SlideShare una empresa de Scribd logo
1 de 275
Descargar para leer sin conexión
M
                     L          F
                  Lab Manejo Florestal




   NOÇÕES BÁSICAS
               DE
 MANEJO FLORESTAL




    Versão 2008


    Apoio
CNPq e Fapeam
Organizadores

      Niro Higuchi
  Joaquim dos Santos
Roseana Pereira da Silva
    Adriano N. Lima
  Liliane M. Teixeira
 Vilany M.C. Carneiro
Cristina A. Felsemburgh
   Edgard S. Tribuzy


                           2
Índice Geral
Conteúdo                                                                         pág.
Parte I – O mínimo de ecologia para o manejo florestal (MF)                        4
Capítulo 1 – Conceitos básicos                                                     5
Capítulo 2 – A árvore                                                              7
2.1. A espécie vegetal no complexo ambiental                                       7
2.2. Fatores ambientais                                                            9
2.3. Interações                                                                   17
Capítulo 3 – Comunidades florestais                                               19
Capítulo 4 – Dinâmica florestal (introdução)                                      22
Capítulo 5 – Dinâmica florestal (sucessão)                                        26
Capítulo 6 – Análise de dimensão, NPP e ciclagem de nutrientes                    32
Capítulo 7 – Desenvolvimento e crescimento de plantas                             36
Parte II – O mínimo de estatística para o manejo florestal                        42
Capítulo 8 – Conceitos gerais                                                     42
8.1. Natureza da estatística                                                      42
8.2. Conceitos básicos                                                            45
Capítulo 9 – Organização dos dados                                                49
Capítulo 10 – Medidas descritivas                                                 54
10.1. Medidas de tendência central                                                54
10.2. Medidas de dispersão                                                        56
10.3. Medidas de relacionamento                                                   58
Fórmulas úteis                                                                    61
Capítulo 11 – Distribuição amostral da média                                      62
Teorema de limite central                                                         65
Capítulo 12 – Estimando a média da população                                      70
Intervalos de confiança                                                           70
Capítulo 13 – Algumas variáveis aleatórias importantes para o manejo florestal    79
13.1. Diâmetro à altura do peito (DAP)                                            79
13.2. Área basal                                                                  82
13.3. Volume                                                                      83
13.4. Biomassa                                                                    87
Anexo 4: Distribuição de Weibull                                                  90
Anexo 5: Artigo sobre biomassa                                                    95
Capítulo 14 – Cadeia de Markov                                                   108
Parte III – Manejo Florestal na Amazônia                                         124
Capítulo 15 – Amazônia: visão geral                                              125
Capítulo 16 – Principais tipos florestais                                        143
Capítulo 17 – Desenvolvimento sustentável                                        151
Capítulo 18 – Manejo florestal sustentável                                       167
Capítulo 19 – Setor florestal brasileiro                                         183
Capítulo 20 – Convenções, acordos internacionais e certificação florestal        200
Capítulo 21 – Legislações florestais brasileiras                                 227
Capítulo 22 – Lei Estadual de Mudanças Climáticas                                256
Capítulo 23 – Exploração florestal na Amazônia                                   259



                                                                                        3
PARTE I
    O MÍNIMO DE ECOLOGIA PARA O MANEJO
                                     FLORESTAL
       A floresta é o conjunto de árvores. Algumas são bem conhecidas e são amplamente
utilizadas na indústria florestal. A maioria, nem tanto. Da árvore, tudo poderia ser aproveitado
(raiz, caule, casca, galhos, folhas e frutos). No entanto, a madeira do caule é o principal produto
atualmente; tem escala de mercado e liquidez financeira.

       Aproveitável ou não, a árvore para sobreviver e se desenvolver tem que interagir com os
outros seres vivos, sem perder de vista a relação intrínseca com os fatores do ambiente e do solo.
Tentar manejar uma floresta sem este conhecimento, é apostar no fracasso. A floresta que está
sendo explorada na Amazônia tem, aproximadamente, 1500 anos de idade, que foi desenvolvida
sobre solos pobres em nutrientes. A exuberância da floresta em contraste com a fertilidade dos
solos pode ser explicada pela capacidade da floresta em conservar e reciclar nutrientes.

       Entender o que é apresentado na Parte I da apostila de manejo florestal não significa que
você vai se transformar em ecólogo. No entanto, se você considerar este mínimo de
conhecimento ecológico, antes e durante o manejo florestal, você poderá minimizar os impactos
ambientais ... e isto é econômico.

       A combinação de economia e minimização de impactos ambientais pode ser obtida
utilizando-se das melhores técnicas de manejo florestal, da exploração florestal até a
industrialização. A grade curricular dos cursos de engenharia florestal já contempla todas essas
etapas ... tudo é uma questão de foco. Portanto, dos quatro pilares da sustentabilidade do manejo
florestal (técnico, econômico, ecológico e social), fica faltando apenas o social. Infelizmente, este
tema não será abordado nesta apostila. A recomendação é colocar como questão de fundo para o
seu manejo florestal, o conceito de desenvolvimento sustentável, que é apresentado na Parte III.
Assuma o compromisso em deixar para as futuras gerações, a mesma oportunidade que você está
tendo, hoje, em aproveitar os recursos florestais.




                                                                                                   4
Capítulo 1 - conceitos básicos
1. Ecologia: é o estudo dos organismos vivos e suas relações com o meio ambiente.

2. Meio ambiente: é a soma de todos os fatores bióticos (vivos) e abióticos que rodeiam e
potencialmente influenciam um organismo.

3. Ecossistema: é a soma das comunidades de plantas e de animais e o meio ambiente, numa
região particular ou habitat ou fatores bióticos + abióticos.

4. Fisiologia da planta: é o estudo dos processos da vida de várias partes da planta.

5. Citologia da planta: é a investigação dos eventos que ocorrem dentro das células.

6. Bioquímica: é a análise da estrutura química final dos seres vivos e os processos da vida.

7. Auto-ecologia: lida com a adaptação e comportamento da espécie individual ou população em
relação ao seu meio ambiente. Pode ser interpretado como sinônimo de ecologia fisiológica ou
ecofisiologia.

8. Sinecologia: é o estudo das comunidades em relação ao meio ambiente. Sinônimos: ecologia
de comunidade, fitossociologia, geobotânica ou ecologia da vegetação.

9. Vegetação: consiste de todas as espécies de plantas numa região (flora) e se refere ao padrão
de como todas as espécies estão espacial e temporalmente distribuída.

10. Forma de vida: (i) o tamanho, a duração da vida, a presença de lenho de um táxon; (ii) o grau
de independência de um táxon; (iii) a morfologia de um táxon; (iv) os traços das folhas do táxon;
(v) a localização dos brotos perenes e (vi) fenologia

11. Fisionomia: é a combinação da aparência externa + estrutura vertical incluindo arquitetura de
copas + forma de vida das taxa dominantes.

12. Formação: um tipo de vegetação que se estende sobre uma grande região. A formação pode
ser subdividida em associações.

13. Associação: é a coleção de todas as populações de plantas co-existindo com um dado
ambiente. A associação tem os seguintes atributos: (i) composição florística relativamente fixa;
(ii) exibe uma fisionomia relativamente uniforme e (iii) ocorre num tipo de habitat relativamente
consistente.



                                                                                                5
14. População: é um grupo de indivíduos de mesma espécie ocupando um pequeno habitat capaz
de permitir o cruzamento entre todos os membros do grupo.

15. Sociologia de plantas: a descrição e o mapeamento dos tipos de vegetação e comunidades.

16. Dinâmica de comunidades: uma outra fase de sinecologia que inclui processos como
transferência de nutrientes e energia entre membros, relações antagônicas e simbióticas entre
membros e os processos e causas da sucessão.




                                                                                              6
Capítulo 2 – A árvore
       Para Hallé et al. (1978), a árvore não pode considerada meramente como um indivíduo
num determinado ponto no tempo, mas como um indivíduo geneticamente diverso em processo
de desenvolvimento e mudanças, que responde, de várias maneiras, às flutuações do clima e
micro-clima, à incidência de insetos, fungos e outros parasitas, particularmente às mudanças ao
redor dela mesma. A árvore é então vista como uma unidade ativa e adaptável e, a floresta, é feita
de um vasto número de tais unidades interagindo entre si e com os fatores do solo e do clima.

       A função de uma árvore em sua eco-unidade (unidade de regeneração) florestal deve ser
considerada, pois a árvore participa na construção da eco-unidade e contribui com a
sobrevivência da mesma, ou seja, a árvore reage a todos os inputs bióticos e abióticos vindos de
seu biótipo natural (Oldeman, 1991). O ambiente da árvore não consiste apenas de fatores
abióticos determinados pelos fatores climáticos e de solos (Oldeman, 1991). Esses fatores são
filtrados pela vegetação circundante composta de um mosaico de fragmentos (manchas) de
floresta jovem, em construção, madura e em decomposição. E, dentro de uma particular mancha,
os nutrientes e a energia são filtrados novamente por vários organismos, antes de alcançar a
árvore sob consideração.

2.1. A espécie vegetal no complexo ambiental:

       (i) A Lei do Mínimo

       A presença e o sucesso de um organismo ou de um grupo de organismo dependem de um
complexo de condições. Diz-se que qualquer condição que se aproxime de ou exceda os limites
de tolerância é uma condição limitante ou um fator limitante.

“O crescimento e/ou a distribuição da espécie é dependente de um fator ambiental mais
criticamente em demanda”.

       (ii) A teoria da tolerância

       “Toda espécie de planta é capaz de existir e reproduzir com sucesso somente dentro de um
limite definido de condições ambientais.”

        Os organismos podem apresentar uma larga faixa de tolerância para um fator e uma
estreita para outro; os organismos que tenham faixas de tolerância longas para todos os fatores
serão provavelmente os mais amplamente distribuídos; quando as condições não são ótimas para


                                                                                                7
uma determinada espécie em relação a um fator ecológico, os limites de tolerância poderão ser
reduzidos para outros fatores ecológicos. Os limites de tolerância não podem ser determinados a
partir de um exame dos fatores morfológicos; em vez disso, eles são relacionados com os fatores
fisiológicos que podem ser somente medidos experimentalmente.

       A distribuição relativa da espécie com limites similares de tolerância aos fatores físicos é
determinada finalmente pelo resultado da competição (ou outra interação biótica) entre as
espécies. Ex: testes de estresse, realizados em laboratórios ou no campo, nos quais os organismos
são submetidos a uma variedade experimental de condições.

       (iii) A espécie taxonômica:

       Uma espécie consiste de grupos de indivíduos morfológica e ecologicamente similares
que podem ou não ser cruzados, mas que são reprodutivamente isolados de outros grupos. O
taxonomista tradicional enfatiza a morfologia (aparências externas), mas os biosistematas dão
mais ênfase à isolação reprodutiva.

       (iv) A espécie ecológica:

       É o produto da resposta genética de uma população a um habitat – ecótipo ou tipo
ecológico ou raça ecológica. São populações de uma mesma espécie que apresentam grande
dispersão geográfica, mas que estão fisicamente separadas.

       (v) População:

       Conjunto de indivíduos da mesma espécie que vive em um território cujos limites são em
geral delimitados pelo ecossistema no qual essa população está presente. As populações são
entidades reais cujos atributos distribuição espacial, densidade, estrutura etária, taxas de
crescimento (produto líquido entre taxas de natalidade, mortalidade e migração) bem como suas
relações de interdependência (simbioses) podem ser estimadas quantitativamente em condições
naturais ou experimentais.

       (vi) Habitat

       Lugar onde uma espécie (ou mais de uma) vive. Neste local, os organismos encontrarão,
além do abrigo das intempéries do meio físico e de eventuais ameaças biológicas (predação),
alimento e condições para reprodução.

       (vii) Nicho ecológico:


                                                                                                 8
Papel que determinada espécie desempenha em um habitat; papel funcional na
comunidade. Na realidade, o conceito pode ser desdobrado em vários outros, dependendo do
modo como é descrita a distribuição da espécie. Podem ser usados critérios ligados ao uso do
espaço, à posição do organismo na cadeia alimentar ou ainda um conjunto de diferentes fatores
ambientais, ex: temperatura, umidade, pH, solo, etc.

2.2. Fatores ambientais:

       (i) Radiação solar:

       Do sol vem, direta ou indiretamente, a luz que torna possível a fotossíntese, e o calor que
aquece o ar e o solo permitindo a continuação dos processos de vida da planta. A árvore precisa
de, pelo menos, 1 a 2% de plena luz para se manter. A briga permanente é ter o máximo de luz
para acentuar os ganhos pela fotossíntese em cima das perdas pela respiração. Por meio do
processo fotossintético, a energia radiante é fixada em energia química potencial utilizada por
todos os componentes da cadeia alimentar para realizar os processos vitais.

       a) A natureza da radiação solar que atinge a Terra:

       A radiação solar fundamentalmente governa a temperatura do ar e, desse modo,
indiretamente determina as condições térmicas ao redor e dentro da planta. A quantidade e a
qualidade de luz são muito importantes para a fotossíntese. A radiação solar controla muitos
processos do desenvolvimento, agindo como um sinal para, por exemplo, a germinação, o
crescimento direcionado e a forma externa da planta.

       b) O balanço de energia:

       O ambiente por meio dos fatores climáticos, transfere energia para todos os seres vivos.
Este fluxo de energia que determina o balanço de energia da planta e que afeta a sua temperatura
é acompanhado primariamente pela radiação solar e terrestre, convecção e transpiração. Cada
processo pelo qual a energia é transferida entre uma planta e o meio ambiente pode causar ganho
ou perda de energia, mas a soma total da energia transferida tem que estar equilibrada. A energia
ganhada pela planta do ambiente pode ser armazenada como calor ou convertida em energia
fotoquímica pela fotossíntese; e pode ser perdida ao ambiente pela radiação da planta, pela
condução do calor ou convecção ou pela evapotranspiração (combinação da evaporação da
superfície do solo e a transpiração das plantas).

       c) A luz e o crescimento das árvores

                                                                                                9
A biosfera recebe a radiação solar em comprimentos de onda de 0.3µm a
aproximadamente 3.0µm. Em média, 45% da radiação proveniente do Sol se encontra dentro de
uma faixa espectral de 0.18-0.71µm, a qual é utilizada para a fotossíntese das plantas (radiação
fotossinteticamente ativa, RFA).

