SlideShare una empresa de Scribd logo
1 de 30
Descargar para leer sin conexión
Chapter 40
Coagulation Disorders in Pregnancy
                                                                        Charles J. Lockwood, MD, and Robert M. Silver, MD




Disorders of the hemostatic system can lead to both hemorrhage and           vation of phospholipase C, which causes the generation of inositol
thrombosis. The former can result from inherited and acquired defects        triphosphate and 1,2,-diacylglycerol. The former triggers a calcium
in hemostasis and platelets, and the latter is greatly increased in the      flux, and the latter activates protein kinase C, which, in turn, triggers
presence of inherited and acquired defects in the endogenous antico-         platelet secretory activity and activates various signaling pathways.
agulant system.1,2 In addition to their association with thrombosis, the     Such signaling promotes activation of the GpIIb-IIIa (αIIBβ3 integrin)
leading cause of maternal death in the United States, inherited and          receptor, a crucial step in subsequent platelet aggregation (see later
acquired thrombophilias as well as certain bleeding dyscrasias, have         discussion). Thus, collagen serves to promote both platelet adhesion
also been associated with adverse pregnancy outcomes. This chapter           and platelet activation. However, maximal platelet activation requires
reviews the hemostatic system and its modulators and then discusses          binding of thrombin to platelet type 1 and 4 protease-activated recep-
the various common inherited and acquired disorders of platelet              tors (PAR-1, PAR-4).5 Platelet activation is also mediated by receptor
function, coagulation, and anticoagulation and their impact on both          binding to thromboxane A2 (TXA2) and adenosine diphosphate (ADP),
mother and fetus.                                                            which are released by adjacent activated platelets. Collagen and these
                                                                             circulating agonists induce calcium-mediated formation of platelet
                                                                             pseudopodia, promoting further adhesion.
The Hemostatic System                                                            Platelet secretory activity includes the release of α-granules con-
                                                                             taining vWF, vitronectin, fibronectin, thrombospondin, partially acti-
The hemostatic system is designed to ensure that hemorrhage is               vated factor V, fibrinogen, β-thromboglobulin, and platelet-derived
avoided in the setting of vascular injury while the fluidity of blood is      growth factor. These factors either enhance adhesion or promote
maintained in the intact circulation. After vascular injury, activation      clotting. Secretory activity also includes the release of dense granules
of the clotting cascade and simultaneous platelet adherence, activation,     containing ADP and serotonin, which enhance, respectively, platelet
and aggregation are required to form the optimal fibrin-platelet plug         activation and vasoconstriction in damaged vessels. Calcium flux pro-
and thus avoid bleeding. The system is held in check by a potent series      motes the synthesis of TXA2 by the sequential action of phospholipase
of anticoagulant proteins as well as a highly regulated fibrinolytic          A2, cyclooxygenase-1 (COX-1) and TXA2 synthase and its passive dif-
system. Pregnancy presents an additional challenge to this system,           fusion across platelet membranes to promote both vasoconstriction
because the risk of hemorrhage during placentation and in the third          and, as noted, activation of adjacent platelets.4 Inherited disorders of
stage of labor is high, and the risk of thrombosis in the highly vulner-     α-granule homeostatic and release proteins result in gray platelet syn-
able uteroplacental and intervillous circulations is also great. Through     drome, whereas deficiencies in dense granule–related genes are associ-
a series of local and systemic adaptations, the vast majority of pregnant    ated with Wiskott-Aldrich, Chediak-Higashi, Hermansky-Pudlak, and
women are able to balance these paradoxical requirements and achieve         thrombocytopenia–absent radius syndrome. Inhibition of COX-1–
uncomplicated pregnancies.                                                   mediated TXA2 synthesis by nonsteroidal anti-inflammatory drugs
                                                                             (NSAIDs) also can also impair platelet function.
                                                                                 Platelet aggregation follows activation-induced conformational
Platelet Plug Formation                                                      changes in the platelet membrane GpIIb-IIIa receptor, so-called inside-
After vascular injury, platelets rolling and flowing in the bloodstream       out signaling. The receptor forms a high-affinity bond to divalent
are arrested at sites of endothelial disruption by the interaction of col-   fibrinogen molecules. The same fibrinogen molecule is also able to
lagen with von Willebrand factor (vWF). Attachment to collagen               bind to adjacent platelet GpIIb-IIIa receptors.6 Because these receptors
exposes sites on the vWF molecule that permit it to bind to the platelet     are abundant (40,000 to 80,000 copies), large platelet rosettes quickly
glycoprotein Ib/IX/V complex (GpIb-IX-V) receptor.3 Abnormal                 form, reducing blood flow and sealing vascular leaks.4 Mutations in the
platelet adhesion and bleeding can result from mutations in GpIb-X-V         GpIIb-IIIa gene cause the bleeding dyscrasia known as Glanzmann
(e.g., Bernard-Soulier disease) or from defects in the vWF gene (von         thrombasthenia. Figure 40-1 presents a schematic review of platelet
Willebrand disease [vWD]). Platelets can also adhere to subendothelial       function.
collagen via their GpIa-IIa (α2β1 integrin) and GpVI receptors. Defi-             Platelet activation and aggregation are prevented in intact endothe-
ciencies in either receptor cause mild bleeding diatheses.                   lium via the latter’s elaboration of prostacyclin, nitric oxide, and
    Adherent platelets are activated by collagen after binding to the        ADPase as well as by active blood flow. Cyclic adenosine monophos-
GpVI receptor.4 This triggers receptor phosphorylation, leading to acti-     phate (cAMP) inhibits platelet activation, and this is the basis for the
826      CHAPTER 40              Coagulation Disorders in Pregnancy

                                                                              is unique in that it has low intrinsic clotting activity. In addition, it
                           Platelet Plug Formation
                                                                              may autoactivate after binding to TF or be activated by thrombin or
                     Platelet Adhesion                                        factors IXa or Xa.12 Activation of factor VII to VIIa increases its cata-
                     • GpIb/IX/V binding to vWF                               lytic activity more than 100-fold, and its promiscuous activation
                     • GpIa/IIa binding to collagen                           potential ensures that factor VIIa will be readily available to initiate
                                                                              clotting.
                                                                                  The complex of TF and factor VII(a) can activate both factor X and
                Platelet Activation                                           factor IX. Factor Xa remains active as long as it is bound to TF-VIIa
                • GpVI binding to collagen                                    in the cell membrane–bound prothrombinase complex. However,
                • PAR-1 and PAR-4 binding to thrombin                         when factor Xa diffuses away from the site of vascular injury, it is
                • Receptor binding to ADP and TXA2                            rapidly inhibited by tissue factor pathway inhibitor (TFPI) or anti-
                                                                              thrombin (AT). This serves to prevent inappropriate propagation of
                                                                              the clot throughout the vascular tree.9 Factor Xa ultimately binds to its
                                                                              cofactor, Va, which is generated from its inactive form by the action of
 Platelet Aggregation           Platelet Secretion                            factor Xa itself or by thrombin. Partially activated factor Va can also
 • GpIIb/IIIa binding to        • α-Granules contain fibrinogen,              be delivered to the site of clot initiation after its release from platelet
   fibrinogen and other           fibronectin, vitronectin, platelet factor   α-granules (Fig. 40-2A).8 The Xa/Va complex catalyzes the conversion
   large glycoproteins            4, fibrinogen, vWF, thrombospondin,
                                  and platelet-derived growth factor,
                                                                              of prothrombin (factor II) to thrombin (factor IIa). Thrombin, in turn,
                                  which enhance adhesion or clotting          converts fibrinogen to fibrin, and, as noted, activates platelets (see Fig.
                                • Dense granules contain ADP and              40-2A).
                                  serotonin, which amplify platelet               Following this initial TF-mediated reaction, the clotting cascade
                                  activation                                  is amplified by clotting reactions that occur on adjacent activated
                                • Thromboxane A2, which promotes              platelets.9 Locally generated factor IXa diffuses to adjacent activated
                                  platelet activation and vasoconstriction
                                                                              platelet membranes, or to perturbed endothelial cell membranes,
                                                                              where it binds to factor VIIIa. This cofactor is not only directly acti-
FIGURE 40-1 Schematic review of platelet function. ADP,                       vated by thrombin but is released from its vWF carrier molecule
adenosine diphosphate; Gp, glycoprotein; PAR, protease-activated              through the action of thrombin.9 The factor IXa/VIIIa complex
receptor; TXA2, thromboxane A2; vWF, von Willebrand factor.                   can then generate factor Xa at these sites to further drive thrombin
                                                                              generation (see Fig. 40-2B). The significant hemorrhagic sequelae of
                                                                              hemophilia underscore the vital role played by platelet surface factor
therapeutic effects of dipyridamole. Normal pregnancy is associated           IXa-VIIIa–mediated factor Xa generation in ensuring hemostasis.9
with a modest decline in platelet number7 and with evidence of pro-               The clotting cascade can also be amplified via the activation of
gressive platelet activation.8                                                factor XI to XIa by thrombin on activated platelet surfaces; factor XIa
                                                                              also activates factor IX (see Fig. 40-2C). The lack of significant hem-
                                                                              orrhagic sequelae in patients with factor XI deficiency emphasizes
Fibrin Plug Formation                                                         that this mechanism is of lesser importance in the maintenance of
Effective hemostasis requires the synergistic interaction of the clotting     hemostasis. Factor XIa has been describing as serving a “booster
cascade with platelet activation and aggregation. This synergism is in        function” in coagulation.9
part mechanical, because fibrin and platelets together form an effective           A third, theoretical coagulation amplification pathway may be
hemostatic plug after significant vascular disruption. However, bio-           mediated by circulating TF-bearing microparticles that bind to acti-
chemical synergism also occurs, because activated platelets contribute        vated platelets at sites of vascular injury through the interaction
clotting factors and form an ideal surface for clot propagation. Con-         between P-selectin glycoprotein ligand-1 on the microparticles and P-
versely, optimal platelet activation and subsequent aggregation require       selectin on activated platelets (see Fig. 40-2C).13 Taken together factor
exogenous thrombin generation (see Fig. 40-1). Therefore, the avoid-          IXa, factor XIa, and TF-platelet surface events lead to additional factor
ance of hemorrhage ultimately depends on the interplay between                Xa generation and thence to enhanced production of thrombin and
platelets and the coagulation cascade.                                        fibrin. They also reflect the synergism that exists between platelet acti-
    Understanding of the coagulation component of hemostasis has              vation and the coagulation cascade.
evolved rapidly in the past two decades. Clotting is no longer thought            The stable hemostatic plug is finally formed only when fibrin
of as a seemingly infinite cascade of enzymatic reactions occurring in         monomers self-polymerize and are cross-linked by thrombin-activated
the blood but rather as a highly localized cell surface phenomenon.9          factor XIIIa (see Fig. 40-2D). This last reaction highlights the dominant
Clotting is initiated when subendothelial (extravascular) cells express-      role that thrombin plays in the coagulation cascade: Thrombin acti-
ing tissue factor (TF), a cell membrane–bound glycoprotein, come into         vates platelets, generates fibrin, and activates the crucial clotting cofac-
contact with circulating factor VII. Intrauterine survival is not possible    tors V and VIII, as well as the key clotting factors VII, XI, and XIII.
in the absence TF.10 TF is primarily expressed on the cell membranes          This accounts for the primacy of antithrombin factors in preventing
of perivascular smooth muscle cells, fibroblasts, and tissue parenchy-         inappropriate intravascular clotting (i.e., thrombosis).
mal cells, but not on healthy endothelial cells. However, TF also circu-
lates in the blood in very low concentrations, as part of cell-derived
microparticles or in a truncated soluble form.8,11
                                                                              Prevention of Thrombosis: The
    After vascular disruption and in the presence of ionized calcium,         Anticoagulant System
perivascular cell TF comes into contact with plasma factor VII on             As noted, the hemostatic system not only must prevent hemorrhage
negatively charged (anionic) cell membrane phospholipids. Factor VII          after vascular injury but also must maintain the fluidity of the circula-
CHAPTER 40              Coagulation Disorders in Pregnancy              827


                                             Vascular Injury                                               Vascular Injury


                                        X                        IX                                   X                      IX


                                                   TF/                                                           TF/
                                                  VII(a)                                                        VII(a)


                                                                            Platelet
                                        Xa                     IXa                                    Xa                     IXa        Platelet
                                                                           activation
                                                                                                                                       activation

                                                                                                      Va                              VIIIa         IXa
                                        Va
                                                                                              II                             IIa
                                II                             IIa                                                                    VIII



                                     Fibrinogen                        Fibrin
                                                                                                   Fibrinogen                      Fibrin
                       A
                                                                                         B

                                Vascular Injury
                                                                                                           Vascular Injury

                           X                       IX
                                                                                                       X                      IX                      Stable
                                                                                                                                                       fibrin
                                       TF/                                                                                                           polymers
                                      VII(a)                                                                     TF/
                                                                                                                VII(a)
                                                                                 TF                                                          XIIIa
                                                                 XIa
                           Xa                     IXa                      Platelet                   Xa                     IXa
                                                                          activation
                                                                                                                                                      Fibrin
                           Va                                     XI                                                                                 polymers
                 II                               IIa                                                 Va
                                                                                              II                             IIa

                                                                                                                                             XIII


                      Fibrinogen                        Fibrin                                                                                     Self-
                                                                                                   Fibrinogen              Fibrin              polymerization
            C                                                                                                            monomers

                                                                                         D
          FIGURE 40-2 Fibrin plug formation. A, After vascular disruption, plasma factor VII binds to tissue factor (TF) to form the
          TF/VII(a) complex, which activates both factor X and factor IX. Factor Xa binds to factor Va, which has been activated by
          thrombin (factor IIa) or released from platelet α-granules. The Xa/Va complex catalyzes the conversion of prothrombin (factor
          II) to thrombin, which, in turn, converts fibrinogen to fibrin and activates platelets. B, The clotting cascade is amplified by
          clotting reactions that occur on adjacent activated platelets. Locally generated factor IXa binds to factor VIIIa, which is
          activated by thrombin. The factor IXa/VIIIa complex then generates factor Xa. C, Coagulation is further boosted by the
          thrombin-mediated activation of factor XI to factor XIa, which also activates factor IX. Circulating TF-bearing microparticles
          may also bind to activated platelets at sites of vascular injury. D, The stable hemostatic plug is finally formed when fibrin
          monomers self-polymerize and are cross-linked by thrombin-activated factor XIIIa.



tion in an intact vasculature. Indeed, thrombotic disease is a conse-                    lets. This local coagulation reaction is relatively protected from the
quence of inappropriate and/or excess thrombin generation. As was                        dampening effects of circulating endogenous anticoagulants, both
the case with avoiding hemorrhage, avoidance of thrombosis is again                      because of its intensity and because it is shielded by the initial layer of
dependent on the synergistic interaction of platelets and the coagulant                  adherent and activated platelets. However, maximal platelet activation
system. As noted earlier, clotting is initiated locally at sites of vascular             occurs only after stimulation by both subendothelial collagen and
injury and amplified by the arrival, adherence, and activation of plate-                  thrombin, so, as additional platelets aggregate on top of the initial layer
828       CHAPTER 40              Coagulation Disorders in Pregnancy

                                                                                                   ( )
                       X    TFPI            IX                                        FXIII                      IIa


                            TF/VIIa                                                            Fibrin monomer             Fibrinogen



                                                                                               Fibrin polymer
                                        IXa       VIIIa         ( )
                                                                                      FXIIIa
              AT       Xa
                                                       X                                       X-linked Fibrin
                                                                                                                          tPA/uPA
                       Va   ( )                                                                          Plasmin                       Plasminogen
          PZ/ZPI                                                                                                             PAI-1
                                                                                                            2 plasmin
                                                                                        TAFI                                 PAI-2
                                                                                                              inhibitor

                                                 aPC       PS         PC                            FDPs

                                                                                                                          Thrombomodulin
                                                 ( )
             II                       IIa                       EPCR

