Departamento de Ciencias Básicas
Asignatura Calculo Integral
Segundo corte – Actividad 3 Sala de Cómputo
OBJETIVO: Utiliza...
e. ∫
0

𝜋⁄
2

.∫
0

𝑥 2 𝑠𝑒𝑛2𝑥𝑑𝑥;

𝜋⁄
2

𝑢 = 𝑥 2 ; 𝑑𝑣 = 𝑠𝑒𝑛2𝑥𝑑𝑥; 𝑑𝑢 = 2𝑥𝑑𝑥; 𝑣 = −

𝑥 2 𝑠𝑒𝑛2𝑥𝑑𝑥 = −

1

.∫
0
.∫
0

𝜋⁄
2

𝑥 2...
21

∫
1

.

𝑥

𝑑𝑥 ≈

1
30

[1 + 6.636 + 1.666 + 3.077 + 1.429 + 2.666 + 1.25 + 2.353 + 1.111 + 2.105 +

0.5]
21

.∫
1

𝑥

...
Estimación del error:
.𝑓 =

4
1+𝑥 2

; 𝑓´´ =

24𝑥 2 −8
(𝑥 2 +1)3

; El valor máximo de 𝑓´´ ocurre cuando 𝑥 = 0

. |𝑓 ´´ | ...
Próxima SlideShare
Cargando en…5
×

Metodos integracion

313 visualizaciones

Publicado el

Calculo Integral. Solucion integrales definidas e indefinidas por distintos metodos de integracion

Publicado en: Educación
0 comentarios
0 recomendaciones
Estadísticas
Notas
  • Sé el primero en comentar

  • Sé el primero en recomendar esto

Sin descargas
Visualizaciones
Visualizaciones totales
313
En SlideShare
0
De insertados
0
Número de insertados
2
Acciones
Compartido
0
Descargas
2
Comentarios
0
Recomendaciones
0
Insertados 0
No insertados

No hay notas en la diapositiva.

