SlideShare una empresa de Scribd logo
1 de 29
Descargar para leer sin conexión
A fast and accurate computational
approach to protein ionization:
combining the Generalized Born
model with an iterative mobile
cluster method


Velin Z Spassov, Accelrys
Outline


• Introduction

• Background/theory

• Results/validation

• Conclusions




© 2008 Accelrys, Inc.   2
INTRODUCTION


Protein Ionization and pK
  Scientific Needs
           • To provide a fast and convenient way to study the effects
             of the pH changes on a wide range of important
             mechanism such as enzyme catalysis, ligand binding and
             protein stability.

           • In protein modeling, a correct assignment of protonation
             states and hydrogen atom positions are critical for:
                 » Accurate docking of small molecules to receptors
                 » Accurate protein-protein docking
                 » Stable, convergent molecular dynamics simulations




© 2008 Accelrys, Inc.                                                    3
Introduction
   Calculate Protein Ionization and Residue pK
   A new Discovery Studio computational protocol to calculate the pH dependent
   electrostatic effects in protein molecules*.

     Calculates:
     – the titration curves and pK1/2 of the titratible residues.
     – the electrostatic contribution to the protein free energy as a function of pH.
     – the pH dependency of the folding energy of the protein and the pH optimum
       of protein stability.
     – pI of the protein.

     Optimizes the positions of all hydrogen atoms and
     – automatically sets the protonation state of each residue at a given pH, based
       on the calculated pK1/2 .
     – finds the optimal proton binding sites for tautomeric ASP, GLU and HIS
       residues.
     – flips the O and N atoms of ASN and GLN residue to find an optimal
       conformation.

     *Spassov,          V.Z. and Yan, L. (2008) Protein Science,17,1955-1969.



© 2008 Accelrys, Inc.                                                                   4
Protein Ionization and pK: Background

                                                                                              Deprotonated Protonated Deprotonated Protonated
                                                                H+




                                                                                                          Arg                      Lys


                                                                                H
                                                                                +
                                                                                                         Asp                       Glu
• Titratable residues: exist in protonated and deprotonated
  forms
• A titration curve gives the fractional protonation of a titratable
  group as a function of pH                                                                                Tyr                    His

                            B:ASP30

                                                                                                          Cys
                                                                 HA + H2O  H3O+ + A-
    1.2


     1
                                                                                                                                  N-ter
    0.8

                                                                pH = pKa + log10{[A-]/[HA]}
    0.6                                               B:ASP30
                                                                                                          C-ter
                                pK1/2 = 3.9
    0.4


    0.2
                                                                                                         Titratable Groups in Proteins
     0
          0   2   4    6    8     10   12   14   16
    © 2008 Accelrys, Inc.                                                                                                                  5
THEORY
Calculate Protein Ionization and Residue pK


   CHARMM force-field                                                                                     Extended GB/IM2,3,4,5 instead of
                                                                                                              grid based PB solvers



                                                          Ionization Model1
                                                                      exp[−G ( X l , pH ) / RT ]
                                                 ρ ( X l , pH ) =
                                                                    2N
                                                                    ∑ exp[−G(X , pH ) / RT ]
                                                                    l =1
                                                                                   l


                                                                               (              )
                                                                           N
                                                G (X, pH ) = 2.3RT ∑ xi pH − pK intr ,i + 1 / 2∑ Wij ( xi , x j )
                                                                           i                       i, j


                                              pK int r = pK mod + (2.303RT ) −1 [∆∆G ( PH , P ) − ∆∆G ( MH , M )]



      Library of pentapeptide model
       compounds and pKmod data7                                                                                    IMC6 instead of Monte Carlo
         instead of monopeptides                         CHARMm-based Protocol for
                                                           Preliminary Optimization


1Bashford   D, Karplus M. (1990) Biochemistry, 29, 10219-10225.        5Spassov VZ et al. (2002) J. Phys. Chem B106:8762-8738.
2Still, W.C. et al. (1990)J. Am. Chem. Soc. 1990, 112, 6127-6129       6Spassov V.Z., Bashford, D. (1999) J..Comput. Chem.,20,1091-1111.
3Dominy, B.N.,Brooks III, C.L. (1999) J. Phys. Chem. B 103, 3765-3773. 7Thurlkill et al. 2006. Protein Science,15,1214-1218.
4 Onufriev A. et al. (2000) J. Phys. Chem. B 2000, 104, 3712-3720.
    © 2008 Accelrys, Inc.                                                                                                                    6
Protein Ionization and pK: Solution
 • New method1 to ‘Calculate Protein Ionization and pK’
    – Predicts pK1/2 and titration curves for each titratable residue using 3D environment of protein
    – Automatically protonates the residues at a given pH according to predicted pK1/2.
              •    For HIS, ASP, and GLU residues the hydrogens are added to yield the lowest CHARMm energy
              •    The N and O atoms on the side-chain of ASN and GLN residues are flipped if necessary to give the lower
                   energy conformation
       – Calculates the following as a function of pH
              •    Electrostatic contribution to the free energy
              •    Estimate of relative folding energy (electrostatic contribution)
              •    Total charge of system
       – Based on CHARMm Generalized-Born methods
 • Strength of Solution
       – More accurate and rigorous than rule-based methods
       – Faster and more accurate than existing Poison-Boltzmann/Monte Carlo methods
       – Consistent CHARMm force field used throughout

                                                             1.2                                      *:GLU23
                                                                                                      *:GLU38
                                                                                                      *:GLU77
                                                              1
                                                                                                      *:GLU97
                                                                                                      *:GLU104
                                                             0.8                                      *:GLU107
                                                                                                      *:GLU119
                                                                                                      *:GLU129
                                                             0.6
                                                                                                      *:GLU133
                                                                                                      *:GLU135
                                                             0.4                                      *:GLU140
                                                                                                      *:GLU145
                                                                                                      *:GLU165
                                                             0.2
                                                                                                      *:GLU183
                                                                                                      *:GLU186
                                                              0                                       *:GLU219
                                                                   0   2   4   6   8   10   12   14   *:GLU239




© 2008 Accelrys, Inc.                                                                       1. Spassov, et al, Protein Sci. 2008, 17, 1955-1969)   7
Model Compounds




        MEAD, UHBD and others                                 DS Protein Ionization
        Structure: Monopeptide                                Structure: Blocked Pentapeptides
        pK data: standard set                                 Ala-Ala-X-Ala-Ala
        Nozaki Y, Tanford C. 1967. Examination of titration   pK data:
        behavior. Methods Enzymol 11:715–734.
                                                              Thurlkill et al. 2006. Protein Science,15,1214-1218.

© 2008 Accelrys, Inc.                                                                                                8
IMC (Iterative Mobile Clustering) Approach
                                                                                               Mean-field approach to protein ionization:
Spassov V.Z., Bashford, D. (1999) J..Comput. Chem.,20,1091-1111
                                                                                               One site/Single conformer
                                                                                               Tanford C., Roxby R (1972),11,2192-2198.
                                   IMC: Ntot(cluster) = Nglobal 3Nclstr2Nclstr                 Clustering/distance criterion/single conformer
                                                                                               Yang A.S. et al. (1993) Proteins,15,252-265.
                                                                                               Gilson M.K. (1993) Proteins,15,266-282.
                                  ρ (C , X ) = f g (k ) f Γ (c, x | k ) f out (c' , x' | k )   Clustering/energy criterion/single or multiple conformers
                                                                                               Spassov & Bashford (1999)




© 2008 Accelrys, Inc.                                                                                                                                 9
Protein Ionization and pK: Method


• Electrostatic interaction energies are calculated using an implementation of
  Generalized Born solvation model in CHARMm
   – atomic parameters from either CHARMm or CHARMM polar hydrogen forcefields


• The energies of the protonated and deprotonated states are calculated and the
  percentage of protonation of each residue is predicted at given pH based on
  Boltzmann distribution


• Relative folding energy estimated based on energy of protonation of the protein and
  the protonation energy of the model compounds


• Current implementation treats protein as a single conformer embedded in a dielectric
  medium
   – A dielectric constant of 10-11 for the protein interior gives the lowest RMSD compared to
     experimentally obtained pK data.
   – This dielectric constant is the only parametrized variable in the method


© 2008 Accelrys, Inc.                                                                        10
Parameterization of the model
        In contrast to some popular pK prediction programs based on multi-parameter empirical models,
        the only fitting parameter in our method is the value of intra-molecular dielectric constant, εm, while
        all other parameters are kept at their standard CHARMm force-field values.

                         qi q j                1        D( I , α i , α j )                        qi q j
∆Gelec = 332∑∑                       − 166 (        −                        )∑∑
                   j >i ε m ri , j             εm             ε slv                   r + α iα j exp(−rij2 / 4α iα j )
                                                                                       2
               i                                                              i   j   ij




     Hen-egg lyzozyme 2lzt.pdb
                                                pK1/2
    Residue          Experimental*             CHARMM            CHARMM
                                                polar H
                                                                                                                      1.2
  LYS1_NTR                    7.9                7.81                 8.00
    LYS1                     10.6                10.01                10.01
    GLU7                      2.9                3.17                 3.39
                                                                                                                       1
    LYS13                    10.3                10.49                10.56
    HIS15                     5.4                6.20                 5.87
    ASP18                     2.7                2.87                 3.11                                            0.8
   TYR20                     10.3                10.85                11.18
   TYR23                      9.8                10.16                10.87                                    RMSD
    LYS33                    10.4                10.58                10.79                                           0.6
   GLU35                      6.2                5.05                 5.90
    ASP48                     2.5                2.96                 2.91
    ASP52                     3.7                4.32                 4.67                                            0.4
   TYR53                     >12                 11.71                 >12
    ASP66                    <2.0                2.15                 2.87
    ASP87                     2.1                2.43                 2.97                                            0.2
    LYS96                    10.7                11.18                11.42
    LYS97                    10.1                10.79                10.85
   ASP101                     4.1                3.89                 3.92                                             0
   LYS116                    10.2                10.12                10.09                                                 0   5   10              15    20   25
   ASP119                     3.2                3.08                 3.28
 LEU129_CTR                   2.8                2.73                 2.83                                                          dielectric constant
     rmsd                                        0.45                 0.57