                                       AT              Thrombomodulin         FIGURE 40-4 Fibrinolysis. The cross-linked fibrin polymer (X-linked
                                                                              Fibrin), which was stabilized by thrombin (factor IIa)-activated factor
                  Fibrin monomer                  Fibrinogen                  XIIIa, is degraded to fibrin degradation products (FDPs) by the action
                                                                              of plasmin, which is generated by the proteolysis of plasminogen via
FIGURE 40-3 The anticoagulant system. Tissue factor pathway                   tissue-type plasminogen activator (tPA) and urokinase-type
inhibitor (TFPI) binds with tissue factor (TF), factor VIIa, and factor Xa    plasminogen activator (uPA). To prevent excessive fibrinolysis,
to form the prothrombinase complex. Thrombin, after binding to                plasmin is inhibited by α2-plasmin inhibitor, and tPA and uPA are
thrombomodulin, can activate protein C (PC) when bound to the                 inhibited by plasminogen activator inhibitor type 1 (PAI-1) and type 2
endothelial protein C receptor (EPCR). Activated protein C (aPC) then         (PAI-2). In addition, thrombin-activated fibrinolytic inhibitor (TAFI),
binds to its cofactor, protein S (PS), to inactivate factors VIIIa and Va.    which is activated by the thrombin-thrombomodulin complex, cleaves
Factor Xa is inhibited by the protein Z-dependent protease inhibitor          terminal lysine residues from fibrin to render it resistant to plasmin.
(ZPI) when complexed to its cofactor, protein Z (PZ). Antithrombin
(AT) potently inhibits both factor Xa and thrombin.
                                                                              Xa. The resultant conformational change facilitates AT binding to
                                                                              endothelial surface heparanoids or exogenous heparin, which aug-
of platelets, they become progressively less activated, and their clotting    ments thrombin inactivation more than 1000-fold.17 Although throm-
reaction becomes more susceptible to the action of circulating inhibi-        bin generated at the initial site of vascular injury is relatively “protected”
tors, thus attenuating the clotting cascade.9                                 from AT, thrombin produced more distally on the surface of activated
    Prevention of disseminated intravascular coagulation (DIC) ulti-          platelets is readily susceptible.9 Similar inhibitory mechanisms utilize
mately requires the presence of inhibitor molecules (Fig. 40-3). The          heparin cofactor II and α2-macroglobulin.
first inhibitory molecule is TFPI which forms a complex with TF, VIIa,
and Xa (the prothrombinase complex).14 As noted earlier, TFPI is most
effective distal to the initial site of clotting, and it can be bypassed by   Restoration of Blood Flow: Fibrinolysis
the generation of factors IXa and XIa.                                        Fibrinolysis permits the restoration of circulatory fluidity and serves
    Paralleling its pivotal role in initiating the hemostatic reaction,       as another barrier to thrombosis (Fig. 40-4). The cross-linked fibrin
thrombin also plays a central role in initiating the anticoagulant system.    polymer is degraded to fibrin degradation products (FDPs) by the
Thrombin binds to thrombomodulin, and the resultant conforma-                 action of plasmin embedded in the fibrin clot.18 Plasmin is, in turn,
tional change permits thrombin to activate protein C (PC) when                generated by the proteolysis of plasminogen via tissue-type plasmino-
bound to damaged endothelium or the endothelial protein C receptor            gen activator (tPA), which is also embedded in fibrin. Endothelial cells
(EPCR). Activated protein C (aPC) then binds to its cofactor, protein         also synthesize a second plasminogen activator, urokinase-type plas-
S (PS), to inactivate factors VIIIa and Va. However, this process is far      minogen activator (uPA), whose primary function is cell migration
less efficient at blocking thrombin generation on activated platelets,         and extracellular matrix remodeling.
possibly because platelet-derived, partially activated factor Va is resis-         Fibrinolysis is, in turn, modulated by a series of inhibitors. Plasmin
tant to aPC/PS inactivation.15 Therefore, additional anticoagulant reac-      is inhibited by α2-plasmin inhibitor, which, like plasmin and plasmino-
tions are required. Factor Xa can be efficiently inhibited by the protein      gen, is bound to the fibrin clot, where it is positioned to prevent pre-
Z–dependent protease inhibitor (ZPI) when complexed to its cofactor,          mature fibrinolysis. Platelets and endothelial cells release type-1
protein Z (PZ).16 ZPI also inhibits factor XIa in a process that does not     plasminogen activator inhibitor (PAI-1) in response to thrombin
require PZ. Deficiencies of PZ can promote both intracerebral bleeding         binding to PARs. The PAI-1 molecule inhibits both tPA and uPA. In
and systemic thrombosis, the latter predominating in the setting of           pregnancy, the decidua is also a very rich source of PAI-1,19 and the
coexistent inherited thrombophilias.                                          placenta can synthesize another antifibrinolytic molecule, PAI-2. Fibri-
    The most potent inhibitor of both factor Xa and thrombin is anti-         nolysis can also be inhibited by thrombin-activated fibrinolytic inhibi-
thrombin (AT, previously known as antithrombin III or ATIII) (see Fig.        tor (TAFI). This carboxypeptidase cleaves terminal lysine residues
40-3). Antithrombin bound to vitronectin can bind thrombin or factor          from fibrin to render it resistant to plasmin. TAFI is activated by the
CHAPTER 40           Coagulation Disorders in Pregnancy            829
thrombin-thrombomodulin complex.20 In the initial stages of clotting,          estrogen and local production of prostacyclin and nitric oxide. Preg-
platelets and endothelial cells release PAI-1, but, after a delay, endothe-    nancy is also frequently associated with obesity, insulin resistance, and
lial cells release tPA and uPA to promote fibrinolysis. This biologic           hyperlipidemia, all of which further increase levels of PAI-1.31
process permits sequential clotting followed by fibrinolysis to restore
vascular patency.
    The fibrinolytic system can also interact with the coagulation
cascade. FDPs inhibit the action of thrombin, and this is a major source       Disorders Promoting
of hemorrhage in DIC. Moreover, PAI-1 bound to vitronectin and
heparin also inhibits thrombin and factor Xa activity.21
                                                                               Thrombosis in Pregnancy
                                                                               Acquired Thrombophilias:
The Effect of Pregnancy                                                        Antiphospholipid Antibodies
on Hemostasis                                                                  The combination of VTE, obstetric complications, and antiphospho-
As noted, pregnancy and delivery present unique and paradoxical chal-          lipid antibodies (APA) defines the antiphospholipid antibody syn-
lenges to a woman’s hemostatic system. They also present one of the            drome (APS).32 These antibodies are directed against proteins bound
greatest risks for venous thromboembolism (VTE) that most young                to negatively charged surfaces, usually anionic phospholipids. There-
women will face. Profound alterations in both local uterine and sys-           fore, APAs can be detected (1) by screening for antibodies that directly
temic clotting, anticoagulant, and fibrinolytic systems are required to         bind protein epitopes such as β2-glycoprotein-1, prothrombin, annexin
meet this enormously complex challenge. The uterine decidua is ideally         V, aPC, PS, protein Z, ZPI, tPA, factor VII(a), and XII, the complement
positioned to regulate hemostasis during placentation and the third            cascade constituents C4 and CH50, and oxidized low-density lipopro-
stage of labor. Progesterone augments expression of TF22 and PAI-119           teins, or (2) by indirectly assessing antibodies that react to proteins
on perivascular decidualized endometrial stromal cells. The crucial            present in an anionic phospholipid matrix (e.g., cardiolipin, phospha-
importance of the decidua in the maintenance of puerperal hemostasis           tidylserine), or (3) by assessing the downstream effects of these anti-
is highlighted by the massive hemorrhage that accompanies obstetric            bodies on prothrombin activation in a phospholipid milieu (i.e., lupus
conditions associated with impaired decidualization (e.g., ectopic and         anticoagulants).33
cesarean scar pregnancy, placenta previa, and accreta). That decidual              The diagnosis of APS has been a controversial topic. A recent con-
TF plays the primary role in mediating puerperal hemostasis is                 sensus conference proposed the criteria outlined in Table 40-1.34 In
demonstrated by the observation that transgenic TF knockout mice               brief, APS requires the presence of at least one clinical criterion
rescued by the expression of low levels of human TF have a 14%                 (confirmed thrombosis or pregnancy morbidity) and one laboratory
incidence of fatal postpartum hemorrhage despite far less invasive             criterion (lupus anticoagulant [LA], anticardiolipin (ACA), or anti-
placentation.23                                                                β2-glycoprotein-1 antibody). However, the presence of thrombosis
    The extraordinarily high level of TF expression in human decidua           must take into account confounding variables that lessen the certainty
can also serve a pathologic function if local hemostasis proves inade-         of the diagnosis (see Table 40-1). Uteroplacental insufficiency may be
quate to contain spiral artery damage and hemorrhage into the decidua          recognized by the sequelae of nonreassuring fetal surveillance tests
occurs (i.e., abruption). This bleeding results in intense generation of       suggestive of fetal hypoxemia, abnormal Doppler flow velocimetry
thrombin and occasionally in frank hypofibrinogenemia and DIC.                  waveform analysis suggestive of fetal hypoxemia, oligohydramnios
However, thrombin can also bind to decidual PAR-1 receptors to                 (amniotic fluid index ≤5 cm), or birth weight less than the 10th per-
promote production of matrix metalloproteinases and cytokines,                 centile. Classification of APS should not be made if less than 12 wk or
contributing to the tissue breakdown and inflammation associated                more than 5 years separates the positive APA test and the clinical
with abruptio placenta and preterm premature rupture of the                    manifestation.
membranes.24-27                                                                    Venous thrombotic events associated with APA include deep venous
    Pregnancy also induces systemic changes in the hemostatic system.          thrombosis (DVT) with or without acute pulmonary emboli; cerebral
It is associated with a doubling in concentration of fibrinogen and             vascular accidents and transient ischemic attacks are the most common
increases of 20% to 1000% in factors VII, VIII, IX, and X as well as           arterial events. At least half of patients with APA have systemic lupus
vWF.28 Levels of prothrombin and factor V remain relatively unchanged,         erythematosus (SLE). A meta-analysis of 18 studies examining the
and levels of factor XI decline modestly. The net effect is an increase        thrombotic risk among SLE patients with LA, found odds ratios (OR)
in thrombin-generating potential. Pregnancy is also associated with            of 6.32 (95% confidence interval [CI], 3.71 to 10.78) for a VTE episode
60% to 70% declines in free PS levels, which nadir at delivery due to          and 11.6 (CI, 3.65 to 36.91) for recurrent VTE.35 By contrast, ACAs
hormonally induced increases in levels of its carrier protein, the com-        were associated with lower ORs of 2.50 (CI, 1.51 to 4.14) for an acute
plement 4B–binding protein.29 As a consequence, pregnancy is associ-           VTE and 3.91 (CI, 1.14 to 13.38) for recurrent VTE. A meta-analysis
ated with an increased resistance to aPC. These effects are exacerbated        of studies involving more than 7000 patients in the general population
by cesarean delivery and infection, which drive further reduction in           identified a range of ORs for arterial and venous thromboses in patients
the concentration of free PS. Levels of PAI-1 increase threefold to            with LA: 8.6 to 10.8 and 4.1 to 16.2, respectively.33 The comparable
fourfold during pregnancy, and plasma PAI-2 values, which are negli-           numbers for ACA were 1 to 18 and 1 to 2.5. Therefore, there appears
gible before pregnancy, reach high concentrations at term.30 Thus,             to be a consistently greater risk of VTE associated with LA compared
pregnancy is associated with increased clotting potential, decreased           with isolated ACA. Recurrence risks of up to 30% have been reported
anticoagulant activity, and decreased fibrinolysis.30                           in affected patients, so long-term prophylaxis is required.36 The risk of
    Pregnancy is also associated with venous stasis in the lower extremi-      VTE in pregnancy and the puerperium accruing to affected patients is
ties resulting from compression of the inferior vena cava and pelvic           poorly studied but may be as high as 5% despite treatment.37
veins by the enlarging uterus as well as a hormone-mediated increase               As noted, APA are associated with obstetric complications includ-
in deep vein capacitance secondary to increased circulating levels of          ing fetal loss, abruption, severe preeclampsia, and intrauterine growth
830      CHAPTER 40              Coagulation Disorders in Pregnancy

  TABLE 40-1          REVISED CLASSIFICATION CRITERIA FOR DIAGNOSIS OF THE ANTIPHOSPHOLIPID
                      ANTIBODY SYNDROME (APS)*
 Clinical Criteria
 1. Vascular thrombosis†: One or more clinical episodes of arterial, venous, or small-vessel thrombosis, in any tissue or organ confirmed by
    objective, validated criteria (i.e., unequivocal findings of appropriate imaging studies or histopathology).
 2. Pregnancy morbidity:
    a. One or more unexplained deaths of a morphologically normal fetus at or beyond 10 weeks of gestation, with normal fetal morphology
       documented by ultrasound or by direct examination of the fetus, or
    b. One or more premature births of a morphologically normal neonate before the 34th week of gestation because of (i) eclampsia or
       severe preeclampsia or (ii) recognized uteroplacental insufficiency, or
    c. Three or more unexplained consecutive euploid spontaneous abortions before 10 weeks of gestation, with maternal anatomic or
       hormonal abnormalities and paternal and parental chromosomal causes excluded.

 Laboratory Criteria‡
 1. Lupus anticoagulant (LA) present in plasma, on two or more occasions at least 12 wk apart, detected according to the guidelines of the
    ISTH Scientific Subcommittee on Lupus Anticoagulants/Phospholipid-Dependent Antibodies.
 2. Anticardiolipin antibody (aCL) of IgG and/or IgM isotype in serum or plasma, present in medium or high titer (i.e., >40 GPL or MPL, or
    >99th percentile), on two or more occasions, at least 12 wk apart, measured by a standardized ELISA.
 3. Anti-β2-glycoprotein-1 antibody of IgG and/or IgM isotype in serum or plasma (in titer >99th percentile), present on two or more occasions,
    at least 12 wk apart, measured by a standardized ELISA, according to recommended procedures.

 *APS is present if at least one clinical criterion and one laboratory criterion are met.
 †
  Coexisting inherited or acquired factors for thrombosis are not reasons for excluding patients from APS trials. However, two subgroups of APS
 patients should be recognized, according to (1) the presence or (2) the absence of additional risk factors for thrombosis. Indicative (but not
 exhaustive) of such factors are age (>55 yr in men, >65 yr in women); presence of any of the established risk factors for cardiovascular disease
 (hypertension, diabetes mellitus, elevated LDL or low HDL cholesterol, cigarette smoking, family history of premature cardiovascular disease, BMI
 ≥30 kg/m2, microalbuminuria, estimated GFR <60 mL/min), inherited thrombophilias, oral contraceptive use, nephrotic syndrome, malignancy,
 immobilization, and surgery. Patients who fulfill criteria should be stratified according to contributing causes of thrombosis.
 ‡
  Investigators are strongly advised to classify APS patients in studies into one of the following categories: I, more than one laboratory criteria present
 (any combination); IIa, LA present alone; IIb, aCL antibody present alone; IIc, Anti-b2 glycoprotein-1 antibody present alone.
 APA, antiphospholipid antibody; BMI, body mass index; ELISA, enzyme-linked immunosorbent assay; GFR, glomerular filtration rate; GPL, IgG
 phospholipid units; HDL, high-density lipoprotein; IgG, immunoglobulin G; IgM, immunoglobulin M; ISTH, International Society on Thrombosis and
 Hemostasis; LDL, low-density lipoprotein; MPL, IgM phospholipid units.
 Modified from Miyakis S, Lockshin MD, Atsumi D, et al: International consensus statement on an update of the classification criteria for definite
 antiphospholipid syndrome (APS). J Thromb Haemost 4:295-306, 2006.




restriction (IUGR). LA are associated with fetal loss after the first tri-        spective and prospective studies have not found an association between
mester, with ORs ranging from 3.0 to 4.8, and ACA display a wider                these conditions and APA.45 This is not surprising, given the common
range of ORs, 0.86 to 20.0.33 It is controversial whether APA are                occurrence of preeclampsia and IUGR and the relative infrequency of
associated with recurrent (more than three) early (<10 weeks) sponta-            APS.
neous abortions in the absence of stillbirth. At least 50% of pregnancy              A myriad of mechanisms have been proposed for APA-mediated
losses in patients with APA occur after the 10th week of gestation.38            arterial and venous thrombosis. Direct inhibition of the anticoagulant
Moreover, compared with patients who have unexplained first-trimes-               effects of anionic phospholipid-binding proteins such as β2-glycopro-
ter spontaneous abortions without APA, those with antibodies more                tein-1 and annexin V has been shown.46,47 In addition, APA appear to
often have demonstrable embryonic cardiac activity (86% versus 43%;              inhibit thrombomodulin, aPC, and AT activity; to induce TF, PAI-1,
P < .01).39                                                                      and vWF expression in endothelial cells; and to augment platelet acti-
    The association between APA and infertility also is uncertain.               vation. Recently, APA induction of complement activation has been
Increased levels of APA have been reported in women with infertil-               suggested to play a role in fetal loss, with heparin preventing such
ity.40,41 However, a meta-analysis of seven studies of affected patients         aberrant activation.48
undergoing in vitro fertilization found no significant association                    Contemporary management of affected patients during pregnancy
between APA and either clinical pregnancy (OR, 0.99; CI, 0.64 to 1.53)           requires treatment with either unfractionated heparin or low-molecu-
or live birth rate (OR, 1.07; CI, 0.66 to 1.75).42 Finally, there is also no     lar-weight heparin (LMWH) plus low-dose aspirin (LDA) at 50 to
evidence that treating patients who have APA with anticoagulant medi-            80 mg/day. Rai and colleagues conducted a randomized, controlled
cations improves outcomes of in vitro fertilization.43                           trial among 90 APA-positive women with a history of recurrent fetal
    Women with APS who have pregnancies reaching viability are at                loss who received either LDA alone or LDA plus 5000 U of unfraction-
increased risk for obstetric outcomes associated with abnormal placen-           ated heparin SQ every 12 hours until either recurrent loss or 34 weeks
tation such as preeclampsia and IUGR. Up to 50% of pregnancies in                of gestation.39 The live birth rate was significantly higher with com-
women with APS develop preeclampsia, and one third have IUGR.37                  bined heparin and LDA than with LDA alone: 71% (32/45) versus 42%
Abnormal fetal heart rate tracings prompting cesarean delivery are also          (19/45) (OR, 3.37; CI, 1.40 to 8.10). Interestingly, 90% of the losses
common. Conversely, most cases of preeclampsia and IUGR occur in                 occurred in the first trimester, and there was no difference in out-
women without APA. Although increased positive tests for APA have                come between the two groups for women whose pregnancies
been reported in women with preeclampsia, especially in severe disease           advanced beyond 13 weeks’ gestation. Similar results were found in a
with onset before 34 weeks’ gestation44 and IUGR, most large retro-              nonrandomized trial by Kutteh.49 On the other hand, Farquharson and
CHAPTER 40            Coagulation Disorders in Pregnancy             831
coworkers found no advantage to adding LMWH to LDA.50 However,               patient requires any therapy, but the latter patient needs therapeutic
this latter study has been criticized because of the very low levels of      unfractionated heparin or LMWH with LDA.57 Tincani and associates
APA present in affected patients as well as imperfect randomization.         reported on a survey of members of the International Advisory Board
Meta-analysis found that unfractionated heparin plus LDA (two trials;        of the 10th International Congress on Antiphospholipid Antibodies.
N = 140) significantly reduced pregnancy loss compared with LDA               The consensus of the group was that treatment for APA-positive preg-
alone (relative risk [RR], 0.46; CI, 0.29 to 0.71) and that there was no     nant patients should be LMWH and LDA.57 The dosage and frequency
advantage of high-dose over low-dose unfractionated heparin (one             of LMWH depends on the situation, including the patient’s body
trial; N = 50).51 Another meta-analysis found that enoxaparin treat-         weight and past history. Patients with previous thromboses should
ment resulted in an increased live birth rate, compared with LDA (RR,        receive two injections per day. The use of IVIG should be restricted to
10.0; CI, 1.56 to 64.20).52 Three studies of LDA alone versus placebo        patients with pregnancy losses despite conventional treatment (see
included in the meta-analysis showed no significant reduction in preg-        later discussion for details of heparin dosing).
nancy loss (RR, 1.05; CI, 0.66 to 1.68).51
    Adverse pregnancy outcomes can still occur despite treatment.
Backos and associates conducted a prospective observational study of         Inherited Thrombophilias
150 women treated with LDA and either unfractionated heparin                 Inherited thrombophilias have been linked to VTE. However, the
(5000 U given SQ every 12 hours) or enoxaparin (20 mg daily) from            occurrence of VTE in patients with an inherited thrombophilia is
the time of positive embryonic cardiac activity to either pregnancy loss     highly dependent on the presence of other predisposing factors, espe-
or 34 weeks of gestation.53 The live birth rate was 71%. However, 27%        cially a personal or family history of VTE. Even more controversial is
of the patients miscarried (mostly in the first trimester), and gesta-        the association between inherited thrombophilias and adverse preg-
tional hypertension occurred in 17%, abruption in 7%, and IUGR in            nancy outcomes.
15%.
    Intravenous immune globulin (IVIG) has been reported to improve          Factor V Leiden Mutation
outcome in women with APS for whom treatment with heparin and                Present in about 5% of the European population and 3% of African-
LDA has failed.54 The efficacy of the combination of LDA and LMWH             Americans, factor V Leiden (FVL) is the most common of the serious
in affected patients was compared with that of IVIG for the prevention       heritable thrombophilias.58 The mutation is virtually absent in African
of recurrent fetal loss in a study including 40 women,55 who were ran-       blacks, Chinese, Japanese, and other Asians. The mutation causes a
domized to receive either LMWH (5700 IU/day SQ) and LDA or IVIG              substitution of glutamine for arginine at position 506, the site of pro-
(400 mg/kg IV for 2 days, followed by 400 mg/kg every month).                teolysis and inactivation by aPC/PS, and FVL is the leading cause of
Although the clinical characteristics of the two groups were similar at      aPC resistance. The heterozygous state is symptomatic, with a fivefold
the time of randomization, women receiving LMWH and LDA had a                increased risk of VTE, but homozygous patients have a 25-fold
higher live birth rate (84%) than those receiving IVIG alone (57%).          increased risk (Table 40-2). FVL is associated with about 40% of VTE
Moreover, IVIG plus heparin and LDA was also not superior to heparin         events in pregnant patients.59 However, given the low prevalence of
and LDA alone in another small, randomized trial.56 Therefore, IVIG          VTE in pregnancy (1/1400) and the high incidence of the mutation in
is not recommended as first-line therapy for APS.                             the European-derived population, the risk of VTE among FVL hetero-
    Given these small study sizes and heterogeneous therapies employed,      zygotes without a personal history of VTE or an affected first-degree
recommendations for treatment are difficult to make. It is unlikely that      relative is less than 0.3%.59 Nevertheless, the risk is at least 10% among
a patient with no history of VTE who has repetitive early losses and         pregnant women who have either a personal history of VTE or an
borderline positive APA levels reflects the same degree of risk or need       affected first-degree relative.60 Pregnant homozygous patients without
for intense therapy as a patient with high levels of APA, prior VTE, and     a personal history of VTE or an affected first-degree relative have a
recurrent growth-retarded stillbirths. It is unclear whether the former      1.5% risk for VTE in pregnancy; if there is a personal or family history


 TABLE 40-2          INHERITED THROMBOPHILIAS AND THEIR ASSOCIATION WITH VENOUS
                     THROMBOEMBOLISM (VTE) IN PREGNANCY

                                                                                                     Probability of VTE (%)
                                                                                                       without or with a
                                                                                                    Personal History of VTE
                                                                                                       or a First-Degree
                                                                                                       Relative with VTE

 Thrombophilia                                        Relative Risk of VTE (95% CI)                Without                With              Ref. No.
 FVL (homozygous)                                              25.4 (8.8-66)                           1.5                17                 46
 FVL (heterozygous)                                             5.3 (3.7-7.6)                      0.20-0.26              10                 45,   46
 PGM (homozygous)                                             NA                                       2.8               >17                 46
 PGM (heterozygous)                                             6.1 (3.4-11.2)                        0.37               >10                 45,   46
 FVL/PGM (compound heterozygous)                               84 (19-369)                            4.7                NA                  46
 Antithrombin deficiency (<60% activity)                       119                                   3.0-7.2              >40%                46,   47
 Protein S deficiency (<55% activity)                          NA                                       <1                  6.6               46,   47
 Protein C deficiency (<50% activity)                           13.0 (1.4-123)                       0.8-1.7                2-8               46,   47