       A importância mais óbvia da radiação solar é a dependência da vida em relação à
fotossíntese, a qual, por sua vez, depende da luz. A luz é a radiação solar nas bandas do visível do
espectro eletromagnético. As bandas do visível vão de 0,4 a 0,7µm (1 µm = 1 x 10-6 m), com as
cores visíveis entre 0,4-0,5 (azul); 0,5-0,6 (verde) e 0,6-0,7 (vermelho). A cor, a forma e o arranjo
das folhas afetam a habilidade relativa de diferentes espécies em competir sob dada condição de
luz.

       Ponto de compensação => é o nível de CO2 que está em perfeito equilíbrio (nem tira e
nem coloca), ou seja, é o ponto que os ganhos fotossintéticos se equilibram com as perdas pela
respiração.

       d) A luz e a morfologia da árvore

       As plantas que crescem sob sombra desenvolvem estrutura e aparência diferentes daquelas
que crescem sob plena luz. Quando as folhas sob sombra são repentinamente expostas à plena
luz, no caso de desmatamento (por exemplo), elas são incapazes de sobreviver.

       A parte aérea das plantas recebe radiação de vários tipos e por todos os lados: radiação
solar direta, radiação que sofre espalhamento na atmosfera, radiação difusa em dias nublados e
radiação refletida da superfície do solo. A forma de crescimento, tipo de ramificação, e a posição
da folha condicionam a luminosidade da copa. A maioria das plantas ordena sua superfície de
assimilação de forma que poucas folhas recebam radiação solar direta permanentemente, assim a
maior parte das folhas se encontra parcialmente sombreada (Lacher, 2000).

       As plantas se adaptam de forma modificativa de acordo com as condições de radiação
preponderante durante a morfogênese. A diferenciação fenotípica de órgãos e tecidos geralmente
não é reversível. Se as condições de radiação mudam no caso de desmatamento (por exemplo),
posteriormente, novos ramos são produzidos e as folhas dos ramos originais não adaptadas
senescem e sofrem abscisão.

       e) Fotocontrole e a resposta da planta



                                                                                                  10
Fotoperiodismo => é a resposta da planta ao comprimento relativo do dia e da noite e as
mudanças neste relacionamento ao longo do ano. A duração do período luminoso de um dia é
denominada fotoperíodo enquanto que o período escuro corresponde ao nictoperíodo. As
respostas sazonais são possíveis porque os organismos vegetais são capazes de “perceber” o
período do ano em que se encontram, pela detecção do comprimento do dia.

(ii) Temperatura

       Pouca atividade biológica ocorre abaixo de zero e acima de 50º C. Os fatores que
influenciam a variação em temperatura são: latitude, altitude, topografia, proximidade à água,
cobertura de nuvem e vegetação. A capacidade de grandes corpos d’água de absorver a energia
solar e re-transmitir mais lentamente faz com que os extremos de temperaturas do dia e da noite
não sejam tão acentuados, ou seja, verão e inverno menos rigorosos. O oposto ocorre no deserto,
por exemplo, aonde a reflectância da luz é maior e a absorção é menor, deixando o dia muito
quente e a noite muita fria, ou seja, da mesma maneira (velocidade) que o ambiente é aquecido, a
dissipação do calor, quando cessa a incidência de luz, é igualmente rápida.

       As plantas regulam as suas temperaturas pela dissipação da energia absorvida e, dessa
maneira, previnem-se da excessiva acumulação de calor e morte. Os 3 principais mecanismos
são: re-radiação, transpiração e convecção.

       a) Temperatura na superfície do solo

       A exata temperatura da superfície do solo depende da taxa de absorção da energia solar e
a taxa com que é dissipada, uma vez absorvida. Isto, por sua vez, depende primariamente da
quantidade de vegetação e cobertura da serapilheira e, em segundo, da cor, conteúdo de água e
outros fatores físicos do solo, se exposto.

       b) Temperatura dentro da floresta

       Quando as árvores estão com todas as folhas, os extremos dentro da floresta são
geralmente menores do que fora da mesma e a diminuição da radiação dentro da floresta pode
resultar em menores médias da temperatura do ar.

       c) A temperatura e o crescimento da planta

       Os processos mais influenciados pela temperatura são:

       - a atividade enzimática que catalisa as reações bioquímicas, especialmente fotossíntese e
respiração.

                                                                                              11
- a solubilidade do CO2 e o O nas células das plantas

       - transpiração

       - a habilidade de raízes em absorver água e minerais do solo.

       Todas as fases dos diferentes regimes de temperatura – temperatura do dia, temperatura da
noite, somas de calor e termoperiodismo (diferença entre as temperaturas do dia e da noite) –
também afetam o crescimento da planta.

       O arranjo das folhas e a orientação das mesmas, uma resposta à intensidade da luz, podem
reduzir a quantidade de energia solar absorvida podendo impedir o superaquecimento da folha.

       d) Formas de vida

       A importância da sobrevivência durante os períodos desfavoráveis tem levado a uma
classificação ecológica das formas de vida baseada na condição de dormência da planta sob
condições climáticas desfavoráveis para o crescimento. Exemplo de classificação: sempre verde,
decíduas, perenes e anuais.

(iii) Água

       A água é a substância inorgânica mais requisitada pelas plantas e a sua presença nas
mesmas é muito grande, em média 40% de seu peso total. A precipitação é a principal fonte da
umidade do solo, que é a principal fonte d’água que alcança a árvore. Na atmosfera, a água está
sempre presente na forma de vapor d’água. A troca de vapor d’água entre a planta e a atmosfera
acontece ao longo dos gradientes da pressão do vapor. A transpiração ocorre quando a água é
vaporizada e se move para fora das folhas (alta pressão) e se misturando com o ar circundante
(baixa pressão).

       A precipitação ocorre quando a massa de ar quente é esfriada abaixo do seu ponto
condensação. Este esfriamento pode resultar de correntes de ar que chegam a altas elevações
como ocorre quando as massas de ar frio estão presas sob o ar quente ou quando o ar quente
avança sobre o ar frio (frente quente); isto ocorre quando o ar úmido passa por cima das
superfícies quentes da Terra (precipitação convencional) e quando as correntes de ar passam por
cima das massas de terra elevada (precipitação orográfica). Se a condensação ocorre abaixo do
ponto de congelamento, a neve é formada; se acima deste ponto, ocorre a chuva.

       A proximidade ao oceano, a temperatura e os teores de umidade das massas de ar, a
elevação, latitude e o relacionamento entre as mudanças sazonais determinam a quantidade, tipo e

                                                                                               12
distribuição da precipitação. Na floresta, 20% da chuva é comumente interceptada pela copa, de
onde pode ser absorvida pela folhagem, ser evaporada, pode pingar diretamente para o solo ou
escorrer pelo tronco.

       A água no solo disponível à planta existe na categoria gravitacional. O fornecimento da
água à planta é realizado pela matriz sólida e a água do material poroso interagindo com a
capilaridade (conjunto de fenômenos que se passam quando num capilar se forma uma interface
líquido-vapor) e a adsorção (fixação das moléculas de uma substância na superfície de outra
substância). O movimento da água no solo depende da interação entre o potencial da água no solo
e condutividade hidráulica.

       Alguns mecanismos que as plantas usam para minimizar o efeito do estresse hídrico: (i)
decíduas de seca (folhas presentes somente durante os períodos de baixo estresse), (ii) efêmeras
(dormentes, como sementes, durante o período de estresse), (iii) ripárias (aquelas que crescem
perto de áreas com grande disponibilidade de água); (iv) sempre verde (quando há uma fonte
perene de água).

       a) As relações da água da planta

       O solo vai secando gradualmente conforme a água é removida das raízes adjacentes; dessa
maneira, restringe a absorção até que a planta não pode mais extrair a água do solo (potencial
osmótico da planta = potencial da água do solo) – isto é o ponto que a planta alcança uma pressão
de turgescência igual a zero e murcha.

       Mantendo este processo de secagem do solo, a fotossíntese gradualmente diminui como
uma resistência ao aumento da tomada de CO2 por causa do fechamento dos estômatos. Isso vai
causar a diminuição do crescimento porque a pressão de turgescência é necessária para a
expansão total de novas células.

       Sob severo estresse hídrico, são inibidas: a respiração, a síntese de proteínas e vários
outros processos envolvendo as reações químicas – por causa da desnaturação da proteína.

       b) Troca de vapor d’água entre a planta e a atmosfera

       A água se moverá da planta para a atmosfera quando a pressão do vapor da planta é maior
do que a da atmosfera. Isto é normal durante o dia sem chuvas. A água pode também mover da
atmosfera para a planta quando as pressões de vapor são inversas, como num dia chuvoso ou



                                                                                              13
quando o orvalho cobrir uma planta que não esteja completamente túrgida. Normalmente, não há
troca de vapor d’água durante a noite.

         Como o ar dentro da folha é normalmente saturado sob condições de crescimento, o vapor
moverá das folhas para o ar circundante a menos que o ar externo esteja também saturado na
mesma ou numa temperatura maior => a transpiração acaba ocorrendo.

         A taxa de transpiração é diretamente dependente da planta e da temperatura do ar, da
umidade relativa do ar e o movimento do ar que afeta a espessura da camada de ar que circunda a
superfície da folha.

         A transpiração é similar a evaporação, exceto quando o movimento do vapor d’água da
célula da planta é controlado a ponto de afetar a resistência das folhas que não estão envolvidas
na evaporação. Este é o processo dominante na relação da água das plantas porque é assim que é
fornecido o gradiente de energia que causa o movimento para dentro e por meio das plantas.

(iv) A floresta e o clima da Amazônia

         A floresta tem uma relação intrínseca com o clima. Os processos biológicos e ecológicos
que determinam a produção e a produtividade de uma floresta dependem do clima e dos solos. O
clima, por sua vez, é influenciado pela floresta da seguinte maneira: diminuição da temperatura
em seu interior e acima dela; diminuição da umidade relativa do ar e possível alteração no
regime de chuvas em áreas com cobertura florestal. Atualmente, sob as chancelas da Convenção
do Clima e Protocolo de Quioto, a interação floresta x clima passou a ser oportunidades de
negócios e motivos de disputas políticas entre países ricos e pobres.

         As plantas que originalmente se desenvolveram graças às condições primárias do
ecossistema em evolução, hoje são partes integrantes e fundamentais para o equilíbrio
estabelecido, fornecendo por meio da evapotranspiração os 50% do vapor d'água necessário para
gerar o atual nível de precipitação. Outros 50% vêm do Oceano Atlântico (Salati e Ribeiro,
1979).

         Para esses autores, embora não se tenham ainda dados que permitam prever com precisão
as conseqüências da substituição ou simples destruição da cobertura florestal da região, algumas
previsões são possíveis:

         - O desmatamento reduzirá o tempo de permanência da água na bacia, por diminuir a
permeabilidade do solo e conseqüentemente o seu armazenamento em reservatórios subterrâneos.


                                                                                              14
A redução do período de trânsito das águas determinará inundações mais intensas durante os
períodos chuvosos, enquanto que a diminuição dos reservatórios subterrâneos, reduzirá a vazão
dos rios nos períodos secos.

       - 50% da precipitação da região é proveniente da evapotranspiração da floresta. Por meio
deste processo, a floresta aumenta o tempo de permanência da água no sistema, devolvendo para
a atmosfera na forma de vapor, a água presente no solo. Uma outra cobertura, cuja
evapotranspiração não substitua a inicial da região determinará uma menor disponibilidade de
vapor na atmosfera e, em conseqüência, uma redução na precipitação, especialmente nos períodos
mais secos.

       - Uma redução da precipitação de 10 a 20% será suficiente para induzir profundas
modificações nos atuais ecossistemas.

       - A energia solar que incide na região é em média 425 cal/cm2/dia e é, em grande parte
(50 a 60%), utilizada no trabalho de evaporação das águas, por meio de da transpiração das
plantas. No caso de desmatamento em grande escala, o balanço de energia será alterado. Dessa
maneira, parte da energia que hoje é utilizada neste processo, será utilizada no processo de
aquecimento do solo e do ar, fazendo aumentar a temperatura do ar.

       - As regiões tropicais absorvem mais radiação solar do que perdem por emissão de ondas
longas. No caso de desmatamento, os padrões de evapotranspiração irão se alterar
(provavelmente diminuirão). Tais mudanças acarretarão sensíveis modificações no micro, meso e
clima global por meio da alteração do balanço de energia de circulação (transporte do calor dos
trópicos para os pólos - células de Hadley).

       - A pressão parcial do CO2 na atmosfera é determinada pela interação deste gás com o
oceano que libera e absorve CO2 numa velocidade muito grande. Em apenas algumas dezenas de
anos, todo o CO2 da atmosfera é renovado por meio deste dinâmico processo de interação por
troca molecular com o oceano. No entanto, a partir do início deste século, o equilíbrio deste
processo foi rompido pela atividade humana. As causas deste aumento são principalmente a
queima de combustíveis fósseis, o aumento populacional e a destruição das florestas. A floresta
amazônica representa aproximadamente 20% do reservatório de carbono da biomassa do planeta.

       De acordo com Victória et al. (1991), do total de gases causadores do efeito estufa
emitidos para a atmosfera, o CO2 contribui com cerca de 50% que, por sua vez, é o gás que tem
as fontes de origem mais bem definidas e estudadas. Do total de CO2 emitido, cerca de 80% vem

                                                                                            15
da queima de combustíveis fósseis e 20% da queima de florestas, principalmente de países
tropicais em desenvolvimento.

(v) Fatores do solo

       O solo tem um papel de fundamental importância nos ciclos da natureza, participando,
direta e indiretamente da maioria das atividades que ocorrem no planeta. A qualidade do solo
pode ser amplamente definida como a capacidade do solo de aceitar, estocar e reciclar água,
nutrientes e energia.