* Bartik et al., 1994, Kuramitsu and Hamaguchi 1980.
© 2008 Accelrys, Inc.                                                                                                                                               11
Results: pK Prediction of Selected Proteins


                                                                    Sites with       CHARMm CHARMm
• Comparison of experimental                   PDB code       experimantal pK data     polar      all
                                                                                     hydrogens hydrogens PROPKA MCCE
  pK1/2 with calculated values for                                                                               ε=8
  select PDB files                      1        4pti                 14               0.36     0.36    0.6     0.47
                                        2         2lzt                21               0.45     0.57    0.66    0.74
• All computations about 1              3        2rn2                 25               0.59     0.68    0.72    0.87
                                        4        3rn3                 16               0.47     0.71    0.67    0.66
  minute per system on a single         5        1pga                 15               0.50     0.57    0.72    0.63
  CPU                                   6
                                        7
                                                 3icb
                                                 1hng
                                                                      10
                                                                      14
                                                                                       0.33
                                                                                       0.55
                                                                                                0.35
                                                                                                0.53
                                                                                                        0.9
                                                                                                        0.83
                                                                                                                0.38
                                                                                                                0.76
                                        8        1a2p                 12               0.60     0.49    0.68    0.89
                                        9       1omu                  15               0.64     0.70    0.44    1.10
                                        10       9rnt                 14               0.54     0.65    1.51
                                        11 1bi6-heavy chain           18               0.54     0.53    0.56
                                        12 1bi6-light chain            4               0.18     0.27    0.38
                                        13       1rgg                 24               0.84     0.89    0.97
                                        14       1igd                 16               0.35     0.36    0.62
                                        15       135l                 11               0.63     0.65    0.66
  PROPKA: Li et al. (2005) Proteins,    16       1div                  6               0.26     0.32    0.74
                                        17      1xnb*                 13               0.70     1.09    0.62
  61, 704-721.                          18       1kxi                  3               0.57     0.50    0.66
                                        19       1beo                 10               0.46     0.56    0.98
  MCCE: Georgescu et al. (2002)         20        1trs                17               0.88     0.86    0.94
  Biophysical Journal, 83, 1731-1748.   21       1qbs                 16               0.34     0.34    0.78
                                        22       1de3                 25               0.66     0.70    1.33
                                        23       2bus                  4               0.46     0.49    0.23
                                        24       1egf                  9               0.49     0.53    0.49
                                              Total sites             331              331      331     331     141

                                            Average RMSD                              0.508    0.548    0.742   0.720




© 2008 Accelrys, Inc.                                                                                                   12
Results: pK Prediction of Selected Proteins
          14
                                      y = 0.9868x + 0.0282
                                                                                         6
          12                               R2 = 0.9672
                                                                                                 Intel Pentium4 3.0 GHz machine
                                                                                         5
          10

           8                                                                             4
pK calc




                                                                            Time [min]
           6                                                                             3


           4                                                                             2


           2                                                                             1

           0
                                                                                         0
               0        2         4     6             8      10   12   14                    0    100   200    300     400      500   600   700   800
                                            pK exp                                                                   residues



          • Predicted results well correlate
            with the experimental
            measurements
          • Computation time scales
            roughly linearly with residue
            number
          • Most systems take about 1 to 2
            minutes on a single CPU

          © 2008 Accelrys, Inc.                                                                                                                     13
The Comparison of the accuracy of pK
predictions with other methods



                        sites   GB/IMC   MCCE    Const. pH   FD/DH   SCP    PROPKA

                 4pti    14      0.36     0.47      NA        0.35   0.33     0.6

                 2lzt    21      0.45     0.76      0.6       0.47   0.49     0.66

                2rn2     25      0.59     0.87      0.9       1.17   0.57     0.72

                3rn3     16      0.44     0.66      1.2       0.87   0.55     0.94

                1pga     15      0.42     0.63      NA        0.80   0.59     0.72

                 3icb    10      0.33     0.38      NA        0.37   0.39     0.9

                 3rnt    4       0.28     0.54      NA        NA     0.41     NA

              Average            0.41     0.63       -        0.67   0.49    0.76




© 2008 Accelrys, Inc.                                                                14
pK1/2 Prediction – Applications

• Application 1: Optimize the protonation state of proteins and hydrogen coordinates
   – Prepare the protein for other calculations, such as more stable Molecular Dynamics
     simulations
• Application 2: Estimate maximum stability by studying the pH dependent folding energy
  of proteins
• Application 3: Calculate the electrostatic component of protein-ligand binding energies
  or protein-protein binding energy
• Application 4: Use unusual tritation curves to find relevant functional residues
• Application 5: Estimate the effect of mutation
     – pK and titration curve changes on other titratible sites when a residues is mutated
     – Shift of the stability of the protein to different pH when a residue is mutated

    1.2


     1

                                                   *:HIS26
 His 95
    0.8                                            *:HIS95
                                                   *:HIS100
                                                   *:HIS115
    0.6
                                                   *:HIS185
                                                   *:HIS195
    0.4                                            *:HIS224
                                                   *:HIS248

    0.2


     0
          0   2         4   6   8   10   12   14




© 2008 Accelrys, Inc.                                                                        15
Application – Protonation and Hydrogen Coordinates

Rubredoxin from Pyrococcus Furiosus at pH 8; 1vcx.pdb
Comparison of the predicted hydrogen positions with neutron diffraction
structure




© 2008 Accelrys, Inc.                                                     16
Application – Protonation and Hydrogen Coordinates

• Protonation state of HEWL: Comparison with neutron diffraction data at pH 4.7
• Asn and Gln flips:
        13 sucessfully predicted out 17 residues in the structure (77%)

                                                                 Comparison between the predicted protonation state
                                                                 of HEWL and neutron diffraction data at pH 4.7
                                                                 File: 1lzn.pdb
                                                                                        protonation                  pK1.2
                                                                    Residue     Neutron        Predicted   Experimental Calculated
                                                                                diffraction                   NMR*
                                                                   LYS1_NTR           P             P          7.9      8.172
                                                                     LYS1             P             P          10.6     10.840
                                                                     GLU7             P             D          2.9      3.701
                                                                     LYS13            P             P          10.3     11.120
                                                                     HIS15            P             P          5.4      7.380
                                                                     ASP18            D             D          2.7      3.674
                                                                    TYR20             P             P          10.3     11.271
                                                                    TYR23             P             P          9.8      10.886
                                                                     LYS33            P             P          10.4     11.669
                                                                    GLU35             P             P          6.2      5.691
                                                                     ASP48            D             D          2.5      2.818
                                                                     ASP52            D             D          3.7      4.604
                                                                    TYR53             P             P          >12      12.000
                                                                     ASP66            D             D          <2.0     3.526
                                                                     ASP87            D             D          2.1      3.389
                                                                     LYS96            P             P          10.7     11.456
                                                                     LYS97            P             P          10.1     10.933
                                                                    ASP101            D             D          4.1      3.916
                                                                    LYS116            P             P          10.2     10.220
                                                                    ASP119            D             D          3.2      3.456
                                                                  LEU129_CTR          D             D          2.8      2.984




                                                    * Bartik et al., 1994, Kuramitsu and Hamaguchi 1980.

© 2008 Accelrys, Inc.                                                                                                                17
Myoglobin 1l2k.pdb: Neutron Diffraction Structure at pH 6.8

             The protonation and tautomeric states of histidine residues.
                   A
                                                     B




                  A. Predicted structure.
                  B. Neutron-diffraction structure



© 2008 Accelrys, Inc.                                                       18
Application – Protonation and Hydrogen Coordinates


                                           1lzn, pH 4.7            1l2k, pH 6.8            2gve, pH 8.0            6rsa, pH 6.6

                                         ASP18    3.66          NTR1      7.30          NTR1      7.6           NTR1      7.40
                                                  0.13    D               0.75    NA             0.30     P*              0.86 P
  Comparison between calculated and      ASP48    2.80          HIS12     6.76          HIS49    6.17           HIS12     6.86
                                                  0.03    D               0.48    D              0.02     D               0.62 P
  experimental protonation states in     ASP52    4.54          HIS24     6.69          HIS54     7.6           HIS48     8.70
  neutron-diffraction structures.                 0.47    D               0.47    D              0.30     P*              0.99 P
  First row - computed pKhalf values;    ASP66    3.67          HIS36     7.19          HIS71    7.03           HIS105 6.95
  second row – the fractional                     0.13    D               0.69    P              0.11     D               0.68 P
                                         ASP87    3.33          HIS48     6.22          HIS96    5.13           HIS119 6.50
  protonations of residues.
                                                  0.07    D               0.22    P**            0.03     D               0.43 P*
  P – residue protonated in crystal      ASP101   3.90          HIS64     4.47          HIS198   6.64               1vcx, pH 8
  structure; D – deprotonated; NA –               0.18    D               0.02    D              0.06     P**
  more than one polar hydrogen is        ASP119   3.45          HIS81     6.37          HIS220   7.08           NTR1     9.22
  missing.                                        0.08    D               0.31    NA             0.15     P**            0.94     P
  In bold – accurately predicted         GLU7     3.70          HIS82     6.41          HIS230   6.67
                                                  0.13    P**             0.33    D              0.06     P**
  structures; ** -completely incorrect   GLU35    5.67          HIS97     6.28          HIS243   6.40
  prediction; * - underpredicted, but             0.89    P               0.26    D              0.07     D
  close.                                 HIS15    7.50          HIS113    5.60          HIS285   9.35
                                                  0.99    P               0.10    NA             0.93     P
                                         CTR129   2.90          HIS116    6.71          HIS382   7.54
                                                  0.03    D               0.46    NA             0.29     P*
                                                                HIS119    4.94
                                                                          0.19    D




© 2008 Accelrys, Inc.                                                                                                                 19
Application - Optimized Protonation for
Stable Molecular Dynamics
 • HIV Protease dimer has two Asp 25
   residues in binding pocket
 • Run CHARMm MD (100pS, GBSW
   solvent model) on two forms of the
   protein (PDB ID 1kzk)
     – Protein with default protonation
     – Protein with pK-optimized protonation
       (Asp 25 B protonated)
 Optimized-protonation of Asp 25’s in
   HIV protease leads to more stable MD
   trajectories




