SlideShare una empresa de Scribd logo
1 de 128
Descargar para leer sin conexión
US008632975B2
(12) Ulllted States Patent (10) Patent N0.: US 8,632,975 B2
Vander Horn et a]. (45) Date of Patent: Jan. 21, 2014
(54) NUCLEOTIDE TRANSIENT BINDING FOR 7,264,934 B2 9/2007 Fuller
SEQUENCING METHODS 7,270,951 B1 9/2007 Stemple et a1.
7,279,563 B2 10/2007 KWiatkoWski
. . 7,329,492 B2 2/2008 Hardin et al.
(75) Inventors: Peter B. Vander Horn, Enc1mtas, CA 7,361,466 B2 4/2008 Korlach et a1‘
(U$);CheI1g-Ya0 Chen, Carlsbad, CA 7,393,640 B2 7/2008 Kumar etal.
(US); Guobin Luo, Oceanside, CA 7,405,281 B2 7/2008 Xu et al.
(US); Michael Previte, Carlsbad, CA 3,: golrlaclé et a1~ _ tal. - - , , a asu ramanlan e .
(US), Jarnshld Te.rn.1rov,GermantoWn, 7,476,504 B2 V2009 Turner
TN NlklfOl‘OV, Carlsbad, 7,482,120 B2 V2009 BuZby
(US); Zhaohul Zhou, San Ramon, CA 7,485,424 B2 2/2009 Korlach et al.
(US); Hongye Sun, Belmont, CA (US); 7,541,444 B2 6/2009 Milton et al.
Yufang Wang. San Carlos. CA (Us); Egg/3Z3, g5: gggg 2101111811184 ~~~~~~~~~~~~~~~ 355/169},- - - - - , , ar e a . ................. ..
slefame Yuklk” Nlshuflura’ Mountam 2005/0100932 A1 5/2005 Lapidus et al.
VIeW, CA 0J$);H0I1gyl Wang, 2006/0003383 A1 1/2006 Graham
Pearland, TX (US); Marian Peris, 2007/0072196 A1 3/2007 Xu et al.
Belmont, CA (US); Barnett B. 2007/0148645 A1 * 6/2007 Hoser ............................. .. 435/6
. 2007/0196846 A1 8/2007 HanZel et al.
?lqsilnbiléllll’ lsan Ewe’ CA5(éiB’US 2008/0009007 A1 1/2008 Lyle et al.1° “6 e an’ aywar ’ ( ) 2008/0050780 A1 2/2008 Lee et al.
_ _ _ _ 2008/0091005 A1 4/2008 Wang et al.
(73) Ass1gnee: Life Technologies Corporation, 2008/0103053 A1 5/2008 Siddiqi et a1,
Carlsbad, CA (US) 2008/0108082 A1 5/2008 Rank et al.
2008/0132692 A1 6/2008 Wu et al.
* ' . ~ ~ ~ - 2008/0138804 A1 6/2008 BuZby
( ) Not1ce. Subject'to any d1scla1mer, the term ofthis Zoos/0227970 Al 9/2008 Siddiqiet a1‘
patent 1s extended or adjusted under 35 _
U.S.C. 154(1)) by 617 days. (Con?rmed)
(21) App1_ NO; 12/790,760 FOREIGN PATENT DOCUMENTS
' . WO WO-91/05060 4/1991
(22) Wed‘ May 28’ 2010 WO WO-91/06678 5/1991
(65) Prior Publication Data (Continued)
US 2010/0330570 A1 Dec. 30, 2010 OTHER PUBLICATIONS
Bebenek et al., Dissecting the Fidelity ofBacteriophage RB69 DNA
Related U-S-Applwatwn Data Polymerase: Site-Speci?c Modulation of Fidelity by Polymerase
(60) Provisional application No. 61/184,774, ?led on Jun. €ccesstorly $15211; lGenencs Sign“? ofATmeniat’ 2003:) _ _~ ~ ~ ~ erg e a ., O yrnerases equlre a emp a e an a r1mer,1n
5’ 20809’ prilsllslogézlgapphcatlqn Nlo' 61/2142’762’ f?Ied Biochemistry, 5th edition, NewYork: W H Freeman; 2002.*On eP- 5 s PrOVlSlOna app manor} _ 0' Arzumanov, Andrey A. et al., “y-Phosphate-substituted
61083320’ ?led on NOV‘ 20’ 2009’ provlslonal 2‘-Deoxynucleoside 5‘-Triphosphates as Substrates for DNA
appl1cat1on NO- 61095533, ?led 011 Jan 15, 2010- Polymerases”, J. Biol. Chem., vol. 271(40), 1996, pp. 24389-24394.
(51) Int. Cl. (Continued)
C12Q 1/68 (2006.01)
(52) US. Cl. Primary Examiner * Christopher M Babic
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Assislanz Examiner i Aaron Priest
(58) Field of Classi?cation Search
None . ~ _ (57) ABSTRACT
See appl1cat1on ?le for complete search h1story.
Provided herein are compositions and systems for use in
(56) References Cited polymerase-dependent, nucleotide transient-binding meth
U.S. PATENT DOCUMENTS
5,001,050 A 3/1991 Blanco et al.
5,198,543 A 3/1993 Blanco et al.
5,576,204 A 11/1996 Blanco et al.
5,707,804 A 1/1998 Mathies et al.
5,798,210 A 8/1998 Canardet al.
6,309,836 B1 10/2001 Kwiatkowski
6,482,590 B1* 11/2002 Ullman et al. ............. .. 435/612
6,982,146 B1 1/2006 Schneider et al.
7,041,812 B2 5/2006 Kumar et al.
7,052,839 B2 5/2006 Nelson et al.
7,125,671 B2 10/2006 Sood et al.
7,169,560 B2 * 1/2007 Lapidus et al. .............. .. 435/61
7,223,541 B2 5/2007 Fuller et al.
ods. The methods are useful for deducing the sequence of a
template nucleic acid molecule and single nucleotide poly
morphism (SNP) analyses. The methods rely on the fact that
the polymerase transient-binding time for a complementary
nucleotide is longer compared to that of a non-complemen
tary nucleotide. The labeled nucleotides transiently-binds the
polymerase in a template-dependent manner, but does not
incorporate. The methods are conducted under any reaction
condition that permits transient binding of a complementary
or non-complementary nucleotide to a polymerase, and
inhibits nucleotide incorporation.
85 Claims, 41 Drawing Sheets
US 8,632,975 B2
Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2008/0269476 A1
2008/0286837 A1
2008/0287305 A1
2008/0293071 A1
2009/0061437 A1
10/2008 Siddiqi
11/2008 Siddiqi
11/2008 Fuller et al.
11/2008 Gelfand et a1.
3/2009 Efcavitch et a1.
2009/0081686 A1 3/2009 Wu et al.
2009/0087850 A1* 4/2009 Eid et al. ......................... .. 435/6
2009/0176233 A1 7/2009 Clark et a1.
2010/0075328 A1* 3/2010 Bjornson et a1. ................ .. 435/6
2010/0075332 A1* 3/2010 Patel et al. ...................... .. 435/6
2010/0311144 A1
2011/0014612 A1
12/2010 Peris et al.
1/2011 Hendricks et al.
FOREIGN PATENT DOCUMENTS
WO WO-00/70073 11/2000
WO WO-2005/080605 9/2005
WO WO-2007/048033 4/2007
WO WO-2009/091847 7/2009