       O solo além de sustentar fisicamente as plantas, é intermediário no fornecimento de água,
oxigênio e nutrientes às plantas, através das raízes. Seus componentes são: grãos minerais,
matéria orgânica, água e ar. A primeira fase da formação do solo é a intemperização da rocha
matriz e, a segunda, é a intemperização bioquímica. A formação do solo depende do clima,
organismos, topografia, rocha matriz e tempo, conforme o desenvolvimento do perfil do solo, que
se fecha com o desenvolvimento dos horizontes do solo.

       Em regiões temperadas, 4 horizontes são típicos em perfil de solo bem drenado: orgânico
(O), lixiviado (A), enriquecido (B) e o horizonte não afetado (C).

       Os solos de regiões tropicais são normalmente altamente intemperizados e laterizados, ou
seja, os horizontes não são nítidos ou paraticamente não existem. Os solos da Amazônia, por
exemplo, são antigos, intemperizados e pobres em nutrientes, possuindo uma baixa capacidade de
troca catiônica.

       A biota do solo é composta pela macrobiota (participam da estruturação do solo
facilitando a infiltração de água e a aeração do solo; é composta em sua maioria por anelídeos e
cupins); a mesobiota (fragmentadores de matéria orgânica, facilitam a decomposição; composta
por protozoários, nematóides, formigas e colêmbolas) microbiota (da qual fazem parte fungos e
bactérias, são responsáveis pela decomposição de matéria orgânica, transformando-a
quimicamente). A biota do solo pode refletir o equilíbrio biológico resultante da ação de todas as
propriedades físicas e químicas do solo e do ambiente.

       A principal rota de ciclagem de nutrientes da floresta amazônica se dá pela decomposição
da serapilheira, cuja velocidade depende principalmente da época do ano. Na estação seca a
decomposição é mais lenta, e ocorre acúmulo da matéria orgânica, enquanto que na estação
chuvosa a decomposição é mais rápida. Outros fatores que podem influenciar na velocidade da


                                                                                               16
decomposição são: a natureza da matéria orgânica, pH do solo, natureza da fração mineral,
umidade e acessibilidade dos decompositores.

2.3. Interações

       As interações das espécies podem ser negativas ou positivas; a distribuição espacial da
planta pode dar uma boa pista para certificar-se da interação – v. quadro 1.




                                                                                           17
Quadro 1 – tipos de interações, interação e exemplos.
                TIPOS                              DEFINIÇÃO                                                           EXEMPLOS
COMPETIÇÃO INTER-                 Ambas as espécies são prejudicadas. Para                      GAFANHOTO/GADO (-) (-)
ESPECÍFICA                        diminuir a competição as espécies ocupam Vivem em um campo alimentando-se de capim, competem por esse recurso.
                                  nichos ecológicos diferentes.
COMPETIÇÃO INTRA-                 Competição     entre   indivíduos    da   mesma                          PLANTAS ENDÊMICAS                (-)(-)
ESPECÍFICA                        espécie.                                            Competem entre si, mas são restritas aos habitats severos porque elas são
                                                                                      competidoras fracas em sítios menos severos.
AMENSALISMO                       É uma interação que prejudica um organismo                          FUNGOS/BACTÉRIAS (0)(-)
                                  enquanto o outro permanece estável.        O fungo libera substâncias antibióticas que matam bactérias, assim o fungo evita
                                                                                      que as bactérias venham a competir com ele por alimento.
COMENSALISMO (alimento)           Apenas os indivíduos de uma das espécies são                         HIENAS/LEÕES            (+)(+)
                                  beneficiados, e os de outra espécie não têm, As hienas acompanham, à distância, os bandos de leões, servindo-se dos restos da
INQUILINISMO (local)              aparentemente, nenhum prejuízo ou benefício. caça abandonados por eles.
                                                                                                               EPÍFITAS/ÁRVORES        (+)(+)
                                                                                      As epífitas vivem habitualmente instaladas como “inquilinas” sobre árvores de
                                                                                      grande porte que não sofrem qualquer prejuízo, e as epífitas conseguem, dessa
                                                                                      maneira luminosidade. São verdes e fotossintetizantes.
PROTOCOOPERAÇÃO                   Benefícios para ambas as espécies ainda que                          AVE/CAVALO                     (+) (+)
                                  não seja obrigatória, ou seja, o crescimento A ave come os carrapatos do cavalo.
                                  continua ... mesmo na ausência da interação
MUTUALISMO                        É uma interação obrigatória, ou seja, a ausência                       MICORRIZAS/PLANTAS (+)(+)
                                  da interação prejudica os dois parceiros.        Fixação simbiótica do nitrogênio (bactéria do gênero Rhyzobium) em plantas
                                                                                      leguminosas.

HERBIVORISMO                      É o consumo de parte ou do total de uma planta                          GIRAFA/PLANTAS            (+) (-)
                                  por um consumidor.                             As girafas se alimentam das plantas, existindo, então, prejuízo para as plantas, que
                                                                                      são devoradas parcial ou totalmente por eles.




                                                                                                                                                                 18
Capítulo 3 - Comunidades florestais (conceitos)
       Comunidade é um termo geral usado para designar as unidades sociológicas de certo
grau de extensão e de complexidade. Formação é a maior e o mais compreensivo tipo de
comunidade de plantas, como boreal, temperada, tropical etc. Cada formação é composta de
várias outras comunidades distintas denominadas de associações (ex.: beech-maple, oak-
hickory, pinheiro-imbuia etc.).

       O termo tipo florestal se refere a uma comunidade florestal definida somente pela
composição do dossel. Como a comunidade ou associação pode ou não ser definida pela soma
total do ecossistema, a sua designação normalmente leva em conta as características das
plantas inferiores também ou, alternativamente, as características do sítio.

        As comunidades não são compostas de arranjos de espécies sucessivos e mutuamente
exclusivos. Espécies individuais têm diferentes tolerâncias fisiológicas e genéticas e podem
existir em várias comunidades diferentes.

       A natureza de uma dada comunidade florestal é governada pela interação de 3 grupos
de fatores:

       (a) o sítio ou habitat disponível para o crescimento da planta;

       (b) as plantas e os animais disponíveis para colonizar e ocupar o sítio;

       (c) as mudanças no sítio e na biota durante um certo período de tempo, capaz de
influenciar as estações do ano, os climas, os solos, a vegetação e os animais => em outras
palavras, a história do habitat.

       As descrições de comunidades baseadas na fisionomia, forma de vida, superposição de
nicho e outros traços funcionais são úteis porque permitem comparações de povoamentos bem
separados que tem pouco ou nenhuma similaridade florística. Os tipos de chaparral da
Califórnia e do Chile, por ex., têm poucas similaridades florísticas, mesmo em nível de
família, mas exibem similares números de espécies, formas de crescimento, tamanho e
fenologia das folhas e a % de cobertura do dossel pelas espécies suculentas e espinhentas.

(i) Associação:

       Associação é um tipo, particular, de comunidade, que tem: (a) uma composição
florística relativamente consistente, (b) uma fisionomia uniforme e (c) uma distribuição que é
característica de um habitat particular.

       (a) A visão discreta:


                                                                                             19
As espécies numa associação têm os limites similares de distribuição ao longo de eixo
horizontal e a maioria delas se eleva à máxima abundância no mesmo ponto – MODA. Os
ecótonos (cinturões de transição) entre associações adjacentes são estreitos com uma pequena
superposição do limite das espécies, exceto para poucos taxa onipresentes em várias
associações.

       (b) A visão do continuum:

       Continuum significa que todas as comunidades de tipo de vegetação, por ex., floresta
ou campo, poderiam ser organizadas ou ordenadas numa série abstrata da qual a composição
de espécies muda gradual-tipicamente ao longo de um ou mais gradientes ambientais.

        A vegetação num continuum é o produto de um continuum no espaço (espécies e
comunidades influenciadas pelos fatores ambientais e bióticos) e um continuum em tempo
(sucessão). Entretanto, há objeções substantivas à abordagem do continuum. Alguns estudos
mostram que nem a dominância de um táxon simples e nem a presença e abundância de
grupos de espécies mudam abruptamente ao longo do gradiente ambiental.

(ii) Métodos de amostragem de comunidades de plantas:

       (a) Método “releve”

       Cada povoamento é representado por um grande quadrado cujo tamanho tem que
encontrar a exigência da área mínima. Os dados coletados incluem: cobertura, sociabilidade,
vitalidade e periodicidade (importância estacional). A tabela resumo revela os traços
sintetizados (presença e constância). Se a espécie X ocorre em 8 dos 10 quadrados, esta
espécie tem 80% de presença. Constância, em contraste, é baseada nas espécies encontradas
em transectos. A espécie X estando presente em 8 quadrados, mas em somente 6 dos 10
transectos, a constância será de 60%.

       (b) Métodos dos quadrados aleatórios

       (c) Método da distância

(iii) Métodos para descrever a comunidade de plantas:

       (a) Tabelas

       As associações são definidas na base dos diferenciais ou nas espécies características
que têm altos valores confiáveis e consistentes. As associações são apresentadas numa grande
tabela diferenciada que é manejada para preservar a maioria dos dados originais das espécies
e dos povoamentos.



                                                                                         20
(b) Ordenação

       Os dados amostrados são reduzidos em 1 ou 2 gráficos que mostra os povoamentos
como pontos no espaço. Algumas limitações da forma mais simples de ordenação são
parcialmente corrigidas, mas a um custo mais elevado e, às vezes, o resultado é difícil de ser
interpretado ecologicamente.

       (c) Gradiente direto

       A importância das espécies é uma função de cada posição do povoamento no
gradiente. Geralmente, curvas não-sincronizadas para todas espécies são produzidas. Sendo
assim, o gráfico não serve para a classificação.

       (d) Análise de agrupamentos

       É o uso dos pares de coeficientes dos povoamentos para construir o dendrograma
(padrões de similaridade).

       (e) Análise de associação

       Também produz um dendrograma dos relacionamentos povoamento a povoamento,
mas a sua construção é baseada nas espécies diferenciais em vez dos valores dos coeficientes
da comunidade.




                                                                                           21
Capítulo 4 - Dinâmica florestal (introdução)
       A população de plantas tem atributos que permite usá-los como ferramentas para
avaliar o meio ambiente. Esses fatores incluem o arranjo dos indivíduos no espaço dentro de
uma dada comunidade, o arranjo dos indivíduos no tempo, que é a estrutura de idade e a taxa
de crescimento de uma população e o padrão de alocação de recursos dos indivíduos que
caracteriza o modo de sobrevivência de uma população em um ambiente particular.

       Depois do corte raso, o espaço antes ocupado pela floresta, passa pelas seguintes fases:
reorganização, acumulação, transição e steady-state (estabilização).

(i) O arranjo dos indivíduos no espaço

       a) Densidade

       É o número de indivíduos por unidade de área.

                      Daí = ni/A

       b) Padrão de distribuição

       O padrão de distribuição espacial de uma espécie refere-se à distribuição no espaço
dos indivíduos pertencentes à dita espécie. Os indivíduos de uma espécie podem apresentar-
se: aleatoriamente distribuídos, regularmente distribuídos e em grupos ou agregados.

       A distribuição do Poisson é usada para verificar se a distribuição é aleatória ou não. Se
o teste qui-quadrado for não significante, o padrão é aleatório; caso contrário, pode ser
agregado ou regular (ou uniforme). Se a população for agregada, vários quadrados poderiam
ter zero ou mais do que uma planta e poucas poderia ter uma planta. Por dedução, se a
população não é aleatória e nem agregada, ela é regular. O tipo de distribuição pode refletir o
tipo de reprodução, irregularidade no micro-clima, os graus de competitividade e o estágio da
sucessão.

       Uma vez que as comunidades vegetais são constituídas por um conjunto de variáveis
com maior ou menor grau de inter-relação e com densidade absoluta (abundância) variável,
desde comuns até raras, e dado que a maioria dos estudos fitossociológicos, se baseia em
análises florísticas provenientes de amostras de comunidades que se estudam, é importante
conhecer algumas das características da vegetação vinculadas ao padrão espacial das espécies
e à distribuição de freqüências.

(ii) Arranjo dos indivíduos no tempo: demografia



                                                                                             22
Demografia é a ciência ou estudo das estatísticas vitais: nascimentos, mortes, taxas
reprodutivas e idades dos indivíduos na população.

       Diferentemente dos animais, que cessa o crescimento quando maduro (adulto), as
plantas perenes possuem os meristemas primário e secundário, que, teoricamente, permitem o
crescimento contínuo em comprimento e largura para sempre. Além disso, muitas plantas têm
a habilidade de reproduzir-se assexuadamente.

       a) Ciclos de vida

       - Plantas anuais

       - Plantas bianuais

       - Herbáceas perenes

       - Arbóreas perenes

       - Arbustos

       b) Distribuições de idade

               1) sementes viáveis

               2) mudas

               3) juvenis

               4) imatura, vegetativa

               5) madura, vegetativa

               6) reprodutiva inicial

               7) máximo vigor (reprodutiva e vegetativa)

               8) senescente

       - se uma população apresentar apenas os primeiros 4 ou 5 estados, é óbvio que ela é
invasora e é parte de uma comunidade seral (em evolução).

       - se uma população apresentar todos os 8 estados, ela é estável e é muito provável que
seja parte de uma comunidade clímax (comunidade que ganha ocupação permanente do
habitat e se perpetua por si só nesse local indefinidamente).

       - se ela apresentar apenas os 4 últimos estados, ela pode não manter sozinha e pode ser
parte de uma comunidade seral.

       c) Tabelas de vida


                                                                                           23
- Tipo I: populações têm baixa mortalidade quando jovem

       - Tipo II: mortalidade constante em todas idades

       - Tipo III: alta mortalidade quando jovem.

(iii) Comportamento dos indivíduos: alocação de recursos

       A espécie de planta tem um padrão de alocação de recursos que minimiza as suas
chances de extinção. Tais padrões têm sido mantidos e melhorados durante o processo de
seleção natural. O padrão de alocação determina, em parte, o nicho de uma espécie – seu
endereço funcional numa comunidade.

       Os organismos têm uma quantidade limitada de tempo e energia para completar o
ciclo de vida. O tempo, por si só, não é alocado, mas é importante no ganho de energia
fotossintética e na utilização de energia para a sua manutenção. Uma fração da energia total
disponível é distribuída para cada atividade no ciclo de vida: a quantidade de tempo gasto no
estado de dormência, na fase juvenil, no estágio vegetativo ou na fase madura etc.