Metodos integracion

  1. 1. Departamento de Ciencias Básicas Asignatura Calculo Integral Segundo corte – Actividad 3 Sala de Cómputo OBJETIVO: Utilizar una herramienta tecnológica (derive, geogebra) que facilite realizar procesos algorítmicos, con el fin de solucionar integrales definidas e indefinidas que requieran en su solución la aplicación de diferentes métodos de integración. 1. Resuelva las siguientes integrales por el método de partes: a. ∫ 𝑥𝑠𝑒𝑛(4𝑥)𝑑𝑥 𝑢 = 𝑥; 𝑑𝑢 = 𝑑𝑥; 𝑑𝑣 = 𝑠𝑒𝑛(4𝑥)𝑑𝑥; 𝑣 = − 𝑥𝐶𝑜𝑠(4𝑥) .∫ 𝑥𝑠𝑒𝑛(4𝑥)𝑑𝑥 = − .∫ 𝑥𝑠𝑒𝑛(4𝑥)𝑑𝑥 = 4 𝑠𝑒𝑛(4𝑥) 16 𝑥𝑒 𝑥 𝑥𝑒 𝑥 𝑥𝑒 𝑥 +∫ 𝑥𝑒 𝑥 𝑥+1 𝑥𝑒 𝑥 𝑥𝑒 𝑥 𝑥+1 𝑥𝑒 𝑥 . ∫ (𝑥+1)2 𝑑𝑥 = − . ∫ (𝑥+1)2 𝑑𝑥 = − .∫ .∫ .∫ .∫ √ 𝑥+1 log(𝑥+1) √ 𝑥+1 log(𝑥+1) √ 𝑥+1 log(𝑥+1) √ 𝑥+1 log(𝑥+1) √ 𝑥+1 𝑑𝑥 4 𝑥𝐶𝑜𝑠(4𝑥) 4 + 𝑐 1 .∫ (𝑥+1)2 𝑑𝑥 = − log(𝑥+1) +∫ 4 𝑢 = 𝑥𝑒 𝑥 ; 𝑑𝑣 = (𝑥+1)2 𝑑𝑥; 𝑑𝑢 = 𝑒 𝑥 (𝑥 + 1)𝑑𝑥; 𝑣 = − b. ∫ (𝑥+1)2 𝑑𝑥 c. . ∫ − 𝐶𝑜𝑠(4𝑥) 𝐶𝑜𝑠(4𝑥) 𝑥+1 𝑒 𝑥 (𝑥+1) 𝑑𝑥 𝑥+1 + ∫ 𝑒 𝑥 𝑑𝑥 + 𝑒 𝑥 𝑑𝑥 𝑑𝑥 ; 𝑢 = 1 + 𝑥, 𝑑𝑥 = ∫ 1 𝑥+1 log(𝑢) √𝑢 𝑑𝑢 = 𝑑𝑥 𝑑𝑢 ; 𝑢 = log(𝑢) ; 𝑑𝑢 = 𝑑𝑥 = 2√ 𝑢 log(𝑢) − 2 ∫ 1 √𝑢 1 𝑢 𝑑𝑢; 𝑑𝑣 = 1 √𝑢 𝑑𝑢; 𝑣 = 2√ 𝑢 𝑑𝑢 𝑑𝑥 = 2√ 𝑢 log(𝑢) − 4√ 𝑢 + 𝑐 𝑑𝑥 = 2√ 𝑥 + 1 log(𝑥 + 1) − 4√ 𝑥 + 1 + 𝑐 d. ∫ 𝑠𝑒𝑐 5 𝑥𝑑𝑥 = ∫ 𝑠𝑒𝑐 3 𝑥 𝑠𝑒𝑐 2 𝑥; .𝑢 = 𝑠𝑒𝑐 3 𝑥; 𝑑𝑣 = 𝑠𝑒𝑐 2 𝑥𝑑𝑥; 𝑑𝑢 = 3𝑠𝑒𝑐 3 𝑥𝑡𝑎𝑛𝑥𝑑𝑥; 𝑣 = 𝑡𝑎𝑛𝑥; .∫ 𝑠𝑒𝑐 5 𝑥𝑑𝑥 = 𝑠𝑒𝑐 3 𝑥𝑡𝑎𝑛𝑥 − 3 ∫ 𝑠𝑒𝑐 3 𝑥𝑡𝑎𝑛2 𝑥𝑑𝑥 = 𝑠𝑒𝑐 3 𝑥𝑡𝑎𝑛𝑥 − 3 ∫(𝑠𝑒𝑐 5 𝑥−𝑠𝑒𝑐 3 )𝑥𝑑𝑥 .