WO WO-2010/141390 12/2010
OTHER PUBLICATIONS
Bai, Xiaopeng et al., “Design and synthesis of a photocleavable
biotinylated nucleotide for DNA analysis by mass spectrometry”,
Nucleic Acids Research, vol. 32, No. 2, 2004, 535-541.
Bakhtina, Marina et al., “Contribution of the Reverse Rate of the
Conformational Step to Polymerase [3 Fidelity”, Biochem., vol. 48,
2009, 3197-3208.
Beaucage, S. et al., “Advances in the Synthesis of Oligonucleotides
by the Phosphoramidite Approach”, Tetrahedron Report No. 309,
vol. 48 (12), 1992, pp. 2223-2311.
Bentley, D et al., “Accurate whole human genome sequencing using
reversible terminator chemistry”, Nature, vol. 456(6), 2008, pp.
53-59.
Berman, Andrea J. et al., “Structures of phi29 DNA polymerase
complexed with substrate: the mechanism oftranslocation in B-fam
ily polymerases”, The EMBO Journal, vol. 26, 2007, 3494-3505.
Braslavsky, Ido et al., “Sequence information can be obtained from
single DNA molecules”, Proc. Natl. Acad. Sci. , vol. 100( 7), 2003, pp.
3960-3964.
Castro, Christian et al., “Nucleic acid polymerases use a general acid
for nucleotidyl transfer”, Nature Structural & Molecular Biology,
vol. 16 No.2, 2009, 212-218.
Dos Remedios, Cristobal G. et al., “Fluorescence Resonance Energy
Transfer Spectroscopy is a Reliable “Ruler” for Measuring Structural
Changes in Proteins”, Journal ofStructural Biology, vol. 115, 1995,
pp. 175-185.
Johnson, K. “Rapid kinetic analysis of mechanochemical
adenosinetriphosphatases”, Methods Enzymol, vol. 134, 1986, pp.
677-705.
Ju, J et al., “Four-color DNA sequencing by synthesis using cleavable
?uorescent nucleotide reversible terminators”, PNAS, vol. 103 (52),
2006, pp. 19635-19640.
Kumar, Amarendra et al., “Inhibition ofT7 RNA Polymerase: Tran
scription Initiation and Transition from Initiation to Elongation Are
Inhibited by T7 Lysozyme via a Ternary Complex with RNA
Polymerase and Promoter DNA”, Biochemistry, vol. 36, No. 45,
1997, pp. 13954-13962.
Kumar, Shiv et al., “Terminal Phosphate Labeled Nucleotides: Syn
thesis, Applications, and Linker Effect on Incorporation by DNA
Polymerasea”, Nucleosides, Nucleotides andNucleic Acids, vol. 24,
Nos. 5-7, 2005, 401-408.
Laitala, Ville et al., “Homogeneous Assay Based on Anti-Stokes’
Shift Time-Resolved Fluorescence Resonance Energy-Transfer
Measurement”, Analytical Chem., vol. 77, 2005, 1483-1487.
Marshall, P. N., “Rules for the visible absorption spectra ofhaloge
nated Fluorescein dyes”, Histochemical Journal, vol. 7, 1975, pp.
299-303.
Meijer, Wilfried et al., “Phi29 Family of Phages”, Microbiology and
Molecular Biology Reviews, vol. 65, No. 2, 2001, 261-287.
Patel, et al., “Insights into DNA Polymerization Mechanisms from
Structure and Function Analysis of HIV-1 Reverse Transcriptase”,
Biochemistry, vol. 34, No. 16, Apr. 1995, 5351-5363.
PCT/US2010/036755, International Search Report and Written
Opinion mailed Jun. 23, 2011, 12 pgs.
Pelletier, Huguette et al., “Structures of Ternary Complexes of Rat
DNA Polymerase beta, a DNA Template-Primer, and ddCTP”, Sci
ence, vol. 264, Jun. 24, 1994, 1891-1903.
Piston, David W. et al., “Fluorescent protein FRET: the bad and the
ugly”, Trends Biochem. Sci.,, vol. 32, No. 9, 2007, 407-414.
Rienitz, Axel et al., “On the ?delity of DNA polymerase alpha: the
in?uence ofalpha-thio dNTPs, Mn2+ and mismatch repair”, Nucleic
Acids Research, vol. 13, No. 15, 1985, 5685-5695.
Roettger, Michelle P et al., “Mismatched and Matched dNTP Incor
poration by DNA Polymerase [3 ProceedviaAnalogous Kinetic Path
ways”, Biochemistry, vol. 47, No. 37, 2008, 9718-9727.
Rothwell, Paul J. et al., “Structure and Mechanism of DNA
Polymerases”, Advances in Protein Chemistry, vol. 71, 2005, 401
440.
Ruparel, H. et al., “Design and synthesis of a 3‘-a-allyl photocleav
able ?uorescent nucleotide as a reversible terminator for DNA
sequencing by synthesis”, vol. 102 (17), Apr. 1, 2005, 5932-5937.
Selvin, Paul R., “Fluorescence Resonance Energy Transfer”, Meth
ods in Enzymology, vol. 246, 1995, 300-334.
Shimkus, M et al., “A chemically cleavable biotinylated nucleotide:
Usefulness in the recovery of protein-DNA complexes from avidin
a?inity columns”, PNAS, vol. 82, 1985, pp. 2593-2597.
Sood, Anup et al., “Terminal Phosphate-Labeled Nucleotides with
Improved Substrate Properties for Homogeneous Nucleic Acid
Assays”, J Am. Chem. Soc., vol. 127, No. 8, 2005, 2394-2395.
Stryer, “Fluorescence Energy Transfer as a Spectroscopic Ruler”,
Ann. Rev. Biochem.,, vol. 47,, 1978, 819-846.
Tsai, Yu-Chih et al., “A New Paradigm for DNA Polymerase Speci
?city”, Biochemistry, vol. 45, No. 32, 2006, 9675-9687.
Turcatti, Gerardo et al., “A new class of cleavable ?uorescent
nucleotides: synthesis and optimization as reversible terminators for
DNA sequencing by synthesis”, NucleicAcids Research, vol. 36, No.
4, e25, 2008, 1-13.
Wu, J et al., “3‘-O-modi?ed nucleotides as reversible terminators for
pyrosequencing”, PNAS, vol. 104 (42), 2007, pp. 16462-16467.
Wu, J et al., “Termination of DNA synthesis by N6-alkylated, not
3‘-O-alkylated, photocleavable 2‘-deoxyadenosine triphosphates”,
Nuc Acids Research, vol. 35(19), 2007, pp. 6339-6349.
Wu, Pengguang et al., “Resonance Energy Transfer: Methods and
Applications”,Anab/ticalBiochemistry, vol. 218, No. 1, 1994, 1-13.