       O organismo parece ficar sobre um continuum entre dois extremos de alocação de
recursos: r e k.

       Seleção – r => planta de vida curta que amadurece rapidamente, ocupa um habitat
aberto numa comunidade seral e gasta uma grande fração de seus recursos fotossintéticos para
produzir flores, frutos e sementes. O tamanho de suas populações é densidade-independente,
isto é, elas são reguladas por fatores físicos como fogo, inundação, congelamento, seca etc.

       Seleção – k => planta de vida longa que tem um prolongado estágio vegetativo, ocupa
uma comunidade fechada, seral tardia ou clímax e gasta uma pequena fração de seus recursos
para reprodução. O tamanho de suas populações é densidade-dependente, isto é, elas são
reguladas por interações bióticas como a competição.




                                                                                               24
Características morfofisiológicas das estratégias evolutivas r e k (O’BRIEN & O’BRIEN, 1985)
                                                 Seleção r                                         Seleção k
                                              Oportunistas                                         Equilíbrio
Habitat                     Florestas sujeitas a mudanças bruscas, instáveis,   Florestas estáveis e previsíveis, com teia
                            de teia alimentar simples                           alimentar complexa
Estágio de sucessão         Início                                              Final
Mortalidade                 Densidade, independente, não direcionada ou         Densidade, dependente, mais direcionada
                            catastrófica
Tamanho da população        Não mostra equilíbrio, usualmente abaixo da         Em equilíbrio, constante ao longo do tempo,
                            capacidade de suporte do ambiente,                  próximo da capacidade de suporte do
                            comunidades insaturadas, recolonização              ambiente, sem necessidade de recolonização
                            periódica
Competição                  Variável, usualmente frouxa                         Usualmente forte
O que a seleção favorece    - Crescimento rápido                                - Crescimento lento
                            - Alto índice de aumento populacional               - Baixo índice de aumento populacional
                            - Reprodução cedo                                   - Reprodução tardia
                            - Porte menor                                       - Porte maior
                            - Reprodução sem padrão determinado                 - Reprodução cíclica, repetida
                            - Diásporas pequenas em grande quantidade           - Diásporas grandes em pequena quantidade
Dispersão                   Longa distância                                     Local
Longevidade                 Curta, poucos anos                                  Longa, mais de 20 anos
Leva à                      Produtividade                                       Eficiência




                                                                                                                              25
Capítulo 5 - Dinâmica florestal (sucessão)
       Aos olhos dos seres humanos, a floresta amazônica parece ser estática, sem nenhuma
mudança perceptível, resultando em uma paisagem monótona. Entretanto, incríveis mudanças
são processadas, a todo instante, dentro de um ecossistema florestal.

       Seguindo a morte natural de uma árvore e sua queda, muitas outras são envolvidas e,
ao final, aparece uma clareira. Na seqüência, há um aumento em quantidade e mudança de
qualidade de luz, aumento na temperatura do solo, diminuição na umidade relativa e umidade
da superfície do solo, mudanças nas propriedades do solo incluindo o aumento no processo de
decomposição e disponibilidade de nutrientes, o solo mineral é exposto, mudas estabelecidas
morrem, plântulas começam a surgir, varas e arvoretas são injuriadas, outras respondem
positivamente às mudanças, as árvores crescem, a floresta é reconstruída naquela clareira, o
dossel se fecha, a clareira desaparece etc. (Shuggart, 1984).

       Tudo muda numa clareira. A primeira resposta às mudanças é o aparecimento de
mudas. Algumas são provenientes do banco de sementes, que ficam adormecidas até que as
condições microclimáticas sejam favoráveis à germinação. Outras são trazidas pelo vento e
encontram as condições favoráveis e germinam. E tem também a rebrota a partir de raízes ou
de troncos danificados. Atrás das folhas novas e brotos surgem os animais herbívoros e atrás
desses, os carnívoros .... e, o resto é como no final do filme “O Rei Leão”.

       Para muitos ecólogos, a sucessão envolve a mudança no sistema natural e o
entendimento das causas e das direções de tal mudança. “A sucessão da planta é uma
mudança cumulativa direcional (em direção ao clímax) na espécie que ocupa uma dada área,
com o tempo” (Barbour et al., 1980).

       Se mudanças significativas na composição de espécies para uma dada área não ocorrer
dentro de um certo período, a comunidade é considerada MADURA ou CLIMAX.
Comunidades clímax não são estáticas. As mudanças ocorrem, mas elas não são cumulativas
nos seus efeitos.

       Se uma comunidade exibe alguma mudança direcional, cumulativa e não aleatória em
um período de 1 a 500 anos, ela é considerada SUCESSIONAL ou SERAL. As comunidades
serais ou espécies serão substituídas até que a comunidade CLIMAX é alcançada. A
progressão inteira dos estágios serais, da primeira espécie que ocupa o chão desnudo
(comunidade pioneira) até a clímax, é chamada de SUCESSÃO.




                                                                                         26
Os estádios sucessionais podem ser iniciais médios e avançados, nos quais pode-se
observar diferentes fisionomias, distribuição diamétrica, ausência ou presença de sub-bosque,
espessura da serrapilheira e diversidade biológica.

       (i) Tipos de sucessão:

       a) Primária versus secundária

       Primária => estabelecimento de plantas sobre áreas previamente não vegetadas.

       Secundária => é a invasão da terra que foi previamente vegetada; a vegetação pré-
existente tendo sido destruída por perturbações naturais ou humanas.

       b) Autógena versus alógena

       Autógena (biótica) => quando a mudança do ambiente e da comunidade é causada
pelas atividades dos organismos da própria comunidade.

       Alógena => causada pelas mudanças ambientais que vão além do controle dos
organismos nativos.

       c) Progressiva versus regressiva

       Progressiva => quando a sucessão leva às comunidades a uma maior complexidade e
maior acúmulo de biomassa; os habitats com mais e mais umidade (mesófilo).

       Regressiva => leva à direção oposta, em direção a algo mais simples, a uma
comunidade mais empobrecida (com poucas espécies) e em direção a um habitat mais
hidrófilo (úmido) ou a um mais xerófilo (seco)

       d) Cíclica versus direcional

       Direcional é caracterizada por uma acumulação de mudanças que levam às mudanças
de comunidades amplas.

       Mesmo em comunidade clímax, entretanto, as mudanças sucessionais cíclicas ocorrem
em uma escala muito local. Essas mudanças ocorrem porque o ciclo de vida das plantas de
dossel é finito e o desaparecimento delas do dossel podem abrir o sítio para invasão de novas
espécies.

       Em algumas comunidades clímax, as formas juvenis das plantas de dossel são bem
adaptadas à vida sob a árvore matriz e, quando esta morrer, ela a substituirá no dossel; em tal
situação, não há sucessão local (ou cíclica). Quando o dossel pode inibir o crescimento de




                                                                                            27
juvenis sob o mesmo – de sua própria espécie ou de outras – vai ocorrer a sucessão local
quando a matriz morrer.

          e) Cronosseqüência versus toposseqüência

          Cronosseqüência => quando o mosaico reflete uma perturbação local e periódica ou
quando reflete a exposição progressiva da nova terra, como a retração glacial – representa
diferentes estágios de recuperação (estágios serais) do fogo, ventanias ou outro tipo de
perturbação.

          Toposseqüência => quando o mosaico reflete as diferenças topográficas, como as
encostas frente-sul versus frente-norte, bacias com drenagens pobres e solos de textura fina
versus encostas altas com boa drenagem e solos de textura grossa etc.

(ii) Métodos para documentar a sucessão

          A sucessão pode ser documentada usando medidas repetidas numa parcela simples ou
pela referência do histórico da parcela (sítio). Um método indireto é amostragem da vegetação
em várias parcelas separadas de diferentes idades. Também, a composição de espécies de
mudas e arvoretas pode ser comparada com o estrato do dossel.

(iii) Tendências gerais durante a sucessão

          a) Vegetação e qualidade do sítio

          - A biomassa aumenta durante a sucessão

          - A fisionomia aumenta em complexidade porque a variação das formas de
crescimento aumenta conforme a sucessão vai avançando.

          - A maior armazenagem de nutrientes do sítio se move do solo para a biomassa da
planta.

          - O papel dos desintegradores no ciclo de nutrientes é potencializado durante a
sucessão porque os nutrientes do solo são empobrecidos e vão ser armazenados por longo
período de tempo na biomassa da planta.

          - A velocidade do ciclo de nutrientes do solo à planta e vice-versa diminui durante a
sucessão porque vários nutrientes são armazenados em partes, ainda que inertes, das plantas
de longa vida.

          - A produção primária diminui com a sucessão

          - O ambiente se torna mais mesófilo (úmido) durante a sucessão.



                                                                                            28
b) Estabilidade e diversidade

       Estabilidade = falta de mudanças => aumenta com a sucessão.

       Estabilidade = resistência às menores mudanças no micro-ambiente => aumenta

       Estabilidade = a habilidade para retornar rapidamente ao ponto de equilíbrio
(homeostase) seguindo a perturbação recorrente => as comunidades pré-clímax são mais
estáveis; as clímax são menos estáveis e podem levar séculos para retornar.

       A diversidade de espécies de plantas aumenta no início da sucessão, mas decresce em
zonas temperadas na sucessão tardia conforme o dossel se fecha e um pequeno número de
espécies domina o dossel.

       c) Autoecologia

       Em geral, as interações planta-animal, planta-planta e planta-micróbios ocorrem mais
na sucessão tardia do que na inicial.

(iv) Forças motrizes da sucessão

       O revezamento florístico pode ser descrito por um processo de 6 passos:

       1) Desnudamento => a exposição de uma nova superfície na sucessão primária ou de
corte raso na sucessão secundária.

       2) Migração => de sementes, de esporos, propágulos vegetativos de áreas adjacentes;
na secundária muito desses materiais já estão presentes no solo.

       3) Germinação, crescimento inicial e estabelecimento de plantas.

       4) Competição => entre as plantas estabelecidas

       5) Reação => os efeitos autógenos das plantas sobre o habitat

       6) Estabilização => clímax

       O conceito mais simples de sucessão é aquele que a considera como um fenômeno da
população que envolve a substituição gradual e inevitável de espécies oportunistas (seleção –
r) com espécies de equilíbrio (seleção – k). Na ausência de qualquer perturbação, as espécies
– k estão sempre em vantagem competitiva, como dominantes, sobre as espécies – r. A
freqüência de perturbação espacial e temporal, entretanto, tem sido suficientemente grande
para manter as espécies oportunistas e as clímax.

(v) Modelos estatísticos para a sucessão florestal

       A maioria dos modelos tem as seguintes variáveis:


                                                                                          29
- Recrutamento => brotação, produção de sementes, dispersão de sementes,
germinação e crescimento de mudas até que a planta seja suficientemente grande para ser
considerada como árvore.

        - Crescimento => aumento em altura e diâmetro da árvore

        - Competição geométrica => interações espaciais das árvores relacionadas à geometria
atual da estrutura da árvore. Em geral, os indivíduos maiores são favorecidos na competição
geométrica.

        - Competição por recursos => fatores limitantes de crescimento que podem limitar o
desenvolvimento de todas as árvores numa floresta em um dado sítio.

        - Mortalidade => a morte da árvore.

(vi) Modelos de clareiras

        Este tipo de modelo lida com nascimento ou recrutamento, crescimento e mortalidade.
É muito usado para simular a composição de espécies e comportamento com o passar do
tempo, em resposta às condições ambientais alteradas e para fornecer informações qualitativas
das florestas.

        Clareira se refere a uma abertura na floresta criada pela morte de uma árvore de
dossel. O ecossistema florestal maduro poderia ser visto como uma média das respostas da
dinâmica de tais clareiras. A floresta é composta de um mosaico de clareiras; portanto,
entendendo a dinâmica da clareira, fica mais fácil entender a dinâmica da floresta.

        As clareiras variam em tamanho (que influencia as condições microclimáticas dentro
da clareira) e nas freqüências de ocorrências temporais e espaciais (que afetam a
probabilidade de um propágulo alcançar uma clareira de um tamanho particular).

        a) Regeneração e tamanho da clareira

        A queda de uma grande árvore produz uma mudança abrupta no chão da floresta em
relação às seguintes variáveis:

        - a luz é dramaticamente aumentada em quantidade e é também alterada a qualidade
com mais radiação no vermelho final do espectro eletromagnético e menos no azul final.

        - aumento na temperatura do solo e diminuição da umidade relativa e da superfície do
solo.

        - mudanças nas propriedades do solo depois da formação da clareira incluindo o
aumento da decomposição e a disponibilidade de nutrientes. O solo mineral é exposto.


                                                                                          30
A mudança repentina nessas e em outras importantes variáveis podem matar mudas já
estabelecidas que se adaptaram ao micro-clima e favorecer novas mudas, provavelmente de
outras espécies.

       Quando uma pequena árvore cai, a clareira é pequena e pode ser preenchida pelo
crescimento de árvores que estão presentes na área.

       Em florestas tropicais, há 3 categorias de clareira:

       1) Especialistas de clareiras grandes => a semente germina sob alta temperatura e luz
           de grandes clareiras – as sementes são altamente intolerantes.

       2) Especialistas de clareiras pequenas => as sementes são capazes de germinar sob
           sombra, mas exige a presença de uma clareira para crescer até o dossel.

       3) Especialistas de sub-bosque => aparentemente não exigem clareiras para germinar
           e nem para crescer até os tamanhos reprodutivos.

       b) O papel das espécies na determinação dos tamanhos de clareira

       O tamanho da árvore que morre e produz a clareira influencia a regeneração (que
influencia a composição do dossel). Portanto, há influência entre a composição do dossel e o
tamanho da clareira; logo, os traços das espécies fecham este ciclo (loop) causal. Por ex., de
uma espécie de árvore que exige grande clareira para regeneração espera-se um crescimento
diferenciado (grande) até a sua morte.




                                                                                           31
Capítulo 6 - Análise de dimensão e produção primária líquida e
                                Ciclagem de minerais
       Este capítulo é paraticamente dedicado aos estudos de biomassa (acima do nível do
solo e abaixo do nível do solo) e a sua dinâmica. Neste caso, o grupo de manejo florestal
superou o da ecologia. Há vários trabalhos publicados e serão discutidos na Parte III (Manejo
Florestal) desta apostila.