 CI, confidence interval; FVL, factor V Leiden mutation; NA, not available; PGM, prothrombin gene mutation.
832       CHAPTER 40             Coagulation Disorders in Pregnancy

of VTE, the risk is 17% (see Table 40-2). Screening can be done by                Early pregnancy is associated with a low-oxygen environment, with
assessing aPC resistance using a second-generation coagulation assay          intervillous oxygen pressures of 17.9 ± 6.9 mm Hg at 8 to 10 weeks,
followed by genotyping for the FVL mutation if aPC resistance is found        rising to 60.7 ± 8.5 mm Hg at 12 to 13 weeks.71 Trophoblast plugging of
in a pregnant or nonpregnant woman. Alternatively, patients can               the spiral arteries has been demonstrated in placental histologic studies
simply be genotyped for FVL.                                                  before 10 weeks of gestation, and low Doppler flow is noted in the
    The College of American Pathologists Consensus Conference on              uteroplacental circulation before 10 weeks.72 Indeed, the undetectable
Thrombophilia compared 16 case-control studies reporting a link               levels of superoxide dismutase in trophoblast before 10 weeks of gesta-
between FVL and unexplained recurrent fetal loss and 6 studies failing        tion are consistent with a hypoxic state.73 Therefore, if FVL or other
to establish such an association and concluded that the latter studies        thrombophilias are associated with early pregnancy loss, it is most
were smaller and tended to include patients with early first-trimester         likely through mechanisms other than placental thrombosis. Also,
losses.61,62 In a meta-analysis of 31 studies, FVL was associated with        because a majority of early pregnancy losses are associated with aneu-
early (<13 weeks) pregnancy loss, with an OR of 2.01 (CI, 1.13 to 3.58),      ploidy, thrombophilias are likely to play a far lesser role in such cases.
but it was more strongly associated with late (>19 weeks), nonrecur-          In contrast, uteroplacental thrombosis after 9 weeks would be expected
rent fetal loss, with an OR of 3.26 (CI, 1.82 to 5.83).63 A case-control      to reduce oxygen and nutrient delivery to a progressively larger embryo,
study noted an even stronger link between FVL and recurrent fetal             accounting for the apparent link between FVL and the other maternal
losses after 22 weeks’ gestation (OR, 7.83; CI, 2.83 to 21.67).64 Dudding     thrombophilias and later adverse pregnancy outcomes.
and Attia conducted a meta-analysis and found no significant associa-              The correlation between FVL and other later adverse pregnancy
tion between FVL and first-trimester loss but an OR of 2.4 (CI, 1.1 to         events is more controversial. Kupferminc and associates studied 110
5.2) for isolated (nonrecurrent) third-trimester fetal loss, which            women and reported a link between FVL and severe preeclampsia (OR,
increased to 10.7 (CI, 4.0 to 28.5) for two or more second- or third-         5.3; CI, 1.8 to 15.6).74 However, multiple case-control studies have
trimester fetal losses.65 Similarly, Lissalde-Lavigne and associates          failed to demonstrate a link between FVL and moderate or severe pre-
reported the results of a case-control study nested in the 32,700 Nimes       eclampsia.75-77 Dudding and Attia’s meta-analysis estimated a 2.9-fold
Obstetricians and Haematologists (NOHA) First study cohort.66 Mul-            (CI, 2.0 to 4.3) increased risk of severe preeclampsia among FVL car-
tivariate analysis revealed an association between FVL and pregnancy          riers.65 Similarly, Lin and August conducted a meta-analysis of 31
loss after 10 weeks (OR, 3.46; CI, 2.53 to 4.72) but not for losses occur-    studies involving 7522 patients and reported pooled ORs of 1.81 (CI,
ring between 3 and 9 weeks. These studies strongly suggest that FVL           1.14 to 2.87) for FVL and all preeclampsia and 2.24 (CI, 1.28 to 3.94)
is associated with fetal (>9 weeks) and not embryonic (<9 weeks)              for FVL and severe preeclampsia.78 However, Kosmas and coauthors
losses.                                                                       evaluated 19 studies involving 2742 hypertensive women and 2403
    The association between FVL and late, compared with early, preg-          controls and reported that, whereas the studies published before 2000
nancy losses was also demonstrated by a large European retrospective          found a modest association between FVL and preeclampsia (OR, 3.16;
cohort study involving 571 women with thrombophilia having 1524               CI, 2.04 to 4.92), those published after 2000 did not (OR, 0.97; CI, 0.61
pregnancies, compared with 395 controls having 1019 pregnancies.67            to 1.54).79 This suggests a reporting bias. Therefore, there is not suffi-
There was a statistically significant association between any inherited        cient evidence to conclude that FVL is associated with an increased
thrombophilia and stillbirth (OR, 3.6; CI, 1.4 to 9.4) but not spontane-      occurrence of preeclampsia, although there is inadequate power to rule
ous abortion (OR, 1.27; CI, 0.94 to 1.71). The same trend was noted           out an association between this thrombophilia and severe, early-onset
for FVL, with an OR for stillbirth of 2.0 (CI, 0.5 to 7.7) compared with      preeclampsia.
0.9 for spontaneous abortion (CI, 0.5 to 1.5). These same investigators           Kupferminc and colleagues also reported a modest association
then monitored a subset of 39 thrombophilic and 51 control patients           between FVL and abruption (OR, 4.9; CI, 1.4 to 17.4).74 A second case-
who had no previous history of fetal loss and did not receive antico-         control study found that 17 of 27 patients with abruption had aPC
agulation during the prospective follow-up aspect of the study.68 They        resistance, compared with 5 of 29 control subjects (OR, 8.16; CI, 3.6
reported a modestly increased overall risk of fetal loss in a subsequent      to 12.75), and 8 cases were found to have the FVL mutation, compared
pregnancy among women with thrombophilia (7/39 versus 7/51; RR,               with one control.80 Prochazka and associates conducted a retrospective
1.4; CI, 0.4 to 4.7) and also among those with FVL (RR, 1.4; CI, 0.3 to       case-control study among 180 women with placental abruption and
5.5). However, this study lacked power to exclude the usually reported        196 controls and found a significantly increased incidence of FVL car-
twofold to threefold higher rates of loss associated with FVL, because        riage among cases compared with controls (14.1% versus 5.1%; OR,
there were only 21 patients. Nevertheless, given the trends, the authors      3.0; CI, 1.4 to 6.7).81 Alfirevic and coworkers conducted a meta-analysis
concluded that “Women with thrombophilia appear to have an                    that revealed a strong association between placental abruption and
increased risk of fetal loss, although the likelihood of a positive outcome   both homozygosity and heterozygosity for the FVL mutation (OR,
is high in both women with thrombophilia and in controls.”68                  16.9; CI, 2.0 to 141.9, and OR, 6.7; CI, 2.0 to 21.6, respectively).82
    In a retrospective cohort study, Roque and colleagues evaluated 491       Therefore, there appears to be evidence of an association between FVL
patients with a history of various adverse pregnancy outcomes for a           carriage and placental abruption, although large case-control and ret-
variety of thrombophilias and reported that the presence of FVL was           rospective cohort studies are needed to confirm this link.
paradoxically protective against losses before 10 weeks of gestation              There is less consistent evidence for an association between FVL
(OR, 0.23; CI, 0.07 to 0.77) but was significantly associated with losses      and IUGR. Martinelli and coauthors reported a strong association
after 14 weeks (OR, 3.71; CI, 1.68 to 8.23).69 Moreover, women who            between FVL and IUGR (OR, 6.9; CI, 1.4 to 33.5).83 However, multiple,
experienced only euploid losses were not more likely to have an identi-       large case-control and cohort studies have reported no statistically
fied thrombophilia than women who experienced only aneuploid early             significant association between FVL and IUGR of less than the 10th or
losses (OR, 1.03; CI, 0.38 to 2.75). Consistent with this protective effect   less than the 5th percentile.74,77,84 Howley and colleagues conducted a
of FVL on early pregnancy is the observation that implantation rates          systematic review of studies describing the association between FVL
after in vitro fertilization were substantially higher among FVL carriers     and IUGR; among 10 case-control studies meeting selection criteria,
than among noncarriers (90% versus 49%; P = .02).70                           there was a significant association between FVL and IUGR (OR, 2.7;
CHAPTER 40           Coagulation Disorders in Pregnancy            833
CI, 1.3 to 5.5).85 However, no association was found among five cohort         greater thrombotic risk than either FVL or PGM homozygotes. Pregnant
studies, of which three were prospective and two retrospective (RR,           patients who are compound heterozygotes without a personal or strong
0.99; CI, 0.5 to 1.9). The authors suggested that the putative association    family history have a 4.7% risk of VTE.59,60
between IUGR and FVL was most likely driven by small, poor-quality                The PGM has been associated with an increased risk of pregnancy
studies that demonstrated extreme associations.                               loss in multiple case-control studies. One such study reported the pres-
    In summary, there appears to be a modest association between FVL          ence of the PGM in 7 of 80 patients with recurrent miscarriage, com-
and fetal loss after 10 weeks, and particularly with isolated losses after    pared with 2 of 100 control patients (9% versus 2%; P = .04; OR, 4.7;
22 weeks. There is a possible association between FVL and abruption.          CI, 0.9 to 23).92 Finan and associates also found an association between
However, no clear association exists between FVL and either pre-              PGM and recurrent abortion, with an OR of 5.05 (CI, 1.14 to 23.2).93
eclampsia or IUGR, although studies have been underpowered to                 However, other studies have failed to identify a link.94,95 A 2004 meta-
definitely exclude a link with severe early-onset preeclampsia or              analysis of seven studies evaluating the correlation between PGM and
severe IUGR. It also is noteworthy that two prospective cohort studies        recurrent pregnancy loss, defined as two or more losses in the first or
found no association between FVL and any adverse obstetric outcome,           second trimester, found a combined OR of 2.0 (CI, 1.0 to 4.0).96 Analo-
including pregnancy loss, preeclampsia, and IUGR,86.87 but these              gous to FVL, the association between PGM and pregnancy loss increases
studies were underpowered to draw firm conclusions. It is important            with increasing gestational age. In the meta-analysis by Rey and col-
to note that, although thrombophilia may be sufficient to cause preg-          leagues, an association was reported between PGM and recurrent loss
nancy loss and perhaps abruption, most affected individuals without           before 13 weeks’ gestation (OR, 2.3; CI, 1.2 to 4.79), but, as with FVL,
such prior obstetric complications are at low risk for subsequent             a stronger association was observed between PGM and recurrent fetal
adverse pregnancy outcomes.                                                   loss before 25 weeks (OR, 2.56; CI, 1.04 to 6.29).63 Therefore, PGM
                                                                              appears to fit the pattern displayed by FVL carriers of progressively
Other Factor V Mutations                                                      greater risk of fetal loss with advancing gestation; however, these risks
Other mutations in the factor V gene have been variably linked to             remain quite modest.
maternal VTE and adverse pregnancy outcomes. The factor V HR2                     There are more limited data on the association between PGM and
haplotype causes decreased factor V cofactor activity in the aPC-             abruption. The case-control study of Kupferminc and associates found
mediated degradation of factor VIIIa; however, a meta-analysis                an association between the PGM and abruptio placenta (OR, 8.9; CI,
demonstrated no statistically significant association between the HR2          1.8 to 43.6),74 whereas Prochazka and colleagues found no such link.81
haplotype and risk of VTE (OR, 1.15; CI, 0.98 to 1.36).88 There are           Meta-analyses suggested a strong link between PGM heterozygosity and
conflicting reports about the linkage of the factor V HR2 haplotype            placental abruption (OR, 28.9; CI, 3.5 to 236.7).82 It can be concluded
and recurrent pregnancy loss. Zammiti and associates reported no              that there is probably a link between the PGM and abruptio placentae.
association with losses before 8 weeks, but homozygosity for the factor           The link between the PGM and other adverse pregnancy events is
V HR2 haplotype was associated with significant and independent                far less certain. Kupferminc and colleagues found an association
risks of pregnancy loss during weeks 8 and 9, which increased during          between the PGM and IUGR of less than the 5th percentile (OR, 4.6;
weeks 10 to 12 and culminated after 12 weeks.89 In contrast, Dilley and       CI, 1 to 20) but no link between the PGM and severe preeclampsia.74
colleagues found no association between carriage of the factor V HR2          Martinelli and coworkers noted a strong association between PGM and
haplotype and pregnancy loss.90 The sample sizes of these studies were        IUGR in their case-control study (OR, 5.9; CI, 1.2 to 29.4).83 In con-
too small to draw firm conclusions from, nor can conclusions be                trast, the large case-control study of Infante-Rivard and colleagues
reached about the link between factor V HR2 haplotype and other               reported no link in heterozygotes between PGM and IUGR, with an
adverse pregnancy outcomes.                                                   OR of 0.92 (CI, 0.36 to 2.35).84 Similar results have been observed by
    Two other mutations in the factor V gene that occur at the second         other workers.74,80 A number of other case-control studies and meta-
aPC cleavage site, factor V R306G Hong Kong and factor V R306T                analyses have failed to establish a link between PGM and either pre-
Cambridge, have also been described but do not appear to be strongly          eclampsia or severe preeclampsia.77,78,97,98
associated with VTE.91 There are inadequate data to assess any linkage            Therefore, although most individual studies are limited by small
between these mutations and adverse pregnancy outcomes.89                     sample size, case-control design, and the potential for selection biases
                                                                              (as was the case with FVL), there may be a weak association between
Prothrombin Gene Mutation                                                     the PGM and fetal loss as well as abruptio placenta. However, there
The prothrombin G20210A polymorphism is a point mutation causing              does not appear to be a significant link between PGM and IUGR or
a guanine→adenine switch at nucleotide position 20210 in the 3′-              preeclampsia.
untranslated region of the gene.58 This nucleotide switch results in
increased translation, possibly due to enhanced stability of messenger        Hyperhomocysteinemia
RNA (mRNA). As a consequence, there are increased circulating levels          Hyperhomocysteinemia can result from a number of mutations in the
of prothrombin. Although the mutation is present in only 2% to 3% of          methionine metabolic pathway. Homozygosity for mutations in the
the European population, it is associated with 17% of VTEs in preg-           methylene tetrahydrofolate reductase (MTHFR) gene is by far the most
nancy.59 However, as was the case with FVL, the risk of VTE in pregnant       common cause. Homozygosity for the MTHFR C677T polymorphism
patients who are heterozygous for the prothrombin G20210A gene                is present in 10% to 16% of all Europeans, and that for the A1298C
mutation (PGM) but who are without a personal or strong family                mutation occurs in 4% to 6%.99 Importantly, about 40% of whites are
history of VTE is less than 0.5%.59 Pregnant PGM-heterozygous patients        heterozygous for this polymorphism, and most heterozygotes have
with such a history have at least a 10% risk of VTE.60 PGM-homozygous         normal levels of homocysteine. Moreover, because homocysteine levels
patients without a personal or strong family history have a 2.8% risk for     decrease in pregnancy and U.S. diets are replete with folic acid supple-
VTE in pregnancy, whereas such a history probably confers a risk of at        mentation, hyperhomocysteinemia is extremely rare even among
least 20% (see Table 40-2). Because the combination of FVL and PGM            homozygotes. In addition, although hyperhomocysteinemia is a risk
has synergistic hypercoagulable effects, compound heterozygotes are at        factor for VTE (OR, 2.5; CI, 1.8 to 3.5),100 MTHFR mutations per se
834      CHAPTER 40              Coagulation Disorders in Pregnancy