Barone, A. D. et al., “Novel Nucleoside Triphosphate Analogs for the
Enzymatic Labeling ofNucleic Acids”, Nucleosides, Nucleotides &
Nucleic Acids, 20(4-7), 2001, 1141-1145.
Beese, Lorena et al., “Structural basis for the 3‘-5‘ exonuclease activ
ity of Escherichia coli DNA polymerase I: a two metal ion mecha
nism”, The EMBO Journal, vol. 10 No. 1, 1991, 25-33.
Burgers, Peter et al., “Eukaryotic DNA Polyrnerases: Proposal for a
Revised Nomenclature”, The Journal ofBiological Chemistry, vol.
276, No. 47, 2001, 43487-43490.
Castro, Christian et al., “Two proton transfers in the transition state
for nucleotidyl transfer catalyzed by RNA- and DNA-dependent
RNA and DNA polymerases”, PNAS, vol. 104, No. 11, 2007, 4267
4272.
Dunaway-Mariano, Debra et al., “Investigations of Substrate Speci
?city and Reaction Mechanism of Several Kinases Using
Chromium(III) Adenosine 5‘-Triphosphate and Chromium(III)
Adenosine 5‘-Diphosphate”, Biochemistry, 19, 1980, 1506-1515.
Dunaway-Mariano, Debra et al., “Preparation and Properties of
Chromium(III) Adenosine 5‘-Triphosphate, Chromium(III)
Adenosine 5‘-Diphosphate, and Related Chromium(III) Com
plexes”, Biochemistry, 19, 1980, 1496-1505.
Forster, T., “Intermolecular Energy Migration and ?uorescence”,
Ann. Physik (Leipzig), vol. 2, 1948, 55-75.
Gangurde, Rajiv et al., “Participation ofActive-Site Carboxylates of
Escherichia coli DNA Polymerase I (Klenow Fragment) in the For
mation of a Prepolyrnerase Ternary Complex”, Biochemistry, 41,
2002, 14552-14559.
US 8,632,975 B2
Page 3
(56) References Cited
OTHER PUBLICATIONS
Guo, Jia et al., “Four-color DNA sequencing With 3‘-O-modi?ed
nucleotide reversible terminators and chemically cleavable ?uores
cent dideoxynucleotides”, PNAS, vol. 105, No. 27, Jul. 8, 2008,
9145 -9150.
Joyce, Catherine et al., “Fingers-Closing and Other Rapid
Conformational Changes in DNA Polymerase I (Klenow Fragment)
and Their Role in Nucleotide Selectivity”, Biochemistry, 47, 2008,
6103 -61 16.
Kaushik, Neerja et al., “Biochemical Analysis of Catalytically Cru
cial Aspartate Mutants of Human Immunode?ciency Virus Type 1
Reverse Transcriptase”, Biochemistry, 35, 1996, 11536-11546.
Lee, Harold et al., “The Reopening Rate ofthe Fingers Domain Is a
Determinant of Base Selectivity for RB69 DNA Polymerase”, Bio
chemistry, 2009, 2087-2098.
SaWaya, Michael et al., “Crystal Structures of Human DNA
Polymerase [5 Complexed With Gapped and Nicked DNA: Evidence
for an Induced Fit Mechanism”, Biochemistry, 36, 1997, 11205
1 12 1 5.
Scaringe, Stephen et al., “Novel RNA Synthesis Method Using 5‘-O
Silyl-2‘-O-orthoester Protecting Groups”, .1. Am. Chem. Soc., 120,
1998,11820-11821.
Seo, Tae Seok et al., “Four-color DNA sequencing by synthesis on a
chip using photocleavable ?uorescent nucleotides”, PNAS, vol. 102,
No. 17, 2005, 5926-5931.
SteitZ, Thomas et al., “A general tWo-metal-ion mechanism for cata
lytic RN ”, Proc. Natl. Acad. Sci. USA, vol. 90, 1993, 6498-6502.
SteitZ, Thomas, “A mechanism for all polymerases”, Nature, vol.
391, 1998, 231-232.
Wang, Mina et al., “Effect ofA and B Metal Ion Site Occupancy on
Conformational Changes in an RB69 DNA Polymerase Ternary
Complex”, Biochemistry, 48, 2009, 2075-2086.
Zhang, H. et al., “Fluorescence of 2-aminopurine reveals rapid
conformational changes in the RB69 DNA polymerase-primer/tem
plate complexes upon binding and incorporation of matched
deoxynucleoside triphosphates”, Nucleic Acids Research, vol. 35,
No. 18, 2007, 6052-6062.
Zhong, Xuejun et al., “DNA Polymerase [5. 5. Dissecting the Func
tional Roles of the Two Metal Ions With Cr(III)dTTP”, J'. Am. Chem.
Soc., 120, 1998, 235-236.
* cited by examiner
US. Patent Jan. 21, 2014 Sheet 1 0141 US 8,632,975 B2
268
267
266 FIG.1
265
NoDNA
11 1O 9
U S. Patent Jan. 21, 2014 Sheet 4 0f 41 US 8,632,975 B2
@535
S
Nago
awwngmnwa.N096
@5353m09m
US. Patent Jan. 21, 2014 Sheet 6 0f 41 US 8,632,975 B2
4.3K; -
4.32 -
4.30 -
4,25‘ -
4.2a »
Fluumscenca{volta}
3‘ i i 
was {1.85 {1,1 0 0.15 8,28
Time {secands}
FEG. 5A
US. Patent Jan. 21, 2014 Sheet 7 0f 41 US 8,632,975 B2
.
nu,5
15a4i3
w
I21a...
%.3
11£1:34%EIU
na~HwMwu
?0"in“50,5,554.4332
Time (seconds)
US. Patent Jan. 21, 2014 Sheet 8 0f 41 US 8,632,975 B2
5.5~
w
a”32
5
I
3.3
F
8,5
1
GA
5.1
1.60.20.3
Time (seconds)
US. Patent
Fiuarasceme{wits} 35 ~
341“
25 ~
Jan. 21, 2014 Sheet 9 0f 41 US 8,632,975 B2
z I I ' i ' I ' z
"W 15 20
Time (seconds)
US. Patent Jan. 21, 2014 Sheet 11 0141 US 8,632,975 B2
53 ~
Carrect 664?
0
5
3.8 *
Time (sacunds)
US. Patent Jan. 21, 2014 Sheet 12 0141 US 8,632,975 B2
5.13 -
Fluurescance(volts)
I ‘ E ' i ' l
a 2 4 a a 10
Time (seconds)
FEG. 5G
US. Patent Jan. 21, 2014 Sheet 13 0f 41 US 8,632,975 B2
01:1: 01 I
A O s
aFlumesseme(wits)
C?ma;in
3
i X 1 * | ' i ‘ E
US. Patent Jan. 21, 2014 Sheet 14 0f 41 US 8,632,975 B2
4.8 ~
533mucmumwhommw
.KM.
Tima (secunds)
US. Patent
Fluorescance{waits}
Jan. 21, 2014
5.2 ~
m ~ g
5.3 -
5.6— 1
Sheet 15 0f 41 US 8,632,975 B2
Time (secunds)
FEG. $8
US. Patent
?uorescence(wits)
4,3 -
4.6 ~
4.4 w
4.2 -
3.6 -
Jan. 21, 2014 Sheet 16 0f 41 US 8,632,975 B2
- l ‘ I ' I ‘ 1
1a 26 so 4a
Time {amends}
HG. $3
5.0
US. Patent Jan. 21, 2014 Sheet 17 0141 US 8,632,975 B2
5.5
“mamamu=muwm32m
Time (semnds)
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975
US8632975

