SlideShare una empresa de Scribd logo
1 de 28
Descargar para leer sin conexión
Graphs of Bounded Treewidth
       can be Canonized in AC1

                      Fabian Wagner∗

                          CSR 2011

∗ Institut   Theoretische Informatik, Universit¨t Ulm, Germany
                                               a
                  fabian.wagner@uni-ulm.de



                      June 14-18, 2011
1. Graph Isomorphism (GI)
   Graph: Gi = (V , Ei ), vertices V = {1, . . . , n}, edges Ei ⊆ V × V
   Isomorphism: G1 ∼ G2 iff ∃φ ∈ Sn such that ∀u, v ∈ V :
                    =
        (u, v ) ∈ E1 ⇔ (φ(u), φ(v )) ∈ E2
   Graph Isomorphism: GI = {(G1 , G2 ) | G1 ∼ G2 }
                                                =
   Complete invariant: f : G → Σ∗ s.t. f (G1 ) = f (G2 ) ⇔ G1 ∼ G2  =
   Canonical form: f : G → G s.t. f (G1 ) = f (G2 ) ∼ G1 ⇔ G1 ∼ G2
                                                         =          =

                     G1                             G2
                       v0                      v0

                       v1                      v1

                       v2                      v2


                       v3                      v3

                       v4                      v4
1. Graph Isomorphism (GI)
   Graph: Gi = (V , Ei ), vertices V = {1, . . . , n}, edges Ei ⊆ V × V
   Isomorphism: G1 ∼ G2 iff ∃φ ∈ Sn such that ∀u, v ∈ V :
                    =
        (u, v ) ∈ E1 ⇔ (φ(u), φ(v )) ∈ E2
   Graph Isomorphism: GI = {(G1 , G2 ) | G1 ∼ G2 }
                                                =
   Complete invariant: f : G → Σ∗ s.t. f (G1 ) = f (G2 ) ⇔ G1 ∼ G2  =
   Canonical form: f : G → G s.t. f (G1 ) = f (G2 ) ∼ G1 ⇔ G1 ∼ G2
                                                         =          =

                     G1                             G2
                       v0          φ           v0

                       v1                      v1

                       v2                      v2


                       v3                      v3

                       v4                      v4
1. Graph Isomorphism (GI)
   Graph: Gi = (V , Ei ), vertices V = {1, . . . , n}, edges Ei ⊆ V × V
   Isomorphism: G1 ∼ G2 iff ∃φ ∈ Sn such that ∀u, v ∈ V :
                    =
        (u, v ) ∈ E1 ⇔ (φ(u), φ(v )) ∈ E2
   Graph Isomorphism: GI = {(G1 , G2 ) | G1 ∼ G2 }
                                                =
   Complete invariant: f : G → Σ∗ s.t. f (G1 ) = f (G2 ) ⇔ G1 ∼ G2  =
   Canonical form: f : G → G s.t. f (G1 ) = f (G2 ) ∼ G1 ⇔ G1 ∼ G2
                                                         =          =

                     G1                             G2
                       v0          φ           v0

                       v1                      v1

                       v2                      v2


                       v3                      v3

                       v4                      v4
1. Bounded Treewidth Graphs
   Tree decomposition of width k:
   D = ({Xi | i ∈ I }, T = (I , F ))
     ◮   every vertex in a bag Xi
     ◮   every edge in a bag Xi
     ◮   all bags which contain vertex v form a connected subtree
     ◮   treewidth k − 1   ⇔ bags have size ≤ k


                                       bag              size ≤ k




                                             tree structure
1. Bounded Treewidth graphs


   k-tree:                                                         w
                       u           v                         v




        k-clique   connect new vertex to a k-clique      v

       k-tree                 partial k-tree, treewidth k graph:



                   subgraph
1. Results


   Bounded Treewidth graph (BTW-graph)

   Known Results:
     ◮   Isomorphism:   BTW-graphs in P [Bod90]
     ◮   Complete invariant:   BTW-graphs in TC1 [GroVer06]
     ◮   Canonical labeling:   BTW-graphs in TC2 [K¨bVer08]
                                                   o

   New Results:
     ◮   Computation:    tree decomposition in L [EJT10]
     ◮   Isomorphism:   BTW-graphs in LogCFL [DTW10]
     ◮   Canonical labeling:   BTW-graphs in AC1
1. Results

   Restricted classes of BTW-graphs

   Known Results:
     ◮   Canonical labeling:   BTDW-graphs in L [DTW10]

     ◮   Canonical labeling:   k-trees in L [K¨bKu09]
                                              o

     ◮   Canonical labeling:   partial 2-trees in L [ADK08]

     ◮   Canonical labeling:   K3,3 - and K5 -free graphs in L [DNTW09]
                          → partial 3-trees are K5 -free
   Open:
     ◮   Canonical labeling:   partial 4-trees in L?
1. Complexity
                                            NP
                                            P
                             [K¨Ver08]
                               o                        GI
                                            TC2
                             [GroVer06]                   [Tor´n04]
                                                              a
                                            TC1
BTW-canonical labeling

        ⊆
                                     AC1          DET
BTW-complete invariant       SAC1 =LogCFL
                 [DTW10]
        ⊆

       BTW-GI
        ⊆
                         k = 3: [DNTW09]
                         k = 2: [ADK08]
                                            NL
                         k = 1: [Lin92]             [K¨Ku09]
                                                      o
     partial k-tree           [JKMT03]      L       [JKMT03]    k-tree GI
       k≤3
                                            NC1
                                            AC0
2. BTW-Canonization: ingredients

    ◮   Theorem: {G | G has treewidth ≤ k} in L [EJT10]

    ◮   for graph G , treewidth k,
        approximate tree decomposition: width 4k + 3, depth O(log n)
        Theorem: approximate tree decomposition in L [EJT10]

    ◮   number of bags: ≤ n4k+3 bags of size 4k + 3

    ◮   pre-computation in L:
          ◮   all possible bags,
          ◮   all split components of bags w.r.t. fixed root Xr
          ◮   all possible child bags w.r.t. fixed root Xr
2. BTW-Canonization: minimal description


                                                                      Xr
   X = {u, v , w }
   σ = (u
        u
            v w
            w v)


                    
               0 1 0
   G [X ]σ =  1 0 1 
               0 1 0

                                                                                        X
   Definition: minimal description:
                                                     ′
   C (G , X , σ) =   C0 (G , X , σ)                 C0 (G , X , σ)         [children]
                                   (4k+3)2 −|X |2
   C (G , X , σ) = 010 101 010 2                    uwv 2(4k+3−|X |)⌈log n⌉ [ ]
2. BTW-Canonization: inductive construction
                          C (G , X , σ)                             Xr

                            sort
                               ...                                                  X

              C1                 C2                  C3

              min                min                 min
                ...                ...                     ...

