Se está descargando su SlideShare. ×
Ejercicios resueltos: FRACCIONES 1
Ejercicios resueltos: FRACCIONES 1
Ejercicios resueltos: FRACCIONES 1
Ejercicios resueltos: FRACCIONES 1
Ejercicios resueltos: FRACCIONES 1
Ejercicios resueltos: FRACCIONES 1
Ejercicios resueltos: FRACCIONES 1
Ejercicios resueltos: FRACCIONES 1
Ejercicios resueltos: FRACCIONES 1
Ejercicios resueltos: FRACCIONES 1
Ejercicios resueltos: FRACCIONES 1
Ejercicios resueltos: FRACCIONES 1
Ejercicios resueltos: FRACCIONES 1
Ejercicios resueltos: FRACCIONES 1
Ejercicios resueltos: FRACCIONES 1
Ejercicios resueltos: FRACCIONES 1
Ejercicios resueltos: FRACCIONES 1
Ejercicios resueltos: FRACCIONES 1
Ejercicios resueltos: FRACCIONES 1
Ejercicios resueltos: FRACCIONES 1
Ejercicios resueltos: FRACCIONES 1
Ejercicios resueltos: FRACCIONES 1
Ejercicios resueltos: FRACCIONES 1
Ejercicios resueltos: FRACCIONES 1
Ejercicios resueltos: FRACCIONES 1
Ejercicios resueltos: FRACCIONES 1
Ejercicios resueltos: FRACCIONES 1
Ejercicios resueltos: FRACCIONES 1
Ejercicios resueltos: FRACCIONES 1
Ejercicios resueltos: FRACCIONES 1
Ejercicios resueltos: FRACCIONES 1
Ejercicios resueltos: FRACCIONES 1
Próxima SlideShare
Cargando en...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Ejercicios resueltos: FRACCIONES 1

122,615

Published on

Matemáticas 1º ESO

Matemáticas 1º ESO

Published in: Educación, Tecnología
10 comentarios
8 Me gusta
Estadísticas
Notas
Sin descargas
reproducciones
reproducciones totales
122,615
En SlideShare
0
De insertados
0
Número de insertados
7
Acciones
Compartido
0
Descargas
857
Comentarios
10
Me gusta
8
Insertados 0
No embeds

Denunciar contenido
Marcada como inapropiada Marcar como inapropiada
Marcar como inapropiada

Seleccione la razón para marcar esta presentación como inapropiada.

Cancelar
No notes for slide

Transcript

  • 1. SESO DEL IES LAS CUMBRES. GRAZALEMA MATEMÁTICAS 1º ESO http://iesgrazalema.blogspot.com http://www.slideshare.net/DGS998 FRACCIONES EJERCICIOS RESUELTOS 1.- Indica, mediante una fracción, la parte de un todo o unidad que representa cada figura. Determina si son fracciones propias, fracciones igual a la unidad o fracciones impropias. Transforma las fracciones impropias en sus números mixtos correspondientes. a) 2 6 , fracción propia b) 9 9 , fracción igual a la unidad c) 14 4 =3 2 4 , fracción impropia d) 4 4 , fracción igual a la unidad e) 7 8 , fracción propia f) 7 4 =1 3 4 , fracción impropia
  • 2. g) 3 8 , fracción propia h) 27 8 =3 3 8 , fracción impropia i) 15 4 =3 3 4 , fracción impropia j) 13 4 =3 1 4 , fracción impropia 2.- Representa gráficamente las siguientes fracciones. Determina si son fracciones propias, fracciones igual a la unidad o fracciones impropias. Transforma las fracciones impropias en sus números mixtos correspondientes. a) 1 2 1 2 , fracción propia
  • 3. b) 2 3 2 3 , fracción propia c) 2 4 2 4 , fracción propia d) 3 12 3 12 , fracción propia e) 17 6 17 6 =2 5 6 , fracción impropia f) 10 7
  • 4. 10 7 =1 3 7 , fracción impropia g) 27 8 27 8 =3 3 8 , fracción impropia h) 14 3 14 3 =4 2 3 , fracción impropia 3.- Transforma las fracciones impropias en sus números mixtos correspondientes y viceversa. a) 18 7 =2 4 7 b) 5 2 3 = 17 3