∫ 𝑠𝑒𝑐 5 𝑥𝑑𝑥 = 𝑠𝑒𝑐 3 𝑥𝑡𝑎𝑛𝑥 − 3 ∫ 𝑠𝑒𝑐 5 𝑥𝑑𝑥 + 3 ∫ 𝑠𝑒𝑐 3 𝑥𝑑𝑥 . 4 ∫ 𝑠𝑒𝑐 5 𝑥𝑑𝑥 = 𝑠𝑒𝑐 3 𝑥𝑡𝑎𝑛𝑥 + 3 ∫ 𝑠𝑒𝑐 3 𝑥𝑑𝑥  ∫ 𝑠𝑒𝑐 3 𝑥𝑑𝑥 = ∫ 𝑠𝑒𝑐𝑥𝑠𝑒𝑐 2 𝑥𝑑𝑥 ; 𝑢 = 𝑠𝑒𝑐𝑥; 𝑑𝑣 = 𝑠𝑒𝑐 2 𝑥𝑑𝑥; 𝑑𝑢 = 𝑠𝑒𝑐𝑥𝑡𝑎𝑛𝑥𝑑𝑥; 𝑣 = 𝑡𝑎𝑛𝑥  ∫ 𝑠𝑒𝑐 3 𝑥𝑑𝑥 = 𝑠𝑒𝑐𝑥𝑡𝑎𝑛𝑥 − ∫ 𝑠𝑒𝑐𝑥𝑡𝑎𝑛2 𝑥𝑑𝑥 = 𝑠𝑒𝑐𝑥𝑡𝑎𝑛𝑥 − ∫(𝑠𝑒𝑐 3 𝑥 − 𝑠𝑒𝑐𝑥)𝑑𝑥  2 ∫ 𝑠𝑒𝑐 3 𝑥𝑑𝑥 = 𝑠𝑒𝑐𝑥𝑡𝑎𝑛𝑥 + ∫ 𝑠𝑒𝑐𝑥𝑑𝑥 = 𝑠𝑒𝑐𝑥𝑡𝑎𝑛𝑥 + 𝑙𝑛|𝑠𝑒𝑐𝑥 + 𝑡𝑎𝑛𝑥|  ∫ 𝑠𝑒𝑐 3 𝑥𝑑𝑥 = 5 𝑠𝑒𝑐𝑥𝑡𝑎𝑛𝑥 2 + 𝑙𝑛|𝑠𝑒𝑐𝑥+𝑡𝑎𝑛𝑥| 3 . 4 ∫ 𝑠𝑒𝑐 𝑥𝑑𝑥 = 𝑠𝑒𝑐 𝑥𝑡𝑎𝑛𝑥 + 3 ( . ∫ 𝑠𝑒𝑐 5 𝑥𝑑𝑥 = 1 4 𝑠𝑒𝑐 3 𝑥𝑡𝑎𝑛𝑥 + 3 8 2 𝑠𝑒𝑐𝑥𝑡𝑎𝑛𝑥 2 + 𝑙𝑛|𝑠𝑒𝑐𝑥+𝑡𝑎𝑛𝑥| 2 ) 3 𝑠𝑒𝑐𝑥𝑡𝑎𝑛𝑥 + 𝑙𝑛|𝑠𝑒𝑐𝑥 + 𝑡𝑎𝑛𝑥| + 𝑐 8 Luz Angélica Sánchez Rodríguez
  2. 2. e. ∫ 0 𝜋⁄ 2 .∫ 0 𝑥 2 𝑠𝑒𝑛2𝑥𝑑𝑥; 𝜋⁄ 2 𝑢 = 𝑥 2 ; 𝑑𝑣 = 𝑠𝑒𝑛2𝑥𝑑𝑥; 𝑑𝑢 = 2𝑥𝑑𝑥; 𝑣 = − 𝑥 2 𝑠𝑒𝑛2𝑥𝑑𝑥 = − 1 .∫ 0 .∫ 0 𝜋⁄ 2 𝑥 2 𝑠𝑒𝑛2𝑥𝑑𝑥 = − 𝜋⁄ 2 2 𝑥 𝑠𝑒𝑛2𝑥𝑑𝑥 = [− 𝜋⁄ 2 2 𝑥 𝑠𝑒𝑛2𝑥𝑑𝑥 = 1 𝑥 2 𝐶𝑜𝑠2𝑥 𝑥𝑠𝑒𝑛2𝑥 + 2 𝑥 2 𝐶𝑜𝑠2𝑥 1 + 2 𝑥𝑠𝑒𝑛2𝑥 + 2 (𝜋 2 8 2 𝐶𝑜𝑠2𝑥 𝑥 2 𝐶𝑜𝑠2𝑥 − ∫ 𝑥𝑐𝑜𝑠2𝑥𝑑𝑥 2 𝑢 = 𝑥; 𝑑𝑣 = 𝑐𝑜𝑠2𝑥𝑑𝑥; 𝑑𝑢 = 𝑑𝑥; 𝑣 = .∫ 0 1 2 2 ∫ 𝑠𝑒𝑛2𝑥𝑑𝑥 𝑐𝑜𝑠2𝑥 − 1 𝑠𝑒𝑛2𝑥 2 2 ] 𝜋⁄ 2 0 − 4) 2. Resuelva las siguientes integrales por el método de fracciones parciales. 𝑑𝑥 a. ∫ .∫ b. ∫ 𝑥 3 −𝑥 2 +𝑥−1 3𝑥 2 −4𝑥+5 1 2 𝑥+1 𝑙𝑛|𝑥+1| − 𝑑𝑥 = 2 𝑥𝑑𝑥 𝑑𝑥 𝑥 2 +1 𝑥 3 −2𝑥 2 +12𝑥+9 𝑑𝑥 = 𝑑𝑥 = 22 ∫ 𝑥 4 −6𝑥 3 +12𝑥 2 +6 𝑥 3 −6𝑥 2 +12𝑥−8 𝑑𝑥 + 2∫ 𝑥−1 − 3𝑙𝑛|𝑥 2 + 1| + 2𝑙𝑛|𝑥 − 1| + 𝑐 𝑑𝑥 1 𝑑𝑥 𝑑𝑥 = ∫ + ∫ 2 (𝑥−3)2 2 (𝑥+1)2 𝑑𝑥 = − 𝑥 2 −8𝑥+7 𝑥 4 −6𝑥 3 −11𝑥 2 +60𝑥+100 .