                                                                            X1 X2   X3

    C (G , X1 , σ1 )                                             ′    ′
                       C (G , X2 , σ2 ) C (G , X3 , σ3 ) C (G , X3 , σ3 )           X

                                                                                          ′
                                                                                         X3

       minimal description for i -th split component:
       C i = minXi ,σi C (G , Xi , σi )[...]                                X1 X2
2. BTW-Canonization: depth parameter
                           C (G , X , σ, d + 1)                           Xr
                                                                                                  d =3
                              sort                                                                d =2
                                 ...                                                         X

              C1                    C2                   C3                                       d =1

              min                   min                  min
               ...                   ...                    ...                                   d =0

                                                                                     X1 X2   X3
                                                                       ′    ′
 C (G , X1 , σ1 , d)   C (G , X2 , σ2 , d) C (G , X3 , σ3 , d) C (G , X3 , σ3 , d)




      minimal description for i -th split component:
      C i = minXi ,σi C (G , Xi , σi , d )
2. BTW-Canonization: circuit depth

                                    C (G , X , σ, d )                            X

      C (G , X , σ, d − 1)         canon ∨ sort
                                          ...                              ...
                     1                                   i
                 C                                   C

                 min                                 min
                  ...                                 ...
                                                                 X1   X2             Xi

C (G , X1 , σ1 , d − i )              C (G , Xi , σi , d − i )


       ◮   minimum:           first order definable, in AC0 [Imm99]
       ◮   sort:         i children of equal size ≤ n/i :
                           with O(log i )-depth AC1 -circuits
2. BTW-Canonization: example




                                canon ∨ sort
  C (G , Xi , σi , d )                ...

                         C1            C2      C3
            ...
                         min           min     min
  no−canon                ...            ...      ...


            ...
2. BTW-Canonization: example



                                                  computes
                      C (G , Xr , σr , c log n)   tree decomposition for:
                                                  tree of depth log n
                            . . .
         3
                                                  tree of depth 3
         2
                                                  tree of depth 2
         1
                                                  bag with leafs
         0                                        leaf
              d = c log n
2. BTW-Canonization: example


                                                                          . . .
                                    computes
        C (G , Xr , σr , c log n)   tree decomposition for:
                                                              d =2
                                    tree of depth log n
              . . .                                                       . . .
                                    tree of depth 3
                                    tree of depth 2
                                                              d =1
                                    bag with leafs
                                    leaf                                  . . .


d = c log n
                                                              d =0

                                                                     pre-computation
2. BTW-Canonization: example


                                                                          . . .
                                    computes
        C (G , Xr , σr , c log n)   tree decomposition for:
                                                              d =2
                                    tree of depth log n
              . . .                                                       . . .
                                    tree of depth 3
                                    tree of depth 2
                                                              d =1
                                    bag with leafs
                                    leaf                                  . . .


d = c log n
                                                              d =0

                                                                     pre-computation
2. BTW-Canonization: example


                                                                          . . .
                                                                          sort
                                    computes                              . . .
        C (G , Xr , σr , c log n)   tree decomposition for:
                                                              d =i
                                    tree of depth log n
              . . .
                                    tree of depth 3                       . . .

                                    tree of depth 2
                                    bag with leafs            d =1
                                    leaf
                                                                          . . .
d = c log n
                                                              d =0

                                                                     pre-computation
2. BTW-Canonization: algorithm

         input: graph G , treewidth k
         output: minimal description C
    1: for all bags Xr = {v1 , . . . , v4k+3 } ⊆ V in parallel do
    2:     for all σ ∈ Sym(Xr ) in parallel do
    3:       C = min{C , C (G , Xr , σ, c log n)} recursively
    4: relabel vertices in C in increasing order in L [DLN08]
    5: return C     → complete invariant
         return new labels    → canonical form

    ◮    C = 010101010222 uvw 222 [0101010102222 xyw 222 . . . ]
           → u = 1, v = 2, w = 3, x = 4, y = 5, . . .
2. BTW-Canonization: algorithm

         input: graph G , treewidth k
         output: canonical labeling
    1: for all bags Xr = {v1 , . . . , v4k+3 } ⊆ V in parallel do
    2:     for all σ ∈ Sym(Xr ) in parallel do
    3:       C = min{C , C (G , Xr , σ, c log n)} recursively
    4: relabel vertices in C in increasing order in L [DLN08]
    5: return C     → complete invariant
         return new labels    → canonical form

    ◮    C = 010101010222 uvw 222 [0101010102222 xyw 222 . . . ]
           → u = 1, v = 2, w = 3, x = 4, y = 5, . . .
6. Tools for Canonization


  Decomposition                                                    Reduction
  tree decomposition [DTW10,Wag11]            BTW-Canon ≤ BTDW-Canon [DTW10]
  tree distance decomposition [DTW10]
  2-connected component tree [DLNTW09,DNTW09]
  3-connected component tree [DLNTW09,DNTW09]
  four-connected component tree [DNTW09]
  colored tree [KK09]
  tree representation of inverval graphs [KKLV10]
  → merge canons
  → analyse resources [Lin92]


                                                   AC1 -circuit [Wag11]
  constant size components [DTW10,Wag11]           NAuxPDA [DTW10]
  3-connected planar components [DLN08]            logspace machine [Lin92]
  Canonize Pieces                                 Computational models
A. PlanarGI ∈ L - Canonize Biconnected Components