Más contenido relacionado

Destacado (7)

Notizie in Movimento - Ladispoli 5 Stelle
Notizie in Movimento - Ladispoli 5 StelleNotizie in Movimento - Ladispoli 5 Stelle
Notizie in Movimento - Ladispoli 5 Stelle
 
Blogueur instagram - Marie et Eva
Blogueur instagram - Marie et Eva Blogueur instagram - Marie et Eva
Blogueur instagram - Marie et Eva
 
ServiceContract
ServiceContractServiceContract
ServiceContract
 
Desapego da rê - Fica na Avenida Copacabana no Jardim Cerejeiras.
Desapego  da  rê -  Fica  na  Avenida  Copacabana  no  Jardim  Cerejeiras.Desapego  da  rê -  Fica  na  Avenida  Copacabana  no  Jardim  Cerejeiras.
Desapego da rê - Fica na Avenida Copacabana no Jardim Cerejeiras.
 
James_Wilkerson_08-2016
James_Wilkerson_08-2016James_Wilkerson_08-2016
James_Wilkerson_08-2016
 
Las apps
Las appsLas apps
Las apps
 
How to Run and Evaluate a Facebook contest via Woobox
How to Run and Evaluate a Facebook contest via WooboxHow to Run and Evaluate a Facebook contest via Woobox
How to Run and Evaluate a Facebook contest via Woobox
 

Similar a US8632975

The gravity field_and_interior_structure_of_enceladus
The gravity field_and_interior_structure_of_enceladusThe gravity field_and_interior_structure_of_enceladus
The gravity field_and_interior_structure_of_enceladus
Sérgio Sacani
 
The gravity fieldandinteriorstructureofenceladus
The gravity fieldandinteriorstructureofenceladusThe gravity fieldandinteriorstructureofenceladus
The gravity fieldandinteriorstructureofenceladus
GOASA
 

Similar a US8632975 (20)

119 phillip d. zamore - 7893036 - in vivo production of small interfering r...
119   phillip d. zamore - 7893036 - in vivo production of small interfering r...119   phillip d. zamore - 7893036 - in vivo production of small interfering r...
119 phillip d. zamore - 7893036 - in vivo production of small interfering r...
 