  • 5. c) 38 5 =7 3 5 d) 4 5 9 = 41 9 e) 27 2 =13 1 2 f) 3 3 11 = 36 11 g) 39 6 =6 3 6 h) 5 2 13 = 67 13 4.- Utiliza la fracción de un número para resolver los siguientes problemas: a) Tengo 300 €. Las tres cuartas partes las he gastado en un regalo. El resto lo he guardado para el fin de semana. ¿Cuánto gasté en el regalo?. ¿Cuánto guardé? 3 4 de 300€ = 3·300 4 €= 900 4 € =225 € gasté enel regalo 1) 1 4 de300 €= 1·300 4 € = 300 4 €=75€ guardé 2) 300€ −225€=75 € guardé b) A la celebración de una boda asistieron 630 personas. Las cinco séptimas partes eran personas adultas. ¿Cuántos menores participaron en la celebración? 1) 2 7 de 630 personas= 2·630 7 menores= 1.260 7 menores=180menores 2) 5 7 de 630 personas= 5⋅630 7 adultos= 3.150 7 adultos=450adultos 630 personas−450adultos=180 menores c) Se ha realizado una encuesta sobre las preferencias deportivas de 475 personas. Prefieren el fútbol las tres quintas partes de las personas entrevistadas. ¿Cuántas personas prefieren el fútbol? 3 5 de 475 personas= 3· 475 5 el fúbol= 1.425 5 el fútbol=285el fútbol
  • 6. d) En una bolsa tenemos bolas rojas y bolas verdes. Las dos terceras partes son bolas rojas y las bolas verdes son 30. ¿Cuántas bolas hay en la bolsa? 1 3 de x bolas=30bolas verdes⇒ 1· x 3 bolas=30 bolas verdes⇒ x=90 bolas 5.- Representa en la recta numérica: a) 1 2 0 1 b) 7 5 =1 2 5 0 1 2 c) 12 3 =4 0 1 2 3 4 d) 17 6 =2 5 6 0 1 2 3 e) 3 5 0 1 f) 6 6 =1 0 1 g) 19 2 =9 1 2 0 1 2 3 4 5 6 7 8 9 10
  • 7. h) 15 5 =3 0 1 2 3 i) 18 4 =4 2 4 0 1 2 3 4 5 j) 5 8 0 1 6.- Comprueba si son equivalentes los siguientes pares de fracciones: a) 2 3 y 36 54 {2·54=108 3·36=108}⇒ 2 3 = 36 54 b) 7 5 y 49 36 {7·36=252 5·49=245}⇒ 7 5 ≠ 49 36 c) 24 27 y 8 9 {24·9=216 27·8=216}⇒ 24 27 = 8 9 d) 15 10 y 5 3 {15·3=45 10·5=50}⇒ 15 10 ≠ 5 3 e) 11 13 y 44 53 {11·53=583 13·44=572}⇒ 11 13 ≠ 44 53
  • 8. f) 10 50 y 1.000 5.000 {10·5.000=50.000 50·1.000=50.000}⇒ 10 50 = 1.000 5.000 7.- Representa en la recta numérica dos fracciones equivalentes a la que muestra la figura: 4 2 =2 0 1 2 3 6 3 =2 0 1 2 3 8 4 =2 0 1 2 3 8.- Expresa la fracción que representa la parte coloreada en cada figura. Comprueba, en cada caso si son fracciones equivalentes: a) 3 4 12 16 {3·16=48 4·12=48}⇒ 3 4 = 12 16 b) 2 4 8 16 5 8 {2·16=32 4·8=32}⇒ 2 4 = 8 16 {2·8=16 4·5=20}⇒ 2 4 ≠ 5 8
  • 9. 9.- Calcula el término desconocido x para que se cumpla la equivalencia entre fracciones: a) 5 10 = 2 x ⇒5· x=10·2⇒5· x=20⇒x=4 b) 2 15 = x 30 ⇒ x= 2·30 15 = 60 15 =4 c) 5 x = 15 51 ⇒ x= 5·51 15 = 255 15 =17 d) x 10 = 12 40 ⇒ x= 10·12 40 = 120 40 =3 e) x 3 = 27 x ⇒ x· x=3·27⇒x 2 =81⇒ x=9 f) 16 x = x 4 ⇒ x · x=16·4⇒x 2 =64⇒x=8 10.- Halla tres fracciones amplificadas y tres fracciones simplificadas de cada una de las siguientes: a) 36 144 Ejemplo 36 · 2 144 · 2 = 72 · 3 288 · 3 = 216 ·5 864 ·5 = 1.080 4.320 36 :3 144 :3 = 12 :3 48 :3 = 4 :2 16 :2 = 2 8 b) 20 60 Ejemplo 20 ·3 60 ·3 = 60 ·4 180 ·4 = 240 · 10 720 · 10 = 2.400 7.200 20 :5 60 5 = 4 :2 12 :2 = 2 :2 6 :2 = 1 3
  • 10. 11.- Simplifica a la fracción irreducible: a) 98 49 = 2·7·7 7·7 =2 98 2 49 7 49 7 7 7 7 7 1 1 b) 4 20 = 2·2 2·2·5 = 1 5 4 2 20 2 2 2 10 2 1 5 5 1 c) 3 12 = 3 2·2·3 = 1 4 3 3 12 2 1 6 2 3 3 1 d) 75 100 = 3·5·5 2·2·5·5 = 3 4 75 3 100 2 25 5 50 2 5 5 25 5 1 5 5 1 e) 13 52 = 13 2·2·13 = 1 4 13 13 52 2 1 26 2 13 13 1