   Isomorphism order S < T if [Lindell92]:
   1. |S| < |T | or
   2. |S| = |T | but #s < #t or
   3. |S| = |T | and #s = #t = k but (S1 , . . . , Sk ) < (T1 , . . . , Tk )

            S         s             T       t

                                                        canon(S) =
                                                        ( ((())) (()()) (. . . ) )

            S2    S1      S3        T3    T1     T2
A. PlanarGI ∈ L - Canonize Biconnected Components

   Isomorphism order S < T if [Lindell92]:
   1. |S| < |T | or
   2. |S| = |T | but #s < #t or
   3. |S| = |T | and #s = #t = k but (S1 , . . . , Sk ) < (T1 , . . . , Tk )

         S            s            T            t
              ≤           ≤             ≤           ≤
                  ≤           ≤             ≤           ≤    canon(S) =
                                                             ( ((())) (()()) (. . . ) )

         S1       S2          S3   T1       T2          T3
BTW-GI in LogCFL
     ◮   compute tree decomposition for G [Wanke94,GoLeSc02,EJT10]
     ◮   compute augmented tree Sr for G
     ◮   guess root r ′ in H, φ : Xr → Xr ′
     ◮   if r ′ , φ not consistent then reject
     ◮   recursion: (s1 ≤T · · · ≤T sl ) ≤T (t1 ≤T · · · ≤T tl )
     ◮   return

   graph G             augmented tree Sr                            graph H

                ≤log
                 m                      r



                          s1            s2       ...   sl



              a1,1         a2,1   ...        a2,k2          al,kl
BTW-GI in LogCFL
    ◮   compute tree decomposition for G [Wanke94,GoLeSc02,EJT10]
    ◮   compute augmented tree Sr for G
    ◮   guess root r ′ in H, φ : Xr → Xr ′
    ◮   if r ′ , φ not consistent then reject
    ◮   recursion: (s1 ≤T · · · ≤T sl ) ≤T (t1 ≤T · · · ≤T tl )
    ◮   return

   graph G          augmented tree Sr                                    Tr′                graph H
                                                                 guess

                                       r
                                                                  φ            r′
                                                                                    guess



                         s1            s2       ... sl



             a1,1         a2,1   ...        a2,k2        al,kl
BTW-GI in LogCFL
       ◮   compute tree decomposition for G [Wanke94,GoLeSc02,EJT10]
       ◮   compute augmented tree Sr for G
       ◮   guess root r ′ in H, φ : Xr → Xr ′
       ◮   if r ′ , φ not consistent then reject
       ◮   recursion: (s1 ≤T · · · ≤T sl ) ≤T (t1 ≤T · · · ≤T tl )
       ◮   return
 graph G            augmented tree Sr                                   Tr′                  graph H


                                       r                                      r′
                                                                                     guess

                                 ≤T ≤T                                                    guess
                         s1            s2       ... sl           t1           t2     tl
                        ≤T       ≤T ≤T              ≤T


             a1,1         a2,1   ...        a2,k2        al,kl    ′
                                                                 a2,1

                                                                                   remember bags along
                                                                                    computation path


              depth first search + ≤T                             guess ≤T + ≤lex
                                                                  guess and extend φ

Más contenido relacionado

La actualidad más candente

Internal workshop jub talk jan 2013
Internal workshop jub talk jan 2013Internal workshop jub talk jan 2013
Internal workshop jub talk jan 2013Jurgen Riedel
 
Presentacion granada
Presentacion granadaPresentacion granada
Presentacion granadaRene García
 
Computational Information Geometry: A quick review (ICMS)
Computational Information Geometry: A quick review (ICMS)Computational Information Geometry: A quick review (ICMS)
Computational Information Geometry: A quick review (ICMS)Frank Nielsen
 
Supersymmetric Q-balls and boson stars in (d + 1) dimensions
Supersymmetric Q-balls and boson stars in (d + 1) dimensionsSupersymmetric Q-balls and boson stars in (d + 1) dimensions
Supersymmetric Q-balls and boson stars in (d + 1) dimensionsJurgen Riedel
 
Divergence center-based clustering and their applications
Divergence center-based clustering and their applicationsDivergence center-based clustering and their applications
Divergence center-based clustering and their applicationsFrank Nielsen
 
SUPER MAGIC CORONATIONS OF GRAPHS
SUPER MAGIC CORONATIONS OF GRAPHS SUPER MAGIC CORONATIONS OF GRAPHS
SUPER MAGIC CORONATIONS OF GRAPHS IAEME Publication
 
Clustering in Hilbert simplex geometry
Clustering in Hilbert simplex geometryClustering in Hilbert simplex geometry
Clustering in Hilbert simplex geometryFrank Nielsen
 
Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problemsDelta Pi Systems
 
IJCER (www.ijceronline.com) International Journal of computational Engineeri...
 IJCER (www.ijceronline.com) International Journal of computational Engineeri... IJCER (www.ijceronline.com) International Journal of computational Engineeri...
IJCER (www.ijceronline.com) International Journal of computational Engineeri...ijceronline
 
Divergence clustering
Divergence clusteringDivergence clustering
Divergence clusteringFrank Nielsen
 
Patch Matching with Polynomial Exponential Families and Projective Divergences
Patch Matching with Polynomial Exponential Families and Projective DivergencesPatch Matching with Polynomial Exponential Families and Projective Divergences
Patch Matching with Polynomial Exponential Families and Projective DivergencesFrank Nielsen
 
Clustering in Hilbert geometry for machine learning
Clustering in Hilbert geometry for machine learningClustering in Hilbert geometry for machine learning
Clustering in Hilbert geometry for machine learningFrank Nielsen
 
Comparing estimation algorithms for block clustering models
Comparing estimation algorithms for block clustering modelsComparing estimation algorithms for block clustering models
Comparing estimation algorithms for block clustering modelsBigMC
 
3 grechnikov
3 grechnikov3 grechnikov
3 grechnikovYandex
 
Classification with mixtures of curved Mahalanobis metrics
Classification with mixtures of curved Mahalanobis metricsClassification with mixtures of curved Mahalanobis metrics
Classification with mixtures of curved Mahalanobis metricsFrank Nielsen
 