Systems and methods for visual presentation and selection of IVR menu
Systems and methods for visual presentation and selection of IVR menuSystems and methods for visual presentation and selection of IVR menu
Systems and methods for visual presentation and selection of IVR menu
 
Device and method for providing enhanced telephony
Device and method for providing enhanced telephonyDevice and method for providing enhanced telephony
Device and method for providing enhanced telephony
 
112 andrew fire - 7622633 - genetic inhibition by double-stranded rna
112   andrew fire - 7622633 - genetic inhibition by double-stranded rna112   andrew fire - 7622633 - genetic inhibition by double-stranded rna
112 andrew fire - 7622633 - genetic inhibition by double-stranded rna
 
127 dennis cherok - 8182545 - implantable prosthesis
127   dennis cherok - 8182545 - implantable prosthesis127   dennis cherok - 8182545 - implantable prosthesis
127 dennis cherok - 8182545 - implantable prosthesis
 
Systems and methods for visual presentation and selection of IVR menu
Systems and methods for visual presentation and selection of IVR menuSystems and methods for visual presentation and selection of IVR menu
Systems and methods for visual presentation and selection of IVR menu
 
Systems and methods for visual presentation and selection of IVR menu
Systems and methods for visual presentation and selection of IVR menuSystems and methods for visual presentation and selection of IVR menu
Systems and methods for visual presentation and selection of IVR menu
 
Us8528142
Us8528142Us8528142
Us8528142
 
US7638167
US7638167US7638167
US7638167
 
3rd annual international conference on pharmaceutical sciences
3rd annual international conference on pharmaceutical sciences3rd annual international conference on pharmaceutical sciences
3rd annual international conference on pharmaceutical sciences
 
Systems and methods for visual presentation and selection of IVR menu
Systems and methods for visual presentation and selection of IVR menuSystems and methods for visual presentation and selection of IVR menu
Systems and methods for visual presentation and selection of IVR menu
 
Artículo alzheimer
Artículo alzheimerArtículo alzheimer
Artículo alzheimer
 
The gravity field_and_interior_structure_of_enceladus
The gravity field_and_interior_structure_of_enceladusThe gravity field_and_interior_structure_of_enceladus
The gravity field_and_interior_structure_of_enceladus
 
The gravity fieldandinteriorstructureofenceladus
The gravity fieldandinteriorstructureofenceladusThe gravity fieldandinteriorstructureofenceladus
The gravity fieldandinteriorstructureofenceladus
 
Aijrfans14 243
Aijrfans14 243Aijrfans14 243
Aijrfans14 243
 
Systems and methods for visual presentation and selection of IVR menu
Systems and methods for visual presentation and selection of IVR menuSystems and methods for visual presentation and selection of IVR menu
Systems and methods for visual presentation and selection of IVR menu
 
Systems and methods for visual presentation and selection of IVR menu
Systems and methods for visual presentation and selection of IVR menuSystems and methods for visual presentation and selection of IVR menu
Systems and methods for visual presentation and selection of IVR menu
 
Science Article by Murakawa
Science Article by MurakawaScience Article by Murakawa
Science Article by Murakawa
 
Hollow fibermembranes us8877062
Hollow fibermembranes us8877062Hollow fibermembranes us8877062
Hollow fibermembranes us8877062
 