6.1. Importância dos estudos de biomassa

6.2. Como estimar a biomassa

6.3. Modelos alométricos

6.4. Produção primária líquida (NPP)

       a) Estimativa de biomassa

       b) Produção abaixo do nível do solo

6.5. Distribuição da biomassa

6.6. Ciclagem de nutrientes

       Grande parte da floresta amazônica desenvolve-se sobre solos muito pobres em
nutrientes e a sua manutenção depende, fundamentalmente de sua capacidade de conservar e
reciclar os principais elementos que necessita por meio de mecanismos capazes de compensar
as perdas de nutrientes (Schubart et al., 1984).

       Essas características podem dar, à primeira vista, a impressão de uma contradição com
a sua exuberante cobertura florestal (Walter, 1979). De fato, quase todas as reservas de
nutrientes exigidas pela floresta estão contidas na fitomassa acima do nível do solo. Cada ano,
uma parte dessa fitomassa cai, é rapidamente mineralizada e, os nutrientes liberados, são
imediatamente reabsorvidos pelas raízes. As grandes reservas nutricionais contidas na
fitomassa das florestas virgens dependem de seu capital acumulado durante o tempo que a
rocha matriz não estava ainda intemperizada.

       A elevada eficiência na reciclagem de nutrientes minerais é correlacionada com alta
diversidade biológica. A reciclagem de nutrientes se contrapõe à lixiviação dos solos, pois
representa um mecanismo de conservação de nutrientes no ecossistema; ao mesmo tempo,
promove a produtividade biológica, mantendo o bom estado nutricional das plantas. O
conhecimento disponível permite concluir que a manipulação dos recursos florestais da


                                                                                            32
Amazônia no sentido de uma redução drástica da sua diversidade biológica poderá ter
conseqüências indesejáveis, tanto ecológicas quanto econômicas (Schubart et al., 1984).

       Diante dessas condições, Jordan (1991) questiona: como as florestas tropicais úmidas
sobrevivem num ambiente que tem um grande potencial para perdas de nutrientes? Parece
que um número de mecanismos se desenvolveu nas espécies tropicais que as capacitam a
minimizar as perdas. Alguns dos mais importantes mecanismos de conservação de nutrientes
de espécies tropicais são as árvores e o ecossistema subterrâneo.

       Das árvores, os mecanismos são: (i) grande biomassa das raízes; (ii) concentração de
raízes perto da superfície; (iii) raízes aéreas; (iv) o relacionamento simbiótico entre as raízes
de plantas superiores e os fungos micorrízicos; (v) tolerância aos solos ácidos; (vi) a cinética
da tomada de nutrientes - como a disponibilidade de nutrientes no solo é baixa, as espécies
com baixa exigência sobreviverão e crescerão, ao contrário de espécies com alta exigência
como culturas anuais e pastagens; (vii) longa vida das espécies tropicais, que permite a
tomada de nutrientes além de suas necessidades imediatas durante as estações de abundância
de nutrientes, para usar mais tarde em períodos de escassez; (viii) morfologia e fisiologia da
folha que reduzem a necessidade de absorção de nutrientes em substituição de folhas que
caíram ou foram comidas; (ix) alelopatia; (x) translocação rápida de nutrientes das folhas para
os ramos; (xi) eficiência do uso de nutrientes; (xii) padrão reprodutivo que não somente
regula o uso de nutrientes como também pode manter populações de predadores de sementes
em níveis relativamente baixos; (xiii) alta concentração de sílica na superfície do solo pode
ser um importante mecanismo para assegurar um suprimento de fosfato para as raízes
superficiais; (xiv) epífitas que têm um relacionamento mutualístico com as árvores, de tal
maneira que as folhas fornecem suporte físico para as epífitas que, por sua vez, aumentam a
disponibilidade de nutrientes para as folhas; (xv) "drip tips" que podem reduzir a quantidade
de água sobre a folha e, conseqüentemente, a lixiviação potencial.

       Segundo ainda Jordan (1991), o mecanismo anterior de conservação de nutrientes
parece ter evoluído em espécies como um resultado das pressões de seleção em ambientes
pobres em nutrientes. Os mecanismos parecem capacitar indivíduos para superar, em parte, as
limitações impostas pela baixa fertilidade do solo e baixo pH. Há um outro mecanismo em
florestas naturais que também conserva nutrientes. Em contraste com os mecanismos
associados com espécies de árvores, este mecanismo pode ou não ter sido desenvolvido como
um resultado das pressões seletivas num ambiente de baixa fertilidade. Independente disso,
ele serve para reduzir as perdas de nutrientes do ecossistema inteiro e parece ser mais
importante em solos pobres em nutrientes do que em solos ricos em nutrientes. Este


                                                                                              33
mecanismo é a comunidade de organismos que vivem sobre a superfície do solo e dentro do
ambiente do solo mineral.

       Em florestas não perturbadas, os nutrientes liberados pelas plantas e animais mortos
normalmente não movem diretamente as micorrizas e raízes das árvores, mas, em vez disso,
passam por uma série inteira de ciclos de pequena escala ou "espirais" dentro da porção de
matéria orgânica do solo, similares aos espirais de nutrientes em igarapés. Os ciclos às vezes
começam com os artrópodes. As partículas passam pelos seus sistemas digestivos, os
compostos orgânicos são trocados, freqüentemente por simbiose, por compostos mais simples
que são mais facilmente utilizados por outros organismos do solo. A decomposição pode
também começar com a invasão do tecido por bactérias e fungos. Se as concentrações de
nutrientes nos tecidos são baixas, os fungos podem ser os primeiros invasores. Como as
exoenzimas excretadas das hifas dos fungos quebram os compostos orgânicos complexos, a
colonização de bacteriana pode ser favorecida.

       Os nutrientes no solo são relativamente susceptíveis a perdas quando eles estão na
solução do solo, ou quando são adsorvidos sobre superfícies de argila mineral. Em contraste,
os nutrientes incorporados nos tecidos de organismos da comunidade subterrânea podem não
ser facilmente perdidos pela lixiviação, volatilização ou reação com ferro e alumínio, no caso
do fósforo.




                                                                                           34
Bibliografia:
Barbour, M.G., Burk, J.H. e Pitts, W.D. 1980. Terrestrial plant ecology. The Benjamin/
    Cummings Publishing Co. 604p.
Hallé, F., Oldeman, R.A.A. e Tomlinson, P.B. 1978. Tropical Trees and Forests: An
     Architectural Analysis. Springer-Verlag Berlin Heidelberg New York. 441 p.
Jordan, C.F. 1991. Nutrient Cycling Processes and Tropical Forest Management. In: Rain Forest
     Regeneration and Management, A. Gómez-Pompa, T.C. Whitmore e M. Hadley (eds.).
     UNESCO. The Parthenon Publishing Group Limited. pp.159-180.
Lacher, W. 2000. Ecofisiologia Vegetal. São Carlos. Rima. 532p.
O’BRIEN, M.J.P, O’BRIEN. 1985. Aspectos Evolutivos da Fenologia Reprodutiva
     das Árvores Tropicais. pp. 6-23.
Oldeman, R.A.A. e van Dijk, J.. 1991. Diagnosis of the Temperament of Tropical Rain Forest
    Trees.In: Rain Forest Regeneration and Management, A. Gómez-Pompa, T.C. Whitmore e
    M. Hadley (eds.). UNESCO. The Parthenon Publishing Group Limited. pp.21-66.
Pinto-Coelho, R.M. 2000. Fundamentos em ecologia. Editora Artes Médicas Sul Ltda. 252 p.
Salati, E., Ribeiro, M.N.G, Absy, M.L e Nelson, B.W. 1991. Clima da Amazônia: Presente,
     Passado e Futuro. In: Bases Científicas para Estratégias de Preservação e Desenvolvimento
     da Amazônia - Fatos e Perspectivas, A.L. Val, R. Figliuolo e E. Feldberg (eds.). pp.21-34.
Schubart, H.O.R., Franken, W. e Luizão, F.J. 1984. Uma Floresta sobre Solos Pobres. Ciência
    Hoje 2(10):26-32.
Shuggart, H.H. 1984. A Theory of Forest Dynamics: The Ecological for Succession Model.
    Springer-Verlag Inc. New York. 278p.
Victória, R.L., Brown, I.F., Martinelli, L.A e Salati, E.. 1991. In: Bases Científicas para
     Estratégias de Preservação e Desenvolvimento da Amazônia - Fatos e Perspectivas, A.L.
     Val, R. Figliuolo e E. Feldberg (eds.). pp.9-20.
Walter, H. 1979. Vegetation of the Earth and Ecological Systems of the Geo-Biosphere.
    Springer-Verlag. New York. 274 p.




                                                                                            35
Capítulo 7 - Desenvolvimento e crescimento de plantas
       Normalmente as plantas da floresta para chegar ao estágio de corte devem um dia ter
começado como sementes viáveis, germinado passando pelo estágio de planta juvenil, depois
de algum tempo alcançado a maturidade e finalmente chegando a senescência. E como se dá
este processo crescer, desenvolver e morrer?

       GERMINAÇÃO

       Existem dois tipos de sementes uma com reservas de açúcares e outra com reservas de
gorduras, que são chamadas recalcitrantes e ortodoxas, respectivamente. As primeiras podem,
sob condições de baixa umidade no tecido, suprir energia para o embrião por um grande
período, enquanto a última devido a sua composição, perde pouca umidade e sua principal
fonte de energia é utilizada rapidamente pelo o embrião.

       Considerando as condições climáticas da floresta amazônica que apresentam
temperaturas elevadas, altas umidades relativas do ar e altos índices de precipitação, seria
pouco sensato do ponto de vista evolutivo se a floresta investisse em um banco de sementes
que precisam estar secas para dispersar propágulos. Assim, geralmente a floresta investe em
sementes grandes ricas em reservas de gordura com algum tipo de dormência (geralmente
mecânica) e ao invés de um banco de semente na floresta é mais comum um banco de
plântulas.

       Para chegar à plântula a semente precisa germinar. A germinação começa com o
intumescimento da semente que embebida de água aumenta a respiração dos tecidos
cotiledonares e fornece energia e esqueletos de carbono para o desenvolvimento do embrião,
que promove o desenvolvimento de caulículo e radícula. E até que a reserva da semente se
esgote, o caulículo e a radícula crescerão a ponto de mudas quando poderão começar a obter
energia do meio ambiente.

       BANCO DE PLÂNTULAS

       Alcançando o estágio de plântulas os indivíduos na floresta começam a fazer a
fotossíntese para fornecer açúcares que serão respirados para os processos de manutenção
dos tecidos, principais vias metabólicas e o que sobra pode ser direcionado para o
CRESCIMENTO da muda. Pensando em uma plântula da floresta podemos verificar que há
um sombreamento natural devido às copas das árvores adultas e isso diminui as taxas
fotossintéticas e, dependendo da situação, muitas vezes a fotossíntese é insuficiente até
mesmo para gerar energia para a manutenção.


                                                                                         36
Algumas plântulas “privilegiadas” têm a possibilidade de ter um balanço de taxas de
assimilação e liberação do CO2 nulo ou pouco maior que zero; para o primeiro caso, as
plantas permanecem neste estado até que alguma condição ambiental favoreça o seu
crescimento, enquanto as segundas crescem lentamente e, na medida em que se desenvolvem,
alcançam melhores condições para suprimento de energia para manutenção de tecidos,
processos e crescimento. Os dois processos levam a um indivíduo que irá compor o dossel
florestal, cada qual no seu nicho ecológico.

       PLANTAS QUE ALCANÇAM O DOSSEL

       Quando damos uma volta na floresta podemos observar os diferentes níveis de
desenvolvimento das plantas. Olhando com cuidado encontramos sementes dispersas no solo,
sem muita atenção é possível matar algumas plântulas, aquelas do banco de plântulas, pois
são muito comuns no solo e são menos plantas que alcançam o nível de dossel, entre estas se
pode notar que nem todas possuem o mesmo diâmetro. Estas plantas que alcançam a parte
superior do dossel também têm que desenvolver para chegar a senescer.

       O desenvolvimento das plantas no dossel passa pelos processos de juvenilidade até
alcançar a maturidade, quando desempenham o principal papel do ser vivo que é a reprodução
e finalmente chegam a senescer. Na busca pela manutenção dos seus genes as plantas
precisam disputar recursos e espaço. Portanto é necessário DESENVOLVER para completar
o seu ciclo.

       Os diferentes tamanhos de árvores é o resultado do desenvolvimento das plantas no
meio, por exemplo, árvores de grande porte são rodeadas de outras várias de pequeno porte
que estão tentando desenvolver mais para completar seu ciclo perpetuando seus genes, ou
seja, cada uma “querendo seu lugar ao sol” literalmente falando.

       Isto relata o quê e como ocorre o processo de desenvolvimento, mas explica muito
pouco sobre a soma de processos que levam uma semente a se tornar um indivíduo adulto
complexo (e grande o suficiente para que possa ser manejado). Assim é necessário falar destes
processos que estão envolvidos com o desenvolvimento das plantas.

       CRESCIMENTO E DESENVOLVIMENTO

       O crescimento é todo aumento em volume que seja irreversível. Quando se fala de
plantas é importante lembrar o caráter irreversível, pois muitas das variações de volume dos
tecidos podem não ser permanente e ocorrem principalmente devido ao estado de turgidez do
tecido vegetal.



                                                                                          37
H2O




       Variação da turgidez celular

       Ocorrendo o fenômeno como na figura acima não é crescimento, pois conforme as
setas indicam as células podem voltar ao volume inicial se houver a perda de água dos
vacúolos.




                               H2O + outras
                               substancias




       Crescimento por alongamento


                                 Divisão
                                 celular




       Crescimento por divisão celular

       Basicamente é o crescimento com o processo de alongamento celular e divisão celular
simples. Os tecidos da planta que são responsáveis por este crescimento são os meristemas
que podem ser primários ou secundários. O meristema primário é aquele que está nas gemas
apicais de galhos e raízes, promovendo o aumento em comprimento destes tecidos, enquanto
o secundário é o que promove o crescimento em diâmetro e se localiza abaixo da casca das
plantas.