On Convolution of Graph Signals and Deep Learning on Graph Domains
On Convolution of Graph Signals and Deep Learning on Graph DomainsOn Convolution of Graph Signals and Deep Learning on Graph Domains
On Convolution of Graph Signals and Deep Learning on Graph DomainsJean-Charles Vialatte
 

La actualidad más candente (20)

Internal workshop jub talk jan 2013
Internal workshop jub talk jan 2013Internal workshop jub talk jan 2013
Internal workshop jub talk jan 2013
 
Presentacion granada
Presentacion granadaPresentacion granada
Presentacion granada
 
Computational Information Geometry: A quick review (ICMS)
Computational Information Geometry: A quick review (ICMS)Computational Information Geometry: A quick review (ICMS)
Computational Information Geometry: A quick review (ICMS)
 
Supersymmetric Q-balls and boson stars in (d + 1) dimensions
Supersymmetric Q-balls and boson stars in (d + 1) dimensionsSupersymmetric Q-balls and boson stars in (d + 1) dimensions
Supersymmetric Q-balls and boson stars in (d + 1) dimensions
 
Divergence center-based clustering and their applications
Divergence center-based clustering and their applicationsDivergence center-based clustering and their applications
Divergence center-based clustering and their applications
 
SUPER MAGIC CORONATIONS OF GRAPHS
SUPER MAGIC CORONATIONS OF GRAPHS SUPER MAGIC CORONATIONS OF GRAPHS
SUPER MAGIC CORONATIONS OF GRAPHS
 
Clustering in Hilbert simplex geometry
Clustering in Hilbert simplex geometryClustering in Hilbert simplex geometry
Clustering in Hilbert simplex geometry
 
Triggering patterns of topology changes in dynamic attributed graphs
Triggering patterns of topology changes in dynamic attributed graphsTriggering patterns of topology changes in dynamic attributed graphs
Triggering patterns of topology changes in dynamic attributed graphs
 
Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problems
 
Crystallographic groups
Crystallographic groupsCrystallographic groups
Crystallographic groups
 
IJCER (www.ijceronline.com) International Journal of computational Engineeri...
 IJCER (www.ijceronline.com) International Journal of computational Engineeri... IJCER (www.ijceronline.com) International Journal of computational Engineeri...
IJCER (www.ijceronline.com) International Journal of computational Engineeri...
 
Divergence clustering
Divergence clusteringDivergence clustering
Divergence clustering
 
Patch Matching with Polynomial Exponential Families and Projective Divergences
Patch Matching with Polynomial Exponential Families and Projective DivergencesPatch Matching with Polynomial Exponential Families and Projective Divergences
Patch Matching with Polynomial Exponential Families and Projective Divergences
 
Clustering in Hilbert geometry for machine learning
Clustering in Hilbert geometry for machine learningClustering in Hilbert geometry for machine learning
Clustering in Hilbert geometry for machine learning
 
Jeju2013
Jeju2013Jeju2013
Jeju2013
 
445 colouring0
445 colouring0445 colouring0
445 colouring0
 
Comparing estimation algorithms for block clustering models
Comparing estimation algorithms for block clustering modelsComparing estimation algorithms for block clustering models
Comparing estimation algorithms for block clustering models
 
3 grechnikov
3 grechnikov3 grechnikov
3 grechnikov
 
Classification with mixtures of curved Mahalanobis metrics
Classification with mixtures of curved Mahalanobis metricsClassification with mixtures of curved Mahalanobis metrics
Classification with mixtures of curved Mahalanobis metrics
 
On Convolution of Graph Signals and Deep Learning on Graph Domains
On Convolution of Graph Signals and Deep Learning on Graph DomainsOn Convolution of Graph Signals and Deep Learning on Graph Domains
On Convolution of Graph Signals and Deep Learning on Graph Domains
 

Destacado

Csr2011 june14 16_30_ibsen-jensen
Csr2011 june14 16_30_ibsen-jensenCsr2011 june14 16_30_ibsen-jensen
Csr2011 june14 16_30_ibsen-jensenCSR2011
 
Csr2011 june17 17_00_likhomanov
Csr2011 june17 17_00_likhomanovCsr2011 june17 17_00_likhomanov
Csr2011 june17 17_00_likhomanovCSR2011
 
Csr2011 june14 11_30_winzen_rotated
Csr2011 june14 11_30_winzen_rotatedCsr2011 june14 11_30_winzen_rotated
Csr2011 june14 11_30_winzen_rotatedCSR2011
 
Csr2011 june17 11_30_vyalyi
Csr2011 june17 11_30_vyalyiCsr2011 june17 11_30_vyalyi
Csr2011 june17 11_30_vyalyiCSR2011
 
Nadia y Coraima violence against women
Nadia y Coraima violence against womenNadia y Coraima violence against women
Nadia y Coraima violence against womenGloria Osuna Velasco
 
Layla的故事(下)
Layla的故事(下)Layla的故事(下)
Layla的故事(下)shihfang Ma
 
Y7 Module 1 Vocabulary
Y7 Module 1 VocabularyY7 Module 1 Vocabulary
Y7 Module 1 Vocabularycurriea
 

Destacado (7)

Csr2011 june14 16_30_ibsen-jensen
Csr2011 june14 16_30_ibsen-jensenCsr2011 june14 16_30_ibsen-jensen
Csr2011 june14 16_30_ibsen-jensen
 
Csr2011 june17 17_00_likhomanov
Csr2011 june17 17_00_likhomanovCsr2011 june17 17_00_likhomanov
Csr2011 june17 17_00_likhomanov
 
Csr2011 june14 11_30_winzen_rotated
Csr2011 june14 11_30_winzen_rotatedCsr2011 june14 11_30_winzen_rotated
Csr2011 june14 11_30_winzen_rotated
 
Csr2011 june17 11_30_vyalyi
Csr2011 june17 11_30_vyalyiCsr2011 june17 11_30_vyalyi
Csr2011 june17 11_30_vyalyi
 