do not appear to convey an increased risk for VTE in either nonpreg-           tion (OR, 5.2; CI, 1.5 to 18.1) but had a more modest association with
nant101 or pregnant women.102                                                  miscarriage before 28 weeks (OR, 1.7; CI, 1.0 to 2.8).67 Given its rarity,
    As with thrombotic risk, meta-analyses suggest that elevated fasting       there is a paucity of evidence concerning the link between AT defi-
homocysteine levels are more strongly associated with recurrent preg-          ciency and other adverse pregnancy outcomes. Roque and associates
nancy loss (<16 weeks) than are MTHFR mutations, with an OR of 2.7             found it to be associated with increased risks of IUGR (OR, 12.93; CI,
(CI, 1.4 to 5.2) versus 1.4 (CI, 1.0 to 2.0), respectively.103 The Hordaland   2.72 to 61.45), abruption (OR, 60.01; CI, 12.02 to 300.46), and preterm
Homocysteine Study assessed the relationship between plasma homo-              delivery (OR, 4.72; CI, 1.22 to 18.26).69
cysteine values in 5883 women and their prior 14,492 pregnancy out-
comes.104 When the authors compared the upper with the lower                   Protein C Deficiency
quartile of plasma homocysteine levels, elevated levels trended toward         Deficiency of PC results from more than 160 distinct mutations, pro-
an association with preeclampsia (OR, 1.32; CI, 0.98 to 1.77), very low        ducing a highly variable phenotype. As was the case with AT deficiency,
birth weight (OR, 2.01; CI, 1.23 to 3.27), and stillbirth (OR, 2.03; CI,       PC deficiency can be associated with either reductions in both antigen
0.98 to 4.21), although none of these associations reached statistical         and activity (type 1) or normal levels of antigen but decreased activity
significance.105 In contrast, a clear association was demonstrated              (type 2).58 The very rare homozygous PC deficiency results in neonatal
between placental abruption and homocysteine levels greater than               purpura fulminans and a requirement for lifelong anticoagulation.111
15 μmol/L (OR, 3.13; CI, 1.63 to 6.03), and a weaker but significant            Activity levels can be ascertained by either a functional (clotting) or
association was observed between homozygosity for the C677T                    chromogenic assay.
MTHFR mutation and abruption (OR, 1.6; CI, 1.4 to 4.8). Indeed, a                  Estimates of prevalence and thrombotic risk reflect the cutoff
meta-analysis of these two risk factors found that hyperhomocystein-           values employed. Most laboratories use activity cutoff values of 50%
emia had a larger pooled OR for abruption (5.3; CI, 1.8 to 15.9) than          to 60%, which are associated with prevalence estimates of 0.2% to 0.3%
did homozygosity for the MTHFR mutation (2.3; CI, 1.1 to 4.9).106              and RRs for VTE of 6.5 to 12.5.58,68,108. The risk of VTE in pregnancy
    These studies strongly suggest that hyperhomocysteinemia, but not          among PC-deficient patients has been reported to range from 2% to
simply the presence of the MTHFR mutations, is linked to VTE and               8%.30,112,113 Because of its rarity, there are few reports linking PC defi-
adverse pregnancy outcomes. Moreover, whereas homozygosity for                 ciency to adverse pregnancy outcomes, and those that exist involve too
MTHFR mutations is very common (10% to 20% in European popula-                 few patients to draw any firm conclusions. In their case-control study,
tions), hyperhomocysteinemia is quite rare. Therefore, screening for           Roque and colleagues reported a strong link between PC deficiency
this disorder should be limited, requiring a fasting homocysteine level        and abruption (OR, 13.9; CI, 2.21 to 86.9) and between PC deficiency
greater than 12 μmol/L to be considered positive in pregnant patients.146      and preeclampsia (OR, 6.85; CI, 1.09 to 43.2).69 A meta-analysis also
                                                                               reported a strong association of this deficiency and preeclampsia/
Antithrombin Deficiency                                                         eclampsia (OR, 21.5; CI, 1.1 to 414.4) but not stillbirth.82 It is biologi-
Deficiency of AT is both the rarest and the most thrombogenic of the            cally plausible that PC deficiency should pose risks of fetal loss and
heritable thrombophilias. More than 250 mutations have been identi-            abruption analogous to those associated with FVL. However, given the
fied in the AT gene, producing a highly variable phenotype. In general,         very small sample sizes, no firm conclusions can be drawn regarding
disorders can be classified into three types: type 1, those associated          the link between PC deficiency and either preeclampsia or IUGR.
with reductions in both antigen and activity; type 2, those associated
with normal levels of antigen but decreased activity; and type 3, the          Protein S Deficiency
very rare homozygous deficiency associated with little or no activ-             More than 130 mutations have been linked to deficiency of PS.58 The
ity.58,108 Complicating matters further, patients can develop acquired         great majority of affected patients can be characterized as having low
AT deficiency due to liver impairment, increased consumption of AT              levels of both total and free PS antigen (type 1) or as having only a low
associated with sepsis or DIC, or increased renal excretion in severe          free PS level due to enhanced binding to the complement 4B–binding
nephrotic syndrome. However, both inherited and acquired AT defi-               protein (type 2a). The latter condition is frequently caused by a serine
ciencies are associated with VTE.                                              460 to proline mutation (protein S Heerlen), which has been associated
    Because screening for AT deficiency is done by assessing activity, its      with either FVL or PC mutation in about half of affected patients.114
prevalence varies with the activity cutoff level employed, ranging from        As with PC deficiency, homozygous PS deficiency results in neonatal
0.02% to 1.1%. The recommended cutoff for “abnormality” is 50%                 purpura fulminans.111
activity, which is associated with a prevalence of 0.04% (1/2500                   Screening for PS deficiency can be done with an activity assay, but
people).108 Although it increases the risk of VTE up to 25-fold in the         this approach is associated with substantial interassay and intra-assay
nonpregnant state,108 because of its rarity AT deficiency is associated         variability, in part because of frequently changing physiologic levels of
with only 1% to 8% of VTE episodes.58 Pregnancy may increase its               complement 4B–binding protein.115 Detection of free PS antigen levels
thrombogenic potential substantially (see Table 40-2). Moreover, use           lower than 55% in a nonpregnant woman is consistent with the diag-
of a less stringent threshold yields a higher prevalence of AT deficiency       nosis.115 However, Paidas and colleagues found far lower levels in
in patients with VTE. For example, in one study, 19.3% of pregnant             normal pregnancy, with suggested cutoff levels for free PS of 29% for
women with VTE had less than 80% AT activity,59 but many of these              the first and second trimesters and 23% for the third trimester.29 With
cases may have been acquired due to clot-associated AT consumption.            such criteria, the prevalence of true PS deficiency is low (0.03% to
Conversely, the overall risk of VTE in pregnancy associated with AT            0.13%) in the nonpregnant state and rises up to 3% in the pregnant
deficiency has been variably reported as 3% to 48%.30,60,109,110 The risk       state, but its degree of thrombogenicity is modest (OR, 2.4; CI, 0.8 to
of VTE in pregnancy among AT-deficient patients most likely varies              7.9).29,58,115 Among those patients with PS deficiency and a strong
also with a personal or family history (from 3% to 7% without such a           family history of VTE, the risk of VTE in pregnancy is 6.6% (see Table
history to as much as 40% with such a history).60                              40-2).112
    In the largest retrospective cohort study, AT deficiency was associ-            The meta-analysis by Rey and colleagues reported an association
ated with a significantly increased risk of stillbirth after 28 weeks’ gesta-   between PS deficiency and recurrent late (>22 weeks or <25 weeks)
CHAPTER 40           Coagulation Disorders in Pregnancy            835
fetal loss (OR, 14.7; CI, 1.0 to 2181) as well as nonrecurrent fetal losses    described a modest association between 4G/4G homozygosity and the
at greater than 22 weeks (OR, 7.4; CI, 1.3 to 43).63 A second meta-            occurrence of severe preeclampsia (OR, 1.62; CI, 1.02 to 2.57).130
analysis suggested an even stronger link between PS deficiency and              Glueck and colleagues conducted a case-control study and observed
stillbirth (OR, 16.2; CI, 5.0 to 52.3), IUGR (OR, 10.2; CI, 1.1 to 91.0),      that compared to patients with either the 5G/5G or the 4G/5G allele,
and preeclampsia/eclampsia (OR, 12.7; CI, 4 to 39.7), but not abrup-           those who were homozygous for the 4G/4G allele had greater rates of
tion.82 Again, the small sample sizes limit the ability to draw firm            prematurity (14% versus 3%; P = .001), second- and third-trimester
conclusions.                                                                   deaths (9% versus 2%; P = .004), and IUGR (4% versus 0.4%;
                                                                               P = .012).131 However, caution must be exercised in the interpretation
Protein Z-Dependent Protease Inhibitor and                                     of these data, because the occurrence of adverse outcomes was lower
Protein Z Deficiency                                                            in the control group than would be expected in the general population,
Two nonsense mutations in the coding region of the ZPI gene have               and 30% of patients who were homozygous for the 4G/4G mutation
been identified to occur more often in patients with VTE (4.4%) than            had coexisting thrombophilias.131 As was the case for the association
in controls (0.8%) (OR, 5.7; CI, 1.25 to 26.0).116 Deficiency of PZ             between 4G/4G homozygosity and VTE, this mutation may be more
(activity <5th percentile) has been associated with strokes but not with       likely to be linked with adverse pregnancy outcomes when it occurs
VTE.117 PZ deficiency was linked to late fetal loss (10 to 16 weeks’ gesta-     simultaneously with other thrombophilic disorders or with triggers of
tion) in one study (OR, 6.7; CI, 3.1 to 14.8)118 but not in another.119        increased PAI-1 expression such as the ACE D/D genotype and disor-
Paidas and associates prospectively compared PZ levels in 103 patients         ders linked to insulin resistance (e.g., obesity, type 2 diabetes, hyper-
with subsequent normal pregnancy outcome and 106 women with                    lipidemia, polycystic ovary syndrome).
various adverse pregnancy outcomes including fetal loss, IUGR, pre-                Polymorphisms have been described in the TAFI and tPA genes, but
eclampsia, and abruption; they noted lower first-trimester PZ levels            no clear link has been established for either with increased VTE risk
among the patients with subsequent adverse outcomes (1.81 ± 0.7                or adverse pregnancy outcomes.
versus 2.21 ± 0.8 μg/mL; P < .001).29 There were also lower PZ levels
in affected patients in the second trimester (1.5 ± 0.4 versus 2.0 ±           Other Thrombophilic Mutations
0.5 μg/mL; P < .0001) and in the third trimester (1.6 ± 0.5 versus 1.9         The -455GtoA polymorphism in the fibrinogen β gene leads to
± 0.5 μg/mL; P < .0002). However, it is unclear whether low PZ levels          increased plasma fibrinogen levels but an unclear thrombotic risk.132
were causative or whether PZ was reduced as a result of other throm-           Both the apolipoprotein B R3500Q and E2/E3/E4 polymorphisms and
bophilias or the ongoing uteroplacental pathologic processes. Although         the platelet receptor gene polymorphisms GpIIIa L33P and GpIa
PZ deficiency may have its own pathogenic potential, its presence with          807CtoT also offer an uncertain VTE risk, although they may contrib-
other thrombophilic mutations in patients with prior fetal loss may            ute to coronary and cerebral artery thrombosis, particularly in the
also confer resistance to heparin therapy.119                                  presence of other risk factors such as smoking, hypertension, obesity,
                                                                               and diabetes. The common hereditary hemochromatosis gene (HFE
Mutations in Fibrinolytic Pathway Genes                                        gene C282Y mutation) does not appear to be a risk factor for VTE,
Two polymorphisms, 675 4G/5G and A844G, in the promoter region                 even when it is present in patients with FVL.133 An analysis of links
of the PAI-1 gene have been described.120 Homozygosity for the 4G/4G           between fetal loss and β-fibrinogen -455GtoA, between apolipoprotein
allele in the PAI-1 gene results in the presence of four instead of five        B R3500Q and E2/E3/E4, and between GpIIIa L33P and HFE C282Y
consecutive guanine nucleotides in the promoter region, producing a            found no significant associations.134
site that is too small to permit repressor binding. Conversely, the               Polymorphisms have also been described in the thrombomodulin,
A844G polymorphism affects a consensus sequence binding site for the           TFPI, and endothelial PC receptor genes, but they are of no or unknown
regulatory protein Ets, enhancing PAI-1 gene transcription. The preva-         thrombogenic potential.58 The Val34Leu polymorphism in the factor
lence of the 4G/4G genotype in the general population is high, ranging         XIII gene is associated with increased activation by thrombin and a
from 23.5% to 32.3%.121,122 Moreover, most studies have not found any          potentially thrombotic phenotype135 but confers uncertain risks for
independent relationship between the 4G/4G polymorphism and the                VTE and adverse pregnancy outcome.
development of VTE in unselected patients.123-125 However, the 4G/4G
genotype has been linked to a further increased risk for VTE when it           Summary
is present in patients with PS deficiency or FVL, suggesting that it plays      A great number of potentially thrombophilic polymorphisms are being
an additive but not independent role in the genesis of VTE.126,127 No          uncovered, at an ever-increasing pace. Although most of these muta-
relationship has been demonstrated between the A844G polymor-                  tions do not appear to be highly thrombogenic when present in isola-
phism and VTE.123                                                              tion, they may exert an additive or even a synergistic effect on the
    There are limited data on the association between the 4G/4G allele         thrombogenicity of other disorders. This might account for the finding
and adverse pregnancy outcomes. No statistically significant associa-           of a very modest association between a given thrombophilic state (e.g.,
tion was found between isolated homozygosity for the 4G/4G muta-               FVL, PS deficiency) and the isolated occurrence of VTE or adverse
tion and recurrent spontaneous abortion in several small studies.128,129       pregnancy outcomes in low-risk populations together with a far higher
However, endothelial expression of PAI-1 is induced by angiotensin II,         concordance rate within certain families.
and generation of the latter molecule is increased by a deletion (D)/
insertion (I) polymorphism in the angiotensin I–converting enzyme
(ACE) gene. Buchholz and associates observed a significant increase in          Screening for Thrombophilias
the combination of the PAI-1 4G/4G and ACE D/D genotypes among
patients with recurrent spontaneous abortion compared with controls            Screening and Prevention of
(13.6% versus 4.7%; OR, 3.2; P = .01).121                                      Venous Thromboembolism
    Moreover, a possible association exists between the 4G/4G allele           The presence of a known thrombophilia increases the recurrence risk
and later adverse pregnancy outcomes. Yamada and coworkers                     of VTE among pregnant women. Brill-Edwards and associates pro-
836      CHAPTER 40             Coagulation Disorders in Pregnancy

spectively evaluated 125 pregnant women with a prior VTE, 95 of                 Alternatively, prophylaxis can employ LMWH. Regimens can
whom were tested for acquired and inherited thrombophilias (includ-         include dalteparin 5000 U SQ, given every 12 hours or once a day, or
ing APAs, FVL, and PGM) and for PC, PS and AT deficiencies.136               enoxaparin 30 mg SQ, every 12 hours or 40 mg SQ once a day. Whereas
Antenatal heparin was withheld in all patients, but postpartum anti-        monitoring of anti-factor Xa levels is not necessary in nonpregnant
coagulation was provided. The overall antepartum recurrence rate for        patients, given the absence of data in pregnancy, the greater variability
VTE was 2.4% (CI, 0.2% to 6.9%), but no recurrences were observed           in heparin binding, and the increased volume of distribution and/or
in the 44 women who had no evidence of thrombophilia and whose              metabolism and excretion in pregnancy, we recommend serial mea-
previous episode of thrombosis was associated with temporary risk           surements of anti-factor Xa levels, with a goal of 0.1 to 0.2 U/mL at 4
factors that included pregnancy itself. Among the 51 women who had          hours after each injection.
a thrombophilia or whose previous VTE was considered idiopathic, the            For patients with highly thrombogenic thrombophilias (e.g., homo-
antepartum recurrence rate was 5.9% (CI, 1.2% to 16.2%), and among          zygotes or compound heterozygotes for FVL and PGM, patients with
the 25 thrombophilic patients the recurrence risk was 16% (4 patients)      AT deficiency or APS with prior VTE) who have a personal or strong
(OR, 6.5; CI, 0.8 to 56.3). Therefore, there appears to be evidence-based   family history of VTE, and for patients with recurrent VTE, therapeutic
justification to test pregnant patients with a prior history of VTE          (high-dose) unfractionated heparin or LMWH should be used. The
associated with temporary and reversible risk factors (e.g., fractures,     goal of unfractionated heparin therapy is to obtain and maintain an
prolonged immobilization, cancer), because the presence of a throm-         activated partial thromboplastin time (aPTT) of 1.5 to 2.5 times
bophilic state would be an indication for antepartum as well as post-       control values or a plasma heparin concentration of 0.2 to 0.4 U/mL,
partum thromboprophylaxis. Conversely, women with a prior VTE               or an anti-factor Xa concentration of 0.4 to 0.7 U/mL. The aPTT
associated with a nonrecurring risk factor who are without thrombo-         should not be used to guide unfractionated heparin therapy in patients
philia or other current major risk or susceptibility factors (e.g., need    with prolonged aPTT due to LAs. Therapeutic LMWH therapy consists
for prolonged bed rest, obesity, current superficial thrombophlebitis)       of enoxaparin 1 mg/kg SQ twice daily or a comparable dose of dalte-
may not need antepartum prophylactic heparin therapy during preg-           parin (e.g., 10,000 U SQ every 12 hours). Barbour and colleagues
nancy.136 However, because thrombotic events during pregnancy in            evaluated whether the standard therapeutic doses of dalteparin main-
such women have been reported on rare occasions,110 the risks and           tained peak therapeutic levels of anticoagulation during pregnancy
benefits of antepartum thromboprophylaxis should be discussed with           and reported that 85% (11/13) of patients required an upward dosage
the patient. Also, such patients should receive postpartum prophylaxis,     adjustment.139 Therefore, we recommend titrating either agent to
because most pregnancy-associated fatal pulmonary embolisms occur           maintain factor Xa levels at 0.6 to 1.0 U/mL 4 hours after injection.
in the postpartum period. In this setting, knowledge of the thrombo-        For patients with highly thrombogenic thrombophilias in the absence
philic state affects management.                                            of a personal or strong family history of VTE, we recommend using
    The 7th American College of Chest Physicians Guidelines for the         an intermediate or “high prophylactic” dose of LMWH, titrating the
Antenatal and Peripartum Management of Thrombophilia suggest that           dose to maintain factor Xa levels at 0.4 to 0.6 U/mL.
the occurrence of VTE in nonpregnant patients who are receiving                 Regardless of whether the patient is receiving prophylactic, thera-
estrogen-containing contraceptives is comparable with such events           peutic, or high prophylactic doses of LMWH, we recommend switch-
occurring in pregnancy. In either case they would recommend ante-           ing to the comparable dose of unfractionated heparin at 36 weeks, to
partum and postpartum prophylaxis in a subsequent pregnancy,                permit application of neuraxial anesthesia if desired or indicated
regardless of thrombophilia status in women who had a VTE during a          during labor or delivery. Both heparin and LMWH are associated with
prior pregnancy or while taking estrogen-containing contraceptives.137      an increased risk for osteopenia. Although of unproven benefit, it
Similarly, consideration should also be given to screening of pregnant      seems prudent to advise axial skeleton weight-bearing exercise and
women who have a strong family history (i.e., affected first-degree          calcium supplementation. These medications also increase the risk for
relative) of VTE. Given the greater than 10% risk of VTE in pregnancy       heparin-induced thrombocytopenia, which paradoxically is associated
among patients with such a history and a thrombophilia (see Table           with thrombosis. With therapeutic doses of LMWH and with any dose
40-2), thromboprophylaxis, although of unproven efficacy, is a reason-       of unfractionated heparin, platelet counts should be obtained after 3
able option. Cost-effective screens should be initially limited to the      to 4 days of therapy and intermittently for the first 3 weeks of
most common and most thrombogenic disorders, including FVL and              treatment.140
PGM. Negative results should lead to evaluation of fasting homocys-             Postpartum thromboprophylaxis is also required. Warfarin is con-
teine levels and PC, PS, and AT deficiencies.                                sidered safe to take while breast feeding. Warfarin is started within 24
    The dosing regimen to be employed varies with the severity of the       hours of commencing heparin therapy. Doses are determined by moni-
thrombophilia, the patient’s family history, and the nature of the prior    toring the international normalized ratio (INR). To avoid paradoxical
VTE episodes. In general, for patients with a personal or strong family     thrombosis and skin necrosis from warfarin’s early, predominantly
history of VTE and a lesser thrombogenic thrombophilia (e.g., FVL,          anti-PC effect, it is critical to maintain these women on therapeutic
PGM, hyperhomocysteinemia refractory to folate therapy, PC or PS            doses of unfractionated heparin or LMWH for a minimum of 5 days
deficiency), antepartum prophylaxis with either mini-dose unfraction-        and until the INR is in the therapeutic range (2.0 to 3.0) for 2 consecu-
ated heparin or low-dose LMWH is effective in preventing DVT in             tive days.
pregnant patients at risk. The standard regimen of unfractionated
heparin used in pregnancy consists of 5000 units administered SQ            Screening and Prevention of Adverse
every 12 hours, increased by 2500 units in the second and third tri-        Pregnancy Outcomes
mesters. However, Barbour and associates observed that this standard        As can be discerned from the preceding review, there appears to be a
unfractionated heparin regimen was inadequate to achieve the desired        modest and consistent association between the major inherited throm-
anti-factor Xa therapeutic range in 5 of 9 second-trimester pregnancies     bophilias (including FVL, PGM, elevated fasting homocysteine levels
and in 6 of 13 third-trimester pregnancies.138 Therefore, assessment of     and PC, PS, and AT deficiency) and fetal loss after 10 weeks, and par-
anti-factor Xa levels may be important.                                     ticularly isolated losses after 22 weeks. There is also a possible associa-
4 u1.0-b978-1-4160-4224-2..50043-0..docpdf
4 u1.0-b978-1-4160-4224-2..50043-0..docpdf
4 u1.0-b978-1-4160-4224-2..50043-0..docpdf
4 u1.0-b978-1-4160-4224-2..50043-0..docpdf
4 u1.0-b978-1-4160-4224-2..50043-0..docpdf
4 u1.0-b978-1-4160-4224-2..50043-0..docpdf
4 u1.0-b978-1-4160-4224-2..50043-0..docpdf
4 u1.0-b978-1-4160-4224-2..50043-0..docpdf
4 u1.0-b978-1-4160-4224-2..50043-0..docpdf
4 u1.0-b978-1-4160-4224-2..50043-0..docpdf
4 u1.0-b978-1-4160-4224-2..50043-0..docpdf
4 u1.0-b978-1-4160-4224-2..50043-0..docpdf
4 u1.0-b978-1-4160-4224-2..50043-0..docpdf
4 u1.0-b978-1-4160-4224-2..50043-0..docpdf
4 u1.0-b978-1-4160-4224-2..50043-0..docpdf
4 u1.0-b978-1-4160-4224-2..50043-0..docpdf
4 u1.0-b978-1-4160-4224-2..50043-0..docpdf
4 u1.0-b978-1-4160-4224-2..50043-0..docpdf

Más contenido relacionado

La actualidad más candente

Mechanism of blood clotting
Mechanism of blood clottingMechanism of blood clotting
Mechanism of blood clottingLaraibTariq5
 
Blood Coagulation, its Mechanism Disorders and its role in Human Life
Blood Coagulation, its Mechanism Disorders and its role in Human LifeBlood Coagulation, its Mechanism Disorders and its role in Human Life
Blood Coagulation, its Mechanism Disorders and its role in Human LifeFiverr (Fiverr.com)
 
Blood clotting
Blood clottingBlood clotting
Blood clottingSaurav Das
 
coagulation system
coagulation systemcoagulation system
coagulation systemderosaMSKCC
 
Blood Clotting Mechanism
Blood Clotting MechanismBlood Clotting Mechanism
Blood Clotting MechanismMujahid Hussain
 
Physiology of Coagulation for UG students
Physiology of Coagulation for UG studentsPhysiology of Coagulation for UG students
Physiology of Coagulation for UG studentsBeeula A
 
Hemostasis : Blood clotting
Hemostasis : Blood clottingHemostasis : Blood clotting
Hemostasis : Blood clottingDr Alok Tripathi
 
Blood clotting - AS OCR F221
Blood clotting - AS OCR F221Blood clotting - AS OCR F221
Blood clotting - AS OCR F221JenBash
 
Blood coagulation
Blood coagulationBlood coagulation
Blood coagulationGunJee Gj
 
Hemostatsis (Fibrinolysis - Plasminogen)
Hemostatsis (Fibrinolysis - Plasminogen)Hemostatsis (Fibrinolysis - Plasminogen)
Hemostatsis (Fibrinolysis - Plasminogen)Pradeep Singh Narwat
 
25. blood 3-08-09
25. blood 3-08-0925. blood 3-08-09
25. blood 3-08-09Nasir Koko
 
Blood clotting and role of calcium
Blood clotting and role of calciumBlood clotting and role of calcium
Blood clotting and role of calciumFatima Rahat
 
The role of thrombin in coagulation
The role of thrombin in coagulationThe role of thrombin in coagulation
The role of thrombin in coagulationJan-Gert Nel
 

La actualidad más candente (19)

Mechanism of blood clotting
Mechanism of blood clottingMechanism of blood clotting
Mechanism of blood clotting
 
Cascade theory
Cascade theoryCascade theory
Cascade theory
 
Clotting factor
Clotting factorClotting factor
Clotting factor
 
Blood Coagulation, its Mechanism Disorders and its role in Human Life
Blood Coagulation, its Mechanism Disorders and its role in Human LifeBlood Coagulation, its Mechanism Disorders and its role in Human Life
Blood Coagulation, its Mechanism Disorders and its role in Human Life
 
Blood clotting
Blood clottingBlood clotting
Blood clotting
 
Coagulation
CoagulationCoagulation
Coagulation
 
coagulation system
coagulation systemcoagulation system
coagulation system
 
Blood Clotting.pptx
Blood Clotting.pptxBlood Clotting.pptx
Blood Clotting.pptx
 
Blood Clotting Mechanism
Blood Clotting MechanismBlood Clotting Mechanism
Blood Clotting Mechanism
 
Physiology of Coagulation for UG students
Physiology of Coagulation for UG studentsPhysiology of Coagulation for UG students
Physiology of Coagulation for UG students
 
Hemostasis : Blood clotting
Hemostasis : Blood clottingHemostasis : Blood clotting
Hemostasis : Blood clotting
 
Blood clotting - AS OCR F221
Blood clotting - AS OCR F221Blood clotting - AS OCR F221
Blood clotting - AS OCR F221
 
Coagulation factors
Coagulation factorsCoagulation factors
Coagulation factors
 
Blood coagulation
Blood coagulationBlood coagulation
Blood coagulation
 
Hemostatsis (Fibrinolysis - Plasminogen)
Hemostatsis (Fibrinolysis - Plasminogen)Hemostatsis (Fibrinolysis - Plasminogen)
Hemostatsis (Fibrinolysis - Plasminogen)
 
25. blood 3-08-09
25. blood 3-08-0925. blood 3-08-09
25. blood 3-08-09
 
Blood clotting and role of calcium
Blood clotting and role of calciumBlood clotting and role of calcium
Blood clotting and role of calcium
 
Coagulation
CoagulationCoagulation
Coagulation
 
The role of thrombin in coagulation
The role of thrombin in coagulationThe role of thrombin in coagulation
The role of thrombin in coagulation
 

Destacado (7)

WELLCRAFT WELLCRAFT SCARAB 31, 1994, 43.000 € For Sale Brochure. Presented By...
WELLCRAFT WELLCRAFT SCARAB 31, 1994, 43.000 € For Sale Brochure. Presented By...WELLCRAFT WELLCRAFT SCARAB 31, 1994, 43.000 € For Sale Brochure. Presented By...
WELLCRAFT WELLCRAFT SCARAB 31, 1994, 43.000 € For Sale Brochure. Presented By...
 