Us6630507
Us6630507Us6630507
Us6630507
 

US8632975

  • 1. US008632975B2 (12) Ulllted States Patent (10) Patent N0.: US 8,632,975 B2 Vander Horn et a]. (45) Date of Patent: Jan. 21, 2014 (54) NUCLEOTIDE TRANSIENT BINDING FOR 7,264,934 B2 9/2007 Fuller SEQUENCING METHODS 7,270,951 B1 9/2007 Stemple et a1. 7,279,563 B2 10/2007 KWiatkoWski . . 7,329,492 B2 2/2008 Hardin et al. (75) Inventors: Peter B. Vander Horn, Enc1mtas, CA 7,361,466 B2 4/2008 Korlach et a1‘ (U$);CheI1g-Ya0 Chen, Carlsbad, CA 7,393,640 B2 7/2008 Kumar etal. (US); Guobin Luo, Oceanside, CA 7,405,281 B2 7/2008 Xu et al. (US); Michael Previte, Carlsbad, CA 3,: golrlaclé et a1~ _ tal. - - , , a asu ramanlan e . (US), Jarnshld Te.rn.1rov,GermantoWn, 7,476,504 B2 V2009 Turner TN NlklfOl‘OV, Carlsbad, 7,482,120 B2 V2009 BuZby (US); Zhaohul Zhou, San Ramon, CA 7,485,424 B2 2/2009 Korlach et al. (US); Hongye Sun, Belmont, CA (US); 7,541,444 B2 6/2009 Milton et al. Yufang Wang. San Carlos. CA (Us); Egg/3Z3, g5: gggg 2101111811184 ~~~~~~~~~~~~~~~ 355/169},- - - - - , , ar e a . ................. .. slefame Yuklk” Nlshuflura’ Mountam 2005/0100932 A1 5/2005 Lapidus et al. VIeW, CA 0J$);H0I1gyl Wang, 2006/0003383 A1 1/2006 Graham Pearland, TX (US); Marian Peris, 2007/0072196 A1 3/2007 Xu et al. Belmont, CA (US); Barnett B. 2007/0148645 A1 * 6/2007 Hoser ............................. .. 435/6 . 2007/0196846 A1 8/2007 HanZel et al. ?lqsilnbiléllll’ lsan Ewe’ CA5(éiB’US 2008/0009007 A1 1/2008 Lyle et al.1° “6 e an’ aywar ’ ( ) 2008/0050780 A1 2/2008 Lee et al. _ _ _ _ 2008/0091005 A1 4/2008 Wang et al. (73) Ass1gnee: Life Technologies Corporation, 2008/0103053 A1 5/2008 Siddiqi et a1, Carlsbad, CA (US) 2008/0108082 A1 5/2008 Rank et al. 2008/0132692 A1 6/2008 Wu et al. * ' . ~ ~ ~ - 2008/0138804 A1 6/2008 BuZby ( ) Not1ce. Subject'to any d1scla1mer, the term ofthis Zoos/0227970 Al 9/2008 Siddiqiet a1‘ patent 1s extended or adjusted under 35 _ U.S.C. 154(1)) by 617 days. (Con?rmed) (21) App1_ NO; 12/790,760 FOREIGN PATENT DOCUMENTS ' . WO WO-91/05060 4/1991 (22) Wed‘ May 28’ 2010 WO WO-91/06678 5/1991 (65) Prior Publication Data (Continued) US 2010/0330570 A1 Dec. 30, 2010 OTHER PUBLICATIONS Bebenek et al., Dissecting the Fidelity ofBacteriophage RB69 DNA Related U-S-Applwatwn Data Polymerase: Site-Speci?c Modulation of Fidelity by Polymerase (60) Provisional application No. 61/184,774, ?led on Jun. €ccesstorly $15211; lGenencs Sign“? ofATmeniat’ 2003:) _ _~ ~ ~ ~ erg e a ., O yrnerases equlre a emp a e an a r1mer,1n 5’ 20809’ prilsllslogézlgapphcatlqn Nlo' 61/2142’762’ f?Ied Biochemistry, 5th edition, NewYork: W H Freeman; 2002.*On eP- 5 s PrOVlSlOna app manor} _ 0' Arzumanov, Andrey A. et al., “y-Phosphate-substituted 61083320’ ?led on NOV‘ 20’ 2009’ provlslonal 2‘-Deoxynucleoside 5‘-Triphosphates as Substrates for DNA appl1cat1on NO- 61095533, ?led 011 Jan 15, 2010- Polymerases”, J. Biol. Chem., vol. 271(40), 1996, pp. 24389-24394. (51) Int. Cl. (Continued) C12Q 1/68 (2006.01) (52) US. Cl. Primary Examiner * Christopher M Babic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Assislanz Examiner i Aaron Priest (58) Field of Classi?cation Search None . ~ _ (57) ABSTRACT See appl1cat1on ?le for complete search h1story. Provided herein are compositions and systems for use in (56) References Cited polymerase-dependent, nucleotide transient-binding meth U.S. PATENT DOCUMENTS 5,001,050 A 3/1991 Blanco et al. 5,198,543 A 3/1993 Blanco et al. 5,576,204 A 11/1996 Blanco et al. 5,707,804 A 1/1998 Mathies et al. 5,798,210 A 8/1998 Canardet al. 6,309,836 B1 10/2001 Kwiatkowski 6,482,590 B1* 11/2002 Ullman et al. ............. .. 435/612 6,982,146 B1 1/2006 Schneider et al. 7,041,812 B2 5/2006 Kumar et al. 7,052,839 B2 5/2006 Nelson et al. 7,125,671 B2 10/2006 Sood et al. 7,169,560 B2 * 1/2007 Lapidus et al. .............. .. 435/61 7,223,541 B2 5/2007 Fuller et al. ods. The methods are useful for deducing the sequence of a template nucleic acid molecule and single nucleotide poly morphism (SNP) analyses. The methods rely on the fact that the polymerase transient-binding time for a complementary nucleotide is longer compared to that of a non-complemen tary nucleotide. The labeled nucleotides transiently-binds the polymerase in a template-dependent manner, but does not incorporate. The methods are conducted under any reaction condition that permits transient binding of a complementary or non-complementary nucleotide to a polymerase, and inhibits nucleotide incorporation. 85 Claims, 41 Drawing Sheets