Nadia y Coraima violence against women
Nadia y Coraima violence against womenNadia y Coraima violence against women
Nadia y Coraima violence against women
 
Layla的故事(下)
Layla的故事(下)Layla的故事(下)
Layla的故事(下)
 
Y7 Module 1 Vocabulary
Y7 Module 1 VocabularyY7 Module 1 Vocabulary
Y7 Module 1 Vocabulary
 

Similar a Csr2011 june16 12_00_wagner

Magic graphs
Magic graphsMagic graphs
Magic graphsSpringer
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...ijceronline
 
Ppt of graph theory
Ppt of graph theoryPpt of graph theory
Ppt of graph theoryArvindBorge
 
Trilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsTrilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsVjekoslavKovac1
 
Bellman functions and Lp estimates for paraproducts
Bellman functions and Lp estimates for paraproductsBellman functions and Lp estimates for paraproducts
Bellman functions and Lp estimates for paraproductsVjekoslavKovac1
 
New Families of Odd Harmonious Graphs
New Families of Odd Harmonious GraphsNew Families of Odd Harmonious Graphs
New Families of Odd Harmonious GraphsIJMIT JOURNAL
 
Graph terminologies & special type graphs
Graph terminologies & special type graphsGraph terminologies & special type graphs
Graph terminologies & special type graphsNabeel Ahsen
 
parameterized complexity for graph Motif
parameterized complexity for graph Motifparameterized complexity for graph Motif
parameterized complexity for graph MotifAMR koura
 
Bn31231239
Bn31231239Bn31231239
Bn31231239IJMER
 
E-Cordial Labeling of Some Mirror Graphs
E-Cordial Labeling of Some Mirror GraphsE-Cordial Labeling of Some Mirror Graphs
E-Cordial Labeling of Some Mirror GraphsWaqas Tariq
 

Similar a Csr2011 june16 12_00_wagner (20)

10.1.1.92.3502
10.1.1.92.350210.1.1.92.3502
10.1.1.92.3502
 
Magic graphs
Magic graphsMagic graphs
Magic graphs
 
graph theory
graph theorygraph theory
graph theory
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
 
Ppt of graph theory
Ppt of graph theoryPpt of graph theory
Ppt of graph theory
 
Graph theory presentation
Graph theory presentationGraph theory presentation
Graph theory presentation
 
graph.pptx
graph.pptxgraph.pptx
graph.pptx
 
Trilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsTrilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operators
 
Bellman functions and Lp estimates for paraproducts
Bellman functions and Lp estimates for paraproductsBellman functions and Lp estimates for paraproducts
Bellman functions and Lp estimates for paraproducts
 
Graph-theory.ppt
Graph-theory.pptGraph-theory.ppt
Graph-theory.ppt
 
Graph.ppt
Graph.pptGraph.ppt
Graph.ppt
 
New Families of Odd Harmonious Graphs
New Families of Odd Harmonious GraphsNew Families of Odd Harmonious Graphs
New Families of Odd Harmonious Graphs
 
Graphs.pdf
Graphs.pdfGraphs.pdf
Graphs.pdf
 
Graph terminologies & special type graphs
Graph terminologies & special type graphsGraph terminologies & special type graphs
Graph terminologies & special type graphs
 
parameterized complexity for graph Motif
parameterized complexity for graph Motifparameterized complexity for graph Motif
parameterized complexity for graph Motif
 
10.1.1.226.4381
10.1.1.226.438110.1.1.226.4381
10.1.1.226.4381
 
Bn31231239
Bn31231239Bn31231239
Bn31231239
 
E-Cordial Labeling of Some Mirror Graphs
E-Cordial Labeling of Some Mirror GraphsE-Cordial Labeling of Some Mirror Graphs
E-Cordial Labeling of Some Mirror Graphs
 
Dressing2011
Dressing2011Dressing2011
Dressing2011
 
Dressing2011
Dressing2011Dressing2011
Dressing2011
 

Más de CSR2011

Csr2011 june14 09_30_grigoriev
Csr2011 june14 09_30_grigorievCsr2011 june14 09_30_grigoriev
Csr2011 june14 09_30_grigorievCSR2011
 
Csr2011 june18 15_15_bomhoff
Csr2011 june18 15_15_bomhoffCsr2011 june18 15_15_bomhoff
Csr2011 june18 15_15_bomhoffCSR2011
 
Csr2011 june18 15_15_bomhoff
Csr2011 june18 15_15_bomhoffCsr2011 june18 15_15_bomhoff
Csr2011 june18 15_15_bomhoffCSR2011
 
Csr2011 june18 14_00_sudan
Csr2011 june18 14_00_sudanCsr2011 june18 14_00_sudan
Csr2011 june18 14_00_sudanCSR2011
 
Csr2011 june18 15_45_avron
Csr2011 june18 15_45_avronCsr2011 june18 15_45_avron
Csr2011 june18 15_45_avronCSR2011
 
Csr2011 june18 09_30_shpilka
Csr2011 june18 09_30_shpilkaCsr2011 june18 09_30_shpilka
Csr2011 june18 09_30_shpilkaCSR2011
 
Csr2011 june18 12_00_nguyen
Csr2011 june18 12_00_nguyenCsr2011 june18 12_00_nguyen
Csr2011 june18 12_00_nguyenCSR2011
 
Csr2011 june18 11_00_tiskin
Csr2011 june18 11_00_tiskinCsr2011 june18 11_00_tiskin
Csr2011 june18 11_00_tiskinCSR2011
 
Csr2011 june18 11_30_remila
Csr2011 june18 11_30_remilaCsr2011 june18 11_30_remila
Csr2011 june18 11_30_remilaCSR2011
 
Csr2011 june17 16_30_blin
Csr2011 june17 16_30_blinCsr2011 june17 16_30_blin
Csr2011 june17 16_30_blinCSR2011
 
Csr2011 june17 09_30_yekhanin
Csr2011 june17 09_30_yekhaninCsr2011 june17 09_30_yekhanin
Csr2011 june17 09_30_yekhaninCSR2011
 