        RMSD of select residues to starting             RMSD of select residues to starting
        conformation, default protonation of Asp 25’s   conformation, optimized protonation

© 2008 Accelrys, Inc.                                                                         20
Application – Unfolding Energy
                                                                                                   •     HIV Protease apo form; 1hhp.pdb
                                                   β-model                                         •     Folding energy calculated using zero
                                                                                                         model and beta-model
                                                                            Extended
                                                                            conformation                           Zero model
                                                                                                         ∆G(unfld) = - (Relative Folding Energy)

                                                                                                          ∆G(unfld) = ∆G0 – ∆G(fld)

                                                                                                          ∆G0: pKint,I = pKmod

                                                                                                           Wij = 0


                                     1HHP- predicted unfolding energy
                                                                                           Unfolding in urea
                      15

                      14

                      13

                      12
               ∆ G(unfold)




                      11

                      10

                             9

                             8

                             7

                             6
                                 2           3          4          5    6
                                                       pH

                                                                                      Todd et al. (1998) J Mol Biol,283,475-488
© 2008 Accelrys, Inc.                                                                                                                              21
Application – Ligand Binding Energy



         Energy of binding of KNI-272 to HIV-1 protease – 1hpx.pdb


                                 14

                                 12


                                 10
             Energy [kcal/mol]




                                 8

                                 6

                                 4

                                 2

                                 0
                                      0   2   4   6    8   10   12
                                                  pH




     Calculated pH optimum of binding at pH ~ 5.0


                                                                     The association constant is maximal between pH 5 and pH 6

                                                                     Velazquez-Campoy et al. (2007) Protein Science, 9,1801-1809.



© 2008 Accelrys, Inc.                                                                                                       22
MEMBRANE PROTEINS



       Bacteriorhodopsin: 1c3w.pdb1
                                                                              pK1/2

                                                                                Calculated
                                                  Calculated      Calculate     using MEAD
                                                  GBIM            d without     with PB and    Experiment
                                                                  membran       membrane2
                                                                  e
                                      ARG82            > 14          >14              >15        >13.8
                                      ASP85            2.96           7.1             1.7         2.6
                                      ASP96            8.80           8.7             >15         >12
                                      ASP115           6.54           8.1             8.4         >9.5
                                      GLU194           9.69           8.6             > 15      Proton
                                      GLU204
                                                                                                release
                                                       3.35           8.7             <0
                                                                                                 group
                                                                                               keeps one
                                                                                                proton
                                      ASP212          <0.00           7.1             <0          <2.5
                                      Schiff           > 14          12.1             >15         >12
                                      base216



                                           1Luecke   et al. (1999) J. Mol.Biol.,291,899-911.
                                           2Spassov   et al. (2001) J. Mol.Biol.,312,203-219
© 2008 Accelrys, Inc.                                                                                    23
MEMBRANE PROTEINS

β2-adrenergic G Protein-coupled Receptor: 2rh1.pdb1




                                                                                                          agonist: epinephrine
                                                             antagonist: carazolol                        (adrenaline,a cateholeamine)




                                                                   Calculated pK1/2
                                                      carazolol                       adrenaline
                             residue          unbound        bound           unbound           bound
                             Asp 113            9.4               2.6           9.4                2.4
                              Asp 79            8.2               8.4           8.2                8.2
                             Glu 122           11.0               10.5         11.0                10.8
                          ligand: -NH2-         9.0               12.7          8.9                13.
                        Ligand: catehol -OH                                    10.4                14.

© 2008 Accelrys, Inc.                                                                                                                    24
MEMBRANE PROTEINS

β2-adrenergic G Protein-coupled Receptor:
Electrostatic contribution to the free energy of ligand binding.



              8.00



              6.00                              adrenaline


              4.00
∆∆G binding




              2.00



              0.00
                      0        2   4   6    8   10    12      14   16
                                                       carazolol
              -2.00



              -4.00
                                           pH

       © 2008 Accelrys, Inc.                                            25
MEMBRANE PROTEINS

MD simulation of β2-adrenergic G Protein-coupled Receptor – adrenaline
complex.

                                                                                      Selected parameters of the production run :
   Preliminary preparation of the structure before MD simulations.                 Production Steps                 500000
                                                                                   Production Time Step             0.002

  1. Use the Discovery Studio Create and Edit Membrane tool to add a               Production Target Temperature    300.0
     membrane object to the input protein structure.
                                                                                                                    Generalized Born with Implicit Membrane
                                                                                   Implicit Solvent Model
                                                                                                                    (GBIM)
  2. Run the Discovery Studio Calculate Protein Ionization and Residue pK          Dielectric Constant              2
     protocol to assign the protonation state of all acidic and basic titratable   Implicit Solvent Dielectric
                                                                                                                    80
     groups at a selected pH.                                                      Constant
                                                                                   Minimum Hydrogen Radius          1.0
                                                                                   Use Non-polar Surface Area       True
  3. Run Add Membrane and Orient Molecule protocol for a preliminary
                                                                                   Non-polar Surface Constant       0
     optimization of the position of the protein relative to membrane.
                                                                                   Non-polar Surface Coefficient    0.00542

                                                                                   Nonbond List Radius              12.0
  Steps 2 and 3 could be critical for the success of the MD simulations: When
                                                                                   Nonbond Higher Cutoff Distance   11.0
     using the default state of protonation, the simulation on 2rh1 structure
     was compromised in a early phase, because of a significant overheating        Nonbond Lower Cutoff Distance    11.0
     of the system.                                                                Dynamics Integrator              Leapfrog Verlet
                                                                                   Apply SHAKE Constraint           False
                                                                                   Random Number Seed               314159
                                                                                   Number of Processors             1




© 2008 Accelrys, Inc.                                                                                                                                   26
MEMBRANE PROTEINS

  A 1 ns MD simulation of β2-adrenergic G Protein-coupled Receptor complex with
  adrenaline.

    RMSD values of CA atoms along the MD trajectory.




                        all CA atoms                                  CA atoms inside membrane
                                                                          (helix 1 excluded)


         The low dielectric environment of membrane stabilizes the structure of transmembrane helices.



© 2008 Accelrys, Inc.                                                                                    27
Conclusions
• The combination of the GB calculations with IMC approach increases dramatically
  the speed of calculations and makes it possible to treat very large structures of
  arbitrary shape which are difficult to calculate using methods based on grid
  techniques to solve Poisson-Boltzmann equation and Monte-Carlo sampling
  schemes.
• The results of the tests indicate that the method returns very accurate pK values,
  comparable to the best results previously reported in the literature.
• Compared to crystallographic data at given pH, the tests show a high accuracy of
  the predicted protonation and hydrogen coordinates.
• The use of the GBIM CHARMm module makes it possible to study not only water
  soluble proteins but also protein-membrane complexes.
• The Discovery Studio implementation provides an easy way to integrate the
  protein ionization calculations with many other molecular modeling protocols, such
  as pH-dependent MD simulations, ligand docking, protein docking, ion binding. It
  also made it easy to study the pH dependent protein stability and the effect of
  mutation on protein stability.


© 2008 Accelrys, Inc.                                                                  28
Acknowledgments

          Lisa Yan
          Paul Flook
          Don Bashford




© 2008 Accelrys, Inc.      29

Más contenido relacionado

La actualidad más candente

Final Defence
Final DefenceFinal Defence
Final Defencetsclayton
 
HSC Chemistry Preparation Tips Part - I
HSC Chemistry Preparation Tips Part - IHSC Chemistry Preparation Tips Part - I
HSC Chemistry Preparation Tips Part - IEdnexa
 
B. Sc. Sem - I Unit-IV (D) Orientation by Dr Pramod R Padole
B. Sc. Sem - I Unit-IV (D) Orientation by Dr Pramod R PadoleB. Sc. Sem - I Unit-IV (D) Orientation by Dr Pramod R Padole
B. Sc. Sem - I Unit-IV (D) Orientation by Dr Pramod R Padolepramod padole
 
جميع تعليلات الاحياء
جميع تعليلات الاحياءجميع تعليلات الاحياء
جميع تعليلات الاحياءMotafawkeen
 
Fpbs&mm 1 (1)
Fpbs&mm 1 (1)Fpbs&mm 1 (1)
Fpbs&mm 1 (1)satyam511
 
Research Interests Dr. Bassam Alameddine
Research Interests Dr. Bassam AlameddineResearch Interests Dr. Bassam Alameddine
Research Interests Dr. Bassam Alameddinebalameddine
 
QSAR (Quantitative Structural Activity Relationship)
QSAR (Quantitative Structural Activity Relationship)QSAR (Quantitative Structural Activity Relationship)
QSAR (Quantitative Structural Activity Relationship)Richa Tripathy
 
HSC Chemistry Preparation Tips Part - II
HSC Chemistry Preparation Tips Part - IIHSC Chemistry Preparation Tips Part - II
HSC Chemistry Preparation Tips Part - IIEdnexa
 
Human esterases: Chemical and Biochemical Considerations
Human esterases: Chemical and Biochemical ConsiderationsHuman esterases: Chemical and Biochemical Considerations
Human esterases: Chemical and Biochemical ConsiderationsLuke Lightning
 
Andrey rubin target photosynthetic products and chlorophyll fluorescence
Andrey rubin target photosynthetic products and chlorophyll fluorescenceAndrey rubin target photosynthetic products and chlorophyll fluorescence
Andrey rubin target photosynthetic products and chlorophyll fluorescenceigorod
 
Predicting Novel Metabolic Pathways through Subgraph Mining
Predicting Novel Metabolic Pathways through Subgraph MiningPredicting Novel Metabolic Pathways through Subgraph Mining
Predicting Novel Metabolic Pathways through Subgraph MiningKarthik Raman
 
Ming Radiochemistry Experience
Ming Radiochemistry ExperienceMing Radiochemistry Experience
Ming Radiochemistry ExperienceMing-Der Yu
 
Internship oral presentation
Internship oral presentationInternship oral presentation
Internship oral presentationAnh-Mai
 
Pinacol pinacolone rearrangement
Pinacol pinacolone rearrangementPinacol pinacolone rearrangement
Pinacol pinacolone rearrangementSavitaKumari48
 
ReidN_PosterKnox2014_rbb
ReidN_PosterKnox2014_rbbReidN_PosterKnox2014_rbb
ReidN_PosterKnox2014_rbbNellone Reid
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Scienceresearchinventy
 