  • 11. f) 240 360 = 2·2·2·2·3·5 2·2·2·3·3·5 = 2 3 240 2 360 2 120 2 180 2 60 2 90 2 30 2 45 3 15 3 15 3 5 5 5 5 1 1 g) 420 560 = 2·2·3·5·7 2·2·2·2·5·7 = 3 4 420 2 560 2 210 2 280 2 105 3 140 2 35 5 70 2 7 7 35 5 1 7 7 1 h) 1.200 800 = 2·2·2· 2·3·5·5 2· 2·2·2·2·5·5 = 3 2 1.200 2 800 2 600 2 400 2 300 2 200 2 150 2 100 2 75 3 50 2 25 5 25 5 5 5 5 5 1 1
  • 12. i) 900 5.000 = 2·2·3·3·5·5 2·2·2·5·5·5·5 = 9 50 900 2 5.000 2 450 2 2.500 2 225 3 1.250 2 75 3 625 5 25 5 125 5 5 5 25 5 1 5 5 1 j) 3.400 1.800 = 2·2·2·5·5·17 2·2· 2·3·3·5·5 = 17 9 3.400 2 1.800 2 1.700 2 900 2 850 2 450 2 425 5 225 3 85 5 75 3 17 17 25 5 1 5 5 1 12.- Reduce a común denominador: a) 5 6 , 3 4  10 2 12 , 9 3 12 6 2 4 2 6=2· 3 4=2 2 mcm=2 2 ·3=4·3=12 3 3 2 2 1 1 b) 7 12 , 9 15  35 5 60 , 36 4 60 12 2 15 3 12=2 2 · 3 15= 3·5 mcm=2 2 ·3·5=4·3·5=60 6 2 5 5 3 3 1 1
  • 13. c) 7 36 , 7 40 , 2 9  70 10 360 , 63 9 360 , 80 40 360 36 2 40 2 9 3 36=22 ·32 40=2 3 · 5 9= 3 2 mcm=23 ·32 ·5=8·9·5=360 18 2 20 2 3 3 9 3 10 2 1 3 3 5 5 1 1 d) 1 4 , 2 9 , 3 6 , 4 5  45 45 180 , 40 20 180 , 90 30 180 , 144 36 180 4 2 9 3 6 2 5 5 4=22 9= 3 2 6=2· 3 5= 5 mcm=2 2 ·3 2 ·5=4·9·5=180 2 2 3 3 3 3 1 1 1 1 13.- Compara los siguientes pares de fracciones: a) 9 4 y 7 4 9 4  7 4 b) 3 5 y 3 8 3 5  3 8 c) 3 4 y 5 6 3 4 y 5 6  9 3 12 y 10 2 12 ⇒ 9 12  10 12 ⇒ 3 4  5 6 d) 18 11 y 23 11 18 11  23 11
  • 14. e) 21 23 y 21 17 21 23  21 17 f) 8 9 y 11 12 8 9 y 11 12  32 4 36 y 33 3 36 ⇒ 32 4 36  33 3 36 ⇒ 8 9  11 12 14.- Expresa como fracción la parte coloreada de cada figura. Compara las fracciones obtenidas en cada apartado. a) 4 5 8 10 4 5 , 8 10 ⇒ 8 2 10 , 8 1 10 ⇒ 4 5 = 8 10 b) 4 8 4 8 5 8 4 8 = 4 8  5 8 15.- Dibuja dos rectángulos iguales. Divide el primero en tres partes iguales y colorea dos. Divide el segundo en seis partes iguales y colorea tres. Expresa la parte coloreada en fracciones y compáralas. 2 3 3 6 2 3 , 3 6  4 2 6 , 3 1 6 ⇒ 2 3  3 6
  • 15. 16.- Ordena: a) 7 22 , 7 21 , 7 15 , 7 14 ; de mayor a menor. 7 14  7 15  7 21  7 25 b) 5 11 , 17 11 , 6 11 , 18 11 ; de menor a mayor. 5 11  6 11  17 11  18 11 c) 14 12 , 22 20 , 7 5 ; de mayor a menor. 14 12 , 22 20 , 7 5  70 5 60 , 66 3 60 , 84 12 60 ⇒ 84 60  70 60  66 60 ⇒ 7 5  14 12  22 20 12 2 20 2 5 5 12=22 ·3 20=2 2 · 5 5= 5 mcm=2 2 ·3·5=4·3·5=60 6 2 10 2 1 3 3 5 5 1 1 d) 3 22 , 25 22 , 7 22 , 77 22 ; de menor a mayor. 3 22  7 22  25 22  77 22 e) 15 12 , 17 12 , 37 12 , 8 12 ; de mayor a menor. 37 12  17 12  15 12  8 12 f) 2 9 , 3 10 , 4 15 ; de menor a mayor. 2 9 , 3 10 , 4 15  20 10 90 , 27 9 90 , 24 6 90 ⇒ 20 90  24 90  27 90 ⇒ 2 9  4 15  3 10 9 3 10 2 15 3 9= 32 10=2· 5 15= 3· 5 mcm=2·3 2 ·5=2·9·5=90 3 3 5 5 5 5 1 1 1
  • 16. g) 9 11 , 4 5 , 23 55 ; de menor a mayor. 9 11 , 4 5 , 23 55  45 5 55 , 44 11 55 , 23 1 55 ⇒ 23 55  44 55  45 55 ⇒ 23 55  4 5  9 11 11 11 5 5 55 5 11= 11 5=5 55=5·11 mcm=5·11=55 1 1 11 11 1 h) 2 5 , 4 7 , 3 4 , 5 8 , 4 9 ;de mayor a menor. 2 5 , 4 7 , 3 4 , 5 8 , 4 9  1.008 504 2.520 , 1.440 360 2.520 , 1.890 630 2.520 , 1.575 315 2.520 , 1.120 280 2.520 ⇒ 3 4  5 8  4 7  4 9  2 5 5 5 7 7 4 2 8 2 9 3 5= 5 7= 7 4=2 2 8=2 3 9= 3 2 mcm=2 3 ·3 2 ·5·7=8·9·5·7=2.520 1 1 2 2 4 2 3 3 1 2 2 1 1 17.- Calcula: a) 5 8  1 8 = 6 8 = 2·3 2·2·2 = 3 4 b) 3 5 − 1 5 = 2 5 c) 5 12  1 12 = 6 12 = 2·3 2·2·3 = 1 2 d) 9 7 − 3 7 = 6 7 e) 7 16  7 8 = 7 1 16  14 2 16 = 714 16 = 21 16 f) 11 15 − 2 3 = 11 1 15  10 5 15 = 1110 15 = 21 15 = 3·7 3·5 = 7 5 g) 2 11  2 5 = 10 5 55  22 11 55 = 1022 55 = 32 55