  • 2. US 8,632,975 B2 Page 2 (56) References Cited U.S. PATENT DOCUMENTS 2008/0269476 A1 2008/0286837 A1 2008/0287305 A1 2008/0293071 A1 2009/0061437 A1 10/2008 Siddiqi 11/2008 Siddiqi 11/2008 Fuller et al. 11/2008 Gelfand et a1. 3/2009 Efcavitch et a1. 2009/0081686 A1 3/2009 Wu et al. 2009/0087850 A1* 4/2009 Eid et al. ......................... .. 435/6 2009/0176233 A1 7/2009 Clark et a1. 2010/0075328 A1* 3/2010 Bjornson et a1. ................ .. 435/6 2010/0075332 A1* 3/2010 Patel et al. ...................... .. 435/6 2010/0311144 A1 2011/0014612 A1 12/2010 Peris et al. 1/2011 Hendricks et al. FOREIGN PATENT DOCUMENTS WO WO-00/70073 11/2000 WO WO-2005/080605 9/2005 WO WO-2007/048033 4/2007 WO WO-2009/091847 7/2009 WO WO-2010/141390 12/2010 OTHER PUBLICATIONS Bai, Xiaopeng et al., “Design and synthesis of a photocleavable biotinylated nucleotide for DNA analysis by mass spectrometry”, Nucleic Acids Research, vol. 32, No. 2, 2004, 535-541. Bakhtina, Marina et al., “Contribution of the Reverse Rate of the Conformational Step to Polymerase [3 Fidelity”, Biochem., vol. 48, 2009, 3197-3208. Beaucage, S. et al., “Advances in the Synthesis of Oligonucleotides by the Phosphoramidite Approach”, Tetrahedron Report No. 309, vol. 48 (12), 1992, pp. 2223-2311. Bentley, D et al., “Accurate whole human genome sequencing using reversible terminator chemistry”, Nature, vol. 456(6), 2008, pp. 53-59. Berman, Andrea J. et al., “Structures of phi29 DNA polymerase complexed with substrate: the mechanism oftranslocation in B-fam ily polymerases”, The EMBO Journal, vol. 26, 2007, 3494-3505. Braslavsky, Ido et al., “Sequence information can be obtained from single DNA molecules”, Proc. Natl. Acad. Sci. , vol. 100( 7), 2003, pp. 3960-3964. Castro, Christian et al., “Nucleic acid polymerases use a general acid for nucleotidyl transfer”, Nature Structural & Molecular Biology, vol. 16 No.2, 2009, 212-218. Dos Remedios, Cristobal G. et al., “Fluorescence Resonance Energy Transfer Spectroscopy is a Reliable “Ruler” for Measuring Structural Changes in Proteins”, Journal ofStructural Biology, vol. 115, 1995, pp. 175-185. Johnson, K. “Rapid kinetic analysis of mechanochemical adenosinetriphosphatases”, Methods Enzymol, vol. 134, 1986, pp. 677-705. Ju, J et al., “Four-color DNA sequencing by synthesis using cleavable ?uorescent nucleotide reversible terminators”, PNAS, vol. 103 (52), 2006, pp. 19635-19640. Kumar, Amarendra et al., “Inhibition ofT7 RNA Polymerase: Tran scription Initiation and Transition from Initiation to Elongation Are Inhibited by T7 Lysozyme via a Ternary Complex with RNA Polymerase and Promoter DNA”, Biochemistry, vol. 36, No. 45, 1997, pp. 13954-13962. Kumar, Shiv et al., “Terminal Phosphate Labeled Nucleotides: Syn thesis, Applications, and Linker Effect on Incorporation by DNA Polymerasea”, Nucleosides, Nucleotides andNucleic Acids, vol. 24, Nos. 5-7, 2005, 401-408. Laitala, Ville et al., “Homogeneous Assay Based on Anti-Stokes’ Shift Time-Resolved Fluorescence Resonance Energy-Transfer Measurement”, Analytical Chem., vol. 77, 2005, 1483-1487. Marshall, P. N., “Rules for the visible absorption spectra ofhaloge nated Fluorescein dyes”, Histochemical Journal, vol. 7, 1975, pp. 299-303. Meijer, Wilfried et al., “Phi29 Family of Phages”, Microbiology and Molecular Biology Reviews, vol. 65, No. 2, 2001, 261-287. Patel, et al., “Insights into DNA Polymerization Mechanisms from Structure and Function Analysis of HIV-1 Reverse Transcriptase”, Biochemistry, vol. 34, No. 16, Apr. 1995, 5351-5363. PCT/US2010/036755, International Search Report and Written Opinion mailed Jun. 23, 2011, 12 pgs. Pelletier, Huguette et al., “Structures of Ternary Complexes of Rat DNA Polymerase beta, a DNA Template-Primer, and ddCTP”, Sci ence, vol. 264, Jun. 24, 1994, 1891-1903. Piston, David W. et al., “Fluorescent protein FRET: the bad and the ugly”, Trends Biochem. Sci.,, vol. 32, No. 9, 2007, 407-414. Rienitz, Axel et al., “On the ?delity of DNA polymerase alpha: the in?uence ofalpha-thio dNTPs, Mn2+ and mismatch repair”, Nucleic Acids Research, vol. 13, No. 15, 1985, 5685-5695. Roettger, Michelle P et al., “Mismatched and Matched dNTP Incor poration by DNA Polymerase [3 ProceedviaAnalogous Kinetic Path ways”, Biochemistry, vol. 47, No. 37, 2008, 9718-9727. Rothwell, Paul J. et al., “Structure and Mechanism of DNA Polymerases”, Advances in Protein Chemistry, vol. 71, 2005, 401 440. Ruparel, H. et al., “Design and synthesis of a 3‘-a-allyl photocleav able ?uorescent nucleotide as a reversible terminator for DNA sequencing by synthesis”, vol. 102 (17), Apr. 1, 2005, 5932-5937. Selvin, Paul R., “Fluorescence Resonance Energy Transfer”, Meth ods in Enzymology, vol. 246, 1995, 300-334. Shimkus, M et al., “A chemically cleavable biotinylated nucleotide: Usefulness in the recovery of protein-DNA complexes from avidin a?inity columns”, PNAS, vol. 82, 1985, pp. 2593-2597. Sood, Anup et al., “Terminal Phosphate-Labeled Nucleotides with Improved Substrate Properties for Homogeneous Nucleic Acid Assays”, J Am. Chem. Soc., vol. 127, No. 8, 2005, 2394-2395. Stryer, “Fluorescence Energy Transfer as a Spectroscopic Ruler”, Ann. Rev. Biochem.,, vol. 47,, 1978, 819-846. Tsai, Yu-Chih et al., “A New Paradigm for DNA Polymerase Speci ?city”, Biochemistry, vol. 45, No. 32, 2006, 9675-9687. Turcatti, Gerardo et al., “A new class of cleavable ?uorescent nucleotides: synthesis and optimization as reversible terminators for DNA sequencing by synthesis”, NucleicAcids Research, vol. 36, No. 4, e25, 2008, 1-13. Wu, J et al., “3‘-O-modi?ed nucleotides as reversible terminators for pyrosequencing”, PNAS, vol. 104 (42), 2007, pp. 16462-16467. Wu, J et al., “Termination of DNA synthesis by N6-alkylated, not 3‘-O-alkylated, photocleavable 2‘-deoxyadenosine triphosphates”, Nuc Acids Research, vol. 35(19), 2007, pp. 6339-6349. Wu, Pengguang et al., “Resonance Energy Transfer: Methods and Applications”,Anab/ticalBiochemistry, vol. 218, No. 1, 1994, 1-13. Barone, A. D. et al., “Novel Nucleoside Triphosphate