Cpgh1n1
Cpgh1n1Cpgh1n1
Cpgh1n1
 
Executive summary vf20101018
Executive summary vf20101018Executive summary vf20101018
Executive summary vf20101018
 
2008guideline ht
2008guideline ht2008guideline ht
2008guideline ht
 
Thai hiv guideline
Thai hiv guidelineThai hiv guideline
Thai hiv guideline
 
Denguehemorrhage
DenguehemorrhageDenguehemorrhage
Denguehemorrhage
 
Ryan Adams
Ryan AdamsRyan Adams
Ryan Adams
 

Similar a 4 u1.0-b978-1-4160-4224-2..50043-0..docpdf

Similar a 4 u1.0-b978-1-4160-4224-2..50043-0..docpdf (20)

HAEMOSTASIS LEVEL 6.pptx
HAEMOSTASIS LEVEL 6.pptxHAEMOSTASIS LEVEL 6.pptx
HAEMOSTASIS LEVEL 6.pptx
 
Physiology of haemostasis
Physiology of haemostasisPhysiology of haemostasis
Physiology of haemostasis
 
Hemostasis pathopysiology
Hemostasis  pathopysiologyHemostasis  pathopysiology
Hemostasis pathopysiology
 
Hemostasis and blood coagulation general pathology
Hemostasis and blood  coagulation general pathologyHemostasis and blood  coagulation general pathology
Hemostasis and blood coagulation general pathology
 
Hemostasis and Coagulation
Hemostasis and Coagulation Hemostasis and Coagulation
Hemostasis and Coagulation
 
Homeostasis.pptx
Homeostasis.pptxHomeostasis.pptx
Homeostasis.pptx
 
Cell based model of coagulation
Cell based model of coagulationCell based model of coagulation
Cell based model of coagulation
 
Normal haemostasis
Normal haemostasisNormal haemostasis
Normal haemostasis
 
Normal haemostasis
Normal haemostasisNormal haemostasis
Normal haemostasis
 
Hemostasis by Dr.Rafi
Hemostasis by Dr.RafiHemostasis by Dr.Rafi
Hemostasis by Dr.Rafi
 
Coagulation factors 8 to 13.pptx
Coagulation factors 8 to 13.pptxCoagulation factors 8 to 13.pptx
Coagulation factors 8 to 13.pptx
 
Coagulation in cardiac anesthesia
Coagulation in cardiac anesthesiaCoagulation in cardiac anesthesia
Coagulation in cardiac anesthesia
 
Normal coagulation
Normal coagulationNormal coagulation
Normal coagulation
 
platelets therapy
platelets therapyplatelets therapy
platelets therapy
 
Bleeding disorders
Bleeding disordersBleeding disorders
Bleeding disorders
 
4. hemostasis, bleeding & BT.pptx
4. hemostasis, bleeding & BT.pptx4. hemostasis, bleeding & BT.pptx
4. hemostasis, bleeding & BT.pptx
 
hemostasis.pptx
hemostasis.pptxhemostasis.pptx
hemostasis.pptx
 
Thrombocytes and Hemostasis
Thrombocytes and HemostasisThrombocytes and Hemostasis
Thrombocytes and Hemostasis
 
Seminar on hemostatsis
Seminar on hemostatsisSeminar on hemostatsis
Seminar on hemostatsis
 
Physilogy of coagulation.
Physilogy of coagulation.Physilogy of coagulation.
Physilogy of coagulation.
 

Más de Loveis1able Khumpuangdee (20)

Rollup01
Rollup01Rollup01
Rollup01
 
Protec
ProtecProtec
Protec
 
Factsheet hfm
Factsheet hfmFactsheet hfm
Factsheet hfm
 
Factsheet
FactsheetFactsheet
Factsheet
 
Eidnotebook54
Eidnotebook54Eidnotebook54
Eidnotebook54
 
Data l3 148
Data l3 148Data l3 148
Data l3 148
 
Data l3 147
Data l3 147Data l3 147
Data l3 147
 
Data l3 127
Data l3 127Data l3 127
Data l3 127
 
Data l3 126
Data l3 126Data l3 126
Data l3 126
 
Data l3 113
Data l3 113Data l3 113
Data l3 113
 
Data l3 112
Data l3 112Data l3 112
Data l3 112
 
Data l3 92
Data l3 92Data l3 92
Data l3 92
 
Data l3 89
Data l3 89Data l3 89
Data l3 89
 
Data l2 80
Data l2 80Data l2 80
Data l2 80
 
Hfm reccomment10072555
Hfm reccomment10072555Hfm reccomment10072555
Hfm reccomment10072555
 
Hfm work2550
Hfm work2550Hfm work2550
Hfm work2550
 
Factsheet hfm
Factsheet hfmFactsheet hfm
Factsheet hfm
 
Publichealth
PublichealthPublichealth
Publichealth
 
แนวทางการดาเน ํ นงานป ิ องก ้ นควบค ั มการระบาดของโรคม ุ ือ เท้า ปาก สําหรบแพ...
แนวทางการดาเน ํ นงานป ิ องก ้ นควบค ั มการระบาดของโรคม ุ ือ เท้า ปาก สําหรบแพ...แนวทางการดาเน ํ นงานป ิ องก ้ นควบค ั มการระบาดของโรคม ุ ือ เท้า ปาก สําหรบแพ...
แนวทางการดาเน ํ นงานป ิ องก ้ นควบค ั มการระบาดของโรคม ุ ือ เท้า ปาก สําหรบแพ...
 
hand foot mouth
hand foot mouthhand foot mouth
hand foot mouth
 

Último

Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersThousandEyes
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitecturePixlogix Infotech
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationRidwan Fadjar
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Allon Mureinik
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure servicePooja Nehwal
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Alan Dix
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024Rafal Los
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesSinan KOZAK
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024Results
 
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | DelhiFULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhisoniya singh
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...shyamraj55
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Miguel Araújo
 
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...gurkirankumar98700
 

Último (20)

Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC Architecture
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 Presentation
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen Frames
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024
 
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | DelhiFULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
 

