prior parameter  rapidly based on new test data If the prior parameter "a" is set to 1, the gamma has a standard deviation  equal to its mean, which makes it spread out, or  equal to its mean which makes it spread out or "weak". To set the 50th percentile we have to  choose b = ln 2 × MTBF50 = ln 2 × Note: During planning of Bayesian tests, this weak prior is  actually a very friendly prior in terms of saving test time. 11/15/2012 ASQ RD Webinar 33
  • 36. Comments C t Many variations are possible, based on the above  three methods. For example, you might have prior  three methods For example you might have prior data from sources that you don't completely trust. Or  you might question whether the data really apply to  i ht ti h th th d t ll l t the system under investigation. You might decide to  "weight" the prior data by .5, to "weaken" it. This can  be implemented by setting a = .5 x the number of  p y g fails in the prior data and b = .5 times the number of  test hours. That spreads out the prior distribution  test hours. That spreads out the prior distribution more, and lets it react quicker to new test data. 11/15/2012 ASQ RD Webinar 34
  • 37. New data is collected … N d t i ll t d New information is combined with the gamma prior model to p produce a gamma posterior distribution. g p After a new test is run with T additional system operating hours, and r new failures, The resultant posterior distribution for failure rate λ remains gamma (conjugate remember?), with new parameters a' = a + r ' b' = b + T b' b + T 11/15/2012 ASQ RD Webinar 35
  • 39. Example p • A group of engineers, discussing the reliability of a new piece of equipment decide to use the 50/95 method to equipment, convert their knowledge into a Bayesian gamma prior. Consensus is reached on a likely MTBF50 value of 600 hours and a low MTBF05 value of 250. • RT is 600/250 = 2.4. Using software to find the root of a / g univariate function, the gamma prior parameters were found to be a = 2.863 and b = 1522.46. The parameters will have ( h (approximately) a probability of 50% of b i b l i t l ) b bilit f f being below 1/600 = 0.001667 hours‐1 and a probability of 95% of being below 1/250 = 0 004 hours‐1. (The probabilities are based on 0.004 the 0.001667 and 0.004 quantiles of a gamma distribution with shape parameter a = 2.863 and scale parameter b = p p p 1522.46 hours) 11/15/2012 ASQ RD Webinar 37
  • 40. Agenda A d • Bayesian vs. Frequentist Comparison • Preliminary Example Conjugate Priors • Conjugate Priors • Test Time Examples Test Time Examples • Q ti Question and Answer dA 11/15/2012 ASQ RD Webinar 38
  • 41. Agenda A d • Bayesian vs. Frequentist Comparison • Preliminary Example • Conjugate Priors Conjugate Priors • Test Time Examples Test Time Examples • Question and Answer Q ti dA 11/15/2012 ASQ RD Webinar 39
  • 42. Bayesian test plan y p Gamma prior parameters a and b have already been determined. Assume we have a given MTBF  objective, M, and a desired confidence level of 100×(1‐ α). We want to confirm the system will have  an MTBF of at least at the 100×(1‐ α) confidence level. Pick a number of failures, r, that we can  an MTBF of at least M at the 100×(1 α) confidence level Pick a number of failures r that we can allow on the test.  We need a test time T such that we can observe up to r failures and still "pass" the test. If the test  time is too long (or too short), we can iterate with a different choice of the test ends, the posterior  gamma distribution will have (worst case ‐ assuming exactly r failures) new parameters of a ' = a + r,  b' = b + T and passing the test means that the failure rate λ1‐ α, the upper 100×(1‐ α) percentile for the  posterior gamma, has to equal the target failure rate 1/M.  By definition, this is G ‐1(1‐ α; a', b'), with G ‐1 denoting the inverse of the gamma CDF distribution . We can find the value of that satisfies 1(1‐ α;a b') = 1/M by trial and error. However, based on  We can find the value of T that satisfies G ‐1(1 α;a', b ) = 1/M by trial and error However based on the properties of the gamma distribution, it turns out that we can calculate T directly by using  T = M×(G ‐1(1‐ α; a', 1)) ‐ b 11/15/2012 ASQ RD Webinar 40