Analogs for the Enzymatic Labeling ofNucleic Acids”, Nucleosides, Nucleotides & Nucleic Acids, 20(4-7), 2001, 1141-1145. Beese, Lorena et al., “Structural basis for the 3‘-5‘ exonuclease activ ity of Escherichia coli DNA polymerase I: a two metal ion mecha nism”, The EMBO Journal, vol. 10 No. 1, 1991, 25-33. Burgers, Peter et al., “Eukaryotic DNA Polyrnerases: Proposal for a Revised Nomenclature”, The Journal ofBiological Chemistry, vol. 276, No. 47, 2001, 43487-43490. Castro, Christian et al., “Two proton transfers in the transition state for nucleotidyl transfer catalyzed by RNA- and DNA-dependent RNA and DNA polymerases”, PNAS, vol. 104, No. 11, 2007, 4267 4272. Dunaway-Mariano, Debra et al., “Investigations of Substrate Speci ?city and Reaction Mechanism of Several Kinases Using Chromium(III) Adenosine 5‘-Triphosphate and Chromium(III) Adenosine 5‘-Diphosphate”, Biochemistry, 19, 1980, 1506-1515. Dunaway-Mariano, Debra et al., “Preparation and Properties of Chromium(III) Adenosine 5‘-Triphosphate, Chromium(III) Adenosine 5‘-Diphosphate, and Related Chromium(III) Com plexes”, Biochemistry, 19, 1980, 1496-1505. Forster, T., “Intermolecular Energy Migration and ?uorescence”, Ann. Physik (Leipzig), vol. 2, 1948, 55-75. Gangurde, Rajiv et al., “Participation ofActive-Site Carboxylates of Escherichia coli DNA Polymerase I (Klenow Fragment) in the For mation of a Prepolyrnerase Ternary Complex”, Biochemistry, 41, 2002, 14552-14559.
  • 3. US 8,632,975 B2 Page 3 (56) References Cited OTHER PUBLICATIONS Guo, Jia et al., “Four-color DNA sequencing With 3‘-O-modi?ed nucleotide reversible terminators and chemically cleavable ?uores cent dideoxynucleotides”, PNAS, vol. 105, No. 27, Jul. 8, 2008, 9145 -9150. Joyce, Catherine et al., “Fingers-Closing and Other Rapid Conformational Changes in DNA Polymerase I (Klenow Fragment) and Their Role in Nucleotide Selectivity”, Biochemistry, 47, 2008, 6103 -61 16. Kaushik, Neerja et al., “Biochemical Analysis of Catalytically Cru cial Aspartate Mutants of Human Immunode?ciency Virus Type 1 Reverse Transcriptase”, Biochemistry, 35, 1996, 11536-11546. Lee, Harold et al., “The Reopening Rate ofthe Fingers Domain Is a Determinant of Base Selectivity for RB69 DNA Polymerase”, Bio chemistry, 2009, 2087-2098. SaWaya, Michael et al., “Crystal Structures of Human DNA Polymerase [5 Complexed With Gapped and Nicked DNA: Evidence for an Induced Fit Mechanism”, Biochemistry, 36, 1997, 11205 1 12 1 5. Scaringe, Stephen et al., “Novel RNA Synthesis Method Using 5‘-O Silyl-2‘-O-orthoester Protecting Groups”, .1. Am. Chem. Soc., 120, 1998,11820-11821. Seo, Tae Seok et al., “Four-color DNA sequencing by synthesis on a chip using photocleavable ?uorescent nucleotides”, PNAS, vol. 102, No. 17, 2005, 5926-5931. SteitZ, Thomas et al., “A general tWo-metal-ion mechanism for cata lytic RN ”, Proc. Natl. Acad. Sci. USA, vol. 90, 1993, 6498-6502. SteitZ, Thomas, “A mechanism for all polymerases”, Nature, vol. 391, 1998, 231-232. Wang, Mina et al., “Effect ofA and B Metal Ion Site Occupancy on Conformational Changes in an RB69 DNA Polymerase Ternary Complex”, Biochemistry, 48, 2009, 2075-2086. Zhang, H. et al., “Fluorescence of 2-aminopurine reveals rapid conformational changes in the RB69 DNA polymerase-primer/tem plate complexes upon binding and incorporation of matched deoxynucleoside triphosphates”, Nucleic Acids Research, vol. 35, No. 18, 2007, 6052-6062. Zhong, Xuejun et al., “DNA Polymerase [5. 5. Dissecting the Func tional Roles of the Two Metal Ions With Cr(III)dTTP”, J'. Am. Chem. Soc., 120, 1998, 235-236. * cited by examiner
  • 4. US. Patent Jan. 21, 2014 Sheet 1 0141 US 8,632,975 B2 268 267 266 FIG.1 265 NoDNA 11 1O 9
  • 5.
  • 6.
  • 7. U S. Patent Jan. 21, 2014 Sheet 4 0f 41 US 8,632,975 B2 @535 S Nago awwngmnwa.N096 @5353m09m
  • 8.
  • 9. US. Patent Jan. 21, 2014 Sheet 6 0f 41 US 8,632,975 B2 4.3K; - 4.32 - 4.30 - 4,25‘ - 4.2a » Fluumscenca{volta} 3‘ i i was {1.85 {1,1 0 0.15 8,28 Time {secands} FEG. 5A
  • 10. US. Patent Jan. 21, 2014 Sheet 7 0f 41 US 8,632,975 B2 . nu,5 15a4i3 w I21a... %.3 11£1:34%EIU na~HwMwu ?0"in“50,5,554.4332 Time (seconds)
  • 11. US. Patent Jan. 21, 2014 Sheet 8 0f 41 US 8,632,975 B2 5.5~ w a”32 5 I 3.3 F 8,5 1 GA 5.1 1.60.20.3 Time (seconds)
  • 12. US. Patent Fiuarasceme{wits} 35 ~ 341“ 25 ~ Jan. 21, 2014 Sheet 9 0f 41 US 8,632,975 B2 z I I ' i ' I ' z "W 15 20 Time (seconds)
  • 13.
  • 14. US. Patent Jan. 21, 2014 Sheet 11 0141 US 8,632,975 B2 53 ~ Carrect 664? 0 5 3.8 * Time (sacunds)
  • 15. US. Patent Jan. 21, 2014 Sheet 12 0141 US 8,632,975 B2 5.13 - Fluurescance(volts) I ‘ E ' i ' l a 2 4 a a 10 Time (seconds) FEG. 5G
  • 16. US. Patent Jan. 21, 2014 Sheet 13 0f 41 US 8,632,975 B2 01:1: 01 I A O s aFlumesseme(wits) C?ma;in 3 i X 1 * | ' i ‘ E
  • 17. US. Patent Jan. 21, 2014 Sheet 14 0f 41 US 8,632,975 B2 4.8 ~ 533mucmumwhommw .KM. Tima (secunds)
  • 18. US. Patent Fluorescance{waits} Jan. 21, 2014 5.2 ~ m ~ g 5.3 - 5.6— 1 Sheet 15 0f 41 US 8,632,975 B2 Time (secunds) FEG. $8
  • 19. US. Patent ?uorescence(wits) 4,3 - 4.6 ~ 4.4 w 4.2 - 3.6 - Jan. 21, 2014 Sheet 16 0f 41 US 8,632,975 B2 - l ‘ I ' I ‘ 1 1a 26 so 4a Time {amends} HG. $3 5.0
  • 20. US. Patent Jan. 21, 2014 Sheet 17 0141 US 8,632,975 B2 5.5 “mamamu=muwm32m Time (semnds)