La actualidad más candente (20)

Final Defence
Final DefenceFinal Defence
Final Defence
 
HSC Chemistry Preparation Tips Part - I
HSC Chemistry Preparation Tips Part - IHSC Chemistry Preparation Tips Part - I
HSC Chemistry Preparation Tips Part - I
 
B. Sc. Sem - I Unit-IV (D) Orientation by Dr Pramod R Padole
B. Sc. Sem - I Unit-IV (D) Orientation by Dr Pramod R PadoleB. Sc. Sem - I Unit-IV (D) Orientation by Dr Pramod R Padole
B. Sc. Sem - I Unit-IV (D) Orientation by Dr Pramod R Padole
 
جميع تعليلات الاحياء
جميع تعليلات الاحياءجميع تعليلات الاحياء
جميع تعليلات الاحياء
 
Fpbs&mm 1 (1)
Fpbs&mm 1 (1)Fpbs&mm 1 (1)
Fpbs&mm 1 (1)
 
Obtaining RCOSY-type Correlations via Covariance Processing of GCOSY Spectra
Obtaining RCOSY-type Correlations via Covariance Processing of GCOSY SpectraObtaining RCOSY-type Correlations via Covariance Processing of GCOSY Spectra
Obtaining RCOSY-type Correlations via Covariance Processing of GCOSY Spectra
 
Research Interests Dr. Bassam Alameddine
Research Interests Dr. Bassam AlameddineResearch Interests Dr. Bassam Alameddine
Research Interests Dr. Bassam Alameddine
 
QSAR (Quantitative Structural Activity Relationship)
QSAR (Quantitative Structural Activity Relationship)QSAR (Quantitative Structural Activity Relationship)
QSAR (Quantitative Structural Activity Relationship)
 
HSC Chemistry Preparation Tips Part - II
HSC Chemistry Preparation Tips Part - IIHSC Chemistry Preparation Tips Part - II
HSC Chemistry Preparation Tips Part - II
 
Data booklet
Data bookletData booklet
Data booklet
 
Human esterases: Chemical and Biochemical Considerations
Human esterases: Chemical and Biochemical ConsiderationsHuman esterases: Chemical and Biochemical Considerations
Human esterases: Chemical and Biochemical Considerations
 
Andrey rubin target photosynthetic products and chlorophyll fluorescence
Andrey rubin target photosynthetic products and chlorophyll fluorescenceAndrey rubin target photosynthetic products and chlorophyll fluorescence
Andrey rubin target photosynthetic products and chlorophyll fluorescence
 
Acids and bases2
Acids and bases2Acids and bases2
Acids and bases2
 
Predicting Novel Metabolic Pathways through Subgraph Mining
Predicting Novel Metabolic Pathways through Subgraph MiningPredicting Novel Metabolic Pathways through Subgraph Mining
Predicting Novel Metabolic Pathways through Subgraph Mining
 
Ming Radiochemistry Experience
Ming Radiochemistry ExperienceMing Radiochemistry Experience
Ming Radiochemistry Experience
 
Internship oral presentation
Internship oral presentationInternship oral presentation
Internship oral presentation
 
Pinacol pinacolone rearrangement
Pinacol pinacolone rearrangementPinacol pinacolone rearrangement
Pinacol pinacolone rearrangement
 
ReidN_PosterKnox2014_rbb
ReidN_PosterKnox2014_rbbReidN_PosterKnox2014_rbb
ReidN_PosterKnox2014_rbb
 
Ionic equilibria MANIK
Ionic equilibria MANIKIonic equilibria MANIK
Ionic equilibria MANIK
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
 

Destacado

Computational Protein Design. 4. A Practical Exercise
Computational Protein Design. 4. A Practical ExerciseComputational Protein Design. 4. A Practical Exercise
Computational Protein Design. 4. A Practical ExercisePablo Carbonell
 
Computational Protein Design. Overview
Computational Protein Design. OverviewComputational Protein Design. Overview
Computational Protein Design. OverviewPablo Carbonell
 
Computational Protein Design. 3. Applications in Systems and Synthetic Biology
Computational Protein Design. 3. Applications in Systems and Synthetic BiologyComputational Protein Design. 3. Applications in Systems and Synthetic Biology
Computational Protein Design. 3. Applications in Systems and Synthetic BiologyPablo Carbonell
 
MODULAR NATURE OF PROTEINS
MODULAR NATURE OF PROTEINSMODULAR NATURE OF PROTEINS
MODULAR NATURE OF PROTEINSSHEIKHASINAH S.M
 
Protein structural domains, the Tree of Life and the evolution of complexity
Protein structural domains, the Tree of Life and the evolution of complexityProtein structural domains, the Tree of Life and the evolution of complexity
Protein structural domains, the Tree of Life and the evolution of complexityGraeme Lloyd
 
Protein dna interactions
Protein dna interactionsProtein dna interactions
Protein dna interactionsMandeep Kaur
 
Computational Protein Design. 1. Challenges in Protein Engineering
Computational Protein Design. 1. Challenges in Protein EngineeringComputational Protein Design. 1. Challenges in Protein Engineering
Computational Protein Design. 1. Challenges in Protein EngineeringPablo Carbonell
 
The Gantt Chart
The Gantt ChartThe Gantt Chart
The Gantt ChartNicola2903
 
Protein 3 d structure prediction
Protein 3 d structure predictionProtein 3 d structure prediction
Protein 3 d structure predictionSamvartika Majumdar
 
Presentation1
Presentation1Presentation1
Presentation1firesea
 
Computational Protein Design. 2. Computational Protein Design Techniques
Computational Protein Design. 2. Computational Protein Design TechniquesComputational Protein Design. 2. Computational Protein Design Techniques
Computational Protein Design. 2. Computational Protein Design TechniquesPablo Carbonell
 
Protein-ligand docking
Protein-ligand dockingProtein-ligand docking
Protein-ligand dockingbaoilleach
 
Genomics and proteomics I
Genomics and proteomics IGenomics and proteomics I
Genomics and proteomics INikolay Vyahhi
 
Structure of proteins
Structure of proteinsStructure of proteins
Structure of proteinsDevyani Joshi
 
Computational Drug Design
Computational Drug DesignComputational Drug Design
Computational Drug Designbaoilleach
 
Secondary Structure Prediction of proteins
Secondary Structure Prediction of proteins Secondary Structure Prediction of proteins
Secondary Structure Prediction of proteins Vijay Hemmadi
 

Destacado (20)

Computational Protein Design. 4. A Practical Exercise
Computational Protein Design. 4. A Practical ExerciseComputational Protein Design. 4. A Practical Exercise
Computational Protein Design. 4. A Practical Exercise
 
Computational Protein Design. Overview
Computational Protein Design. OverviewComputational Protein Design. Overview
Computational Protein Design. Overview
 
Computational Protein Design. 3. Applications in Systems and Synthetic Biology
Computational Protein Design. 3. Applications in Systems and Synthetic BiologyComputational Protein Design. 3. Applications in Systems and Synthetic Biology
Computational Protein Design. 3. Applications in Systems and Synthetic Biology
 
MODULAR NATURE OF PROTEINS
MODULAR NATURE OF PROTEINSMODULAR NATURE OF PROTEINS
MODULAR NATURE OF PROTEINS
 
Protein structural domains, the Tree of Life and the evolution of complexity
Protein structural domains, the Tree of Life and the evolution of complexityProtein structural domains, the Tree of Life and the evolution of complexity
Protein structural domains, the Tree of Life and the evolution of complexity
 
Protein modeling
Protein modelingProtein modeling
Protein modeling
 
Protein dna interactions
Protein dna interactionsProtein dna interactions
Protein dna interactions
 
Computational Protein Design. 1. Challenges in Protein Engineering
Computational Protein Design. 1. Challenges in Protein EngineeringComputational Protein Design. 1. Challenges in Protein Engineering
Computational Protein Design. 1. Challenges in Protein Engineering
 
The Gantt Chart
The Gantt ChartThe Gantt Chart
The Gantt Chart
 
Structure of polymer chains
Structure of polymer chainsStructure of polymer chains
Structure of polymer chains
 
Protein 3 d structure prediction
Protein 3 d structure predictionProtein 3 d structure prediction
Protein 3 d structure prediction
 
Presentation1
Presentation1Presentation1
Presentation1
 
Computational Protein Design. 2. Computational Protein Design Techniques
Computational Protein Design. 2. Computational Protein Design TechniquesComputational Protein Design. 2. Computational Protein Design Techniques
Computational Protein Design. 2. Computational Protein Design Techniques
 
Protein-ligand docking
Protein-ligand dockingProtein-ligand docking
Protein-ligand docking
 
Genomics and proteomics I
Genomics and proteomics IGenomics and proteomics I
Genomics and proteomics I
 
Structure of proteins
Structure of proteinsStructure of proteins
Structure of proteins
 
Ramachandran plot
Ramachandran plotRamachandran plot
Ramachandran plot
 
Computational Drug Design
Computational Drug DesignComputational Drug Design
Computational Drug Design
 
Computer aided Drug designing (CADD)
Computer aided Drug designing (CADD)Computer aided Drug designing (CADD)
Computer aided Drug designing (CADD)
 
Secondary Structure Prediction of proteins
Secondary Structure Prediction of proteins Secondary Structure Prediction of proteins
Secondary Structure Prediction of proteins
 

Similar a A fast and accurate computational approach to protein ionization: combining the Generalized Born model with an iterative mobile cluster method

Characterization of biodegradable poly(3 hydroxybutyrate-co-butyleneadipate) ...
Characterization of biodegradable poly(3 hydroxybutyrate-co-butyleneadipate) ...Characterization of biodegradable poly(3 hydroxybutyrate-co-butyleneadipate) ...
Characterization of biodegradable poly(3 hydroxybutyrate-co-butyleneadipate) ...Giuseppe Puzzo
 
L18b Deducing mechanisms example problems.pptx
L18b Deducing mechanisms example problems.pptxL18b Deducing mechanisms example problems.pptx
L18b Deducing mechanisms example problems.pptxSatyamJaiswal90
 