  • 43. Special Case: a = 1 (The "Weak" Prior) p ( ) When the prior is a weak prior with a = 1, the Bayesian test is always  shorter than the classical test.  There is a very simple way to calculate the required Bayesian test time  when the prior is a weak prior with a = 1. First calculate the  classical/frequentist test time Call this Tc. The Bayesian test time T is test time. Call this The Bayesian test time is  just Tc minus the prior parameter b (i.e.,T = Tc ‐ b). If the b parameter  was set equal to (ln 2) × MTBF50(where MTBF50 is the consensus  choice for an "even money" MTBF), then T = T choice for an "even money" MTBF) then T Tc ‐ (ln 2) × MTBF50This 2) × This  shows that when a weak prior is used, the Bayesian test time is always  less than the corresponding classical test time. That is why this prior is  p g y p also known as a friendly prior. This prior essentially sets the order of magnitude for the MTTF 11/15/2012 ASQ RD Webinar 41
  • 44. Calculating a Bayesian Test Time g y A new piece of equipment has to meet a MTBF requirement of 500 hours at 80  % confidence. A group of engineers decide to use their collective experience to  determine a Bayesian gamma prior using the 50/95 method described  determine a Bayesian gamma prior using the 50/95 method described in Section 2. They determine that the gamma prior parameters are a = 2.863  and b = 1522.46 hrs. Now they want to determine an appropriate test time so that they can confirm  N th tt d t i i t t t ti th t th fi a MTBF of 500 with at least 80 % confidence, provided they have no more than  two failures (r = 2). We obtain a test time of 1756.117 hours using 500×(G ‐1(1‐0.2; 2.863+2, 1)) ‐ 1522.46  To compare this result to the classical test time required, which is 2140 hours  To compare this result to the classical test time required, which is 2140 hours for a non‐Bayesian test. The Bayesian test saves about 384 hours, or an 18 %  savings. If the test is run for 1756 hours, with no more than two failures, then  an MTBF of at least 500 hours has been confirmed at 80 % confidence. an MTBF of at least 500 hours has been confirmed at 80 % confidence. If, instead, the engineers had decided to use a weak prior with an MTBF50 of  600, the required test time would have been 2140 ‐ 600 × ln 2 = 1724 hours 11/15/2012 ASQ RD Webinar 42
  • 45. Post‐Test Analysis Example P t T tA l i E l • A system has completed a reliability test aimed at  confirming a 600 hour MTBF at an 80% confidence  confirming a 600 hour MTBF at an 80% confidence level. Before the test, a gamma prior with a = 2, b =  1400 was agreed upon, based on testing at the  1400 was agreed upon, based on testing at the vendor's location. Bayesian test planning  calculations, allowing up to 2 new failures, called  calculations, allowing up to 2 new failures, called for a test of 1909 hours.  • When that test was run there actually were exactly When that test was run, there actually were exactly  two failures. What can be said about the reliability?  The posterior gamma CDF has parameters a = 4 The posterior gamma CDF has parameters a' = 4  and b' = 3309.  11/15/2012 ASQ RD Webinar 43
  • 46. Bayesian solutions for arbitrary F(t) B i l ti f bit F(t) What about Weibull Wh t b t W ib ll or other non‐exponential variable failure rate TTF  th ti l i bl f il t TTF distributions? 3.50E‐02 3.00E‐02 2.50E‐02 β = 0.6 2.00E‐02 2 00E 02 β=08 0.8 g(λ, β|data) β = 1.0 1.50E‐02 β = 1.2 1.00E‐02 β = 1.4 5.00E‐03 β = 1.6 0.00E+00 0.0000 0.0020 0.0040 0.0060 0.0080 λ (1/sec) Conjugate priors only exist for Weibull when a subset of hyperparameters are  Conjugate priors only exist for Weibull when a subset of hyperparameters are known.  MCMC and Gibbs methods exist for sampling from higher dimensional  posteriors  CDFs in multiple dimensions not as straightforward.   11/15/2012 ASQ RD Webinar 44
  • 47. References and Further Reading R f d F th R di • NIST/SEMATECH e‐Handbook of Statistical Methods,  http://www.itl.nist.gov/div898/handbook/, April (2012) • Statistical Methods for Reliability Data, WQ Meeker and LA  Escobar (1998) • Applied Reliability, 2nd edition, PA Tobias and DC Trindade (1995) • Bayesian Reliability Analysis, HF Martz and RA Waller (1982) • Methods for Statistical Analysis of Reliability and Life Data,  NR Mann, RE Schafer, and ND Singpurwalla (1974) NR M RE S h f d ND Si ll • Bayes is for the birds, RA Evans, IEEE Transactions on  Reliability R‐38, 401 (1989). R li bilit R 38 401 (1989) 11/15/2012 ASQ RD Webinar 45
  • 48. 11/15/2012 ASQ RD Webinar 46
  • 49. Agenda A d • Bayesian vs. Frequentist Comparison • Preliminary Example • Conjugate Priors Conjugate Priors • Test Time Examples Test Time Examples • Question and Answer Q ti dA 11/15/2012 ASQ RD Webinar 47
  • 50. Agenda A d • Bayesian vs. Frequentist Comparison • Preliminary Example • Conjugate Priors Conjugate Priors • Test Time Examples Test Time Examples • Q ti dA Question and Answer 11/15/2012 ASQ RD Webinar 48
  • 51. Q&A 11/15/2012 ASQ RD Webinar 49