∫ + + 𝑐 − 3∫ 2 5𝑥 2 +6𝑥+9 𝑥 3 −6𝑥 2 +12𝑥−8 𝑥2 1 9 𝑥 3 −2𝑥 2 +12𝑥+9 𝑥 4 −6𝑥 3 +12𝑥 2 +6 𝑑𝑥 −∫ 𝑥 𝑥 2 +1 𝑙𝑛|𝑥 2 +1| 5𝑥 2 +6𝑥+9 𝑥 4 −4 𝑑𝑥 − ∫ 2 𝑑𝑥 = ∫ 𝑥 3 −𝑥 2 +𝑥−1 𝑥 4 −4 .∫ e. ∫ 𝑑𝑥 𝑥−1 𝑙𝑛|𝑥−1| 3𝑥 2 −4𝑥+5 .∫ d. ∫ = 𝑥 4 −𝑥 2 .∫ c. ∫ 1 = ∫ 2 𝑥 4 −𝑥 2 𝑑𝑥 9 6−2𝑥 𝑑𝑥 (𝑥−2)3 11 (𝑥−2)2 𝑑𝑥 = − 𝑥 2 −8𝑥+7 𝑥 4 −6𝑥 3 −11𝑥 2 +60𝑥+100 − 8 𝑑𝑥 = − + 𝑐 + 8∫ + 49 1 2𝑥+2 8 2−𝑥 𝑑𝑥 (𝑥−2)2 + 𝑥2 2 𝑑𝑥 + ∫ 𝑥 𝑑𝑥 + 𝑐 30 ∫ (𝑥−5)2 + 343 ∫ 8 245−49𝑥 21 3. Encuentre una aproximación de ∫ 1 𝑥 + 𝑑𝑥 𝑥−5 30 𝑙𝑛|𝑥−5| 343 + − 27 49 𝑑𝑥 30 ∫ (𝑥+2)2 − 343 ∫ 27 49𝑥+98 − 30𝑙𝑛|𝑥+2| 343 𝑑𝑥 𝑥+2 + 𝑐 𝑑𝑥 utilizando la Regla de Simpson con n=10. Determine el error en que se incurre. .∆𝑥 = 21 . ∫ 1 𝑥 1 10 = 0.1; 𝑑𝑥 ≈ 1 30 [𝑓(1) + 4𝑓(1.1) + 2𝑓(1.2) + 4𝑓(1.3) + 2𝑓(1.4) + 4𝑓(1.5) + 2𝑓(1.6) + 4𝑓(1.7) + 2𝑓(1.8) + 4𝑓(1.9) + 𝑓(2)] Luz Angélica Sánchez Rodríguez
  3. 3. 21 ∫ 1 . 𝑥 𝑑𝑥 ≈ 1 30 [1 + 6.636 + 1.666 + 3.077 + 1.429 + 2.666 + 1.25 + 2.353 + 1.111 + 2.105 + 0.5] 21 .∫ 1 𝑥 𝑑𝑥 ≈ 0.7931 Estimación del error: .𝑓 = 1 𝑥 ; 𝑓 𝑖𝑣 = 24 𝑥5 ; El valor máximo de𝑓 𝑖𝑣 ocurre cuando 𝑥 = 1. . |𝑓 𝑖𝑣 | ≤ 24, 𝑙𝑢𝑒𝑔𝑜 𝑀 = 24. . 𝑀(𝑏−𝑎)5 180𝑛4 = 0.001333 2 4. Encuentre una aproximación de ∫ √4 + 𝑥 2 𝑑𝑥 utilizando la Regla del Trapecio con n=4. 0 Determine el error en el que se incurre. .