Pbr ejemplos páginas de modeling of chemical kinetics and reactor design a....
Pbr ejemplos páginas de modeling of chemical kinetics and reactor design   a....Pbr ejemplos páginas de modeling of chemical kinetics and reactor design   a....
Pbr ejemplos páginas de modeling of chemical kinetics and reactor design a....flyaway21
 
13-chap-2-problems.ppt
13-chap-2-problems.ppt13-chap-2-problems.ppt
13-chap-2-problems.pptZhanyl Abilbek
 
1. photosynthesis
1. photosynthesis1. photosynthesis
1. photosynthesisbiobuddy
 
Room-Temperature DNA-Catalyzed Hydrogen Fuel Cell
Room-Temperature DNA-Catalyzed Hydrogen  Fuel CellRoom-Temperature DNA-Catalyzed Hydrogen  Fuel Cell
Room-Temperature DNA-Catalyzed Hydrogen Fuel Cellcclarbl
 
Amphoteric nature of aminoacids
Amphoteric nature of aminoacidsAmphoteric nature of aminoacids
Amphoteric nature of aminoacidsKalpesh Nakarani
 
Qm Treatment AECOM Presentation
Qm Treatment AECOM PresentationQm Treatment AECOM Presentation
Qm Treatment AECOM PresentationCain Morano
 
Mass spectrometric analysis of cyp450s following mechanism based inactivation...
Mass spectrometric analysis of cyp450s following mechanism based inactivation...Mass spectrometric analysis of cyp450s following mechanism based inactivation...
Mass spectrometric analysis of cyp450s following mechanism based inactivation...Luke Lightning
 
Acid Base Titration10329062Base Titration.ppt
Acid Base Titration10329062Base Titration.pptAcid Base Titration10329062Base Titration.ppt
Acid Base Titration10329062Base Titration.pptAbdelrhman Abooda
 
Ms fragmentation
Ms fragmentationMs fragmentation
Ms fragmentationutpaltatu
 
Doreen Nabaho Cchange&amp;Catsa9 Nov
Doreen Nabaho Cchange&amp;Catsa9 NovDoreen Nabaho Cchange&amp;Catsa9 Nov
Doreen Nabaho Cchange&amp;Catsa9 NovDoreen_Nabaho
 

Similar a A fast and accurate computational approach to protein ionization: combining the Generalized Born model with an iterative mobile cluster method (20)

Characterization of biodegradable poly(3 hydroxybutyrate-co-butyleneadipate) ...
Characterization of biodegradable poly(3 hydroxybutyrate-co-butyleneadipate) ...Characterization of biodegradable poly(3 hydroxybutyrate-co-butyleneadipate) ...
Characterization of biodegradable poly(3 hydroxybutyrate-co-butyleneadipate) ...
 
L18b Deducing mechanisms example problems.pptx
L18b Deducing mechanisms example problems.pptxL18b Deducing mechanisms example problems.pptx
L18b Deducing mechanisms example problems.pptx
 
Pbr ejemplos páginas de modeling of chemical kinetics and reactor design a....
Pbr ejemplos páginas de modeling of chemical kinetics and reactor design   a....Pbr ejemplos páginas de modeling of chemical kinetics and reactor design   a....
Pbr ejemplos páginas de modeling of chemical kinetics and reactor design a....
 
Qsar
QsarQsar
Qsar
 
13-chap-2-problems.ppt
13-chap-2-problems.ppt13-chap-2-problems.ppt
13-chap-2-problems.ppt
 
1. photosynthesis
1. photosynthesis1. photosynthesis
1. photosynthesis
 
A Biotechniques Webinar Seminar on Epigenetics and the Histone Code
A Biotechniques Webinar Seminar on Epigenetics and the Histone CodeA Biotechniques Webinar Seminar on Epigenetics and the Histone Code
A Biotechniques Webinar Seminar on Epigenetics and the Histone Code
 
Cadd
CaddCadd
Cadd
 
Room-Temperature DNA-Catalyzed Hydrogen Fuel Cell
Room-Temperature DNA-Catalyzed Hydrogen  Fuel CellRoom-Temperature DNA-Catalyzed Hydrogen  Fuel Cell
Room-Temperature DNA-Catalyzed Hydrogen Fuel Cell
 
Amphoteric nature of aminoacids
Amphoteric nature of aminoacidsAmphoteric nature of aminoacids
Amphoteric nature of aminoacids
 
1H NMR.ppt
1H NMR.ppt1H NMR.ppt
1H NMR.ppt
 
Qsar lecture
Qsar lectureQsar lecture
Qsar lecture
 
Qm Treatment AECOM Presentation
Qm Treatment AECOM PresentationQm Treatment AECOM Presentation
Qm Treatment AECOM Presentation
 
Mass spectrometric analysis of cyp450s following mechanism based inactivation...
Mass spectrometric analysis of cyp450s following mechanism based inactivation...Mass spectrometric analysis of cyp450s following mechanism based inactivation...
Mass spectrometric analysis of cyp450s following mechanism based inactivation...
 
Acid Base Titration10329062Base Titration.ppt
Acid Base Titration10329062Base Titration.pptAcid Base Titration10329062Base Titration.ppt
Acid Base Titration10329062Base Titration.ppt
 
Hydrolysis of ATP
Hydrolysis of ATPHydrolysis of ATP
Hydrolysis of ATP
 
Ms fragmentation
Ms fragmentationMs fragmentation
Ms fragmentation
 
Cac
CacCac
Cac
 
Doreen Nabaho Cchange&amp;Catsa9 Nov
Doreen Nabaho Cchange&amp;Catsa9 NovDoreen Nabaho Cchange&amp;Catsa9 Nov
Doreen Nabaho Cchange&amp;Catsa9 Nov
 
Catalysis
CatalysisCatalysis
Catalysis
 

Más de BIOVIA

ScienceCloud: Collaborative Workflows in Biologics R&D
ScienceCloud: Collaborative Workflows in Biologics R&DScienceCloud: Collaborative Workflows in Biologics R&D
ScienceCloud: Collaborative Workflows in Biologics R&DBIOVIA
 
(ATS6-PLAT03) What's behind Discngine collections
(ATS6-PLAT03) What's behind Discngine collections(ATS6-PLAT03) What's behind Discngine collections
(ATS6-PLAT03) What's behind Discngine collectionsBIOVIA
 
(ATS6-PLAT09) Deploying Applications on load balanced AEP servers for high av...
(ATS6-PLAT09) Deploying Applications on load balanced AEP servers for high av...(ATS6-PLAT09) Deploying Applications on load balanced AEP servers for high av...
(ATS6-PLAT09) Deploying Applications on load balanced AEP servers for high av...BIOVIA
 
(ATS6-PLAT07) Managing AEP in an enterprise environment
(ATS6-PLAT07) Managing AEP in an enterprise environment(ATS6-PLAT07) Managing AEP in an enterprise environment
(ATS6-PLAT07) Managing AEP in an enterprise environmentBIOVIA
 
(ATS6-PLAT06) Maximizing AEP Performance
(ATS6-PLAT06) Maximizing AEP Performance(ATS6-PLAT06) Maximizing AEP Performance
(ATS6-PLAT06) Maximizing AEP PerformanceBIOVIA
 
(ATS6-PLAT05) Security enhancements in AEP 9
(ATS6-PLAT05) Security enhancements in AEP 9(ATS6-PLAT05) Security enhancements in AEP 9
(ATS6-PLAT05) Security enhancements in AEP 9BIOVIA
 
(ATS6-PLAT04) Query service
(ATS6-PLAT04) Query service (ATS6-PLAT04) Query service
(ATS6-PLAT04) Query service BIOVIA
 
(ATS6-PLAT02) Accelrys Catalog and Protocol Validation
(ATS6-PLAT02) Accelrys Catalog and Protocol Validation(ATS6-PLAT02) Accelrys Catalog and Protocol Validation
(ATS6-PLAT02) Accelrys Catalog and Protocol ValidationBIOVIA
 
(ATS6-PLAT01) Chemistry Harmonization: Bringing together the Direct 9 and Pip...
(ATS6-PLAT01) Chemistry Harmonization: Bringing together the Direct 9 and Pip...(ATS6-PLAT01) Chemistry Harmonization: Bringing together the Direct 9 and Pip...
(ATS6-PLAT01) Chemistry Harmonization: Bringing together the Direct 9 and Pip...BIOVIA
 
(ATS6-GS04) Performance Analysis of Accelrys Enterprise Platform 9.0 on IBM’s...
(ATS6-GS04) Performance Analysis of Accelrys Enterprise Platform 9.0 on IBM’s...(ATS6-GS04) Performance Analysis of Accelrys Enterprise Platform 9.0 on IBM’s...
(ATS6-GS04) Performance Analysis of Accelrys Enterprise Platform 9.0 on IBM’s...BIOVIA
 
(ATS6-GS02) Integrating Contur and HEOS
(ATS6-GS02) Integrating Contur and HEOS(ATS6-GS02) Integrating Contur and HEOS
(ATS6-GS02) Integrating Contur and HEOSBIOVIA
 
(ATS6-GS01) Welcome
(ATS6-GS01) Welcome (ATS6-GS01) Welcome
(ATS6-GS01) Welcome BIOVIA
 
(ATS6-DEV09) Deep Dive into REST and SOAP Integration for Protocol Authors
(ATS6-DEV09) Deep Dive into REST and SOAP Integration for Protocol Authors(ATS6-DEV09) Deep Dive into REST and SOAP Integration for Protocol Authors
(ATS6-DEV09) Deep Dive into REST and SOAP Integration for Protocol AuthorsBIOVIA
 
(ATS6-DEV08) Integrating Contur ELN with other systems using a RESTful API
(ATS6-DEV08) Integrating Contur ELN with other systems using a RESTful API(ATS6-DEV08) Integrating Contur ELN with other systems using a RESTful API
(ATS6-DEV08) Integrating Contur ELN with other systems using a RESTful APIBIOVIA
 
(ATS6-DEV07) Building widgets for ELN home page
(ATS6-DEV07) Building widgets for ELN home page(ATS6-DEV07) Building widgets for ELN home page
(ATS6-DEV07) Building widgets for ELN home pageBIOVIA
 