  • 17. h) 3 13 − 1 5 = 15 5 65 − 13 13 65 = 15−13 65 = 2 65 i) 5 6  7 4 = 10 2 12  21 3 12 = 1021 12 = 31 12 j) 16 15 − 11 12 = 64 4 60 − 55 5 60 = 64−55 60 = 9 60 = 3·3 2·2·3·5 = 3 20 k) 5 1 5 = 5·51 5 = 251 5 = 26 5 l) 8− 6 7 = 8·7−6 7 = 56−6 7 = 50 7 m) 5 9 1= 59·1 9 = 59 9 = 14 9 n) 7 2 −2= 7−2·2 2 = 7−4 2 = 3 2 ñ) 7 2 5 = 7·52 5 = 352 5 = 37 5 o) 1− 2 7 = 1·7−2 7 = 7−2 7 = 5 7 p) 7 5 2= 72·5 5 = 710 5 = 17 5 q) 9 4 −2= 9−2·4 4 = 9−8 4 = 1 4 18.- Calcula: a) 3 12 − 4 8 − 5 4  7 3 = 6 2 24 − 12 3 24 − 30 6 24  56 8 24 = 6−12−3056 24 = 62−42 24 = 20 24 = 2·2·5 2·2·2·3 = 5 6 b) 15 20 − 3 5  7 4 − 2 10 = 15 1 20 − 12 4 20  35 5 20 − 4 2 20 = 15−1235−4 20 = 50−16 20 = 34 20 = 2·17 2·2·5 = 17 10 c) 1 2 3 4 − 1 3 − 1 2 = 2 1  3 4 − 1 3 − 1 2 = 24 12 12  9 3 12 − 4 4 12 − 6 6 12 = 249−4−6 12 = 33−10 12 = 23 12 2 2 3 4 − 1 3 − 1 2 = 11 4 − 1 3 − 1 2 = 33 3 12 − 4 4 12 − 6 6 12 = 33−4−6 12 = 33−10 12 = 23 12
  • 18. d) 1 3− 1 2  2 5 − 1 6 = 3 1 − 1 2  2 5 − 1 6 = 90 30 30 − 15 15 30  12 6 30 − 5 5 30 = 90−1512−5 30 = 102−20 30 = 82 30 = 41 15 2 3− 1 2  2 5 − 1 6 = 5 2  2 5 − 1 6 = 75 15 30  12 6 30 − 5 5 30 = 7512−5 30 = 87−5 30 = 82 30 = 41 15 e) 1 2− 1 2  1 3  1 4 =2− 6 6 12  4 4 12  3 3 12 =2− 643 12 =2− 13 12 = 24−13 12 = 11 12 2 2− 1 2  1 3  1 4 =2− 1 2 − 1 3 − 1 4 = 3 2 − 1 3 − 1 4 = 18 6 12 − 4 4 12 − 3 3 12 = 18−4−3 12 = 18−7 12 = 11 12 f) 1 1− 1 4 1− 1 5 1− 1 6 = 3 4  4 5  5 6 = 45 15 60  48 12 60  50 10 60 = 454850 60 = 143 60 2 1− 1 4 1− 1 5 1− 1 6 =1− 1 4 1− 1 5 1− 1 6 =3− 1 4 − 1 5 − 1 6 = 11 4 − 1 5 − 1 6   165 15 60 − 12 12 60 − 10 10 60 = 165−12−10 60 = 165−22 60 = 143 60 g) 1 2− 1 4  1 5 =2− 5 5 20  4 4 20 =2− 54 20 =2− 9 20 = 40−9 20 = 31 20 2 2− 1 4  1 5 =2− 1 4 − 1 5 = 7 4 − 1 5 = 35 5 20 − 4 4 20 = 35−4 20 = 31 20 h) 1 1 3  2 5 −1 4  1 6 =5 5 15  6 3 15 −3 3 12  2 2 12 = 56 15 − 32 12 = 11 15 − 5 12 = 44 4 60 − 25 5 60 = = 44−25 60 = 19 60 2 1 3  2 5 −1 4  1 6 = 1 3  2 5 − 1 4 − 1 6 = 20 20 60  24 12 60 − 15 15 60 − 10 10 60 = 2024−15−10 60 = 44−25 60 = = 19 60
  • 19. i) 1 1− 1 10 2 3 4 = 9 10  11 4 = 18 2 20  55 5 20 = 1855 20 = 73 20 2 1− 1 10 2 3 4 =1− 1 10 2 3 4 =3− 1 10  3 4 = 29 10  3 4 = 58 2 20  15 5 20 = 5815 20 = 73 20 j) 1 27 4  5 12 −1= 27 4  5 12 − 1 1 = 81 3 12  5 1 12 − 12 12 12 = 815−12 12 = 86−12 12 = 74 12 = 37 6 2 27 4  5 12 −1= 27 4 5−12 12 = 27 4 − 7 12 = 81 3 12 − 7 1 12 = 81−7 12 = 74 12 = 37 6 k) 5− 3 7 −2=3− 3 7 = 21−3 7 = 18 7 l) 1 2 1 3 −1 1 16 =2 1 3 − 17 16 = 2 1  1 3 − 17 16 = 96 48 48  16 16 48 − 51 3 48 = 9616−51 48 = 112−51 48 = 61 48 2 2 1 3 −1 1 16 =2 1 3 −1− 1 16 =1 1 3 − 1 16 = 1 1  1 3 − 1 16 = 48 48 48  16 16 48 − 3 3 48 = 4816−3 48 = = 64−3 48 = 61 48 3 2 1 3 −1 1 16 = 7 3 − 17 16 = 112 16 48 − 51 3 48 = 112−51 48 = 61 48 4 2 1 3 −1 1 16 =2 1 3 −1− 1 16 =1 1 3 − 1 16 = 4 3 − 1 16 = 64 16 48 − 3 3 48 = 64−3 48 = 61 48 19.- Calcula: a) 4 9 ·3= 4·3 9 = 12 9 = 2·2·3 3·3 = 4 3 b) 1 13 · 13 1 = 13 13 =1 c) 7· 5 28 = 35 28 = 5·7 2·2·7 = 5 4 d) 5 4 · 3 15 = 15 60 = 3·5 2·2·3·5 = 1 4