Csr2011 june17 09_30_yekhanin
Csr2011 june17 09_30_yekhaninCsr2011 june17 09_30_yekhanin
Csr2011 june17 09_30_yekhaninCSR2011
 
Csr2011 june17 12_00_morin
Csr2011 june17 12_00_morinCsr2011 june17 12_00_morin
Csr2011 june17 12_00_morinCSR2011
 
Csr2011 june17 11_30_vyalyi
Csr2011 june17 11_30_vyalyiCsr2011 june17 11_30_vyalyi
Csr2011 june17 11_30_vyalyiCSR2011
 
Csr2011 june17 11_00_lonati
Csr2011 june17 11_00_lonatiCsr2011 june17 11_00_lonati
Csr2011 june17 11_00_lonatiCSR2011
 
Csr2011 june17 14_00_bulatov
Csr2011 june17 14_00_bulatovCsr2011 june17 14_00_bulatov
Csr2011 june17 14_00_bulatovCSR2011
 
Csr2011 june17 15_15_kaminski
Csr2011 june17 15_15_kaminskiCsr2011 june17 15_15_kaminski
Csr2011 june17 15_15_kaminskiCSR2011
 
Csr2011 june17 14_00_bulatov
Csr2011 june17 14_00_bulatovCsr2011 june17 14_00_bulatov
Csr2011 june17 14_00_bulatovCSR2011
 
Csr2011 june17 12_00_morin
Csr2011 june17 12_00_morinCsr2011 june17 12_00_morin
Csr2011 june17 12_00_morinCSR2011
 
Csr2011 june17 11_00_lonati
Csr2011 june17 11_00_lonatiCsr2011 june17 11_00_lonati
Csr2011 june17 11_00_lonatiCSR2011
 

Más de CSR2011 (20)

Csr2011 june14 09_30_grigoriev
Csr2011 june14 09_30_grigorievCsr2011 june14 09_30_grigoriev
Csr2011 june14 09_30_grigoriev
 
Csr2011 june18 15_15_bomhoff
Csr2011 june18 15_15_bomhoffCsr2011 june18 15_15_bomhoff
Csr2011 june18 15_15_bomhoff
 
Csr2011 june18 15_15_bomhoff
Csr2011 june18 15_15_bomhoffCsr2011 june18 15_15_bomhoff
Csr2011 june18 15_15_bomhoff
 
Csr2011 june18 14_00_sudan
Csr2011 june18 14_00_sudanCsr2011 june18 14_00_sudan
Csr2011 june18 14_00_sudan
 
Csr2011 june18 15_45_avron
Csr2011 june18 15_45_avronCsr2011 june18 15_45_avron
Csr2011 june18 15_45_avron
 
Csr2011 june18 09_30_shpilka
Csr2011 june18 09_30_shpilkaCsr2011 june18 09_30_shpilka
Csr2011 june18 09_30_shpilka
 
Csr2011 june18 12_00_nguyen
Csr2011 june18 12_00_nguyenCsr2011 june18 12_00_nguyen
Csr2011 june18 12_00_nguyen
 
Csr2011 june18 11_00_tiskin
Csr2011 june18 11_00_tiskinCsr2011 june18 11_00_tiskin
Csr2011 june18 11_00_tiskin
 
Csr2011 june18 11_30_remila
Csr2011 june18 11_30_remilaCsr2011 june18 11_30_remila
Csr2011 june18 11_30_remila
 
Csr2011 june17 16_30_blin
Csr2011 june17 16_30_blinCsr2011 june17 16_30_blin
Csr2011 june17 16_30_blin
 
Csr2011 june17 09_30_yekhanin
Csr2011 june17 09_30_yekhaninCsr2011 june17 09_30_yekhanin
Csr2011 june17 09_30_yekhanin
 
Csr2011 june17 09_30_yekhanin
Csr2011 june17 09_30_yekhaninCsr2011 june17 09_30_yekhanin
Csr2011 june17 09_30_yekhanin
 
Csr2011 june17 12_00_morin
Csr2011 june17 12_00_morinCsr2011 june17 12_00_morin
Csr2011 june17 12_00_morin
 
Csr2011 june17 11_30_vyalyi
Csr2011 june17 11_30_vyalyiCsr2011 june17 11_30_vyalyi
Csr2011 june17 11_30_vyalyi
 
Csr2011 june17 11_00_lonati
Csr2011 june17 11_00_lonatiCsr2011 june17 11_00_lonati
Csr2011 june17 11_00_lonati
 
Csr2011 june17 14_00_bulatov
Csr2011 june17 14_00_bulatovCsr2011 june17 14_00_bulatov
Csr2011 june17 14_00_bulatov
 
Csr2011 june17 15_15_kaminski
Csr2011 june17 15_15_kaminskiCsr2011 june17 15_15_kaminski
Csr2011 june17 15_15_kaminski
 
Csr2011 june17 14_00_bulatov
Csr2011 june17 14_00_bulatovCsr2011 june17 14_00_bulatov
Csr2011 june17 14_00_bulatov
 
Csr2011 june17 12_00_morin
Csr2011 june17 12_00_morinCsr2011 june17 12_00_morin
Csr2011 june17 12_00_morin
 
Csr2011 june17 11_00_lonati
Csr2011 june17 11_00_lonatiCsr2011 june17 11_00_lonati
Csr2011 june17 11_00_lonati
 