                                                                                       38
Meristema Apical                              Meristema secundário
                                                      (Circulo pontilhado)

       Assim o crescimento nada mais é que uma seqüência de divisões seguidas de
alongamento celular, causando o aumento de massa e volume dos tecidos em questão.

       O DESENVOLVIMENTO é o processo de crescimento adicionando os processos de
diferenciação, pois uma planta precisa de diferentes tipos de tecido para manter suas funções.
Assim para o aparecimento de uma nova folha, ou flor e fruto é necessário que o meristema se
diferencie para compor o novo tecido. Para que ocorra o desenvolvimento é necessário o
funcionamento de todo o metabolismo da planta, principalmente fotossíntese e respiração, que
são os eixos centrais do metabolismo.

       FOTOSSÍNTESE

       As plantas precisam se alimentar para poder crescer e a fotossíntese é a forma com que
elas fazem isto. Este processo na realidade é a soma de ações metabólicas que ocorrem ao
nível de cloroplastos das partes verdes da planta que compreendem reações luminosas e
bioquímicas da fotossíntese, que utilizando H2O, CO2 e luz formam glicose e liberam O2.

       A luz é absorvida por uma antena de pigmentos compostos por carotenóides e
clorofilas a e b, que conduzem a energia para um centro de reação, fotossistema II e I (PS II e
PS I). Esta transferência de energia do fóton conduzido pela antena até o PS II e
posteriormente ao PS I ocorre ao nível de parede do tilacóide. E é basicamente um conjunto
de reações de óxido-redução, que pela hidrólise libera elétrons que segue conforme o esquema
em Z aumentando o valor de redução das moléculas, possibilitando a formação de moléculas
ricas em energia.

       Esse elétron passa pela feofitina que o transfere para as plastoquinonas (Q a e Qb), o
complexo citocromo b6f, plastocianina que reduz o PS I, este caminhamento de elétrons por
um diferencial de energia torna o sistema capaz de reduzir o nicotinamida-di-fosfato (NADP +)




                                                                                            39
a nicotinamida-di-fosfato reduzida (NADPH) e formação de dois grupamentos adenosinas
trifosfatos (ATP) a partir de dois adenosina di-fosfato (ADP).

       Estes compostos energéticos formados na fase "clara" da fotossíntese serão utilizados
para as fases bioquímicas que são: a carboxilação, redução e regeneração da ribulose 1,5 bis-
fosfato (RUBP). Estas fases ocorrem no estroma dos cloroplastos.

       A carboxilação do CO2 é mediada pela atividade da ribulose 1,5 bis-fosfato
carboxilase-oxigenase (RUBISCO) e não utiliza energia formada na fase luminosa da
fotossíntese. A RUBISCO utiliza 1 RUBP e fixa a este 1 CO2, formando 2 fosfoglicerato que
com o gasto de 1 ATP e 1 NADPH são levados a uma molécula de gliceraldeido-3-fosfato
liberando um grupo CH2O que com seis voltas deste ciclo formam glicose (C6H12O6), a
redução do CO2 a carboidrato. E finalmente utilizando o último ATP criado na fase luminosa
da fotossíntese há a síntese da RUBP, a regeneração.

       Desta forma, a planta pode formar açúcares para ser utilizados como energia nos
processos de manutenção de tecidos ou atividades metabólicas e para o crescimento e
desenvolvimento da planta.

       RESPIRAÇÃO

       A fotossíntese fornece as unidades orgânicas básicas das quais dependem as plantas (e
quase todos os tipos de vida). Com o seu metabolismo de carbono associado, a respiração
libera, de maneira controlada, a energia armazenada nos compostos de carbono para uso
celular.

       Grosseiramente a respiração é um processo de óxido-redução, que fornece energia na
forma de ATP, nicotinamida dinucleotídeo reduzida (NADH) e flavina adenina di-nucleotídeo
reduzido (FADH) gerando energia de 2880 kJ/mol de glicose. E libera também esqueletos de
carbono para formação de compostos do metabolismo secundário do carbono e demais ações
metabólicas da planta.

       A respiração celular ocorre em três etapas: (i) a glicólise, catalisada por enzimas
solúveis localizadas no citoplasma, permite a oxidação de uma glicose, produzindo 2
piruvatos, ATP e gerando NADH; (ii) o ciclo dos ácidos tricarboxílicos (Ciclo de Krebs ou
ciclo do ácido cítrico), que ocorre na matriz mitocondrial, por meio do qual o piruvato é
oxidado completamente liberando CO2 gerando ATP e uma considerável quantidade de
NADH e (iii) a cadeia de transporte de elétrons que ocorre na membrana interna das




                                                                                          40
mitocôndrias, através da qual são transferidos elétrons do NADH para o O2 gerando-se um
gradiente eletroquímico de prótons, que permite a síntese de ATP via enzima ATP-sintase.

       A respiração de manutenção dos tecidos é o direcionamento da energia para manter a
integridade das membranas dos tecidos vivos da planta; a respiração de manutenção das ações
metabólicas é a energia que é gasta para manter a pré-síntese de enzimas e metabólitos para
que possam ocorrer todos os processos e haver a síntese de novo das enzimas com menor
gasto de energia. Esta respiração também é chamada de respiração de perda, pois não se pode
calcular o quanto é gasto de energia para este fim; e a energia que é utilizada para formação
de novos tecidos é chamada de respiração de crescimento.




                                                                                           41
PARTE II
O MÍNIMO DE ESTATÍSTICA PARA O MANEJO
                                    FLORESTAL
                           Capítulo 8 – Conceitos gerais
       A estatística é uma ferramenta importante para o manejo florestal, seja pra quem está
interessado em trabalhar em pesquisas ou pra quem tem a responsabilidade de planejar,
executar e acompanhar um projeto. Difícil é separar a estatística pra essas duas frentes. O
objetivo desta Parte da apostila é aprofundar em conceitos dos indicadores estatísticos mais
freqüentemente utilizados pelos florestais e ajudar na interpretação dos resultados.

       Estatística é um ramo do conhecimento científico que consta de conjunto de processos
que têm por objeto a observação, a classificação formal e a análise dos fenômenos coletivos
ou de massa (finalidade descritiva) e, por fim, investigar a possibilidade de fazer inferências
indutivas válidas a partir dos dados observados e buscar métodos capazes de permitir esta
inferência (finalidade indutiva).

       Em inventário florestal, produto sem estatística não é produto. Em inventários, o
principal produto é o intervalo de confiança para a média estimada. Na pesquisa científica, a
estatística pode ser vista como um instrumento de comunicação. O seu uso é absolutamente
opcional. Quanto mais você a usa, mais você se comunica e, quanto melhor você a usa,
melhor é a sua comunicação no meio científico. Às vezes, o seu uso é desnecessário, mas isso
é raro. Assim como a revolução industrial mexeu com as comunicações, mexeu também com
a estatística, na mesma proporção. Como dizia grande Chacrinha “quem não se comunica, se
trumbica.”

       Já foi o tempo que a estatística consistia meramente de coleta de dados e apresentações
em gráficos e tabelas. Hoje ela é parte da ciência que se baseia em dados observados,
processamento e análise, os quais são fundamentais em tomadas de decisões, face às
incertezas inerentes ao universo que trabalhamos. Isso é válido para um leque enorme de
atuação, desde incertezas no cara-e-coroa ou quando o professor compara a habilidade de
diferentes estudantes, quando o controle de qualidade aceita ou rejeita um produto




                                                                                            42
manufaturado, quando um jornal ou revista faz previsão de uma eleição, quando um
pesquisador projeta a dinâmica de uma floresta etc.

        É evidente que a estatística não é, por si só, capaz de resolver todos os problemas que
envolvem incertezas, mas novas técnicas são constantemente desenvolvidas e a estatística
moderna pode, pelo menos, te ajudar a olhar essas incertezas de uma maneira mais lógica e
sistemática. Em outras palavras, a estatística fornece os modelos que são necessários para
estudar as situações que envolvem incertezas, mas a palavra final é sua.

        O exercício, a análise e a interpretação do pensamento científico normalmente são
feitos por meio da linguagem operacional dos conceitos e hipóteses científicas. Isso implica
na formulação de hipóteses estatísticas e estabelecimento dos procedimentos de observações
diretas ou de medições.

        Linguagem teórica: “quanto mais grossa é a árvore, mais madeira será oferecida à
indústria de transformação.” Neste caso, dois conceitos são envolvidos: espessura e madeira.
Com definir esses dois conceitos? Espessura pode ser o diâmetro de uma árvore. Madeira
pode ser a quantidade de material lenhoso disponível para a indústria.

        E daí? Que fazemos agora? Temos que operacionalizar as observações e medições de
espessura e madeira. Espessura pode ser traduzida operacionalmente, por exemplo, em
centímetros de diâmetro à altura do peito (DAP), medido a 1,3 m do solo. E a madeira, por
sua vez, pode ser traduzida como volume cúbico da árvore.

        Agora, a hipótese científica pode ser enunciada, em termos de hipótese estatística, da
seguinte maneira: “Quanto maior o DAP, maior será o volume da árvore.” Dessa forma, o
“pica-pau” fica mais à vontade.

        Depois de formulada a hipótese, o passo seguinte consiste em testá-la. Para se testar as
hipóteses serão precisos: planejar a coleta de dados, coletar os dados, tratar os dados,
processar os dados, analisar os resultados e, finalmente, tomar decisões para rejeitar ou não a
hipótese estatística formulada.

        O papel da estatística na pesquisa científica é ajudar o pesquisador “pica-pau” a
formular as hipóteses e a fixar as regras de decisão. Entretanto, é importante não perder de
vista que a estatística de inferência não é obrigatória. Quando você sentir que, empiricamente,
é capaz de separar o bom do ruim, o bonito do feio, do quente do frio .. você pode dispensar
os testes estatísticos.

Um pouco de filosofia.


                                                                                             43
- Aristóteles escreveu: “A verdade é um alvo tão grande que dificilmente alguém deixará de
   tocá-lo, mas, ao mesmo tempo, ninguém será capaz de acertá-lo em cheio, num só tiro.”

   - A meta da ciência é a organização sistemática do conhecimento sobre o universo, baseado nos
   princípios explanatórios que são genuinamente testáveis.

          - O pesquisador tem os dons da instituição e criatividade para saber que o problema é
   importante e quais questões devem ser levantadas; a estatística, por sua vez, o assistirá por meio
   da maximização de output não ambíguos enquanto minimiza os inputs.

          - O pesquisador tem que ter em mente que a pesquisa freqüentemente levanta mais
   questões do que respostas. Os resultados quase sempre são meramente uma demonstração de
   nossa ignorância e uma declaração mais clara do que não sabemos.

   - O pesquisador tem que manter os olhos abertos, sua mente flexível e estar preparado para
   surpresas.

          - A pesquisa está na cabeça do pesquisador; o laboratório ou o campo meramente
   confirma ou rejeita o que a sua mente concebeu. A sabedoria consiste em conhecer mais as
   questões certas para fazer e não nas certas respostas.

          - A aplicação indiscriminada dos métodos quantitativos sobre inesgotáveis quantidades
   de dados não significa que o entendimento científico vai emergir só por causa disso.

8.1. A Natureza da Estatística:

   Basicamente, são dois tipos de estatística: descritiva e de inferência.

          A ciência da estatística inclui ambas, descritiva e de inferência. A estatística descritiva
   apareceu primeiro, nos censos feitos na época do império romano. A de Inferência é mais recente
   e é baseada na teoria da probabilidade que, por sua vez, não se estabeleceu antes da metade do
   século XVII.

   a) Estatística descritiva => consiste de métodos para organizar e sumarizar as informações.

   O propósito da organização e sumarização é te ajudar na interpretação de um monte de
   informações. Os métodos descritivos incluem a construção de gráficos, figuras e tabelas, como
   também, o cálculo de vários tipos de médias e índices. Exemplo: resultado final de uma eleição
   apresentado pelo Tribunal Superior Eleitoral (TSE), censo do IBGE etc.

   b) Estatística de inferência => consiste de métodos para inferir sobre uma população baseada
   na informação de uma amostra da população.

          A estatística de inferência moderna praticamente surgiu após as publicações científicas de


                                                                                                  44
Karl Pearson e Ronald Fisher, no início do século passado (XX). Depois disso, houve uma
   evolução fantástica dessa ciência, tornando-se aplicável a várias áreas de conhecimento, tais
   como: Eng. Florestal, Agronomia, Biologia, História, Física, Química, Psicologia etc.

   Exemplo 1: Pesquisas de opinião realizadas pelas empresas (DATAFOLHA, IBOPE, VOX
   POPULI etc), pouco antes de eleições.

   Esta parte da estatística de inferência evoluiu muito no Brasil. A prova disso são os resultados
   finais do primeiro e do segundo turno da eleição presidencial de 2002 que tem muito a ver com
   as previsões feitas pelas pesquisas de opinião dos vários institutos. O sucesso tem que ser
   creditado principalmente pela escolha correta do tipo de amostragem, coleta de dados e
   processamento & análise dos resultados A evolução da informática também contribuiu muito
   para o sucesso das pesquisas; o rápido processamento e, conseqüente, análise dos resultados,
   permitiu a repetição em intervalos de tempo menores – isso é fundamental para a validação dos
   métodos utilizados que, por sua vez, dá a robustez necessária para a pesquisa e a sociedade ganha
   com a maior precisão e confiabilidade das pesquisas de opinião.

           Exemplo 2: Resultados de inventários florestais.

           Exemplo 3: Todos os trabalhos de equações de volume que utilizam os modelos
   destrutivos (na maioria das vezes) para ajustar os dados de volume real observado em modelos
   matemáticos que serão utilizados, posteriormente, para estimar o volume da árvore em pé.

   Para concluir a discussão, em torno da natureza da estatística, é importante não perder de vista
   que a opção por uma das duas estatísticas pode ser pessoal. Entretanto, se a escolha recair sobre a
   de inferência, o pesquisador deve se sujeitar as suas regras e condicionantes. A estatística de
   inferência, por sua vez, deve ficar sob as condicionantes da teoria da probabilidade, da
   normalidade e da independência; a violação de uma dessas condicionantes implica em um
   comprometimento muito sério de todo o seu trabalho.