  • 20. e) 1 6 ·16= 16 6 = 2·2·2·2 2·3 = 8 3 f) 4 11 · 5 6 = 20 66 = 2·2·5 2·3·11 = 10 33 g) 11· 3 55 = 33 55 = 3·11 5·11 = 3 5 h) 2 9 · 24 100 = 48 900 = 2·2·2·2·3 2· 2·3·3·5·5 = 4 75 20.- Representa gráficamente cada multiplicación de fracciones y halla el resultado: a) 2 5 · 1 2 2 5 2 5 · 1 2 = 2 10 = 1 5 b) 4 5 · 2 3 4 5 4 5 · 2 3 = 8 15 c) 8 3 · 32 8 8 3 8 3 · 32 8 = 8 3 ·4= 32 3
  • 21. d) 3 4 · 4 3 3 4 3 4 · 4 3 = 12 12 =1 21.- Calcula utilizando la multiplicación de fracciones: a) La mitad de tres cuartos metros. 1 2 de 3 4 m= 1 2 · 3 4 m= 3 8 m b) La tercera parte de siete quintos metros. 1 3 de 7 5 m= 1 3 · 7 5 m= 7 15 m c) Un cuarto de dos metros. 1 4 de 2 m= 1 4 ·2 m= 2 4 m= 1 2 m d) Dos quintos de medio metro. 2 5 de 1 2 m= 2 5 · 1 2 m= 2 10 m= 1 5 m e) La mitad de la sexta parte de 240 metros. 1 2 de 1 6 de 240 m= 1 2 · 1 6 ·240 m= 240 12 m=20 m f) Los dos quintos de los tres cuartos de 60 metros. 2 5 de 3 4 de 60 m= 2 5 · 3 4 ·60 m= 360 20 m=18 m 22.- Expresa: a) inv  6 11 = 11 6 b) inv  15 9 = 9 15
  • 22. c) inv 8= 1 8 d) inv  1 12 = 12 1 =12 e) inv [inv  3 11 ]=inv  11 3 = 3 11 f) inv [inv 19]=inv  1 19 =19 23.- Calcula: a) 5 9 : 2 3 = 15 18 = 3·5 2·3·3 = 5 6 b) 9 4 : 7 8 = 72 28 = 2·2·2·3·3 2·2·7 = 18 7 c) 9: 2 3 = 27 2 d) 21 7 :3= 21 21 =1 e) 3 10 : 5 8 = 24 50 = 2·2·2·3 2·5·5 = 12 25 f) 12 5 : 10 3 = 36 50 = 2·2·3·3 2·5·5 = 18 25 g) 6: 3 2 = 12 3 =4 h) 9 4 :12= 9 48 = 3·3 2·2·2·2·3 = 3 16 24.- Calcula: a) 2 5 : 3 4  1 2 = 8 15  1 2 = 16 2 30  15 15 30 = 1615 30 = 31 30 b) 4− 5 6 : 4 3 =4− 15 24 = 96−15 24 = 81 24 = 27 8 c) 3 4 : 2 3 − 1 8 : 2 9 = 9 8 − 9 16 = 18 2 16 − 9 1 16 = 18−9 16 = 9 16
  • 23. d) 3:8 5 − 1 7 :2=3:8 5 − 1 14 =3:112 14 70 − 5 5 70=3: 112−5 70 =3: 107 70 = 210 107 e) 3 4  1 2 :3− 2 7 ⋅ 1 6 = 3 4  1 6 − 2 42 = 63 21 84  14 14 84 − 4 2 84 = 6314−4 84 = 77−4 84 = 73 84 f) 4 7 : 1 2  3 4 ⋅ 2 7 = 8 7  6 28 = 32 4 28  6 1 28 = 326 28 = 38 28 = 19 14 g) 3:1 2  3 8 − 2 9 =3:4 4 8  3 1 8 − 2 9 =3: 43 8 − 2 9 =3: 7 8 − 2 9 = 24 7 − 2 9 = 216 9 63 − 14 7 63 = 202 63 h) 2 2 5  3 2 ⋅ 2 4 −1= 12 5  6 8 −1= 12 5  6 8 − 1 1 = 96 8 40  30 5 40 − 40 40 40 = 9630−40 40 = 126−40 40 = 86 40 = 43 20 i) 5−2 3  2 7 : 1 4  7 5 ⋅ 2 3 =5−14 7 21  6 3 21 : 1 4  7 5 ⋅ 2 3 =5− 146 21 : 1 4  7 5 ⋅ 2 3 =5− 20 21 : 1 4  7 5 ⋅ 2 3 = =5− 80 21  14 15 = 105−80 21  14 15 = 25 21  14 15 = 125 5 105  98 7 105 = 12598 105 = 223 105 j) 3 2  1 4 :5 6 − 1 3 =6 2 4  1 1 4 :5 1 6 − 2 2 6 = 61 4 : 5−2 6 = 7 4 : 3 6 = 42 12 = 7 2 k) 1 2 ⋅ 2 3 − 1 5  3 4 − 2 5 ⋅ 1 3 = 2 6 − 1 5  3 4 − 2 15 = 20 10 60 − 12 12 60  45 15 60 − 8 4 60 = 20−1245−8 60 = 65−20 60 = = 45 60 = 3 4 l) 2 3 · 1 2 : 4 5 · 1 3 = 2 6 : 4 5 · 1 3 = 10 24 · 1 3 = 10 72 = 5 36 25.- En un centro escolar de educación secundaria están matriculados 750 alumnos. En 1º de ESO hay matriculados 125 alumnos. Expresa, mediante una fracción irreducible, la parte que representan los alumnos de dicho curso. → De Matemáticas 1º ESO – Esfera – SM Alumnos/as ESO 750 Alumnos/as 1º ESO 125 125 750 = 5·5·5 2·3·5·5·5 = 1 6 de alumnos de 1º de ESO