(ATS6-DEV06) Using Packages for Protocol, Component, and Application Delivery
(ATS6-DEV06) Using Packages for Protocol, Component, and Application Delivery(ATS6-DEV06) Using Packages for Protocol, Component, and Application Delivery
(ATS6-DEV06) Using Packages for Protocol, Component, and Application DeliveryBIOVIA
 
(ATS6-DEV05) Building Interactive Web Applications with the Reporting Collection
(ATS6-DEV05) Building Interactive Web Applications with the Reporting Collection(ATS6-DEV05) Building Interactive Web Applications with the Reporting Collection
(ATS6-DEV05) Building Interactive Web Applications with the Reporting CollectionBIOVIA
 
(ATS6-DEV04) Building Web MashUp applications that include Accelrys Applicati...
(ATS6-DEV04) Building Web MashUp applications that include Accelrys Applicati...(ATS6-DEV04) Building Web MashUp applications that include Accelrys Applicati...
(ATS6-DEV04) Building Web MashUp applications that include Accelrys Applicati...BIOVIA
 
(ATS6-DEV03) Building an Enterprise Web Solution with AEP
(ATS6-DEV03) Building an Enterprise Web Solution with AEP(ATS6-DEV03) Building an Enterprise Web Solution with AEP
(ATS6-DEV03) Building an Enterprise Web Solution with AEPBIOVIA
 
(ATS6-DEV02) Web Application Strategies
(ATS6-DEV02) Web Application Strategies(ATS6-DEV02) Web Application Strategies
(ATS6-DEV02) Web Application StrategiesBIOVIA
 

Más de BIOVIA (20)

ScienceCloud: Collaborative Workflows in Biologics R&D
ScienceCloud: Collaborative Workflows in Biologics R&DScienceCloud: Collaborative Workflows in Biologics R&D
ScienceCloud: Collaborative Workflows in Biologics R&D
 
(ATS6-PLAT03) What's behind Discngine collections
(ATS6-PLAT03) What's behind Discngine collections(ATS6-PLAT03) What's behind Discngine collections
(ATS6-PLAT03) What's behind Discngine collections
 
(ATS6-PLAT09) Deploying Applications on load balanced AEP servers for high av...
(ATS6-PLAT09) Deploying Applications on load balanced AEP servers for high av...(ATS6-PLAT09) Deploying Applications on load balanced AEP servers for high av...
(ATS6-PLAT09) Deploying Applications on load balanced AEP servers for high av...
 
(ATS6-PLAT07) Managing AEP in an enterprise environment
(ATS6-PLAT07) Managing AEP in an enterprise environment(ATS6-PLAT07) Managing AEP in an enterprise environment
(ATS6-PLAT07) Managing AEP in an enterprise environment
 
(ATS6-PLAT06) Maximizing AEP Performance
(ATS6-PLAT06) Maximizing AEP Performance(ATS6-PLAT06) Maximizing AEP Performance
(ATS6-PLAT06) Maximizing AEP Performance
 
(ATS6-PLAT05) Security enhancements in AEP 9
(ATS6-PLAT05) Security enhancements in AEP 9(ATS6-PLAT05) Security enhancements in AEP 9
(ATS6-PLAT05) Security enhancements in AEP 9
 
(ATS6-PLAT04) Query service
(ATS6-PLAT04) Query service (ATS6-PLAT04) Query service
(ATS6-PLAT04) Query service
 
(ATS6-PLAT02) Accelrys Catalog and Protocol Validation
(ATS6-PLAT02) Accelrys Catalog and Protocol Validation(ATS6-PLAT02) Accelrys Catalog and Protocol Validation
(ATS6-PLAT02) Accelrys Catalog and Protocol Validation
 
(ATS6-PLAT01) Chemistry Harmonization: Bringing together the Direct 9 and Pip...
(ATS6-PLAT01) Chemistry Harmonization: Bringing together the Direct 9 and Pip...(ATS6-PLAT01) Chemistry Harmonization: Bringing together the Direct 9 and Pip...
(ATS6-PLAT01) Chemistry Harmonization: Bringing together the Direct 9 and Pip...
 
(ATS6-GS04) Performance Analysis of Accelrys Enterprise Platform 9.0 on IBM’s...
(ATS6-GS04) Performance Analysis of Accelrys Enterprise Platform 9.0 on IBM’s...(ATS6-GS04) Performance Analysis of Accelrys Enterprise Platform 9.0 on IBM’s...
(ATS6-GS04) Performance Analysis of Accelrys Enterprise Platform 9.0 on IBM’s...
 
(ATS6-GS02) Integrating Contur and HEOS
(ATS6-GS02) Integrating Contur and HEOS(ATS6-GS02) Integrating Contur and HEOS
(ATS6-GS02) Integrating Contur and HEOS
 
(ATS6-GS01) Welcome
(ATS6-GS01) Welcome (ATS6-GS01) Welcome
(ATS6-GS01) Welcome
 
(ATS6-DEV09) Deep Dive into REST and SOAP Integration for Protocol Authors
(ATS6-DEV09) Deep Dive into REST and SOAP Integration for Protocol Authors(ATS6-DEV09) Deep Dive into REST and SOAP Integration for Protocol Authors
(ATS6-DEV09) Deep Dive into REST and SOAP Integration for Protocol Authors
 
(ATS6-DEV08) Integrating Contur ELN with other systems using a RESTful API
(ATS6-DEV08) Integrating Contur ELN with other systems using a RESTful API(ATS6-DEV08) Integrating Contur ELN with other systems using a RESTful API
(ATS6-DEV08) Integrating Contur ELN with other systems using a RESTful API
 
(ATS6-DEV07) Building widgets for ELN home page
(ATS6-DEV07) Building widgets for ELN home page(ATS6-DEV07) Building widgets for ELN home page
(ATS6-DEV07) Building widgets for ELN home page
 
(ATS6-DEV06) Using Packages for Protocol, Component, and Application Delivery
(ATS6-DEV06) Using Packages for Protocol, Component, and Application Delivery(ATS6-DEV06) Using Packages for Protocol, Component, and Application Delivery
(ATS6-DEV06) Using Packages for Protocol, Component, and Application Delivery
 
(ATS6-DEV05) Building Interactive Web Applications with the Reporting Collection
(ATS6-DEV05) Building Interactive Web Applications with the Reporting Collection(ATS6-DEV05) Building Interactive Web Applications with the Reporting Collection
(ATS6-DEV05) Building Interactive Web Applications with the Reporting Collection
 
(ATS6-DEV04) Building Web MashUp applications that include Accelrys Applicati...
(ATS6-DEV04) Building Web MashUp applications that include Accelrys Applicati...(ATS6-DEV04) Building Web MashUp applications that include Accelrys Applicati...
(ATS6-DEV04) Building Web MashUp applications that include Accelrys Applicati...
 
(ATS6-DEV03) Building an Enterprise Web Solution with AEP
(ATS6-DEV03) Building an Enterprise Web Solution with AEP(ATS6-DEV03) Building an Enterprise Web Solution with AEP
(ATS6-DEV03) Building an Enterprise Web Solution with AEP
 
(ATS6-DEV02) Web Application Strategies
(ATS6-DEV02) Web Application Strategies(ATS6-DEV02) Web Application Strategies
(ATS6-DEV02) Web Application Strategies
 

Último

H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo DayH2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo DaySri Ambati
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Scott Keck-Warren
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsMiki Katsuragi
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clashcharlottematthew16
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024Lonnie McRorey
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity PlanDatabarracks
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .Alan Dix
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteDianaGray10
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.Curtis Poe
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxLoriGlavin3
 
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfHyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfPrecisely
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):comworks
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyAlfredo García Lavilla
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Enterprise Knowledge
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...Fwdays
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 

Último (20)

H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo DayH2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering Tips
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clash
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity Plan
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test Suite
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.
 
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptxE-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
 
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfHyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easy
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 

A fast and accurate computational approach to protein ionization: combining the Generalized Born model with an iterative mobile cluster method