8.2. Conceitos Básicos:

           Talvez, os conceitos mais importantes para os florestais são erros amostrais e não
   amostrais. Se você conseguir distinguir esses dois conceitos, você sempre fará um trabalho
   confiável e, por conseguinte, a estatística será uma ferramenta útil na execução de seus trabalhos
   de pesquisa, encurtando caminhos para a produção de ciência e de resultados de inventário
   florestal.

           (i) Erro Amostral => é o erro que você comete por não medir toda a população. Este


                                                                                                   45
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009
Apostila 2009

Más contenido relacionado

Destacado

Feira interdiciplinar Manejo florestal
Feira interdiciplinar Manejo florestalFeira interdiciplinar Manejo florestal
Feira interdiciplinar Manejo florestalvicklein
 
Manejo Florestal - 2 ano B - Luiz Henrique
Manejo Florestal - 2 ano B - Luiz HenriqueManejo Florestal - 2 ano B - Luiz Henrique
Manejo Florestal - 2 ano B - Luiz HenriqueLuiz Moura
 
Administração de Florestas (Power Point)
Administração de Florestas (Power Point)Administração de Florestas (Power Point)
Administração de Florestas (Power Point)Djeison Machado
 
CONTRIBUIÇÃO DA CERTIFICAÇÃO FLORESTAL ...
CONTRIBUIÇÃO DA CERTIFICAÇÃO FLORESTAL ...CONTRIBUIÇÃO DA CERTIFICAÇÃO FLORESTAL ...
CONTRIBUIÇÃO DA CERTIFICAÇÃO FLORESTAL ...Diego Cardoso
 
Desertificação - El Niño - La Ninã
Desertificação - El Niño - La Ninã Desertificação - El Niño - La Ninã
Desertificação - El Niño - La Ninã Adielle Souza
 
Eucaliptocultura: economia e planejamento florestal.
Eucaliptocultura: economia e planejamento florestal.Eucaliptocultura: economia e planejamento florestal.
Eucaliptocultura: economia e planejamento florestal.Atrium Forest
 
Diagnóstico de Florestas Plantadas de Mato Grosso
Diagnóstico de Florestas Plantadas de Mato Grosso Diagnóstico de Florestas Plantadas de Mato Grosso
Diagnóstico de Florestas Plantadas de Mato Grosso Sistema Famato
 
As florestas industriais e suas vantagens absolutas: geração de riquezas e di...
As florestas industriais e suas vantagens absolutas: geração de riquezas e di...As florestas industriais e suas vantagens absolutas: geração de riquezas e di...
As florestas industriais e suas vantagens absolutas: geração de riquezas e di...Instituto Besc
 
Desafios para o Manejo Florestal no Acre
Desafios para o Manejo Florestal no AcreDesafios para o Manejo Florestal no Acre
Desafios para o Manejo Florestal no AcreMarky Brito
 
Florestas Comerciais - Sequestro de Carbono e Impactos Ambientais
Florestas Comerciais - Sequestro de Carbono e Impactos AmbientaisFlorestas Comerciais - Sequestro de Carbono e Impactos Ambientais
Florestas Comerciais - Sequestro de Carbono e Impactos AmbientaisFilipe Vargas
 
Clima El Nino La Nina Marco Aurelio Gondim [www.mgondim.blogspot.com]
Clima El Nino La Nina Marco Aurelio Gondim [www.mgondim.blogspot.com]Clima El Nino La Nina Marco Aurelio Gondim [www.mgondim.blogspot.com]
Clima El Nino La Nina Marco Aurelio Gondim [www.mgondim.blogspot.com]Marco Aurélio Gondim
 

Destacado (20)

Feira interdiciplinar Manejo florestal
Feira interdiciplinar Manejo florestalFeira interdiciplinar Manejo florestal
Feira interdiciplinar Manejo florestal
 
Manejo Florestal - 2 ano B - Luiz Henrique
Manejo Florestal - 2 ano B - Luiz HenriqueManejo Florestal - 2 ano B - Luiz Henrique
Manejo Florestal - 2 ano B - Luiz Henrique
 
Administração de Florestas (Power Point)
Administração de Florestas (Power Point)Administração de Florestas (Power Point)
Administração de Florestas (Power Point)
 
Boechat
BoechatBoechat
Boechat
 
CONTRIBUIÇÃO DA CERTIFICAÇÃO FLORESTAL ...
CONTRIBUIÇÃO DA CERTIFICAÇÃO FLORESTAL ...CONTRIBUIÇÃO DA CERTIFICAÇÃO FLORESTAL ...
CONTRIBUIÇÃO DA CERTIFICAÇÃO FLORESTAL ...
 
Manejo florestal
Manejo florestalManejo florestal
Manejo florestal
 
Desertificação - El Niño - La Ninã
Desertificação - El Niño - La Ninã Desertificação - El Niño - La Ninã
Desertificação - El Niño - La Ninã
 
Questões
QuestõesQuestões
Questões
 
2 ano
2 ano2 ano
2 ano
 
05 el nino
05 el nino05 el nino
05 el nino
 
Eucaliptocultura: economia e planejamento florestal.
Eucaliptocultura: economia e planejamento florestal.Eucaliptocultura: economia e planejamento florestal.
Eucaliptocultura: economia e planejamento florestal.
 
Plano de aula
Plano de aulaPlano de aula
Plano de aula
 
Diagnóstico de Florestas Plantadas de Mato Grosso
Diagnóstico de Florestas Plantadas de Mato Grosso Diagnóstico de Florestas Plantadas de Mato Grosso
Diagnóstico de Florestas Plantadas de Mato Grosso
 
Negocios Florestais
Negocios FlorestaisNegocios Florestais
Negocios Florestais
 
As florestas industriais e suas vantagens absolutas: geração de riquezas e di...
As florestas industriais e suas vantagens absolutas: geração de riquezas e di...As florestas industriais e suas vantagens absolutas: geração de riquezas e di...
As florestas industriais e suas vantagens absolutas: geração de riquezas e di...
 
Desafios para o Manejo Florestal no Acre
Desafios para o Manejo Florestal no AcreDesafios para o Manejo Florestal no Acre
Desafios para o Manejo Florestal no Acre
 
Apostila curso inventario florestal
Apostila curso inventario florestalApostila curso inventario florestal
Apostila curso inventario florestal
 
Manual do Técnico Florestal
Manual do Técnico FlorestalManual do Técnico Florestal
Manual do Técnico Florestal
 
Florestas Comerciais - Sequestro de Carbono e Impactos Ambientais
Florestas Comerciais - Sequestro de Carbono e Impactos AmbientaisFlorestas Comerciais - Sequestro de Carbono e Impactos Ambientais
Florestas Comerciais - Sequestro de Carbono e Impactos Ambientais
 
Clima El Nino La Nina Marco Aurelio Gondim [www.mgondim.blogspot.com]
Clima El Nino La Nina Marco Aurelio Gondim [www.mgondim.blogspot.com]Clima El Nino La Nina Marco Aurelio Gondim [www.mgondim.blogspot.com]
Clima El Nino La Nina Marco Aurelio Gondim [www.mgondim.blogspot.com]
 

Similar a Apostila 2009

MANUAL DE SILVICULTURA TROPICAL.pdf
MANUAL DE SILVICULTURA TROPICAL.pdfMANUAL DE SILVICULTURA TROPICAL.pdf
MANUAL DE SILVICULTURA TROPICAL.pdfMary Holanda
 
Sustentabilidade (1).pptx
Sustentabilidade (1).pptxSustentabilidade (1).pptx
Sustentabilidade (1).pptxJuliana Barbosa
 
Curso de Engenharia Florestal para Concursos
Curso de Engenharia Florestal para ConcursosCurso de Engenharia Florestal para Concursos
Curso de Engenharia Florestal para ConcursosEstratégia Concursos
 
Apresentação Irene Cardoso cba agroecologia 2013
Apresentação Irene Cardoso   cba agroecologia 2013Apresentação Irene Cardoso   cba agroecologia 2013
Apresentação Irene Cardoso cba agroecologia 2013Agroecologia
 
Adequção ambiental
Adequção ambientalAdequção ambiental
Adequção ambientalBoris Marinho
 
Florestas clima-mudanca-mudar-o-que-21-marco-2015
Florestas clima-mudanca-mudar-o-que-21-marco-2015Florestas clima-mudanca-mudar-o-que-21-marco-2015
Florestas clima-mudanca-mudar-o-que-21-marco-2015João Soares
 
Atividade colaborativa responsabilidade social e meio ambiente- paulo rogér...
Atividade colaborativa   responsabilidade social e meio ambiente- paulo rogér...Atividade colaborativa   responsabilidade social e meio ambiente- paulo rogér...
Atividade colaborativa responsabilidade social e meio ambiente- paulo rogér...Cisco Kunsagi
 
INTRODUÇÃO A RECOMPOSIÇÃO COM ÊNFASE NAS FLORESTAS
INTRODUÇÃO A RECOMPOSIÇÃO COM ÊNFASE NAS FLORESTASINTRODUÇÃO A RECOMPOSIÇÃO COM ÊNFASE NAS FLORESTAS
INTRODUÇÃO A RECOMPOSIÇÃO COM ÊNFASE NAS FLORESTASRAIMUNDAMARIADOSSANT3
 
Guia aplicao nova_lei_florestal
Guia aplicao nova_lei_florestalGuia aplicao nova_lei_florestal
Guia aplicao nova_lei_florestalmvezzone
 

Similar a Apostila 2009 (18)

Manual Silvicultura.pdf
Manual Silvicultura.pdfManual Silvicultura.pdf
Manual Silvicultura.pdf
 
MANUAL DE SILVICULTURA TROPICAL.pdf
MANUAL DE SILVICULTURA TROPICAL.pdfMANUAL DE SILVICULTURA TROPICAL.pdf
MANUAL DE SILVICULTURA TROPICAL.pdf
 
Manual de silvicultura
Manual de silvicultura Manual de silvicultura
Manual de silvicultura
 
Sucessão ecológica
Sucessão ecológicaSucessão ecológica
Sucessão ecológica
 
Sucessão ecológica
Sucessão ecológicaSucessão ecológica
Sucessão ecológica
 
Sustentabilidade (1).pptx
Sustentabilidade (1).pptxSustentabilidade (1).pptx
Sustentabilidade (1).pptx
 
sucessão
sucessãosucessão
sucessão
 
Manual de restauração florestal
Manual de restauração florestalManual de restauração florestal
Manual de restauração florestal
 
Curso de Engenharia Florestal para Concursos
Curso de Engenharia Florestal para ConcursosCurso de Engenharia Florestal para Concursos
Curso de Engenharia Florestal para Concursos
 
Análise e gestão ambiental
Análise e gestão ambientalAnálise e gestão ambiental
Análise e gestão ambiental
 
Apresentação Irene Cardoso cba agroecologia 2013
Apresentação Irene Cardoso   cba agroecologia 2013Apresentação Irene Cardoso   cba agroecologia 2013
Apresentação Irene Cardoso cba agroecologia 2013
 
Árvores Plantadas e Biodiversidade - fauna
Árvores Plantadas e Biodiversidade - faunaÁrvores Plantadas e Biodiversidade - fauna
Árvores Plantadas e Biodiversidade - fauna
 
Ccma florestas tropicais
Ccma florestas tropicaisCcma florestas tropicais
Ccma florestas tropicais
 
Adequção ambiental
Adequção ambientalAdequção ambiental
Adequção ambiental
 
Florestas clima-mudanca-mudar-o-que-21-marco-2015
Florestas clima-mudanca-mudar-o-que-21-marco-2015Florestas clima-mudanca-mudar-o-que-21-marco-2015
Florestas clima-mudanca-mudar-o-que-21-marco-2015
 
Atividade colaborativa responsabilidade social e meio ambiente- paulo rogér...
Atividade colaborativa   responsabilidade social e meio ambiente- paulo rogér...Atividade colaborativa   responsabilidade social e meio ambiente- paulo rogér...
Atividade colaborativa responsabilidade social e meio ambiente- paulo rogér...
 
INTRODUÇÃO A RECOMPOSIÇÃO COM ÊNFASE NAS FLORESTAS
INTRODUÇÃO A RECOMPOSIÇÃO COM ÊNFASE NAS FLORESTASINTRODUÇÃO A RECOMPOSIÇÃO COM ÊNFASE NAS FLORESTAS
INTRODUÇÃO A RECOMPOSIÇÃO COM ÊNFASE NAS FLORESTAS
 
Guia aplicao nova_lei_florestal
Guia aplicao nova_lei_florestalGuia aplicao nova_lei_florestal
Guia aplicao nova_lei_florestal
 

Más de Dayane Lopes

Plano mensal currículo recuperação_2º3
Plano mensal currículo recuperação_2º3Plano mensal currículo recuperação_2º3
Plano mensal currículo recuperação_2º3Dayane Lopes
 
Eja avaliação sobre bacia hidrografica
Eja avaliação sobre bacia hidrograficaEja avaliação sobre bacia hidrografica
Eja avaliação sobre bacia hidrograficaDayane Lopes
 
Avaliação 9º ano
Avaliação 9º anoAvaliação 9º ano
Avaliação 9º anoDayane Lopes
 
Exercício de-geografia-6º-ano-revisão-1ª-etapa - copiar
Exercício de-geografia-6º-ano-revisão-1ª-etapa - copiarExercício de-geografia-6º-ano-revisão-1ª-etapa - copiar
Exercício de-geografia-6º-ano-revisão-1ª-etapa - copiarDayane Lopes
 
Exercício de-geografia-6º-ano-revisão-1ª-etapa - copiar
Exercício de-geografia-6º-ano-revisão-1ª-etapa - copiarExercício de-geografia-6º-ano-revisão-1ª-etapa - copiar
Exercício de-geografia-6º-ano-revisão-1ª-etapa - copiarDayane Lopes
 
Direito a moradia_no_brasil
Direito a moradia_no_brasilDireito a moradia_no_brasil
Direito a moradia_no_brasilDayane Lopes
 
Artigo revista daiane
Artigo revista daianeArtigo revista daiane
Artigo revista daianeDayane Lopes
 

Más de Dayane Lopes (14)