∆𝑥 = 0.5 2 . ∫ √4 + 𝑥 2 𝑑𝑥 ≈ 0.25[𝑓(0) + 2𝑓(0.5) + 2𝑓(1) + 2𝑓(1.5) + 𝑓(2)] 0 2 . ∫ √4 + 𝑥 2 𝑑𝑥 ≈ 0.25[2 + 4.123 + 4.472 + 5 + 2.828] 0 2 . ∫ √4 + 𝑥 2 𝑑𝑥 ≈ 4.606 0 Estimación del error: .𝑓 = √4 + 𝑥 2 ; 𝑓´´ = 𝑥 3 ; (𝑥 2 +4) ⁄2 El valor máximo de 𝑓´´ ocurre cuando 𝑥 = 0 . |𝑓 ´´ | ≤ 8, 𝑙𝑢𝑒𝑔𝑜 𝑀 = 8. . 𝑀(𝑏−𝑎)3 12𝑛2 = 64 192 = 0.333 5. Estime el error en el que se incurre utilizando al Regla del Trapecio y la Regla de 1 Simpson en el cálculo de la ∫ 0 4 1+𝑥 2 𝑑𝑥.Tomando un n=4 Regla del Trapecio: .∆𝑥 = 0.25 1 .∫ 0 . . . 4 1+𝑥 2 1 4 ∫ 1+𝑥 2 0 1 4 ∫ 1+𝑥 2 0 1 4 ∫ 1+𝑥 2 0 𝑑𝑥 ≈ 0.125[𝑓(0) + 2𝑓(0.25) + 2𝑓(0.5) + 2𝑓(0.75) + 𝑓(1)] 𝑑𝑥 ≈ 0.125[4 + 7.529 + 6.4 + 5.12 + 2] 𝑑𝑥 ≈ 0.125[25.049] 𝑑𝑥 ≈ 3.131 Luz Angélica Sánchez Rodríguez
  4. 4. Estimación del error: .𝑓 = 4 1+𝑥 2 ; 𝑓´´ = 24𝑥 2 −8 (𝑥 2 +1)3 ; El valor máximo de 𝑓´´ ocurre cuando 𝑥 = 0 . |𝑓 ´´ | ≤ −8, 𝑙𝑢𝑒𝑔𝑜 𝑀 = −8. . 𝑀(𝑏−𝑎)3 12𝑛2 = −8 192 = −0.042 Regla de Simpson: . ∆𝑥 = 0.25 1 .∫ 0 . . . 4 1+𝑥 2 1 4 ∫ 1+𝑥 2 0 1 4 ∫ 1+𝑥 2 0 1 4 ∫ 1+𝑥 2 0 𝑑𝑥 ≈ 0.0625[𝑓(0) + 4𝑓(0.25) + 2𝑓(0.5) + 4𝑓(0.75) + 𝑓(1)] 𝑑𝑥 ≈ 0.0625[4 + 15.059 + 6.4 + 10.24 + 2] 𝑑𝑥 ≈ 0.0625[37.699] 𝑑𝑥 ≈ 2.356 Estimación del error: .𝑓 = 4 1+𝑥 2 ; 𝑓 𝑖𝑣 = 24 𝑥5 ; El valor máximo de𝑓 𝑖𝑣 ocurre cuando 𝑥 = 1. . |𝑓 𝑖𝑣 | ≤ 24, 𝑙𝑢𝑒𝑔𝑜 𝑀 = 24. . 𝑀(𝑏−𝑎)5 180𝑛4 = 0.001333 Luz Angélica Sánchez Rodríguez

×