  • 1. A fast and accurate computational approach to protein ionization: combining the Generalized Born model with an iterative mobile cluster method Velin Z Spassov, Accelrys
  • 2. Outline • Introduction • Background/theory • Results/validation • Conclusions © 2008 Accelrys, Inc. 2
  • 3. INTRODUCTION Protein Ionization and pK Scientific Needs • To provide a fast and convenient way to study the effects of the pH changes on a wide range of important mechanism such as enzyme catalysis, ligand binding and protein stability. • In protein modeling, a correct assignment of protonation states and hydrogen atom positions are critical for: » Accurate docking of small molecules to receptors » Accurate protein-protein docking » Stable, convergent molecular dynamics simulations © 2008 Accelrys, Inc. 3
  • 4. Introduction Calculate Protein Ionization and Residue pK A new Discovery Studio computational protocol to calculate the pH dependent electrostatic effects in protein molecules*. Calculates: – the titration curves and pK1/2 of the titratible residues. – the electrostatic contribution to the protein free energy as a function of pH. – the pH dependency of the folding energy of the protein and the pH optimum of protein stability. – pI of the protein. Optimizes the positions of all hydrogen atoms and – automatically sets the protonation state of each residue at a given pH, based on the calculated pK1/2 . – finds the optimal proton binding sites for tautomeric ASP, GLU and HIS residues. – flips the O and N atoms of ASN and GLN residue to find an optimal conformation. *Spassov, V.Z. and Yan, L. (2008) Protein Science,17,1955-1969. © 2008 Accelrys, Inc. 4
  • 5. Protein Ionization and pK: Background Deprotonated Protonated Deprotonated Protonated H+ Arg Lys H + Asp Glu • Titratable residues: exist in protonated and deprotonated forms • A titration curve gives the fractional protonation of a titratable group as a function of pH Tyr His B:ASP30 Cys HA + H2O  H3O+ + A- 1.2 1 N-ter 0.8 pH = pKa + log10{[A-]/[HA]} 0.6 B:ASP30 C-ter pK1/2 = 3.9 0.4 0.2 Titratable Groups in Proteins 0 0 2 4 6 8 10 12 14 16 © 2008 Accelrys, Inc. 5
  • 6. THEORY Calculate Protein Ionization and Residue pK CHARMM force-field Extended GB/IM2,3,4,5 instead of grid based PB solvers Ionization Model1 exp[−G ( X l , pH ) / RT ] ρ ( X l , pH ) = 2N ∑ exp[−G(X , pH ) / RT ] l =1 l ( ) N G (X, pH ) = 2.3RT ∑ xi pH − pK intr ,i + 1 / 2∑ Wij ( xi , x j ) i i, j pK int r = pK mod + (2.303RT ) −1 [∆∆G ( PH , P ) − ∆∆G ( MH , M )] Library of pentapeptide model compounds and pKmod data7 IMC6 instead of Monte Carlo instead of monopeptides CHARMm-based Protocol for Preliminary Optimization 1Bashford D, Karplus M. (1990) Biochemistry, 29, 10219-10225. 5Spassov VZ et al. (2002) J. Phys. Chem B106:8762-8738. 2Still, W.C. et al. (1990)J. Am. Chem. Soc. 1990, 112, 6127-6129 6Spassov V.Z., Bashford, D. (1999) J..Comput. Chem.,20,1091-1111. 3Dominy, B.N.,Brooks III, C.L. (1999) J. Phys. Chem. B 103, 3765-3773. 7Thurlkill et al. 2006. Protein Science,15,1214-1218. 4 Onufriev A. et al. (2000) J. Phys. Chem. B 2000, 104, 3712-3720. © 2008 Accelrys, Inc. 6
  • 7. Protein Ionization and pK: Solution • New method1 to ‘Calculate Protein Ionization and pK’ – Predicts pK1/2 and titration curves for each titratable residue using 3D environment of protein – Automatically protonates the residues at a given pH according to predicted pK1/2. • For HIS, ASP, and GLU residues the hydrogens are added to yield the lowest CHARMm energy • The N and O atoms on the side-chain of ASN and GLN residues are flipped if necessary to give the lower energy conformation – Calculates the following as a function of pH • Electrostatic contribution to the free energy • Estimate of relative folding energy (electrostatic contribution) • Total charge of system – Based on CHARMm Generalized-Born methods • Strength of Solution – More accurate and rigorous than rule-based methods – Faster and more accurate than existing Poison-Boltzmann/Monte Carlo methods – Consistent CHARMm force field used throughout 1.2 *:GLU23 *:GLU38 *:GLU77 1 *:GLU97 *:GLU104 0.8 *:GLU107 *:GLU119 *:GLU129 0.6 *:GLU133 *:GLU135 0.4 *:GLU140 *:GLU145 *:GLU165 0.2 *:GLU183 *:GLU186 0 *:GLU219 0 2 4 6 8 10 12 14 *:GLU239 © 2008 Accelrys, Inc. 1. Spassov, et al, Protein Sci. 2008, 17, 1955-1969) 7
  • 8. Model Compounds MEAD, UHBD and others DS Protein Ionization Structure: Monopeptide Structure: Blocked Pentapeptides pK data: standard set Ala-Ala-X-Ala-Ala Nozaki Y, Tanford C. 1967. Examination of titration pK data: behavior. Methods Enzymol 11:715–734. Thurlkill et al. 2006. Protein Science,15,1214-1218. © 2008 Accelrys, Inc. 8
  • 9. IMC (Iterative Mobile Clustering) Approach Mean-field approach to protein ionization: Spassov V.Z., Bashford, D. (1999) J..Comput. Chem.,20,1091-1111 One site/Single conformer Tanford C., Roxby R (1972),11,2192-2198. IMC: Ntot(cluster) = Nglobal 3Nclstr2Nclstr Clustering/distance criterion/single conformer Yang A.S. et al. (1993) Proteins,15,252-265. Gilson M.K. (1993) Proteins,15,266-282. ρ (C , X ) = f g (k ) f Γ (c, x | k ) f out (c' , x' | k ) Clustering/energy criterion/single or multiple conformers Spassov & Bashford (1999) © 2008 Accelrys, Inc. 9
  • 10. Protein Ionization and pK: Method • Electrostatic interaction energies are calculated using an implementation of Generalized Born solvation model in CHARMm – atomic parameters from either CHARMm or CHARMM polar hydrogen forcefields • The energies of the protonated and deprotonated states are calculated and the percentage of protonation of each residue is predicted at given pH based on Boltzmann distribution • Relative folding energy estimated based on energy of protonation of the protein and the protonation energy of the model compounds • Current implementation treats protein as a single conformer embedded in a dielectric medium – A dielectric constant of 10-11 for the protein interior gives the lowest RMSD compared to experimentally obtained pK data. – This dielectric constant is the only parametrized variable in the method © 2008 Accelrys, Inc. 10
  • 11. Parameterization of the model In contrast to some popular pK prediction programs based on multi-parameter empirical models, the only fitting parameter in our method is the value of intra-molecular dielectric constant, εm, while all other parameters are kept at their standard CHARMm force-field values. qi q j 1 D( I , α i , α j ) qi q j ∆Gelec = 332∑∑ − 166 ( − )∑∑ j >i ε m ri , j εm ε slv r + α iα j exp(−rij2 / 4α iα j ) 2 i i j ij Hen-egg lyzozyme 2lzt.pdb pK1/2 Residue Experimental* CHARMM CHARMM polar H 1.2 LYS1_NTR 7.9 7.81 8.00 LYS1 10.6 10.01 10.01 GLU7 2.9 3.17 3.39 1 LYS13 10.3 10.49 10.56 HIS15 5.4 6.20 5.87 ASP18 2.7 2.87 3.11 0.8 TYR20 10.3 10.85 11.18 TYR23 9.8 10.16 10.87 RMSD LYS33 10.4 10.58 10.79 0.6 GLU35 6.2 5.05 5.90 ASP48 2.5 2.96 2.91 ASP52 3.7 4.32 4.67 0.4 TYR53 >12 11.71 >12 ASP66 <2.0 2.15 2.87 ASP87 2.1 2.43 2.97 0.2 LYS96 10.7 11.18 11.42 LYS97 10.1 10.79 10.85 ASP101 4.1 3.89 3.92 0 LYS116 10.2 10.12 10.09 0 5 10 15 20 25 ASP119 3.2 3.08 3.28 LEU129_CTR 2.8 2.73 2.83 dielectric constant rmsd 0.45 0.57 * Bartik et al., 1994, Kuramitsu and Hamaguchi 1980. © 2008 Accelrys, Inc. 11
  • 12. Results: pK Prediction of Selected Proteins Sites with CHARMm CHARMm • Comparison of experimental PDB code experimantal pK data polar all hydrogens hydrogens PROPKA MCCE pK1/2 with calculated values for ε=8 select PDB files 1 4pti 14 0.36 0.36 0.6 0.47 2 2lzt 21 0.45 0.57 0.66 0.74 • All computations about 1 3 2rn2 25 0.59 0.68 0.72 0.87 4 3rn3 16 0.47 0.71 0.67 0.66 minute per system on a single 5 1pga 15 0.50 0.57 0.72 0.63 CPU 6 7 3icb 1hng 10 14 0.33 0.55 0.35 0.53 0.9 0.83 0.38 0.76 8 1a2p 12 0.60 0.49 0.68 0.89 9 1omu 15 0.64 0.70 0.44 1.10 10 9rnt 14 0.54 0.65 1.51 11 1bi6-heavy chain 18 0.54 0.53 0.56 12 1bi6-light chain 4 0.18 0.27 0.38 13 1rgg 24 0.84 0.89 0.97 14 1igd 16 0.35 0.36 0.62 15 135l 11 0.63 0.65 0.66 PROPKA: Li et al. (2005) Proteins, 16 1div 6 0.26 0.32 0.74 17 1xnb* 13 0.70 1.09 0.62 61, 704-721. 18 1kxi 3 0.57 0.50 0.66 19 1beo 10 0.46 0.56 0.98 MCCE: Georgescu et al. (2002) 20 1trs 17 0.88 0.86 0.94 Biophysical Journal, 83, 1731-1748. 21 1qbs 16 0.34 0.34 0.78 22 1de3 25 0.66 0.70 1.33 23 2bus 4 0.46 0.49 0.23 24 1egf 9 0.49 0.53 0.49 Total sites 331 331 331 331 141 Average RMSD 0.508 0.548 0.742 0.720 © 2008 Accelrys, Inc. 12
  • 13. Results: pK Prediction of Selected Proteins 14 y = 0.9868x + 0.0282 6 12 R2 = 0.9672 Intel Pentium4 3.0 GHz machine 5 10 8 4 pK calc Time [min] 6 3 4 2 2 1 0 0 0 2 4 6 8 10 12 14 0 100 200 300 400 500 600 700 800 pK exp residues • Predicted results well correlate with the experimental measurements • Computation time scales roughly linearly with residue number • Most systems take about 1 to 2 minutes on a single CPU © 2008 Accelrys, Inc. 13
  • 14. The Comparison of the accuracy of pK predictions with other methods sites GB/IMC MCCE Const. pH FD/DH SCP PROPKA 4pti 14 0.36 0.47 NA 0.35 0.33 0.6 2lzt 21 0.45 0.76 0.6 0.47 0.49 0.66 2rn2 25 0.59 0.87 0.9 1.17 0.57 0.72 3rn3 16 0.44 0.66 1.2 0.87 0.55 0.94 1pga 15 0.42 0.63 NA 0.80 0.59 0.72 3icb 10 0.33 0.38 NA 0.37 0.39 0.9 3rnt 4 0.28 0.54 NA NA 0.41 NA Average 0.41 0.63 - 0.67 0.49 0.76 © 2008 Accelrys, Inc. 14