  • 24. 26.- Un entrenador dispone de 11 jugadores titulares y 6 suplentes. Expresa mediante una fracción la parte de jugadores suplentes. → De Matemáticas 1º ESO – Esfera – SM Jugadores titulares11 Jugadores suplentes6 Total jugadores116=17 6 17 jugadores suplentes 27.- Observa el mosaico y calcula la fracción irreducible que expresa la parte de los baldosines de color respecto al total de los baldosines del mosaico. → De Matemáticas 1º ESO – Esfera – SM 10 25 = 2·5 5·5 = 2 5 28.- A lo largo de una semana, una tienda de discos ha vendido 231 CD, de los cuales 5/7 eran de música pop. Cuántos discos de esta música han vendido? → De Matemáticas 1º ESO – Esfera – SM 5 7 de 231 CD= 5⋅231 7 = 1.155 7 =165 discos de música pop 29.- En una huerta de 400 m2 se han sembrado cuatro tipos de verduras: tomates, judías, pimientos y lechugas. Observando la figura, averigua el área dedicada al cultivo de cada verdura. Tomates Judías Pimientos Lechugas Tomates 8 20 de 400 m2 = 8·400 20 m2 =160 m2 Judías  6 20 de 400 m2 = 6· 400 20 m2 =120 m2 Pimientos 3 20 de 400 m2 = 3·400 20 m2 =60 m2 Lechugas  3 20 de 400 m2 =60 m2 30.- A una persona que le preguntan cuánto pesa, responde: La mitad de la cuarta parte de mi peso es igual a 10 kg. ¿Cuánto pesa esa persona? Peso=x kg 1 2 de 1 4 de x=10 kg ⇒ 1·1· x 2·4 =10 kg ⇒ x 8 =10 kg⇒ x=80 kg
  • 25. 31.- Un sexto de los 2/3 de la estatura de Alicia es igual a 17 cm. ¿Cuál es su estatura? Estaturade Alicia=x 1 6 de 2 3 de x=17 cm ⇒ 1·2· x 6·3 =17 cm⇒ 2·x 2·3·3 =17 cm⇒ x 9 =17 cm⇒ x=153 cm=1 m 53 cm 32.- Se han sacado 250 l de agua de un depósito que contenía 5.000 l. ¿Qué fracción del contenido del depósito queda por consumir? → De Matemáticas 1º ESO – Esfera – SM Total5.000 l Se han sacado 250 l Quedan por consumir 5.000 l−250 l=4.750 l 4.750 5.000 = 2·5·5·5·19 2·2·2·5·5·5·5 = 19 20 quedan por consumir 33.- En dos tiendas de informática venden un modelo de ordenador al mismo precio. En la primera hacen una rebaja de 2/9 de su valor y en la segunda de 3/11 del valor. ¿Dónde comprarías el ordenador? → De Matemáticas 1º ESO – Esfera – SM 1ª tienda 2 9 de rebaja 2ª tienda 3 11 de debaja 2 9 , 3 11  22 11 99 , 27 9 99 ⇒ 27 99  22 99 ⇒ 3 11  2 9 ⇒compraría en la 2ª 34.- Carlos tiene una tableta de chocolate dividida en 12 trozos iguales. Invita a Ana con la mitad de los 2/3 de la tableta. ¿Cuántos trozos recibe Ana? → De Matemáticas 1º ESO – Esfera – SM 1 2 de 2 3 de 12 trozos= 1 2 ⋅ 2 3 ⋅12 trozos= 1⋅2⋅12 2⋅3 =4 trozos recibe Ana 35.- Una familia gasta 1/4 de sus ingresos mensuales en consumo de agua, gas, electricidad y teléfono, y 2/5 en alimentación. ¿Qué parte de los ingresos le queda disponible para ahorro y otros gastos? → De Matemáticas 1º ESO – Esfera – SM Ingresos1 Agua , gas , electricidad y teléfono  1 4 Alimentación 2 5 1− 1 4 − 2 5 = 4−1 4 − 2 5 = 3 4 − 2 5 = 15 5 20 − 8 4 20 = 15−8 20 = 7 20 para ahorro y otros gastos
  • 26. 36.- Dispones de 50 € para comprar libros y material deportivo y para hacer fotocopias; lo que no gastas lo dedicas al ahorro. A lo largo de la primera quincena del mes te has gastado 1/2 del dinero inicial y, a lo largo de la segunda quincena, 2/5 de lo que te quedaba. ¿Cuánto dinero has podido ahorrar en este mes? → De Matemáticas 1º ESO – Esfera – SM Disponible 50 € 1ª quincena {Gastos  1 2 de 50 € = 1⋅50 2 € =25 € Ahorros 50 € −25 €=25 € 2ª quincena {Gastos 2 5 de 25 € = 2⋅25 5 € = 50 5 € =10 € Ahorros  25 € −10 € =15 € en este mes 37.- En un quiosco se han vendido a lo largo de la mañana los 2/3 de un lote de periódicos. Por la tarde se han vendido la mitad de los que han quedado. ¿Qué fracción del total de los periódicos representan los vendidos por la tarde? Lote de periódicos1 Vendidos por la mañana 2 3 Quedan por la mañana1− 2 3 = 3−2 3 = 1 3 Vendidos por latarde  1 2 de 1 3 = 1·1 2·3 = 1 6 38.