4 u1.0-b978-1-4160-4224-2..50043-0..docpdf

  • 1. Chapter 40 Coagulation Disorders in Pregnancy Charles J. Lockwood, MD, and Robert M. Silver, MD Disorders of the hemostatic system can lead to both hemorrhage and vation of phospholipase C, which causes the generation of inositol thrombosis. The former can result from inherited and acquired defects triphosphate and 1,2,-diacylglycerol. The former triggers a calcium in hemostasis and platelets, and the latter is greatly increased in the flux, and the latter activates protein kinase C, which, in turn, triggers presence of inherited and acquired defects in the endogenous antico- platelet secretory activity and activates various signaling pathways. agulant system.1,2 In addition to their association with thrombosis, the Such signaling promotes activation of the GpIIb-IIIa (αIIBβ3 integrin) leading cause of maternal death in the United States, inherited and receptor, a crucial step in subsequent platelet aggregation (see later acquired thrombophilias as well as certain bleeding dyscrasias, have discussion). Thus, collagen serves to promote both platelet adhesion also been associated with adverse pregnancy outcomes. This chapter and platelet activation. However, maximal platelet activation requires reviews the hemostatic system and its modulators and then discusses binding of thrombin to platelet type 1 and 4 protease-activated recep- the various common inherited and acquired disorders of platelet tors (PAR-1, PAR-4).5 Platelet activation is also mediated by receptor function, coagulation, and anticoagulation and their impact on both binding to thromboxane A2 (TXA2) and adenosine diphosphate (ADP), mother and fetus. which are released by adjacent activated platelets. Collagen and these circulating agonists induce calcium-mediated formation of platelet pseudopodia, promoting further adhesion. The Hemostatic System Platelet secretory activity includes the release of α-granules con- taining vWF, vitronectin, fibronectin, thrombospondin, partially acti- The hemostatic system is designed to ensure that hemorrhage is vated factor V, fibrinogen, β-thromboglobulin, and platelet-derived avoided in the setting of vascular injury while the fluidity of blood is growth factor. These factors either enhance adhesion or promote maintained in the intact circulation. After vascular injury, activation clotting. Secretory activity also includes the release of dense granules of the clotting cascade and simultaneous platelet adherence, activation, containing ADP and serotonin, which enhance, respectively, platelet and aggregation are required to form the optimal fibrin-platelet plug activation and vasoconstriction in damaged vessels. Calcium flux pro- and thus avoid bleeding. The system is held in check by a potent series motes the synthesis of TXA2 by the sequential action of phospholipase of anticoagulant proteins as well as a highly regulated fibrinolytic A2, cyclooxygenase-1 (COX-1) and TXA2 synthase and its passive dif- system. Pregnancy presents an additional challenge to this system, fusion across platelet membranes to promote both vasoconstriction because the risk of hemorrhage during placentation and in the third and, as noted, activation of adjacent platelets.4 Inherited disorders of stage of labor is high, and the risk of thrombosis in the highly vulner- α-granule homeostatic and release proteins result in gray platelet syn- able uteroplacental and intervillous circulations is also great. Through drome, whereas deficiencies in dense granule–related genes are associ- a series of local and systemic adaptations, the vast majority of pregnant ated with Wiskott-Aldrich, Chediak-Higashi, Hermansky-Pudlak, and women are able to balance these paradoxical requirements and achieve thrombocytopenia–absent radius syndrome. Inhibition of COX-1– uncomplicated pregnancies. mediated TXA2 synthesis by nonsteroidal anti-inflammatory drugs (NSAIDs) also can also impair platelet function. Platelet aggregation follows activation-induced conformational Platelet Plug Formation changes in the platelet membrane GpIIb-IIIa receptor, so-called inside- After vascular injury, platelets rolling and flowing in the bloodstream out signaling. The receptor forms a high-affinity bond to divalent are arrested at sites of endothelial disruption by the interaction of col- fibrinogen molecules. The same fibrinogen molecule is also able to lagen with von Willebrand factor (vWF). Attachment to collagen bind to adjacent platelet GpIIb-IIIa receptors.6 Because these receptors exposes sites on the vWF molecule that permit it to bind to the platelet are abundant (40,000 to 80,000 copies), large platelet rosettes quickly glycoprotein Ib/IX/V complex (GpIb-IX-V) receptor.3 Abnormal form, reducing blood flow and sealing vascular leaks.4 Mutations in the platelet adhesion and bleeding can result from mutations in GpIb-X-V GpIIb-IIIa gene cause the bleeding dyscrasia known as Glanzmann (e.g., Bernard-Soulier disease) or from defects in the vWF gene (von thrombasthenia. Figure 40-1 presents a schematic review of platelet Willebrand disease [vWD]). Platelets can also adhere to subendothelial function. collagen via their GpIa-IIa (α2β1 integrin) and GpVI receptors. Defi- Platelet activation and aggregation are prevented in intact endothe- ciencies in either receptor cause mild bleeding diatheses. lium via the latter’s elaboration of prostacyclin, nitric oxide, and Adherent platelets are activated by collagen after binding to the ADPase as well as by active blood flow. Cyclic adenosine monophos- GpVI receptor.4 This triggers receptor phosphorylation, leading to acti- phate (cAMP) inhibits platelet activation, and this is the basis for the
  • 2. 826 CHAPTER 40 Coagulation Disorders in Pregnancy is unique in that it has low intrinsic clotting activity. In addition, it Platelet Plug Formation may autoactivate after binding to TF or be activated by thrombin or Platelet Adhesion factors IXa or Xa.12 Activation of factor VII to VIIa increases its cata- • GpIb/IX/V binding to vWF lytic activity more than 100-fold, and its promiscuous activation • GpIa/IIa binding to collagen potential ensures that factor VIIa will be readily available to initiate clotting. The complex of TF and factor VII(a) can activate both factor X and Platelet Activation factor IX. Factor Xa remains active as long as it is bound to TF-VIIa • GpVI binding to collagen in the cell membrane–bound prothrombinase complex. However, • PAR-1 and PAR-4 binding to thrombin when factor Xa diffuses away from the site of vascular injury, it is • Receptor binding to ADP and TXA2 rapidly inhibited by tissue factor pathway inhibitor (TFPI) or anti- thrombin (AT). This serves to prevent inappropriate propagation of the clot throughout the vascular tree.9 Factor Xa ultimately binds to its cofactor, Va, which is generated from its inactive form by the action of Platelet Aggregation Platelet Secretion factor Xa itself or by thrombin. Partially activated factor Va can also • GpIIb/IIIa binding to • α-Granules contain fibrinogen, be delivered to the site of clot initiation after its release from platelet fibrinogen and other fibronectin, vitronectin, platelet factor α-granules (Fig. 40-2A).8 The Xa/Va complex catalyzes the conversion large glycoproteins 4, fibrinogen, vWF, thrombospondin, and platelet-derived growth factor, of prothrombin (factor II) to thrombin (factor IIa). Thrombin, in turn, which enhance adhesion or clotting converts fibrinogen to fibrin, and, as noted, activates platelets (see Fig. • Dense granules contain ADP and 40-2A). serotonin, which amplify platelet Following this initial TF-mediated reaction, the clotting cascade activation is amplified by clotting reactions that occur on adjacent activated • Thromboxane A2, which promotes platelets.9 Locally generated factor IXa diffuses to adjacent activated platelet activation and vasoconstriction platelet membranes, or to perturbed endothelial cell membranes, where it binds to factor VIIIa. This cofactor is not only directly acti- FIGURE 40-1 Schematic review of platelet function. ADP, vated by thrombin but is released from its vWF carrier molecule adenosine diphosphate; Gp, glycoprotein; PAR, protease-activated through the action of thrombin.9 The factor IXa/VIIIa complex receptor; TXA2, thromboxane A2; vWF, von Willebrand factor. can then generate factor Xa at these sites to further drive thrombin generation (see Fig. 40-2B). The significant hemorrhagic sequelae of hemophilia underscore the vital role played by platelet surface factor therapeutic effects of dipyridamole. Normal pregnancy is associated IXa-VIIIa–mediated factor Xa generation in ensuring hemostasis.9 with a modest decline in platelet number7 and with evidence of pro- The clotting cascade can also be amplified via the activation of gressive platelet activation.8 factor XI to XIa by thrombin on activated platelet surfaces; factor XIa also activates factor IX (see Fig. 40-2C). The lack of significant hem- orrhagic sequelae in patients with factor XI deficiency emphasizes Fibrin Plug Formation that this mechanism is of lesser importance in the maintenance of Effective hemostasis requires the synergistic interaction of the clotting hemostasis. Factor XIa has been describing as serving a “booster cascade with platelet activation and aggregation. This synergism is in function” in coagulation.9 part mechanical, because fibrin and platelets together form an effective A third, theoretical coagulation amplification pathway may be hemostatic plug after significant vascular disruption. However, bio- mediated by circulating TF-bearing microparticles that bind to acti- chemical synergism also occurs, because activated platelets contribute vated platelets at sites of vascular injury through the interaction clotting factors and form an ideal surface for clot propagation. Con- between P-selectin glycoprotein ligand-1 on the microparticles and P- versely, optimal platelet activation and subsequent aggregation require selectin on activated platelets (see Fig. 40-2C).13 Taken together factor exogenous thrombin generation (see Fig. 40-1). Therefore, the avoid- IXa, factor XIa, and TF-platelet surface events lead to additional factor ance of hemorrhage ultimately depends on the interplay between Xa generation and thence to enhanced production of thrombin and platelets and the coagulation cascade. fibrin. They also reflect the synergism that exists between platelet acti- Understanding of the coagulation component of hemostasis has vation and the coagulation cascade. evolved rapidly in the past two decades. Clotting is no longer thought The stable hemostatic plug is finally formed only when fibrin of as a seemingly infinite cascade of enzymatic reactions occurring in monomers self-polymerize and are cross-linked by thrombin-activated the blood but rather as a highly localized cell surface phenomenon.9 factor XIIIa (see Fig. 40-2D). This last reaction highlights the dominant Clotting is initiated when subendothelial (extravascular) cells express- role that thrombin plays in the coagulation cascade: Thrombin acti- ing tissue factor (TF), a cell membrane–bound glycoprotein, come into vates platelets, generates fibrin, and activates the crucial clotting cofac- contact with circulating factor VII. Intrauterine survival is not possible tors V and VIII, as well as the key clotting factors VII, XI, and XIII. in the absence TF.10 TF is primarily expressed on the cell membranes This accounts for the primacy of antithrombin factors in preventing of perivascular smooth muscle cells, fibroblasts, and tissue parenchy- inappropriate intravascular clotting (i.e., thrombosis). mal cells, but not on healthy endothelial cells. However, TF also circu- lates in the blood in very low concentrations, as part of cell-derived microparticles or in a truncated soluble form.8,11 Prevention of Thrombosis: The After vascular disruption and in the presence of ionized calcium, Anticoagulant System perivascular cell TF comes into contact with plasma factor VII on As noted, the hemostatic system not only must prevent hemorrhage negatively charged (anionic) cell membrane phospholipids. Factor VII after vascular injury but also must maintain the fluidity of the circula-
  • 3. CHAPTER 40 Coagulation Disorders in Pregnancy 827 Vascular Injury Vascular Injury X IX X IX TF/ TF/ VII(a) VII(a) Platelet Xa IXa Xa IXa Platelet activation activation Va VIIIa IXa Va II IIa II IIa VIII Fibrinogen Fibrin Fibrinogen Fibrin A B Vascular Injury Vascular Injury X IX X IX Stable fibrin TF/ polymers VII(a) TF/ VII(a) TF XIIIa XIa Xa IXa Platelet Xa IXa activation Fibrin Va XI polymers II IIa Va II IIa XIII Fibrinogen Fibrin Self- Fibrinogen Fibrin polymerization C monomers D FIGURE 40-2 Fibrin plug formation. A, After vascular disruption, plasma factor VII binds to tissue factor (TF) to form the TF/VII(a) complex, which activates both factor X and factor IX. Factor Xa binds to factor Va, which has been activated by thrombin (factor IIa) or released from platelet α-granules. The Xa/Va complex catalyzes the conversion of prothrombin (factor II) to thrombin, which, in turn, converts fibrinogen to fibrin and activates platelets. B, The clotting cascade is amplified by clotting reactions that occur on adjacent activated platelets. Locally generated factor IXa binds to factor VIIIa, which is activated by thrombin. The factor IXa/VIIIa complex then generates factor Xa. C, Coagulation is further boosted by the thrombin-mediated activation of factor XI to factor XIa, which also activates factor IX. Circulating TF-bearing microparticles may also bind to activated platelets at sites of vascular injury. D, The stable hemostatic plug is finally formed when fibrin monomers self-polymerize and are cross-linked by thrombin-activated factor XIIIa. tion in an intact vasculature. Indeed, thrombotic disease is a conse- lets. This local coagulation reaction is relatively protected from the quence of inappropriate and/or excess thrombin generation. As was dampening effects of circulating endogenous anticoagulants, both the case with avoiding hemorrhage, avoidance of thrombosis is again because of its intensity and because it is shielded by the initial layer of dependent on the synergistic interaction of platelets and the coagulant adherent and activated platelets. However, maximal platelet activation system. As noted earlier, clotting is initiated locally at sites of vascular occurs only after stimulation by both subendothelial collagen and injury and amplified by the arrival, adherence, and activation of plate- thrombin, so, as additional platelets aggregate on top of the initial layer
  • 4. 828 CHAPTER 40 Coagulation Disorders in Pregnancy ( ) X TFPI IX FXIII IIa TF/VIIa Fibrin monomer Fibrinogen Fibrin polymer IXa VIIIa ( ) FXIIIa AT Xa X X-linked Fibrin tPA/uPA Va ( ) Plasmin Plasminogen PZ/ZPI PAI-1 2 plasmin TAFI PAI-2 inhibitor aPC PS PC FDPs Thrombomodulin ( ) II IIa EPCR AT Thrombomodulin FIGURE 40-4 Fibrinolysis. The cross-linked fibrin polymer (X-linked Fibrin), which was stabilized by thrombin (factor IIa)-activated factor Fibrin monomer Fibrinogen XIIIa, is degraded to fibrin degradation products (FDPs) by the action of plasmin, which is generated by the proteolysis of plasminogen via FIGURE 40-3 The anticoagulant system. Tissue factor pathway tissue-type plasminogen activator (tPA) and urokinase-type inhibitor (TFPI) binds with tissue factor (TF), factor VIIa, and factor Xa plasminogen activator (uPA). To prevent excessive fibrinolysis, to form the prothrombinase complex. Thrombin, after binding to plasmin is inhibited by α2-plasmin inhibitor, and tPA and uPA are thrombomodulin, can activate protein C (PC) when bound to the inhibited by plasminogen activator inhibitor type 1 (PAI-1) and type 2 endothelial protein C receptor (EPCR). Activated protein C (aPC) then (PAI-2). In addition, thrombin-activated fibrinolytic inhibitor (TAFI), binds to its cofactor, protein S (PS), to inactivate factors VIIIa and Va. which is activated by the thrombin-thrombomodulin complex, cleaves Factor Xa is inhibited by the protein Z-dependent protease inhibitor terminal lysine residues from fibrin to render it resistant to plasmin. (ZPI) when complexed to its cofactor, protein Z (PZ). Antithrombin (AT) potently inhibits both factor Xa and thrombin. Xa. The resultant conformational change facilitates AT binding to endothelial surface heparanoids or exogenous heparin, which aug- of platelets, they become progressively less activated, and their clotting ments thrombin inactivation more than 1000-fold.17 Although throm- reaction becomes more susceptible to the action of circulating inhibi- bin generated at the initial site of vascular injury is relatively “protected” tors, thus attenuating the clotting cascade.9 from AT, thrombin produced more distally on the surface of activated Prevention of disseminated intravascular coagulation (DIC) ulti- platelets is readily susceptible.9 Similar inhibitory mechanisms utilize mately requires the presence of inhibitor molecules (Fig. 40-3). The heparin cofactor II and α2-macroglobulin. first inhibitory molecule is TFPI which forms a complex with TF, VIIa, and Xa (the prothrombinase complex).14 As noted earlier, TFPI is most effective distal to the initial site of clotting, and it can be bypassed by Restoration of Blood Flow: Fibrinolysis the generation of factors IXa and XIa. Fibrinolysis permits the restoration of circulatory fluidity and serves Paralleling its pivotal role in initiating the hemostatic reaction, as another barrier to thrombosis (Fig. 40-4). The cross-linked fibrin thrombin also plays a central role in initiating the anticoagulant system. polymer is degraded to fibrin degradation products (FDPs) by the Thrombin binds to thrombomodulin, and the resultant conforma- action of plasmin embedded in the fibrin clot.18 Plasmin is, in turn, tional change permits thrombin to activate protein C (PC) when generated by the proteolysis of plasminogen via tissue-type plasmino- bound to damaged endothelium or the endothelial protein C receptor gen activator (tPA), which is also embedded in fibrin. Endothelial cells (EPCR). Activated protein C (aPC) then binds to its cofactor, protein also synthesize a second plasminogen activator, urokinase-type plas- S (PS), to inactivate factors VIIIa and Va. However, this process is far minogen activator (uPA), whose primary function is cell migration less efficient at blocking thrombin generation on activated platelets, and extracellular matrix remodeling. possibly because platelet-derived, partially activated factor Va is resis- Fibrinolysis is, in turn, modulated by a series of inhibitors. Plasmin tant to aPC/PS inactivation.15 Therefore, additional anticoagulant reac- is inhibited by α2-plasmin inhibitor, which, like plasmin and plasmino- tions are required. Factor Xa can be efficiently inhibited by the protein gen, is bound to the fibrin clot, where it is positioned to prevent pre- Z–dependent protease inhibitor (ZPI) when complexed to its cofactor, mature fibrinolysis. Platelets and endothelial cells release type-1 protein Z (PZ).16 ZPI also inhibits factor XIa in a process that does not plasminogen activator inhibitor (PAI-1) in response to thrombin require PZ. Deficiencies of PZ can promote both intracerebral bleeding binding to PARs. The PAI-1 molecule inhibits both tPA and uPA. In and systemic thrombosis, the latter predominating in the setting of pregnancy, the decidua is also a very rich source of PAI-1,19 and the coexistent inherited thrombophilias. placenta can synthesize another antifibrinolytic molecule, PAI-2. Fibri- The most potent inhibitor of both factor Xa and thrombin is anti- nolysis can also be inhibited by thrombin-activated fibrinolytic inhibi- thrombin (AT, previously known as antithrombin III or ATIII) (see Fig. tor (TAFI). This carboxypeptidase cleaves terminal lysine residues 40-3). Antithrombin bound to vitronectin can bind thrombin or factor from fibrin to render it resistant to plasmin. TAFI is activated by the
  • 5. CHAPTER 40 Coagulation Disorders in Pregnancy 829 thrombin-thrombomodulin complex.20 In the initial stages of clotting, estrogen and local production of prostacyclin and nitric oxide. Preg- platelets and endothelial cells release PAI-1, but, after a delay, endothe- nancy is also frequently associated with obesity, insulin resistance, and lial cells release tPA and uPA to promote fibrinolysis. This biologic hyperlipidemia, all of which further increase levels of PAI-1.31 process permits sequential clotting followed by fibrinolysis to restore vascular patency. The fibrinolytic system can also interact with the coagulation cascade. FDPs inhibit the action of thrombin, and this is a major source Disorders Promoting of hemorrhage in DIC. Moreover, PAI-1 bound to vitronectin and heparin also inhibits thrombin and factor Xa activity.21 Thrombosis in Pregnancy Acquired Thrombophilias: The Effect of Pregnancy Antiphospholipid Antibodies on Hemostasis The combination of VTE, obstetric complications, and antiphospho- As noted, pregnancy and delivery present unique and paradoxical chal- lipid antibodies (APA) defines the antiphospholipid antibody syn- lenges to a woman’s hemostatic system. They also present one of the drome (APS).32 These antibodies are directed against proteins bound greatest risks for venous thromboembolism (VTE) that most young to negatively charged surfaces, usually anionic phospholipids. There- women will face. Profound alterations in both local uterine and sys- fore, APAs can be detected (1) by screening for antibodies that directly temic clotting, anticoagulant, and fibrinolytic systems are required to bind protein epitopes such as β2-glycoprotein-1, prothrombin, annexin meet this enormously complex challenge. The uterine decidua is ideally V, aPC, PS, protein Z, ZPI, tPA, factor VII(a), and XII, the complement positioned to regulate hemostasis during placentation and the third cascade constituents C4 and CH50, and oxidized low-density lipopro- stage of labor. Progesterone augments expression of TF22 and PAI-119 teins, or (2) by indirectly assessing antibodies that react to proteins on perivascular decidualized endometrial stromal cells. The crucial present in an anionic phospholipid matrix (e.g., cardiolipin, phospha- importance of the decidua in the maintenance of puerperal hemostasis tidylserine), or (3) by assessing the downstream effects of these anti- is highlighted by the massive hemorrhage that accompanies obstetric bodies on prothrombin activation in a phospholipid milieu (i.e., lupus conditions associated with impaired decidualization (e.g., ectopic and anticoagulants).33 cesarean scar pregnancy, placenta previa, and accreta). That decidual The diagnosis of APS has been a controversial topic. A recent con- TF plays the primary role in mediating puerperal hemostasis is sensus conference proposed the criteria outlined in Table 40-1.34 In demonstrated by the observation that transgenic TF knockout mice brief, APS requires the presence of at least one clinical criterion rescued by the expression of low levels of human TF have a 14% (confirmed thrombosis or pregnancy morbidity) and one laboratory incidence of fatal postpartum hemorrhage despite far less invasive criterion (lupus anticoagulant [LA], anticardiolipin (ACA), or anti- placentation.23 β2-glycoprotein-1 antibody). However, the presence of thrombosis The extraordinarily high level of TF expression in human decidua must take into account confounding variables that lessen the certainty can also serve a pathologic function if local hemostasis proves inade- of the diagnosis (see Table 40-1). Uteroplacental insufficiency may be quate to contain spiral artery damage and hemorrhage into the decidua recognized by the sequelae of nonreassuring fetal surveillance tests occurs (i.e., abruption). This bleeding results in intense generation of suggestive of fetal hypoxemia, abnormal Doppler flow velocimetry thrombin and occasionally in frank hypofibrinogenemia and DIC. waveform analysis suggestive of fetal hypoxemia, oligohydramnios However, thrombin can also bind to decidual PAR-1 receptors to (amniotic fluid index ≤5 cm), or birth weight less than the 10th per- promote production of matrix metalloproteinases and cytokines, centile. Classification of APS should not be made if less than 12 wk or contributing to the tissue breakdown and inflammation associated more than 5 years separates the positive APA test and the clinical with abruptio placenta and preterm premature rupture of the manifestation. membranes.24-27 Venous thrombotic events associated with APA include deep venous Pregnancy also induces systemic changes in the hemostatic system. thrombosis (DVT) with or without acute pulmonary emboli; cerebral It is associated with a doubling in concentration of fibrinogen and vascular accidents and transient ischemic attacks are the most common increases of 20% to 1000% in factors VII, VIII, IX, and X as well as arterial events. At least half of patients with APA have systemic lupus vWF.28 Levels of prothrombin and factor V remain relatively unchanged, erythematosus (SLE). A meta-analysis of 18 studies examining the and levels of factor XI decline modestly. The net effect is an increase thrombotic risk among SLE patients with LA, found odds ratios (OR) in thrombin-generating potential. Pregnancy is also associated with of 6.32 (95% confidence interval [CI], 3.71 to 10.78) for a VTE episode 60% to 70% declines in free PS levels, which nadir at delivery due to and 11.6 (CI, 3.65 to 36.91) for recurrent VTE.35 By contrast, ACAs hormonally induced increases in levels of its carrier protein, the com- were associated with lower ORs of 2.50 (CI, 1.51 to 4.14) for an acute plement 4B–binding protein.29 As a consequence, pregnancy is associ- VTE and 3.91 (CI, 1.14 to 13.38) for recurrent VTE. A meta-analysis ated with an increased resistance to aPC. These effects are exacerbated of studies involving more than 7000 patients in the general population by cesarean delivery and infection, which drive further reduction in identified a range of ORs for arterial and venous thromboses in patients the concentration of free PS. Levels of PAI-1 increase threefold to with LA: 8.6 to 10.8 and 4.1 to 16.2, respectively.33 The comparable fourfold during pregnancy, and plasma PAI-2 values, which are negli- numbers for ACA were 1 to 18 and 1 to 2.5. Therefore, there appears gible before pregnancy, reach high concentrations at term.30 Thus, to be a consistently greater risk of VTE associated with LA compared pregnancy is associated with increased clotting potential, decreased with isolated ACA. Recurrence risks of up to 30% have been reported anticoagulant activity, and decreased fibrinolysis.30 in affected patients, so long-term prophylaxis is required.36 The risk of Pregnancy is also associated with venous stasis in the lower extremi- VTE in pregnancy and the puerperium accruing to affected patients is ties resulting from compression of the inferior vena cava and pelvic poorly studied but may be as high as 5% despite treatment.37 veins by the enlarging uterus as well as a hormone-mediated increase As noted, APA are associated with obstetric complications includ- in deep vein capacitance secondary to increased circulating levels of ing fetal loss, abruption, severe preeclampsia, and intrauterine growth