  • 15. pK1/2 Prediction – Applications • Application 1: Optimize the protonation state of proteins and hydrogen coordinates – Prepare the protein for other calculations, such as more stable Molecular Dynamics simulations • Application 2: Estimate maximum stability by studying the pH dependent folding energy of proteins • Application 3: Calculate the electrostatic component of protein-ligand binding energies or protein-protein binding energy • Application 4: Use unusual tritation curves to find relevant functional residues • Application 5: Estimate the effect of mutation – pK and titration curve changes on other titratible sites when a residues is mutated – Shift of the stability of the protein to different pH when a residue is mutated 1.2 1 *:HIS26 His 95 0.8 *:HIS95 *:HIS100 *:HIS115 0.6 *:HIS185 *:HIS195 0.4 *:HIS224 *:HIS248 0.2 0 0 2 4 6 8 10 12 14 © 2008 Accelrys, Inc. 15
  • 16. Application – Protonation and Hydrogen Coordinates Rubredoxin from Pyrococcus Furiosus at pH 8; 1vcx.pdb Comparison of the predicted hydrogen positions with neutron diffraction structure © 2008 Accelrys, Inc. 16
  • 17. Application – Protonation and Hydrogen Coordinates • Protonation state of HEWL: Comparison with neutron diffraction data at pH 4.7 • Asn and Gln flips: 13 sucessfully predicted out 17 residues in the structure (77%) Comparison between the predicted protonation state of HEWL and neutron diffraction data at pH 4.7 File: 1lzn.pdb protonation pK1.2 Residue Neutron Predicted Experimental Calculated diffraction NMR* LYS1_NTR P P 7.9 8.172 LYS1 P P 10.6 10.840 GLU7 P D 2.9 3.701 LYS13 P P 10.3 11.120 HIS15 P P 5.4 7.380 ASP18 D D 2.7 3.674 TYR20 P P 10.3 11.271 TYR23 P P 9.8 10.886 LYS33 P P 10.4 11.669 GLU35 P P 6.2 5.691 ASP48 D D 2.5 2.818 ASP52 D D 3.7 4.604 TYR53 P P >12 12.000 ASP66 D D <2.0 3.526 ASP87 D D 2.1 3.389 LYS96 P P 10.7 11.456 LYS97 P P 10.1 10.933 ASP101 D D 4.1 3.916 LYS116 P P 10.2 10.220 ASP119 D D 3.2 3.456 LEU129_CTR D D 2.8 2.984 * Bartik et al., 1994, Kuramitsu and Hamaguchi 1980. © 2008 Accelrys, Inc. 17
  • 18. Myoglobin 1l2k.pdb: Neutron Diffraction Structure at pH 6.8 The protonation and tautomeric states of histidine residues. A B A. Predicted structure. B. Neutron-diffraction structure © 2008 Accelrys, Inc. 18
  • 19. Application – Protonation and Hydrogen Coordinates 1lzn, pH 4.7 1l2k, pH 6.8 2gve, pH 8.0 6rsa, pH 6.6 ASP18 3.66 NTR1 7.30 NTR1 7.6 NTR1 7.40 0.13 D 0.75 NA 0.30 P* 0.86 P Comparison between calculated and ASP48 2.80 HIS12 6.76 HIS49 6.17 HIS12 6.86 0.03 D 0.48 D 0.02 D 0.62 P experimental protonation states in ASP52 4.54 HIS24 6.69 HIS54 7.6 HIS48 8.70 neutron-diffraction structures. 0.47 D 0.47 D 0.30 P* 0.99 P First row - computed pKhalf values; ASP66 3.67 HIS36 7.19 HIS71 7.03 HIS105 6.95 second row – the fractional 0.13 D 0.69 P 0.11 D 0.68 P ASP87 3.33 HIS48 6.22 HIS96 5.13 HIS119 6.50 protonations of residues. 0.07 D 0.22 P** 0.03 D 0.43 P* P – residue protonated in crystal ASP101 3.90 HIS64 4.47 HIS198 6.64 1vcx, pH 8 structure; D – deprotonated; NA – 0.18 D 0.02 D 0.06 P** more than one polar hydrogen is ASP119 3.45 HIS81 6.37 HIS220 7.08 NTR1 9.22 missing. 0.08 D 0.31 NA 0.15 P** 0.94 P In bold – accurately predicted GLU7 3.70 HIS82 6.41 HIS230 6.67 0.13 P** 0.33 D 0.06 P** structures; ** -completely incorrect GLU35 5.67 HIS97 6.28 HIS243 6.40 prediction; * - underpredicted, but 0.89 P 0.26 D 0.07 D close. HIS15 7.50 HIS113 5.60 HIS285 9.35 0.99 P 0.10 NA 0.93 P CTR129 2.90 HIS116 6.71 HIS382 7.54 0.03 D 0.46 NA 0.29 P* HIS119 4.94 0.19 D © 2008 Accelrys, Inc. 19
  • 20. Application - Optimized Protonation for Stable Molecular Dynamics • HIV Protease dimer has two Asp 25 residues in binding pocket • Run CHARMm MD (100pS, GBSW solvent model) on two forms of the protein (PDB ID 1kzk) – Protein with default protonation – Protein with pK-optimized protonation (Asp 25 B protonated) Optimized-protonation of Asp 25’s in HIV protease leads to more stable MD trajectories RMSD of select residues to starting RMSD of select residues to starting conformation, default protonation of Asp 25’s conformation, optimized protonation © 2008 Accelrys, Inc. 20
  • 21. Application – Unfolding Energy • HIV Protease apo form; 1hhp.pdb β-model • Folding energy calculated using zero model and beta-model Extended conformation Zero model ∆G(unfld) = - (Relative Folding Energy) ∆G(unfld) = ∆G0 – ∆G(fld) ∆G0: pKint,I = pKmod Wij = 0 1HHP- predicted unfolding energy Unfolding in urea 15 14 13 12 ∆ G(unfold) 11 10 9 8 7 6 2 3 4 5 6 pH Todd et al. (1998) J Mol Biol,283,475-488 © 2008 Accelrys, Inc. 21
  • 22. Application – Ligand Binding Energy Energy of binding of KNI-272 to HIV-1 protease – 1hpx.pdb 14 12 10 Energy [kcal/mol] 8 6 4 2 0 0 2 4 6 8 10 12 pH Calculated pH optimum of binding at pH ~ 5.0 The association constant is maximal between pH 5 and pH 6 Velazquez-Campoy et al. (2007) Protein Science, 9,1801-1809. © 2008 Accelrys, Inc. 22
  • 23. MEMBRANE PROTEINS Bacteriorhodopsin: 1c3w.pdb1 pK1/2 Calculated Calculated Calculate using MEAD GBIM d without with PB and Experiment membran membrane2 e ARG82 > 14 >14 >15 >13.8 ASP85 2.96 7.1 1.7 2.6 ASP96 8.80 8.7 >15 >12 ASP115 6.54 8.1 8.4 >9.5 GLU194 9.69 8.6 > 15 Proton GLU204 release 3.35 8.7 <0 group keeps one proton ASP212 <0.00 7.1 <0 <2.5 Schiff > 14 12.1 >15 >12 base216 1Luecke et al. (1999) J. Mol.Biol.,291,899-911. 2Spassov et al. (2001) J. Mol.Biol.,312,203-219 © 2008 Accelrys, Inc. 23
  • 24. MEMBRANE PROTEINS β2-adrenergic G Protein-coupled Receptor: 2rh1.pdb1 agonist: epinephrine antagonist: carazolol (adrenaline,a cateholeamine) Calculated pK1/2 carazolol adrenaline residue unbound bound unbound bound Asp 113 9.4 2.6 9.4 2.4 Asp 79 8.2 8.4 8.2 8.2 Glu 122 11.0 10.5 11.0 10.8 ligand: -NH2- 9.0 12.7 8.9 13. Ligand: catehol -OH 10.4 14. © 2008 Accelrys, Inc. 24
  • 25. MEMBRANE PROTEINS β2-adrenergic G Protein-coupled Receptor: Electrostatic contribution to the free energy of ligand binding. 8.00 6.00 adrenaline 4.00 ∆∆G binding 2.00 0.00 0 2 4 6 8 10 12 14 16 carazolol -2.00 -4.00 pH © 2008 Accelrys, Inc. 25
  • 26. MEMBRANE PROTEINS MD simulation of β2-adrenergic G Protein-coupled Receptor – adrenaline complex. Selected parameters of the production run : Preliminary preparation of the structure before MD simulations. Production Steps 500000 Production Time Step 0.002 1. Use the Discovery Studio Create and Edit Membrane tool to add a Production Target Temperature 300.0 membrane object to the input protein structure. Generalized Born with Implicit Membrane Implicit Solvent Model (GBIM) 2. Run the Discovery Studio Calculate Protein Ionization and Residue pK Dielectric Constant 2 protocol to assign the protonation state of all acidic and basic titratable Implicit Solvent Dielectric 80 groups at a selected pH. Constant Minimum Hydrogen Radius 1.0 Use Non-polar Surface Area True 3. Run Add Membrane and Orient Molecule protocol for a preliminary Non-polar Surface Constant 0 optimization of the position of the protein relative to membrane. Non-polar Surface Coefficient 0.00542 Nonbond List Radius 12.0 Steps 2 and 3 could be critical for the success of the MD simulations: When Nonbond Higher Cutoff Distance 11.0 using the default state of protonation, the simulation on 2rh1 structure was compromised in a early phase, because of a significant overheating Nonbond Lower Cutoff Distance 11.0 of the system. Dynamics Integrator Leapfrog Verlet Apply SHAKE Constraint False Random Number Seed 314159 Number of Processors 1 © 2008 Accelrys, Inc. 26
  • 27. MEMBRANE PROTEINS A 1 ns MD simulation of β2-adrenergic G Protein-coupled Receptor complex with adrenaline. RMSD values of CA atoms along the MD trajectory. all CA atoms CA atoms inside membrane (helix 1 excluded) The low dielectric environment of membrane stabilizes the structure of transmembrane helices. © 2008 Accelrys, Inc. 27
  • 28. Conclusions • The combination of the GB calculations with IMC approach increases dramatically the speed of calculations and makes it possible to treat very large structures of arbitrary shape which are difficult to calculate using methods based on grid techniques to solve Poisson-Boltzmann equation and Monte-Carlo sampling schemes. • The results of the tests indicate that the method returns very accurate pK values, comparable to the best results previously reported in the literature. • Compared to crystallographic data at given pH, the tests show a high accuracy of the predicted protonation and hydrogen coordinates. • The use of the GBIM CHARMm module makes it possible to study not only water soluble proteins but also protein-membrane complexes. • The Discovery Studio implementation provides an easy way to integrate the protein ionization calculations with many other molecular modeling protocols, such as pH-dependent MD simulations, ligand docking, protein docking, ion binding. It also made it easy to study the pH dependent protein stability and the effect of mutation on protein stability. © 2008 Accelrys, Inc. 28
  • 29. Acknowledgments Lisa Yan Paul Flook Don Bashford © 2008 Accelrys, Inc. 29