- En una clase se forman dos grupos de trabajo. El primer grupo representa 1/4 del total y el segundo los 2/5. Los 7 alumnos restantes optan por hacer trabajo individual. a) ¿Cuántos alumnos tiene la clase? b) ¿Cuántos alumnos pertenecen a cada clase? → De Matemáticas 1º ESO – Esfera – SM 1 er grupo 1 4 2º grupo 2 5 3 er grupo 7 a) 1 4  2 5 = 5 5 20  8 4 20 = 13 20 ⇒587=20 alumnos tiene la clase b) 1 er grupo 5 alumnos 2º grupo8 alumnos 3 er grupo7 alumnos
  • 27. 39.- Un recipiente está lleno de agua hasta los 4/5 de su capacidad. Se saca la mitad del agua que contiene. ¿Qué fracción de la capacidad del recipiente se ha sacado? Capacidad de agua 4 5 Seha sacado 1 2 de 4 5 = 1·4 2·5 = 4 10 = 2·2 2·5 = 2 5 40.- En un colegio hay un total de 630 alumnos y alumnas; 1/3 del total practica el fútbol; 1/5 el baloncesto; 1/9 el ciclismo; 1/10 el tenis, y el resto la natación. ¿Cuántos practican cada deporte? → De Matemáticas 1º ESO – Esfera – SM Total 630 alumnos Fútbol  1 3 de 630= 1·630 3 =210 alumnos Baloncesto 1 5 de 630= 1⋅630 5 =126 alumnos Ciclismo 1 9 de 630= 1⋅630 9 =70 alumnos Tenis  1 10 de 630= 1⋅630 10 =63 alumnos Natación 630−210−126−70−63=630−469=161 alumnos 41.- Una finca se divide en tres parcelas. La primera es igual a los 4/7 de la superficie de la finca y la segunda es igual a la mitad de la primera. ¿Qué fracción de la finca representa la tercera parcela? Superficiedela finca1 1ª parcela 4 7 2ª parcela 1 2 de 4 7 = 1·4 2·7 = 4 14 = 2·2 2·7 = 2 7 3ª parcela1− 4 7 − 2 7 = 7 7 − 4 7 − 2 7 = 7−4−2 7 = 7−6 7 = 1 7 42.- En una finca se han plantado árboles frutales: 3/5 son cerezos, 1/3 manzanos y 1/15 perales. Si entre cerezos y manzanas hay 140 árboles, ¿cuántos perales habrá? → De Matemáticas 1º ESO – Esfera – SM Cerezos 3 5 Manzanos 1 3 Perales 1 15 Cerezos y manzanos140
  • 28. 3 5  1 3 = 9 3 15  5 5 15 = 14 15 entre cerezos y manzanos 15 15 − 14 15 = 1 15 de perales 14 140 = 1 x ⇒x= 140·1 14 = 140 14 =10 perales 43.- Ángela ha aprobado la mitad de las asignaturas de la carrera en dos cursos. Se ha propuesto aprobar 1/3 de las asignaturas que le quedan en otro curso. Si lo consigue, le quedarían 12 para terminar la carrera. ¿Cuántas asignaturas tiene la carrera que hace? → De Matemáticas 1º ESO – Esfera – SM Total de asignaturas x 1º y 2º curso {Aprobadas 1 2 de x Le quedan 1 2 de x 3º curso { Aprobadas  1 3 de 1 2 de x= 1⋅1 3⋅2 de x= 1 6 de x Le quedan 1 2 − 1 6 de x=12⇒ 3 3 6 − 1 1 6 de x=12⇒ 3−1 6 de x=12⇒ 2 6 de x=12⇒ 2· x 6 =12⇒2· x=12·6⇒2· x=72⇒x=36 asignaturas Comprobación 1º y 2º curso {Aprobadas 1 2 de 36= 36 2 =18 asignaturas Quedan  1 2 de 36=18 asignaturas 3º curso {Aprobadas  1 3 de 18= 18 3 =6 asignaturas Quedan 36−18−6=36−24=12 asignaturas 44.- Se han consumido los 7/8 del gasóleo del depósito de un vehículo. Se repostan 38 litros, y entonces hay gasóleo en 3/5 partes del depósito. Calcula la capacidad del depósito. → De Matemáticas 1º ESO – Esfera – SM 1º {Consumido 7 8 de x Queda 1 8 de x