Csr2011 june16 12_00_wagner

  • 1. Graphs of Bounded Treewidth can be Canonized in AC1 Fabian Wagner∗ CSR 2011 ∗ Institut Theoretische Informatik, Universit¨t Ulm, Germany a fabian.wagner@uni-ulm.de June 14-18, 2011
  • 2. 1. Graph Isomorphism (GI) Graph: Gi = (V , Ei ), vertices V = {1, . . . , n}, edges Ei ⊆ V × V Isomorphism: G1 ∼ G2 iff ∃φ ∈ Sn such that ∀u, v ∈ V : = (u, v ) ∈ E1 ⇔ (φ(u), φ(v )) ∈ E2 Graph Isomorphism: GI = {(G1 , G2 ) | G1 ∼ G2 } = Complete invariant: f : G → Σ∗ s.t. f (G1 ) = f (G2 ) ⇔ G1 ∼ G2 = Canonical form: f : G → G s.t. f (G1 ) = f (G2 ) ∼ G1 ⇔ G1 ∼ G2 = = G1 G2 v0 v0 v1 v1 v2 v2 v3 v3 v4 v4
  • 3. 1. Graph Isomorphism (GI) Graph: Gi = (V , Ei ), vertices V = {1, . . . , n}, edges Ei ⊆ V × V Isomorphism: G1 ∼ G2 iff ∃φ ∈ Sn such that ∀u, v ∈ V : = (u, v ) ∈ E1 ⇔ (φ(u), φ(v )) ∈ E2 Graph Isomorphism: GI = {(G1 , G2 ) | G1 ∼ G2 } = Complete invariant: f : G → Σ∗ s.t. f (G1 ) = f (G2 ) ⇔ G1 ∼ G2 = Canonical form: f : G → G s.t. f (G1 ) = f (G2 ) ∼ G1 ⇔ G1 ∼ G2 = = G1 G2 v0 φ v0 v1 v1 v2 v2 v3 v3 v4 v4
  • 4. 1. Graph Isomorphism (GI) Graph: Gi = (V , Ei ), vertices V = {1, . . . , n}, edges Ei ⊆ V × V Isomorphism: G1 ∼ G2 iff ∃φ ∈ Sn such that ∀u, v ∈ V : = (u, v ) ∈ E1 ⇔ (φ(u), φ(v )) ∈ E2 Graph Isomorphism: GI = {(G1 , G2 ) | G1 ∼ G2 } = Complete invariant: f : G → Σ∗ s.t. f (G1 ) = f (G2 ) ⇔ G1 ∼ G2 = Canonical form: f : G → G s.t. f (G1 ) = f (G2 ) ∼ G1 ⇔ G1 ∼ G2 = = G1 G2 v0 φ v0 v1 v1 v2 v2 v3 v3 v4 v4
  • 5. 1. Bounded Treewidth Graphs Tree decomposition of width k: D = ({Xi | i ∈ I }, T = (I , F )) ◮ every vertex in a bag Xi ◮ every edge in a bag Xi ◮ all bags which contain vertex v form a connected subtree ◮ treewidth k − 1 ⇔ bags have size ≤ k bag size ≤ k tree structure
  • 6. 1. Bounded Treewidth graphs k-tree: w u v v k-clique connect new vertex to a k-clique v k-tree partial k-tree, treewidth k graph: subgraph
  • 7. 1. Results Bounded Treewidth graph (BTW-graph) Known Results: ◮ Isomorphism: BTW-graphs in P [Bod90] ◮ Complete invariant: BTW-graphs in TC1 [GroVer06] ◮ Canonical labeling: BTW-graphs in TC2 [K¨bVer08] o New Results: ◮ Computation: tree decomposition in L [EJT10] ◮ Isomorphism: BTW-graphs in LogCFL [DTW10] ◮ Canonical labeling: BTW-graphs in AC1
  • 8. 1. Results Restricted classes of BTW-graphs Known Results: ◮ Canonical labeling: BTDW-graphs in L [DTW10] ◮ Canonical labeling: k-trees in L [K¨bKu09] o ◮ Canonical labeling: partial 2-trees in L [ADK08] ◮ Canonical labeling: K3,3 - and K5 -free graphs in L [DNTW09] → partial 3-trees are K5 -free Open: ◮ Canonical labeling: partial 4-trees in L?
  • 9. 1. Complexity NP P [K¨Ver08] o GI TC2 [GroVer06] [Tor´n04] a TC1 BTW-canonical labeling ⊆ AC1 DET BTW-complete invariant SAC1 =LogCFL [DTW10] ⊆ BTW-GI ⊆ k = 3: [DNTW09] k = 2: [ADK08] NL k = 1: [Lin92] [K¨Ku09] o partial k-tree [JKMT03] L [JKMT03] k-tree GI k≤3 NC1 AC0
  • 10. 2. BTW-Canonization: ingredients ◮ Theorem: {G | G has treewidth ≤ k} in L [EJT10] ◮ for graph G , treewidth k, approximate tree decomposition: width 4k + 3, depth O(log n) Theorem: approximate tree decomposition in L [EJT10] ◮ number of bags: ≤ n4k+3 bags of size 4k + 3 ◮ pre-computation in L: ◮ all possible bags, ◮ all split components of bags w.r.t. fixed root Xr ◮ all possible child bags w.r.t. fixed root Xr
  • 11. 2. BTW-Canonization: minimal description Xr X = {u, v , w } σ = (u u v w w v)   0 1 0 G [X ]σ =  1 0 1  0 1 0 X Definition: minimal description: ′ C (G , X , σ) = C0 (G , X , σ) C0 (G , X , σ) [children] (4k+3)2 −|X |2 C (G , X , σ) = 010 101 010 2 uwv 2(4k+3−|X |)⌈log n⌉ [ ]
  • 12. 2. BTW-Canonization: inductive construction C (G , X , σ) Xr sort ... X C1 C2 C3 min min min ... ... ... X1 X2 X3 C (G , X1 , σ1 ) ′ ′ C (G , X2 , σ2 ) C (G , X3 , σ3 ) C (G , X3 , σ3 ) X ′ X3 minimal description for i -th split component: C i = minXi ,σi C (G , Xi , σi )[...] X1 X2
  • 13. 2. BTW-Canonization: depth parameter C (G , X , σ, d + 1) Xr d =3 sort d =2 ... X C1 C2 C3 d =1 min min min ... ... ... d =0 X1 X2 X3 ′ ′ C (G , X1 , σ1 , d) C (G , X2 , σ2 , d) C (G , X3 , σ3 , d) C (G , X3 , σ3 , d) minimal description for i -th split component: C i = minXi ,σi C (G , Xi , σi , d )
  • 14. 2. BTW-Canonization: circuit depth C (G , X , σ, d ) X C (G , X , σ, d − 1) canon ∨ sort ... ... 1 i C C min min ... ... X1 X2 Xi C (G , X1 , σ1 , d − i ) C (G , Xi , σi , d − i ) ◮ minimum: first order definable, in AC0 [Imm99] ◮ sort: i children of equal size ≤ n/i : with O(log i )-depth AC1 -circuits