  • 6. 830 CHAPTER 40 Coagulation Disorders in Pregnancy TABLE 40-1 REVISED CLASSIFICATION CRITERIA FOR DIAGNOSIS OF THE ANTIPHOSPHOLIPID ANTIBODY SYNDROME (APS)* Clinical Criteria 1. Vascular thrombosis†: One or more clinical episodes of arterial, venous, or small-vessel thrombosis, in any tissue or organ confirmed by objective, validated criteria (i.e., unequivocal findings of appropriate imaging studies or histopathology). 2. Pregnancy morbidity: a. One or more unexplained deaths of a morphologically normal fetus at or beyond 10 weeks of gestation, with normal fetal morphology documented by ultrasound or by direct examination of the fetus, or b. One or more premature births of a morphologically normal neonate before the 34th week of gestation because of (i) eclampsia or severe preeclampsia or (ii) recognized uteroplacental insufficiency, or c. Three or more unexplained consecutive euploid spontaneous abortions before 10 weeks of gestation, with maternal anatomic or hormonal abnormalities and paternal and parental chromosomal causes excluded. Laboratory Criteria‡ 1. Lupus anticoagulant (LA) present in plasma, on two or more occasions at least 12 wk apart, detected according to the guidelines of the ISTH Scientific Subcommittee on Lupus Anticoagulants/Phospholipid-Dependent Antibodies. 2. Anticardiolipin antibody (aCL) of IgG and/or IgM isotype in serum or plasma, present in medium or high titer (i.e., >40 GPL or MPL, or >99th percentile), on two or more occasions, at least 12 wk apart, measured by a standardized ELISA. 3. Anti-β2-glycoprotein-1 antibody of IgG and/or IgM isotype in serum or plasma (in titer >99th percentile), present on two or more occasions, at least 12 wk apart, measured by a standardized ELISA, according to recommended procedures. *APS is present if at least one clinical criterion and one laboratory criterion are met. † Coexisting inherited or acquired factors for thrombosis are not reasons for excluding patients from APS trials. However, two subgroups of APS patients should be recognized, according to (1) the presence or (2) the absence of additional risk factors for thrombosis. Indicative (but not exhaustive) of such factors are age (>55 yr in men, >65 yr in women); presence of any of the established risk factors for cardiovascular disease (hypertension, diabetes mellitus, elevated LDL or low HDL cholesterol, cigarette smoking, family history of premature cardiovascular disease, BMI ≥30 kg/m2, microalbuminuria, estimated GFR <60 mL/min), inherited thrombophilias, oral contraceptive use, nephrotic syndrome, malignancy, immobilization, and surgery. Patients who fulfill criteria should be stratified according to contributing causes of thrombosis. ‡ Investigators are strongly advised to classify APS patients in studies into one of the following categories: I, more than one laboratory criteria present (any combination); IIa, LA present alone; IIb, aCL antibody present alone; IIc, Anti-b2 glycoprotein-1 antibody present alone. APA, antiphospholipid antibody; BMI, body mass index; ELISA, enzyme-linked immunosorbent assay; GFR, glomerular filtration rate; GPL, IgG phospholipid units; HDL, high-density lipoprotein; IgG, immunoglobulin G; IgM, immunoglobulin M; ISTH, International Society on Thrombosis and Hemostasis; LDL, low-density lipoprotein; MPL, IgM phospholipid units. Modified from Miyakis S, Lockshin MD, Atsumi D, et al: International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost 4:295-306, 2006. restriction (IUGR). LA are associated with fetal loss after the first tri- spective and prospective studies have not found an association between mester, with ORs ranging from 3.0 to 4.8, and ACA display a wider these conditions and APA.45 This is not surprising, given the common range of ORs, 0.86 to 20.0.33 It is controversial whether APA are occurrence of preeclampsia and IUGR and the relative infrequency of associated with recurrent (more than three) early (<10 weeks) sponta- APS. neous abortions in the absence of stillbirth. At least 50% of pregnancy A myriad of mechanisms have been proposed for APA-mediated losses in patients with APA occur after the 10th week of gestation.38 arterial and venous thrombosis. Direct inhibition of the anticoagulant Moreover, compared with patients who have unexplained first-trimes- effects of anionic phospholipid-binding proteins such as β2-glycopro- ter spontaneous abortions without APA, those with antibodies more tein-1 and annexin V has been shown.46,47 In addition, APA appear to often have demonstrable embryonic cardiac activity (86% versus 43%; inhibit thrombomodulin, aPC, and AT activity; to induce TF, PAI-1, P < .01).39 and vWF expression in endothelial cells; and to augment platelet acti- The association between APA and infertility also is uncertain. vation. Recently, APA induction of complement activation has been Increased levels of APA have been reported in women with infertil- suggested to play a role in fetal loss, with heparin preventing such ity.40,41 However, a meta-analysis of seven studies of affected patients aberrant activation.48 undergoing in vitro fertilization found no significant association Contemporary management of affected patients during pregnancy between APA and either clinical pregnancy (OR, 0.99; CI, 0.64 to 1.53) requires treatment with either unfractionated heparin or low-molecu- or live birth rate (OR, 1.07; CI, 0.66 to 1.75).42 Finally, there is also no lar-weight heparin (LMWH) plus low-dose aspirin (LDA) at 50 to evidence that treating patients who have APA with anticoagulant medi- 80 mg/day. Rai and colleagues conducted a randomized, controlled cations improves outcomes of in vitro fertilization.43 trial among 90 APA-positive women with a history of recurrent fetal Women with APS who have pregnancies reaching viability are at loss who received either LDA alone or LDA plus 5000 U of unfraction- increased risk for obstetric outcomes associated with abnormal placen- ated heparin SQ every 12 hours until either recurrent loss or 34 weeks tation such as preeclampsia and IUGR. Up to 50% of pregnancies in of gestation.39 The live birth rate was significantly higher with com- women with APS develop preeclampsia, and one third have IUGR.37 bined heparin and LDA than with LDA alone: 71% (32/45) versus 42% Abnormal fetal heart rate tracings prompting cesarean delivery are also (19/45) (OR, 3.37; CI, 1.40 to 8.10). Interestingly, 90% of the losses common. Conversely, most cases of preeclampsia and IUGR occur in occurred in the first trimester, and there was no difference in out- women without APA. Although increased positive tests for APA have come between the two groups for women whose pregnancies been reported in women with preeclampsia, especially in severe disease advanced beyond 13 weeks’ gestation. Similar results were found in a with onset before 34 weeks’ gestation44 and IUGR, most large retro- nonrandomized trial by Kutteh.49 On the other hand, Farquharson and
  • 7. CHAPTER 40 Coagulation Disorders in Pregnancy 831 coworkers found no advantage to adding LMWH to LDA.50 However, patient requires any therapy, but the latter patient needs therapeutic this latter study has been criticized because of the very low levels of unfractionated heparin or LMWH with LDA.57 Tincani and associates APA present in affected patients as well as imperfect randomization. reported on a survey of members of the International Advisory Board Meta-analysis found that unfractionated heparin plus LDA (two trials; of the 10th International Congress on Antiphospholipid Antibodies. N = 140) significantly reduced pregnancy loss compared with LDA The consensus of the group was that treatment for APA-positive preg- alone (relative risk [RR], 0.46; CI, 0.29 to 0.71) and that there was no nant patients should be LMWH and LDA.57 The dosage and frequency advantage of high-dose over low-dose unfractionated heparin (one of LMWH depends on the situation, including the patient’s body trial; N = 50).51 Another meta-analysis found that enoxaparin treat- weight and past history. Patients with previous thromboses should ment resulted in an increased live birth rate, compared with LDA (RR, receive two injections per day. The use of IVIG should be restricted to 10.0; CI, 1.56 to 64.20).52 Three studies of LDA alone versus placebo patients with pregnancy losses despite conventional treatment (see included in the meta-analysis showed no significant reduction in preg- later discussion for details of heparin dosing). nancy loss (RR, 1.05; CI, 0.66 to 1.68).51 Adverse pregnancy outcomes can still occur despite treatment. Backos and associates conducted a prospective observational study of Inherited Thrombophilias 150 women treated with LDA and either unfractionated heparin Inherited thrombophilias have been linked to VTE. However, the (5000 U given SQ every 12 hours) or enoxaparin (20 mg daily) from occurrence of VTE in patients with an inherited thrombophilia is the time of positive embryonic cardiac activity to either pregnancy loss highly dependent on the presence of other predisposing factors, espe- or 34 weeks of gestation.53 The live birth rate was 71%. However, 27% cially a personal or family history of VTE. Even more controversial is of the patients miscarried (mostly in the first trimester), and gesta- the association between inherited thrombophilias and adverse preg- tional hypertension occurred in 17%, abruption in 7%, and IUGR in nancy outcomes. 15%. Intravenous immune globulin (IVIG) has been reported to improve Factor V Leiden Mutation outcome in women with APS for whom treatment with heparin and Present in about 5% of the European population and 3% of African- LDA has failed.54 The efficacy of the combination of LDA and LMWH Americans, factor V Leiden (FVL) is the most common of the serious in affected patients was compared with that of IVIG for the prevention heritable thrombophilias.58 The mutation is virtually absent in African of recurrent fetal loss in a study including 40 women,55 who were ran- blacks, Chinese, Japanese, and other Asians. The mutation causes a domized to receive either LMWH (5700 IU/day SQ) and LDA or IVIG substitution of glutamine for arginine at position 506, the site of pro- (400 mg/kg IV for 2 days, followed by 400 mg/kg every month). teolysis and inactivation by aPC/PS, and FVL is the leading cause of Although the clinical characteristics of the two groups were similar at aPC resistance. The heterozygous state is symptomatic, with a fivefold the time of randomization, women receiving LMWH and LDA had a increased risk of VTE, but homozygous patients have a 25-fold higher live birth rate (84%) than those receiving IVIG alone (57%). increased risk (Table 40-2). FVL is associated with about 40% of VTE Moreover, IVIG plus heparin and LDA was also not superior to heparin events in pregnant patients.59 However, given the low prevalence of and LDA alone in another small, randomized trial.56 Therefore, IVIG VTE in pregnancy (1/1400) and the high incidence of the mutation in is not recommended as first-line therapy for APS. the European-derived population, the risk of VTE among FVL hetero- Given these small study sizes and heterogeneous therapies employed, zygotes without a personal history of VTE or an affected first-degree recommendations for treatment are difficult to make. It is unlikely that relative is less than 0.3%.59 Nevertheless, the risk is at least 10% among a patient with no history of VTE who has repetitive early losses and pregnant women who have either a personal history of VTE or an borderline positive APA levels reflects the same degree of risk or need affected first-degree relative.60 Pregnant homozygous patients without for intense therapy as a patient with high levels of APA, prior VTE, and a personal history of VTE or an affected first-degree relative have a recurrent growth-retarded stillbirths. It is unclear whether the former 1.5% risk for VTE in pregnancy; if there is a personal or family history TABLE 40-2 INHERITED THROMBOPHILIAS AND THEIR ASSOCIATION WITH VENOUS THROMBOEMBOLISM (VTE) IN PREGNANCY Probability of VTE (%) without or with a Personal History of VTE or a First-Degree Relative with VTE Thrombophilia Relative Risk of VTE (95% CI) Without With Ref. No. FVL (homozygous) 25.4 (8.8-66) 1.5 17 46 FVL (heterozygous) 5.3 (3.7-7.6) 0.20-0.26 10 45, 46 PGM (homozygous) NA 2.8 >17 46 PGM (heterozygous) 6.1 (3.4-11.2) 0.37 >10 45, 46 FVL/PGM (compound heterozygous) 84 (19-369) 4.7 NA 46 Antithrombin deficiency (<60% activity) 119 3.0-7.2 >40% 46, 47 Protein S deficiency (<55% activity) NA <1 6.6 46, 47 Protein C deficiency (<50% activity) 13.0 (1.4-123) 0.8-1.7 2-8 46, 47 CI, confidence interval; FVL, factor V Leiden mutation; NA, not available; PGM, prothrombin gene mutation.
  • 8. 832 CHAPTER 40 Coagulation Disorders in Pregnancy of VTE, the risk is 17% (see Table 40-2). Screening can be done by Early pregnancy is associated with a low-oxygen environment, with assessing aPC resistance using a second-generation coagulation assay intervillous oxygen pressures of 17.9 ± 6.9 mm Hg at 8 to 10 weeks, followed by genotyping for the FVL mutation if aPC resistance is found rising to 60.7 ± 8.5 mm Hg at 12 to 13 weeks.71 Trophoblast plugging of in a pregnant or nonpregnant woman. Alternatively, patients can the spiral arteries has been demonstrated in placental histologic studies simply be genotyped for FVL. before 10 weeks of gestation, and low Doppler flow is noted in the The College of American Pathologists Consensus Conference on uteroplacental circulation before 10 weeks.72 Indeed, the undetectable Thrombophilia compared 16 case-control studies reporting a link levels of superoxide dismutase in trophoblast before 10 weeks of gesta- between FVL and unexplained recurrent fetal loss and 6 studies failing tion are consistent with a hypoxic state.73 Therefore, if FVL or other to establish such an association and concluded that the latter studies thrombophilias are associated with early pregnancy loss, it is most were smaller and tended to include patients with early first-trimester likely through mechanisms other than placental thrombosis. Also, losses.61,62 In a meta-analysis of 31 studies, FVL was associated with because a majority of early pregnancy losses are associated with aneu- early (<13 weeks) pregnancy loss, with an OR of 2.01 (CI, 1.13 to 3.58), ploidy, thrombophilias are likely to play a far lesser role in such cases. but it was more strongly associated with late (>19 weeks), nonrecur- In contrast, uteroplacental thrombosis after 9 weeks would be expected rent fetal loss, with an OR of 3.26 (CI, 1.82 to 5.83).63 A case-control to reduce oxygen and nutrient delivery to a progressively larger embryo, study noted an even stronger link between FVL and recurrent fetal accounting for the apparent link between FVL and the other maternal losses after 22 weeks’ gestation (OR, 7.83; CI, 2.83 to 21.67).64 Dudding thrombophilias and later adverse pregnancy outcomes. and Attia conducted a meta-analysis and found no significant associa- The correlation between FVL and other later adverse pregnancy tion between FVL and first-trimester loss but an OR of 2.4 (CI, 1.1 to events is more controversial. Kupferminc and associates studied 110 5.2) for isolated (nonrecurrent) third-trimester fetal loss, which women and reported a link between FVL and severe preeclampsia (OR, increased to 10.7 (CI, 4.0 to 28.5) for two or more second- or third- 5.3; CI, 1.8 to 15.6).74 However, multiple case-control studies have trimester fetal losses.65 Similarly, Lissalde-Lavigne and associates failed to demonstrate a link between FVL and moderate or severe pre- reported the results of a case-control study nested in the 32,700 Nimes eclampsia.75-77 Dudding and Attia’s meta-analysis estimated a 2.9-fold Obstetricians and Haematologists (NOHA) First study cohort.66 Mul- (CI, 2.0 to 4.3) increased risk of severe preeclampsia among FVL car- tivariate analysis revealed an association between FVL and pregnancy riers.65 Similarly, Lin and August conducted a meta-analysis of 31 loss after 10 weeks (OR, 3.46; CI, 2.53 to 4.72) but not for losses occur- studies involving 7522 patients and reported pooled ORs of 1.81 (CI, ring between 3 and 9 weeks. These studies strongly suggest that FVL 1.14 to 2.87) for FVL and all preeclampsia and 2.24 (CI, 1.28 to 3.94) is associated with fetal (>9 weeks) and not embryonic (<9 weeks) for FVL and severe preeclampsia.78 However, Kosmas and coauthors losses. evaluated 19 studies involving 2742 hypertensive women and 2403 The association between FVL and late, compared with early, preg- controls and reported that, whereas the studies published before 2000 nancy losses was also demonstrated by a large European retrospective found a modest association between FVL and preeclampsia (OR, 3.16; cohort study involving 571 women with thrombophilia having 1524 CI, 2.04 to 4.92), those published after 2000 did not (OR, 0.97; CI, 0.61 pregnancies, compared with 395 controls having 1019 pregnancies.67 to 1.54).79 This suggests a reporting bias. Therefore, there is not suffi- There was a statistically significant association between any inherited cient evidence to conclude that FVL is associated with an increased thrombophilia and stillbirth (OR, 3.6; CI, 1.4 to 9.4) but not spontane- occurrence of preeclampsia, although there is inadequate power to rule ous abortion (OR, 1.27; CI, 0.94 to 1.71). The same trend was noted out an association between this thrombophilia and severe, early-onset for FVL, with an OR for stillbirth of 2.0 (CI, 0.5 to 7.7) compared with preeclampsia. 0.9 for spontaneous abortion (CI, 0.5 to 1.5). These same investigators Kupferminc and colleagues also reported a modest association then monitored a subset of 39 thrombophilic and 51 control patients between FVL and abruption (OR, 4.9; CI, 1.4 to 17.4).74 A second case- who had no previous history of fetal loss and did not receive antico- control study found that 17 of 27 patients with abruption had aPC agulation during the prospective follow-up aspect of the study.68 They resistance, compared with 5 of 29 control subjects (OR, 8.16; CI, 3.6 reported a modestly increased overall risk of fetal loss in a subsequent to 12.75), and 8 cases were found to have the FVL mutation, compared pregnancy among women with thrombophilia (7/39 versus 7/51; RR, with one control.80 Prochazka and associates conducted a retrospective 1.4; CI, 0.4 to 4.7) and also among those with FVL (RR, 1.4; CI, 0.3 to case-control study among 180 women with placental abruption and 5.5). However, this study lacked power to exclude the usually reported 196 controls and found a significantly increased incidence of FVL car- twofold to threefold higher rates of loss associated with FVL, because riage among cases compared with controls (14.1% versus 5.1%; OR, there were only 21 patients. Nevertheless, given the trends, the authors 3.0; CI, 1.4 to 6.7).81 Alfirevic and coworkers conducted a meta-analysis concluded that “Women with thrombophilia appear to have an that revealed a strong association between placental abruption and increased risk of fetal loss, although the likelihood of a positive outcome both homozygosity and heterozygosity for the FVL mutation (OR, is high in both women with thrombophilia and in controls.”68 16.9; CI, 2.0 to 141.9, and OR, 6.7; CI, 2.0 to 21.6, respectively).82 In a retrospective cohort study, Roque and colleagues evaluated 491 Therefore, there appears to be evidence of an association between FVL patients with a history of various adverse pregnancy outcomes for a carriage and placental abruption, although large case-control and ret- variety of thrombophilias and reported that the presence of FVL was rospective cohort studies are needed to confirm this link. paradoxically protective against losses before 10 weeks of gestation There is less consistent evidence for an association between FVL (OR, 0.23; CI, 0.07 to 0.77) but was significantly associated with losses and IUGR. Martinelli and coauthors reported a strong association after 14 weeks (OR, 3.71; CI, 1.68 to 8.23).69 Moreover, women who between FVL and IUGR (OR, 6.9; CI, 1.4 to 33.5).83 However, multiple, experienced only euploid losses were not more likely to have an identi- large case-control and cohort studies have reported no statistically fied thrombophilia than women who experienced only aneuploid early significant association between FVL and IUGR of less than the 10th or losses (OR, 1.03; CI, 0.38 to 2.75). Consistent with this protective effect less than the 5th percentile.74,77,84 Howley and colleagues conducted a of FVL on early pregnancy is the observation that implantation rates systematic review of studies describing the association between FVL after in vitro fertilization were substantially higher among FVL carriers and IUGR; among 10 case-control studies meeting selection criteria, than among noncarriers (90% versus 49%; P = .02).70 there was a significant association between FVL and IUGR (OR, 2.7;
  • 9. CHAPTER 40 Coagulation Disorders in Pregnancy 833 CI, 1.3 to 5.5).85 However, no association was found among five cohort greater thrombotic risk than either FVL or PGM homozygotes. Pregnant studies, of which three were prospective and two retrospective (RR, patients who are compound heterozygotes without a personal or strong 0.99; CI, 0.5 to 1.9). The authors suggested that the putative association family history have a 4.7% risk of VTE.59,60 between IUGR and FVL was most likely driven by small, poor-quality The PGM has been associated with an increased risk of pregnancy studies that demonstrated extreme associations. loss in multiple case-control studies. One such study reported the pres- In summary, there appears to be a modest association between FVL ence of the PGM in 7 of 80 patients with recurrent miscarriage, com- and fetal loss after 10 weeks, and particularly with isolated losses after pared with 2 of 100 control patients (9% versus 2%; P = .04; OR, 4.7; 22 weeks. There is a possible association between FVL and abruption. CI, 0.9 to 23).92 Finan and associates also found an association between However, no clear association exists between FVL and either pre- PGM and recurrent abortion, with an OR of 5.05 (CI, 1.14 to 23.2).93 eclampsia or IUGR, although studies have been underpowered to However, other studies have failed to identify a link.94,95 A 2004 meta- definitely exclude a link with severe early-onset preeclampsia or analysis of seven studies evaluating the correlation between PGM and severe IUGR. It also is noteworthy that two prospective cohort studies recurrent pregnancy loss, defined as two or more losses in the first or found no association between FVL and any adverse obstetric outcome, second trimester, found a combined OR of 2.0 (CI, 1.0 to 4.0).96 Analo- including pregnancy loss, preeclampsia, and IUGR,86.87 but these gous to FVL, the association between PGM and pregnancy loss increases studies were underpowered to draw firm conclusions. It is important with increasing gestational age. In the meta-analysis by Rey and col- to note that, although thrombophilia may be sufficient to cause preg- leagues, an association was reported between PGM and recurrent loss nancy loss and perhaps abruption, most affected individuals without before 13 weeks’ gestation (OR, 2.3; CI, 1.2 to 4.79), but, as with FVL, such prior obstetric complications are at low risk for subsequent a stronger association was observed between PGM and recurrent fetal adverse pregnancy outcomes. loss before 25 weeks (OR, 2.56; CI, 1.04 to 6.29).63 Therefore, PGM appears to fit the pattern displayed by FVL carriers of progressively Other Factor V Mutations greater risk of fetal loss with advancing gestation; however, these risks Other mutations in the factor V gene have been variably linked to remain quite modest. maternal VTE and adverse pregnancy outcomes. The factor V HR2 There are more limited data on the association between PGM and haplotype causes decreased factor V cofactor activity in the aPC- abruption. The case-control study of Kupferminc and associates found mediated degradation of factor VIIIa; however, a meta-analysis an association between the PGM and abruptio placenta (OR, 8.9; CI, demonstrated no statistically significant association between the HR2 1.8 to 43.6),74 whereas Prochazka and colleagues found no such link.81 haplotype and risk of VTE (OR, 1.15; CI, 0.98 to 1.36).88 There are Meta-analyses suggested a strong link between PGM heterozygosity and conflicting reports about the linkage of the factor V HR2 haplotype placental abruption (OR, 28.9; CI, 3.5 to 236.7).82 It can be concluded and recurrent pregnancy loss. Zammiti and associates reported no that there is probably a link between the PGM and abruptio placentae. association with losses before 8 weeks, but homozygosity for the factor The link between the PGM and other adverse pregnancy events is V HR2 haplotype was associated with significant and independent far less certain. Kupferminc and colleagues found an association risks of pregnancy loss during weeks 8 and 9, which increased during between the PGM and IUGR of less than the 5th percentile (OR, 4.6; weeks 10 to 12 and culminated after 12 weeks.89 In contrast, Dilley and CI, 1 to 20) but no link between the PGM and severe preeclampsia.74 colleagues found no association between carriage of the factor V HR2 Martinelli and coworkers noted a strong association between PGM and haplotype and pregnancy loss.90 The sample sizes of these studies were IUGR in their case-control study (OR, 5.9; CI, 1.2 to 29.4).83 In con- too small to draw firm conclusions from, nor can conclusions be trast, the large case-control study of Infante-Rivard and colleagues reached about the link between factor V HR2 haplotype and other reported no link in heterozygotes between PGM and IUGR, with an adverse pregnancy outcomes. OR of 0.92 (CI, 0.36 to 2.35).84 Similar results have been observed by Two other mutations in the factor V gene that occur at the second other workers.74,80 A number of other case-control studies and meta- aPC cleavage site, factor V R306G Hong Kong and factor V R306T analyses have failed to establish a link between PGM and either pre- Cambridge, have also been described but do not appear to be strongly eclampsia or severe preeclampsia.77,78,97,98 associated with VTE.91 There are inadequate data to assess any linkage Therefore, although most individual studies are limited by small between these mutations and adverse pregnancy outcomes.89 sample size, case-control design, and the potential for selection biases (as was the case with FVL), there may be a weak association between Prothrombin Gene Mutation the PGM and fetal loss as well as abruptio placenta. However, there The prothrombin G20210A polymorphism is a point mutation causing does not appear to be a significant link between PGM and IUGR or a guanine→adenine switch at nucleotide position 20210 in the 3′- preeclampsia. untranslated region of the gene.58 This nucleotide switch results in increased translation, possibly due to enhanced stability of messenger Hyperhomocysteinemia RNA (mRNA). As a consequence, there are increased circulating levels Hyperhomocysteinemia can result from a number of mutations in the of prothrombin. Although the mutation is present in only 2% to 3% of methionine metabolic pathway. Homozygosity for mutations in the the European population, it is associated with 17% of VTEs in preg- methylene tetrahydrofolate reductase (MTHFR) gene is by far the most nancy.59 However, as was the case with FVL, the risk of VTE in pregnant common cause. Homozygosity for the MTHFR C677T polymorphism patients who are heterozygous for the prothrombin G20210A gene is present in 10% to 16% of all Europeans, and that for the A1298C mutation (PGM) but who are without a personal or strong family mutation occurs in 4% to 6%.99 Importantly, about 40% of whites are history of VTE is less than 0.5%.59 Pregnant PGM-heterozygous patients heterozygous for this polymorphism, and most heterozygotes have with such a history have at least a 10% risk of VTE.60 PGM-homozygous normal levels of homocysteine. Moreover, because homocysteine levels patients without a personal or strong family history have a 2.8% risk for decrease in pregnancy and U.S. diets are replete with folic acid supple- VTE in pregnancy, whereas such a history probably confers a risk of at mentation, hyperhomocysteinemia is extremely rare even among least 20% (see Table 40-2). Because the combination of FVL and PGM homozygotes. In addition, although hyperhomocysteinemia is a risk has synergistic hypercoagulable effects, compound heterozygotes are at factor for VTE (OR, 2.5; CI, 1.8 to 3.5),100 MTHFR mutations per se