  • 29. 2º 3 5 de x− 1 8 de x=38l ⇒ 3 5 − 1 8 de x=38 l ⇒ 24 8 40 − 5 5 40 de x=38l ⇒ 19 40 de x=38l ⇒ 19· x 40 =38l ⇒19· x=38.40l ⇒19· x=1.520l ⇒ x=80l de capacidad Comprobación 1º {Consumido 7 8 de 80= 7⋅80 8 =70 l Queda 1 8 de 80= 1⋅80 8 =10 l 2º { 10 l38 l=48 l 3 5 de 80= 3⋅80 5 l= 240 5 l=48 l 45.- Un señor compra un electrodoméstico y lo paga en cuatro plazos. En el primer plazo, paga la sexta parte del precio. En el segundo paga la mitad de lo que debe en ese momento. En el tercero, paga la quinta parte de la deuda pendiente. Y en el cuarto, lo que resta, que son 180 €. ¿Cuánto costaba el electrodoméstico? → De Matemáticas 1º ESO – Esfera – SM Precio del electrodoméstico  x € 1º plazo {Paga 1 6 de x Debe 1− 1 6 = 6−1 6 = 5 6 de x 2º plazo { Paga 1 2 de 5 6 = 1 2 ⋅ 5 6 = 5 12 de x Debe 5 6 − 5 12 = 10 2 12 − 5 1 12 = 10−5 12 = 5 12 de x 3º plazo {Paga 1 5 de 5 12 = 1 5 ⋅ 5 12 = 5 60 = 1 12 de x Debe 5 12 − 1 12 = 5−1 12 = 4 12 = 1 3 de x 1 3 de x=180 € ⇒ x 3 =180 € ⇒ x=540 € 4º plazo {Debe= paga⇒ 1 3 de x=180 €
  • 30. Comprobación 1º plazo {Paga 1 6 de 540 € = 1·540 6 €=90 € Debe 540 € −90 €=450 € 2º plazo {Paga 1 2 de 450 € = 1·450 2 €=225 € Debe 450 € −225 €=225 € 3º plazo {Paga 1 5 de 225 € = 1·225 5 €=45 € Debe 225 € −45 € =180 € 4º plazo{Debe=paga=180 € 46.- Si Julio se come las dos quintas partes de una tarta y Ana la mitad de lo que queda, todavía queda un trozo que pesa 150 g. ¿Cuál era el peso de la tarta? → De Matemáticas 1º ESO – Esfera – SM Peso de la tarta x g Julio {Come 2 5 de x Queda 1− 2 5 = 5−2 5 = 3 5 de x Ana { Come 1 2 de 3 5 = 1⋅3 2⋅5 = 3 10 de x Queda 3 5 − 3 10 = 6 2 10 − 3 1 10 = 6−3 10 = 3 10 de x 3 10 de x=150 g⇒ 3· x 10 =150 g ⇒3· x=150·10 g ⇒3· x=1.500 g⇒ x=500 g Comprobación Julio {Come 2 5 de 500 g= 2⋅500 5 g= 1.000 5 g=200 g Queda 500 g−200 g=300 g Ana {Come 1 2 de 300 g= 1⋅300 2 g= 300 2 =150 g Queda300 g−150 g=150 g
  • 31. 47.- Determina todos los números naturales que puedas poner en lugar de la letra a en la expresión: a 6  6 a → De Matemáticas 1º ESO – Esfera – SM a 6  6 a ⇒ a⋅a a 6⋅a  6⋅6 6 6⋅a ⇒ a2 6⋅a  62 6⋅a ⇒a2 62 ⇒a6 Comprobación a=1⇒ 1 6  6 1 a=2⇒ 2 6  6 2 a=3⇒ 3 6  6 3 a=4⇒ 4 6  6 4 a=5⇒ 5 6  6 5 a=6⇒ 6 6 = 6 6 a=7⇒ 7 6  6 7 a=8⇒ 8 6  6 8 … 48.- Un refresco está compuesto por agua y por zumos de naranja, pera y manzana de forma que: el volumen total de los tres zumos es el doble que el de agua; el volumen de zumo de naranja es el doble que el de pera y el volumen de zumo de manzana es la mitad que el de agua: a) ¿Qué fracción de cada componente hay en un volumen de refresco? Agua a Naranja n Pera p Manzanam {anpm=1 n pm=2·a}⇒a2·a=1⇒3·a=1⇒a= 1 3 m= a 2 ⇒m= 1 3 :2⇒m= 1 6 { n=2· p an pm=1}⇒ 1 3 2· pp 1 6 =1⇒3· p 1 3  1 6 =1⇒ 3· p 2 2 6  1 1 6 =1⇒ ⇒3· p 3 6 =1⇒3· p 1 2 =1⇒ 3· p 1 2 − 1 2 =1− 1 2 ⇒3· p= 1 2 ⇒ 3· p 3 = 1 2·3 ⇒ ⇒ p= 1 6 { n=2· p p= 1 6 }⇒n=2· 1 6 ⇒n= 2 6 ⇒n= 2 2·3 ⇒n= 1 3 Solución Naranja → n= 1 3 Pera → p= 1 6 Manzana → m= 1 6 Agua → a= 1 3
  • 32. b) ¿Qué gráficas, de las siguientes, representan esta composición? Naranja 4 12 = 1 3 Pera 2 12 = 1 6 Manzana 1 12 Agua  2 12 = 1 6 Naranja 2 6 = 1 3 Pera 1 6 Manzana  1 6 Agua 2 6 = 1 3 Naranja 4 12 = 1 3 Pera 2 12 = 1 6 Manzana  2 12 = 1 6 Agua  4 12 = 1 3 Naranja 2 8 = 1 4 Pera 1 8 Manzana  1 8 Agua 4 8 = 1 2 Naranja Pera Manzana Agua REFRESCO DE FRUTAS 1 REFRESCO DE FRUTAS 2 Naranja Pera Manzana Agua Naranja Pera Manzana Agua REFRESCO DE FRUTAS 3 REFRESCO DE FRUTAS 4 Naranja Pera Manzana Agua

×