  • 15. 2. BTW-Canonization: example canon ∨ sort C (G , Xi , σi , d ) ... C1 C2 C3 ... min min min no−canon ... ... ... ...
  • 16. 2. BTW-Canonization: example computes C (G , Xr , σr , c log n) tree decomposition for: tree of depth log n . . . 3 tree of depth 3 2 tree of depth 2 1 bag with leafs 0 leaf d = c log n
  • 17. 2. BTW-Canonization: example . . . computes C (G , Xr , σr , c log n) tree decomposition for: d =2 tree of depth log n . . . . . . tree of depth 3 tree of depth 2 d =1 bag with leafs leaf . . . d = c log n d =0 pre-computation
  • 18. 2. BTW-Canonization: example . . . computes C (G , Xr , σr , c log n) tree decomposition for: d =2 tree of depth log n . . . . . . tree of depth 3 tree of depth 2 d =1 bag with leafs leaf . . . d = c log n d =0 pre-computation
  • 19. 2. BTW-Canonization: example . . . sort computes . . . C (G , Xr , σr , c log n) tree decomposition for: d =i tree of depth log n . . . tree of depth 3 . . . tree of depth 2 bag with leafs d =1 leaf . . . d = c log n d =0 pre-computation
  • 20. 2. BTW-Canonization: algorithm input: graph G , treewidth k output: minimal description C 1: for all bags Xr = {v1 , . . . , v4k+3 } ⊆ V in parallel do 2: for all σ ∈ Sym(Xr ) in parallel do 3: C = min{C , C (G , Xr , σ, c log n)} recursively 4: relabel vertices in C in increasing order in L [DLN08] 5: return C → complete invariant return new labels → canonical form ◮ C = 010101010222 uvw 222 [0101010102222 xyw 222 . . . ] → u = 1, v = 2, w = 3, x = 4, y = 5, . . .
  • 21. 2. BTW-Canonization: algorithm input: graph G , treewidth k output: canonical labeling 1: for all bags Xr = {v1 , . . . , v4k+3 } ⊆ V in parallel do 2: for all σ ∈ Sym(Xr ) in parallel do 3: C = min{C , C (G , Xr , σ, c log n)} recursively 4: relabel vertices in C in increasing order in L [DLN08] 5: return C → complete invariant return new labels → canonical form ◮ C = 010101010222 uvw 222 [0101010102222 xyw 222 . . . ] → u = 1, v = 2, w = 3, x = 4, y = 5, . . .
  • 22. 6. Tools for Canonization Decomposition Reduction tree decomposition [DTW10,Wag11] BTW-Canon ≤ BTDW-Canon [DTW10] tree distance decomposition [DTW10] 2-connected component tree [DLNTW09,DNTW09] 3-connected component tree [DLNTW09,DNTW09] four-connected component tree [DNTW09] colored tree [KK09] tree representation of inverval graphs [KKLV10] → merge canons → analyse resources [Lin92] AC1 -circuit [Wag11] constant size components [DTW10,Wag11] NAuxPDA [DTW10] 3-connected planar components [DLN08] logspace machine [Lin92] Canonize Pieces Computational models
  • 23.
  • 24. A. PlanarGI ∈ L - Canonize Biconnected Components Isomorphism order S < T if [Lindell92]: 1. |S| < |T | or 2. |S| = |T | but #s < #t or 3. |S| = |T | and #s = #t = k but (S1 , . . . , Sk ) < (T1 , . . . , Tk ) S s T t canon(S) = ( ((())) (()()) (. . . ) ) S2 S1 S3 T3 T1 T2
  • 25. A. PlanarGI ∈ L - Canonize Biconnected Components Isomorphism order S < T if [Lindell92]: 1. |S| < |T | or 2. |S| = |T | but #s < #t or 3. |S| = |T | and #s = #t = k but (S1 , . . . , Sk ) < (T1 , . . . , Tk ) S s T t ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ canon(S) = ( ((())) (()()) (. . . ) ) S1 S2 S3 T1 T2 T3
  • 26. BTW-GI in LogCFL ◮ compute tree decomposition for G [Wanke94,GoLeSc02,EJT10] ◮ compute augmented tree Sr for G ◮ guess root r ′ in H, φ : Xr → Xr ′ ◮ if r ′ , φ not consistent then reject ◮ recursion: (s1 ≤T · · · ≤T sl ) ≤T (t1 ≤T · · · ≤T tl ) ◮ return graph G augmented tree Sr graph H ≤log m r s1 s2 ... sl a1,1 a2,1 ... a2,k2 al,kl
  • 27. BTW-GI in LogCFL ◮ compute tree decomposition for G [Wanke94,GoLeSc02,EJT10] ◮ compute augmented tree Sr for G ◮ guess root r ′ in H, φ : Xr → Xr ′ ◮ if r ′ , φ not consistent then reject ◮ recursion: (s1 ≤T · · · ≤T sl ) ≤T (t1 ≤T · · · ≤T tl ) ◮ return graph G augmented tree Sr Tr′ graph H guess r φ r′ guess s1 s2 ... sl a1,1 a2,1 ... a2,k2 al,kl
  • 28. BTW-GI in LogCFL ◮ compute tree decomposition for G [Wanke94,GoLeSc02,EJT10] ◮ compute augmented tree Sr for G ◮ guess root r ′ in H, φ : Xr → Xr ′ ◮ if r ′ , φ not consistent then reject ◮ recursion: (s1 ≤T · · · ≤T sl ) ≤T (t1 ≤T · · · ≤T tl ) ◮ return graph G augmented tree Sr Tr′ graph H r r′ guess ≤T ≤T guess s1 s2 ... sl t1 t2 tl ≤T ≤T ≤T ≤T a1,1 a2,1 ... a2,k2 al,kl ′ a2,1 remember bags along computation path depth first search + ≤T guess ≤T + ≤lex guess and extend φ