  • 10. 834 CHAPTER 40 Coagulation Disorders in Pregnancy do not appear to convey an increased risk for VTE in either nonpreg- tion (OR, 5.2; CI, 1.5 to 18.1) but had a more modest association with nant101 or pregnant women.102 miscarriage before 28 weeks (OR, 1.7; CI, 1.0 to 2.8).67 Given its rarity, As with thrombotic risk, meta-analyses suggest that elevated fasting there is a paucity of evidence concerning the link between AT defi- homocysteine levels are more strongly associated with recurrent preg- ciency and other adverse pregnancy outcomes. Roque and associates nancy loss (<16 weeks) than are MTHFR mutations, with an OR of 2.7 found it to be associated with increased risks of IUGR (OR, 12.93; CI, (CI, 1.4 to 5.2) versus 1.4 (CI, 1.0 to 2.0), respectively.103 The Hordaland 2.72 to 61.45), abruption (OR, 60.01; CI, 12.02 to 300.46), and preterm Homocysteine Study assessed the relationship between plasma homo- delivery (OR, 4.72; CI, 1.22 to 18.26).69 cysteine values in 5883 women and their prior 14,492 pregnancy out- comes.104 When the authors compared the upper with the lower Protein C Deficiency quartile of plasma homocysteine levels, elevated levels trended toward Deficiency of PC results from more than 160 distinct mutations, pro- an association with preeclampsia (OR, 1.32; CI, 0.98 to 1.77), very low ducing a highly variable phenotype. As was the case with AT deficiency, birth weight (OR, 2.01; CI, 1.23 to 3.27), and stillbirth (OR, 2.03; CI, PC deficiency can be associated with either reductions in both antigen 0.98 to 4.21), although none of these associations reached statistical and activity (type 1) or normal levels of antigen but decreased activity significance.105 In contrast, a clear association was demonstrated (type 2).58 The very rare homozygous PC deficiency results in neonatal between placental abruption and homocysteine levels greater than purpura fulminans and a requirement for lifelong anticoagulation.111 15 μmol/L (OR, 3.13; CI, 1.63 to 6.03), and a weaker but significant Activity levels can be ascertained by either a functional (clotting) or association was observed between homozygosity for the C677T chromogenic assay. MTHFR mutation and abruption (OR, 1.6; CI, 1.4 to 4.8). Indeed, a Estimates of prevalence and thrombotic risk reflect the cutoff meta-analysis of these two risk factors found that hyperhomocystein- values employed. Most laboratories use activity cutoff values of 50% emia had a larger pooled OR for abruption (5.3; CI, 1.8 to 15.9) than to 60%, which are associated with prevalence estimates of 0.2% to 0.3% did homozygosity for the MTHFR mutation (2.3; CI, 1.1 to 4.9).106 and RRs for VTE of 6.5 to 12.5.58,68,108. The risk of VTE in pregnancy These studies strongly suggest that hyperhomocysteinemia, but not among PC-deficient patients has been reported to range from 2% to simply the presence of the MTHFR mutations, is linked to VTE and 8%.30,112,113 Because of its rarity, there are few reports linking PC defi- adverse pregnancy outcomes. Moreover, whereas homozygosity for ciency to adverse pregnancy outcomes, and those that exist involve too MTHFR mutations is very common (10% to 20% in European popula- few patients to draw any firm conclusions. In their case-control study, tions), hyperhomocysteinemia is quite rare. Therefore, screening for Roque and colleagues reported a strong link between PC deficiency this disorder should be limited, requiring a fasting homocysteine level and abruption (OR, 13.9; CI, 2.21 to 86.9) and between PC deficiency greater than 12 μmol/L to be considered positive in pregnant patients.146 and preeclampsia (OR, 6.85; CI, 1.09 to 43.2).69 A meta-analysis also reported a strong association of this deficiency and preeclampsia/ Antithrombin Deficiency eclampsia (OR, 21.5; CI, 1.1 to 414.4) but not stillbirth.82 It is biologi- Deficiency of AT is both the rarest and the most thrombogenic of the cally plausible that PC deficiency should pose risks of fetal loss and heritable thrombophilias. More than 250 mutations have been identi- abruption analogous to those associated with FVL. However, given the fied in the AT gene, producing a highly variable phenotype. In general, very small sample sizes, no firm conclusions can be drawn regarding disorders can be classified into three types: type 1, those associated the link between PC deficiency and either preeclampsia or IUGR. with reductions in both antigen and activity; type 2, those associated with normal levels of antigen but decreased activity; and type 3, the Protein S Deficiency very rare homozygous deficiency associated with little or no activ- More than 130 mutations have been linked to deficiency of PS.58 The ity.58,108 Complicating matters further, patients can develop acquired great majority of affected patients can be characterized as having low AT deficiency due to liver impairment, increased consumption of AT levels of both total and free PS antigen (type 1) or as having only a low associated with sepsis or DIC, or increased renal excretion in severe free PS level due to enhanced binding to the complement 4B–binding nephrotic syndrome. However, both inherited and acquired AT defi- protein (type 2a). The latter condition is frequently caused by a serine ciencies are associated with VTE. 460 to proline mutation (protein S Heerlen), which has been associated Because screening for AT deficiency is done by assessing activity, its with either FVL or PC mutation in about half of affected patients.114 prevalence varies with the activity cutoff level employed, ranging from As with PC deficiency, homozygous PS deficiency results in neonatal 0.02% to 1.1%. The recommended cutoff for “abnormality” is 50% purpura fulminans.111 activity, which is associated with a prevalence of 0.04% (1/2500 Screening for PS deficiency can be done with an activity assay, but people).108 Although it increases the risk of VTE up to 25-fold in the this approach is associated with substantial interassay and intra-assay nonpregnant state,108 because of its rarity AT deficiency is associated variability, in part because of frequently changing physiologic levels of with only 1% to 8% of VTE episodes.58 Pregnancy may increase its complement 4B–binding protein.115 Detection of free PS antigen levels thrombogenic potential substantially (see Table 40-2). Moreover, use lower than 55% in a nonpregnant woman is consistent with the diag- of a less stringent threshold yields a higher prevalence of AT deficiency nosis.115 However, Paidas and colleagues found far lower levels in in patients with VTE. For example, in one study, 19.3% of pregnant normal pregnancy, with suggested cutoff levels for free PS of 29% for women with VTE had less than 80% AT activity,59 but many of these the first and second trimesters and 23% for the third trimester.29 With cases may have been acquired due to clot-associated AT consumption. such criteria, the prevalence of true PS deficiency is low (0.03% to Conversely, the overall risk of VTE in pregnancy associated with AT 0.13%) in the nonpregnant state and rises up to 3% in the pregnant deficiency has been variably reported as 3% to 48%.30,60,109,110 The risk state, but its degree of thrombogenicity is modest (OR, 2.4; CI, 0.8 to of VTE in pregnancy among AT-deficient patients most likely varies 7.9).29,58,115 Among those patients with PS deficiency and a strong also with a personal or family history (from 3% to 7% without such a family history of VTE, the risk of VTE in pregnancy is 6.6% (see Table history to as much as 40% with such a history).60 40-2).112 In the largest retrospective cohort study, AT deficiency was associ- The meta-analysis by Rey and colleagues reported an association ated with a significantly increased risk of stillbirth after 28 weeks’ gesta- between PS deficiency and recurrent late (>22 weeks or <25 weeks)
  • 11. CHAPTER 40 Coagulation Disorders in Pregnancy 835 fetal loss (OR, 14.7; CI, 1.0 to 2181) as well as nonrecurrent fetal losses described a modest association between 4G/4G homozygosity and the at greater than 22 weeks (OR, 7.4; CI, 1.3 to 43).63 A second meta- occurrence of severe preeclampsia (OR, 1.62; CI, 1.02 to 2.57).130 analysis suggested an even stronger link between PS deficiency and Glueck and colleagues conducted a case-control study and observed stillbirth (OR, 16.2; CI, 5.0 to 52.3), IUGR (OR, 10.2; CI, 1.1 to 91.0), that compared to patients with either the 5G/5G or the 4G/5G allele, and preeclampsia/eclampsia (OR, 12.7; CI, 4 to 39.7), but not abrup- those who were homozygous for the 4G/4G allele had greater rates of tion.82 Again, the small sample sizes limit the ability to draw firm prematurity (14% versus 3%; P = .001), second- and third-trimester conclusions. deaths (9% versus 2%; P = .004), and IUGR (4% versus 0.4%; P = .012).131 However, caution must be exercised in the interpretation Protein Z-Dependent Protease Inhibitor and of these data, because the occurrence of adverse outcomes was lower Protein Z Deficiency in the control group than would be expected in the general population, Two nonsense mutations in the coding region of the ZPI gene have and 30% of patients who were homozygous for the 4G/4G mutation been identified to occur more often in patients with VTE (4.4%) than had coexisting thrombophilias.131 As was the case for the association in controls (0.8%) (OR, 5.7; CI, 1.25 to 26.0).116 Deficiency of PZ between 4G/4G homozygosity and VTE, this mutation may be more (activity <5th percentile) has been associated with strokes but not with likely to be linked with adverse pregnancy outcomes when it occurs VTE.117 PZ deficiency was linked to late fetal loss (10 to 16 weeks’ gesta- simultaneously with other thrombophilic disorders or with triggers of tion) in one study (OR, 6.7; CI, 3.1 to 14.8)118 but not in another.119 increased PAI-1 expression such as the ACE D/D genotype and disor- Paidas and associates prospectively compared PZ levels in 103 patients ders linked to insulin resistance (e.g., obesity, type 2 diabetes, hyper- with subsequent normal pregnancy outcome and 106 women with lipidemia, polycystic ovary syndrome). various adverse pregnancy outcomes including fetal loss, IUGR, pre- Polymorphisms have been described in the TAFI and tPA genes, but eclampsia, and abruption; they noted lower first-trimester PZ levels no clear link has been established for either with increased VTE risk among the patients with subsequent adverse outcomes (1.81 ± 0.7 or adverse pregnancy outcomes. versus 2.21 ± 0.8 μg/mL; P < .001).29 There were also lower PZ levels in affected patients in the second trimester (1.5 ± 0.4 versus 2.0 ± Other Thrombophilic Mutations 0.5 μg/mL; P < .0001) and in the third trimester (1.6 ± 0.5 versus 1.9 The -455GtoA polymorphism in the fibrinogen β gene leads to ± 0.5 μg/mL; P < .0002). However, it is unclear whether low PZ levels increased plasma fibrinogen levels but an unclear thrombotic risk.132 were causative or whether PZ was reduced as a result of other throm- Both the apolipoprotein B R3500Q and E2/E3/E4 polymorphisms and bophilias or the ongoing uteroplacental pathologic processes. Although the platelet receptor gene polymorphisms GpIIIa L33P and GpIa PZ deficiency may have its own pathogenic potential, its presence with 807CtoT also offer an uncertain VTE risk, although they may contrib- other thrombophilic mutations in patients with prior fetal loss may ute to coronary and cerebral artery thrombosis, particularly in the also confer resistance to heparin therapy.119 presence of other risk factors such as smoking, hypertension, obesity, and diabetes. The common hereditary hemochromatosis gene (HFE Mutations in Fibrinolytic Pathway Genes gene C282Y mutation) does not appear to be a risk factor for VTE, Two polymorphisms, 675 4G/5G and A844G, in the promoter region even when it is present in patients with FVL.133 An analysis of links of the PAI-1 gene have been described.120 Homozygosity for the 4G/4G between fetal loss and β-fibrinogen -455GtoA, between apolipoprotein allele in the PAI-1 gene results in the presence of four instead of five B R3500Q and E2/E3/E4, and between GpIIIa L33P and HFE C282Y consecutive guanine nucleotides in the promoter region, producing a found no significant associations.134 site that is too small to permit repressor binding. Conversely, the Polymorphisms have also been described in the thrombomodulin, A844G polymorphism affects a consensus sequence binding site for the TFPI, and endothelial PC receptor genes, but they are of no or unknown regulatory protein Ets, enhancing PAI-1 gene transcription. The preva- thrombogenic potential.58 The Val34Leu polymorphism in the factor lence of the 4G/4G genotype in the general population is high, ranging XIII gene is associated with increased activation by thrombin and a from 23.5% to 32.3%.121,122 Moreover, most studies have not found any potentially thrombotic phenotype135 but confers uncertain risks for independent relationship between the 4G/4G polymorphism and the VTE and adverse pregnancy outcome. development of VTE in unselected patients.123-125 However, the 4G/4G genotype has been linked to a further increased risk for VTE when it Summary is present in patients with PS deficiency or FVL, suggesting that it plays A great number of potentially thrombophilic polymorphisms are being an additive but not independent role in the genesis of VTE.126,127 No uncovered, at an ever-increasing pace. Although most of these muta- relationship has been demonstrated between the A844G polymor- tions do not appear to be highly thrombogenic when present in isola- phism and VTE.123 tion, they may exert an additive or even a synergistic effect on the There are limited data on the association between the 4G/4G allele thrombogenicity of other disorders. This might account for the finding and adverse pregnancy outcomes. No statistically significant associa- of a very modest association between a given thrombophilic state (e.g., tion was found between isolated homozygosity for the 4G/4G muta- FVL, PS deficiency) and the isolated occurrence of VTE or adverse tion and recurrent spontaneous abortion in several small studies.128,129 pregnancy outcomes in low-risk populations together with a far higher However, endothelial expression of PAI-1 is induced by angiotensin II, concordance rate within certain families. and generation of the latter molecule is increased by a deletion (D)/ insertion (I) polymorphism in the angiotensin I–converting enzyme (ACE) gene. Buchholz and associates observed a significant increase in Screening for Thrombophilias the combination of the PAI-1 4G/4G and ACE D/D genotypes among patients with recurrent spontaneous abortion compared with controls Screening and Prevention of (13.6% versus 4.7%; OR, 3.2; P = .01).121 Venous Thromboembolism Moreover, a possible association exists between the 4G/4G allele The presence of a known thrombophilia increases the recurrence risk and later adverse pregnancy outcomes. Yamada and coworkers of VTE among pregnant women. Brill-Edwards and associates pro-
  • 12. 836 CHAPTER 40 Coagulation Disorders in Pregnancy spectively evaluated 125 pregnant women with a prior VTE, 95 of Alternatively, prophylaxis can employ LMWH. Regimens can whom were tested for acquired and inherited thrombophilias (includ- include dalteparin 5000 U SQ, given every 12 hours or once a day, or ing APAs, FVL, and PGM) and for PC, PS and AT deficiencies.136 enoxaparin 30 mg SQ, every 12 hours or 40 mg SQ once a day. Whereas Antenatal heparin was withheld in all patients, but postpartum anti- monitoring of anti-factor Xa levels is not necessary in nonpregnant coagulation was provided. The overall antepartum recurrence rate for patients, given the absence of data in pregnancy, the greater variability VTE was 2.4% (CI, 0.2% to 6.9%), but no recurrences were observed in heparin binding, and the increased volume of distribution and/or in the 44 women who had no evidence of thrombophilia and whose metabolism and excretion in pregnancy, we recommend serial mea- previous episode of thrombosis was associated with temporary risk surements of anti-factor Xa levels, with a goal of 0.1 to 0.2 U/mL at 4 factors that included pregnancy itself. Among the 51 women who had hours after each injection. a thrombophilia or whose previous VTE was considered idiopathic, the For patients with highly thrombogenic thrombophilias (e.g., homo- antepartum recurrence rate was 5.9% (CI, 1.2% to 16.2%), and among zygotes or compound heterozygotes for FVL and PGM, patients with the 25 thrombophilic patients the recurrence risk was 16% (4 patients) AT deficiency or APS with prior VTE) who have a personal or strong (OR, 6.5; CI, 0.8 to 56.3). Therefore, there appears to be evidence-based family history of VTE, and for patients with recurrent VTE, therapeutic justification to test pregnant patients with a prior history of VTE (high-dose) unfractionated heparin or LMWH should be used. The associated with temporary and reversible risk factors (e.g., fractures, goal of unfractionated heparin therapy is to obtain and maintain an prolonged immobilization, cancer), because the presence of a throm- activated partial thromboplastin time (aPTT) of 1.5 to 2.5 times bophilic state would be an indication for antepartum as well as post- control values or a plasma heparin concentration of 0.2 to 0.4 U/mL, partum thromboprophylaxis. Conversely, women with a prior VTE or an anti-factor Xa concentration of 0.4 to 0.7 U/mL. The aPTT associated with a nonrecurring risk factor who are without thrombo- should not be used to guide unfractionated heparin therapy in patients philia or other current major risk or susceptibility factors (e.g., need with prolonged aPTT due to LAs. Therapeutic LMWH therapy consists for prolonged bed rest, obesity, current superficial thrombophlebitis) of enoxaparin 1 mg/kg SQ twice daily or a comparable dose of dalte- may not need antepartum prophylactic heparin therapy during preg- parin (e.g., 10,000 U SQ every 12 hours). Barbour and colleagues nancy.136 However, because thrombotic events during pregnancy in evaluated whether the standard therapeutic doses of dalteparin main- such women have been reported on rare occasions,110 the risks and tained peak therapeutic levels of anticoagulation during pregnancy benefits of antepartum thromboprophylaxis should be discussed with and reported that 85% (11/13) of patients required an upward dosage the patient. Also, such patients should receive postpartum prophylaxis, adjustment.139 Therefore, we recommend titrating either agent to because most pregnancy-associated fatal pulmonary embolisms occur maintain factor Xa levels at 0.6 to 1.0 U/mL 4 hours after injection. in the postpartum period. In this setting, knowledge of the thrombo- For patients with highly thrombogenic thrombophilias in the absence philic state affects management. of a personal or strong family history of VTE, we recommend using The 7th American College of Chest Physicians Guidelines for the an intermediate or “high prophylactic” dose of LMWH, titrating the Antenatal and Peripartum Management of Thrombophilia suggest that dose to maintain factor Xa levels at 0.4 to 0.6 U/mL. the occurrence of VTE in nonpregnant patients who are receiving Regardless of whether the patient is receiving prophylactic, thera- estrogen-containing contraceptives is comparable with such events peutic, or high prophylactic doses of LMWH, we recommend switch- occurring in pregnancy. In either case they would recommend ante- ing to the comparable dose of unfractionated heparin at 36 weeks, to partum and postpartum prophylaxis in a subsequent pregnancy, permit application of neuraxial anesthesia if desired or indicated regardless of thrombophilia status in women who had a VTE during a during labor or delivery. Both heparin and LMWH are associated with prior pregnancy or while taking estrogen-containing contraceptives.137 an increased risk for osteopenia. Although of unproven benefit, it Similarly, consideration should also be given to screening of pregnant seems prudent to advise axial skeleton weight-bearing exercise and women who have a strong family history (i.e., affected first-degree calcium supplementation. These medications also increase the risk for relative) of VTE. Given the greater than 10% risk of VTE in pregnancy heparin-induced thrombocytopenia, which paradoxically is associated among patients with such a history and a thrombophilia (see Table with thrombosis. With therapeutic doses of LMWH and with any dose 40-2), thromboprophylaxis, although of unproven efficacy, is a reason- of unfractionated heparin, platelet counts should be obtained after 3 able option. Cost-effective screens should be initially limited to the to 4 days of therapy and intermittently for the first 3 weeks of most common and most thrombogenic disorders, including FVL and treatment.140 PGM. Negative results should lead to evaluation of fasting homocys- Postpartum thromboprophylaxis is also required. Warfarin is con- teine levels and PC, PS, and AT deficiencies. sidered safe to take while breast feeding. Warfarin is started within 24 The dosing regimen to be employed varies with the severity of the hours of commencing heparin therapy. Doses are determined by moni- thrombophilia, the patient’s family history, and the nature of the prior toring the international normalized ratio (INR). To avoid paradoxical VTE episodes. In general, for patients with a personal or strong family thrombosis and skin necrosis from warfarin’s early, predominantly history of VTE and a lesser thrombogenic thrombophilia (e.g., FVL, anti-PC effect, it is critical to maintain these women on therapeutic PGM, hyperhomocysteinemia refractory to folate therapy, PC or PS doses of unfractionated heparin or LMWH for a minimum of 5 days deficiency), antepartum prophylaxis with either mini-dose unfraction- and until the INR is in the therapeutic range (2.0 to 3.0) for 2 consecu- ated heparin or low-dose LMWH is effective in preventing DVT in tive days. pregnant patients at risk. The standard regimen of unfractionated heparin used in pregnancy consists of 5000 units administered SQ Screening and Prevention of Adverse every 12 hours, increased by 2500 units in the second and third tri- Pregnancy Outcomes mesters. However, Barbour and associates observed that this standard As can be discerned from the preceding review, there appears to be a unfractionated heparin regimen was inadequate to achieve the desired modest and consistent association between the major inherited throm- anti-factor Xa therapeutic range in 5 of 9 second-trimester pregnancies bophilias (including FVL, PGM, elevated fasting homocysteine levels and in 6 of 13 third-trimester pregnancies.138 Therefore, assessment of and PC, PS, and AT deficiency) and fetal loss after 10 weeks, and par- anti-factor Xa levels may be important. ticularly isolated losses after 22 weeks. There is also a possible associa-