Plano mensal currículo recuperação_2º3
Plano mensal currículo recuperação_2º3Plano mensal currículo recuperação_2º3
Plano mensal currículo recuperação_2º3
 
Eja avaliação sobre bacia hidrografica
Eja avaliação sobre bacia hidrograficaEja avaliação sobre bacia hidrografica
Eja avaliação sobre bacia hidrografica
 
Capitalismo
CapitalismoCapitalismo
Capitalismo
 
Avaliação 9º ano
Avaliação 9º anoAvaliação 9º ano
Avaliação 9º ano
 
Exercício de-geografia-6º-ano-revisão-1ª-etapa - copiar
Exercício de-geografia-6º-ano-revisão-1ª-etapa - copiarExercício de-geografia-6º-ano-revisão-1ª-etapa - copiar
Exercício de-geografia-6º-ano-revisão-1ª-etapa - copiar
 
2 ano
2 ano2 ano
2 ano
 
2 ano
2 ano2 ano
2 ano
 
2 ano
2 ano2 ano
2 ano
 
Exercício de-geografia-6º-ano-revisão-1ª-etapa - copiar
Exercício de-geografia-6º-ano-revisão-1ª-etapa - copiarExercício de-geografia-6º-ano-revisão-1ª-etapa - copiar
Exercício de-geografia-6º-ano-revisão-1ª-etapa - copiar
 
Sitiolândia
SitiolândiaSitiolândia
Sitiolândia
 
Direito a moradia_no_brasil
Direito a moradia_no_brasilDireito a moradia_no_brasil
Direito a moradia_no_brasil
 
Artigo revista daiane
Artigo revista daianeArtigo revista daiane
Artigo revista daiane
 
Gincana 2
Gincana 2Gincana 2
Gincana 2
 
Sioli
SioliSioli
Sioli
 

Apostila 2009

  • 1. M L F Lab Manejo Florestal NOÇÕES BÁSICAS DE MANEJO FLORESTAL Versão 2008 Apoio CNPq e Fapeam
  • 2. Organizadores Niro Higuchi Joaquim dos Santos Roseana Pereira da Silva Adriano N. Lima Liliane M. Teixeira Vilany M.C. Carneiro Cristina A. Felsemburgh Edgard S. Tribuzy 2
  • 3. Índice Geral Conteúdo pág. Parte I – O mínimo de ecologia para o manejo florestal (MF) 4 Capítulo 1 – Conceitos básicos 5 Capítulo 2 – A árvore 7 2.1. A espécie vegetal no complexo ambiental 7 2.2. Fatores ambientais 9 2.3. Interações 17 Capítulo 3 – Comunidades florestais 19 Capítulo 4 – Dinâmica florestal (introdução) 22 Capítulo 5 – Dinâmica florestal (sucessão) 26 Capítulo 6 – Análise de dimensão, NPP e ciclagem de nutrientes 32 Capítulo 7 – Desenvolvimento e crescimento de plantas 36 Parte II – O mínimo de estatística para o manejo florestal 42 Capítulo 8 – Conceitos gerais 42 8.1. Natureza da estatística 42 8.2. Conceitos básicos 45 Capítulo 9 – Organização dos dados 49 Capítulo 10 – Medidas descritivas 54 10.1. Medidas de tendência central 54 10.2. Medidas de dispersão 56 10.3. Medidas de relacionamento 58 Fórmulas úteis 61 Capítulo 11 – Distribuição amostral da média 62 Teorema de limite central 65 Capítulo 12 – Estimando a média da população 70 Intervalos de confiança 70 Capítulo 13 – Algumas variáveis aleatórias importantes para o manejo florestal 79 13.1. Diâmetro à altura do peito (DAP) 79 13.2. Área basal 82 13.3. Volume 83 13.4. Biomassa 87 Anexo 4: Distribuição de Weibull 90 Anexo 5: Artigo sobre biomassa 95 Capítulo 14 – Cadeia de Markov 108 Parte III – Manejo Florestal na Amazônia 124 Capítulo 15 – Amazônia: visão geral 125 Capítulo 16 – Principais tipos florestais 143 Capítulo 17 – Desenvolvimento sustentável 151 Capítulo 18 – Manejo florestal sustentável 167 Capítulo 19 – Setor florestal brasileiro 183 Capítulo 20 – Convenções, acordos internacionais e certificação florestal 200 Capítulo 21 – Legislações florestais brasileiras 227 Capítulo 22 – Lei Estadual de Mudanças Climáticas 256 Capítulo 23 – Exploração florestal na Amazônia 259 3
  • 4. PARTE I O MÍNIMO DE ECOLOGIA PARA O MANEJO FLORESTAL A floresta é o conjunto de árvores. Algumas são bem conhecidas e são amplamente utilizadas na indústria florestal. A maioria, nem tanto. Da árvore, tudo poderia ser aproveitado (raiz, caule, casca, galhos, folhas e frutos). No entanto, a madeira do caule é o principal produto atualmente; tem escala de mercado e liquidez financeira. Aproveitável ou não, a árvore para sobreviver e se desenvolver tem que interagir com os outros seres vivos, sem perder de vista a relação intrínseca com os fatores do ambiente e do solo. Tentar manejar uma floresta sem este conhecimento, é apostar no fracasso. A floresta que está sendo explorada na Amazônia tem, aproximadamente, 1500 anos de idade, que foi desenvolvida sobre solos pobres em nutrientes. A exuberância da floresta em contraste com a fertilidade dos solos pode ser explicada pela capacidade da floresta em conservar e reciclar nutrientes. Entender o que é apresentado na Parte I da apostila de manejo florestal não significa que você vai se transformar em ecólogo. No entanto, se você considerar este mínimo de conhecimento ecológico, antes e durante o manejo florestal, você poderá minimizar os impactos ambientais ... e isto é econômico. A combinação de economia e minimização de impactos ambientais pode ser obtida utilizando-se das melhores técnicas de manejo florestal, da exploração florestal até a industrialização. A grade curricular dos cursos de engenharia florestal já contempla todas essas etapas ... tudo é uma questão de foco. Portanto, dos quatro pilares da sustentabilidade do manejo florestal (técnico, econômico, ecológico e social), fica faltando apenas o social. Infelizmente, este tema não será abordado nesta apostila. A recomendação é colocar como questão de fundo para o seu manejo florestal, o conceito de desenvolvimento sustentável, que é apresentado na Parte III. Assuma o compromisso em deixar para as futuras gerações, a mesma oportunidade que você está tendo, hoje, em aproveitar os recursos florestais. 4
  • 5. Capítulo 1 - conceitos básicos 1. Ecologia: é o estudo dos organismos vivos e suas relações com o meio ambiente. 2. Meio ambiente: é a soma de todos os fatores bióticos (vivos) e abióticos que rodeiam e potencialmente influenciam um organismo. 3. Ecossistema: é a soma das comunidades de plantas e de animais e o meio ambiente, numa região particular ou habitat ou fatores bióticos + abióticos. 4. Fisiologia da planta: é o estudo dos processos da vida de várias partes da planta. 5. Citologia da planta: é a investigação dos eventos que ocorrem dentro das células. 6. Bioquímica: é a análise da estrutura química final dos seres vivos e os processos da vida. 7. Auto-ecologia: lida com a adaptação e comportamento da espécie individual ou população em relação ao seu meio ambiente. Pode ser interpretado como sinônimo de ecologia fisiológica ou ecofisiologia. 8. Sinecologia: é o estudo das comunidades em relação ao meio ambiente. Sinônimos: ecologia de comunidade, fitossociologia, geobotânica ou ecologia da vegetação. 9. Vegetação: consiste de todas as espécies de plantas numa região (flora) e se refere ao padrão de como todas as espécies estão espacial e temporalmente distribuída. 10. Forma de vida: (i) o tamanho, a duração da vida, a presença de lenho de um táxon; (ii) o grau de independência de um táxon; (iii) a morfologia de um táxon; (iv) os traços das folhas do táxon; (v) a localização dos brotos perenes e (vi) fenologia 11. Fisionomia: é a combinação da aparência externa + estrutura vertical incluindo arquitetura de copas + forma de vida das taxa dominantes. 12. Formação: um tipo de vegetação que se estende sobre uma grande região. A formação pode ser subdividida em associações. 13. Associação: é a coleção de todas as populações de plantas co-existindo com um dado ambiente. A associação tem os seguintes atributos: (i) composição florística relativamente fixa; (ii) exibe uma fisionomia relativamente uniforme e (iii) ocorre num tipo de habitat relativamente consistente. 5
  • 6. 14. População: é um grupo de indivíduos de mesma espécie ocupando um pequeno habitat capaz de permitir o cruzamento entre todos os membros do grupo. 15. Sociologia de plantas: a descrição e o mapeamento dos tipos de vegetação e comunidades. 16. Dinâmica de comunidades: uma outra fase de sinecologia que inclui processos como transferência de nutrientes e energia entre membros, relações antagônicas e simbióticas entre membros e os processos e causas da sucessão. 6
  • 7. Capítulo 2 – A árvore Para Hallé et al. (1978), a árvore não pode considerada meramente como um indivíduo num determinado ponto no tempo, mas como um indivíduo geneticamente diverso em processo de desenvolvimento e mudanças, que responde, de várias maneiras, às flutuações do clima e micro-clima, à incidência de insetos, fungos e outros parasitas, particularmente às mudanças ao redor dela mesma. A árvore é então vista como uma unidade ativa e adaptável e, a floresta, é feita de um vasto número de tais unidades interagindo entre si e com os fatores do solo e do clima. A função de uma árvore em sua eco-unidade (unidade de regeneração) florestal deve ser considerada, pois a árvore participa na construção da eco-unidade e contribui com a sobrevivência da mesma, ou seja, a árvore reage a todos os inputs bióticos e abióticos vindos de seu biótipo natural (Oldeman, 1991). O ambiente da árvore não consiste apenas de fatores abióticos determinados pelos fatores climáticos e de solos (Oldeman, 1991). Esses fatores são filtrados pela vegetação circundante composta de um mosaico de fragmentos (manchas) de floresta jovem, em construção, madura e em decomposição. E, dentro de uma particular mancha, os nutrientes e a energia são filtrados novamente por vários organismos, antes de alcançar a árvore sob consideração. 2.1. A espécie vegetal no complexo ambiental: (i) A Lei do Mínimo A presença e o sucesso de um organismo ou de um grupo de organismo dependem de um complexo de condições. Diz-se que qualquer condição que se aproxime de ou exceda os limites de tolerância é uma condição limitante ou um fator limitante. “O crescimento e/ou a distribuição da espécie é dependente de um fator ambiental mais criticamente em demanda”. (ii) A teoria da tolerância “Toda espécie de planta é capaz de existir e reproduzir com sucesso somente dentro de um limite definido de condições ambientais.” Os organismos podem apresentar uma larga faixa de tolerância para um fator e uma estreita para outro; os organismos que tenham faixas de tolerância longas para todos os fatores serão provavelmente os mais amplamente distribuídos; quando as condições não são ótimas para 7
  • 8. uma determinada espécie em relação a um fator ecológico, os limites de tolerância poderão ser reduzidos para outros fatores ecológicos. Os limites de tolerância não podem ser determinados a partir de um exame dos fatores morfológicos; em vez disso, eles são relacionados com os fatores fisiológicos que podem ser somente medidos experimentalmente. A distribuição relativa da espécie com limites similares de tolerância aos fatores físicos é determinada finalmente pelo resultado da competição (ou outra interação biótica) entre as espécies. Ex: testes de estresse, realizados em laboratórios ou no campo, nos quais os organismos são submetidos a uma variedade experimental de condições. (iii) A espécie taxonômica: Uma espécie consiste de grupos de indivíduos morfológica e ecologicamente similares que podem ou não ser cruzados, mas que são reprodutivamente isolados de outros grupos. O taxonomista tradicional enfatiza a morfologia (aparências externas), mas os biosistematas dão mais ênfase à isolação reprodutiva. (iv) A espécie ecológica: É o produto da resposta genética de uma população a um habitat – ecótipo ou tipo ecológico ou raça ecológica. São populações de uma mesma espécie que apresentam grande dispersão geográfica, mas que estão fisicamente separadas. (v) População: Conjunto de indivíduos da mesma espécie que vive em um território cujos limites são em geral delimitados pelo ecossistema no qual essa população está presente. As populações são entidades reais cujos atributos distribuição espacial, densidade, estrutura etária, taxas de crescimento (produto líquido entre taxas de natalidade, mortalidade e migração) bem como suas relações de interdependência (simbioses) podem ser estimadas quantitativamente em condições naturais ou experimentais. (vi) Habitat Lugar onde uma espécie (ou mais de uma) vive. Neste local, os organismos encontrarão, além do abrigo das intempéries do meio físico e de eventuais ameaças biológicas (predação), alimento e condições para reprodução. (vii) Nicho ecológico: 8
  • 9. Papel que determinada espécie desempenha em um habitat; papel funcional na comunidade. Na realidade, o conceito pode ser desdobrado em vários outros, dependendo do modo como é descrita a distribuição da espécie. Podem ser usados critérios ligados ao uso do espaço, à posição do organismo na cadeia alimentar ou ainda um conjunto de diferentes fatores ambientais, ex: temperatura, umidade, pH, solo, etc. 2.2. Fatores ambientais: (i) Radiação solar: Do sol vem, direta ou indiretamente, a luz que torna possível a fotossíntese, e o calor que aquece o ar e o solo permitindo a continuação dos processos de vida da planta. A árvore precisa de, pelo menos, 1 a 2% de plena luz para se manter. A briga permanente é ter o máximo de luz para acentuar os ganhos pela fotossíntese em cima das perdas pela respiração. Por meio do processo fotossintético, a energia radiante é fixada em energia química potencial utilizada por todos os componentes da cadeia alimentar para realizar os processos vitais. a) A natureza da radiação solar que atinge a Terra: A radiação solar fundamentalmente governa a temperatura do ar e, desse modo, indiretamente determina as condições térmicas ao redor e dentro da planta. A quantidade e a qualidade de luz são muito importantes para a fotossíntese. A radiação solar controla muitos processos do desenvolvimento, agindo como um sinal para, por exemplo, a germinação, o crescimento direcionado e a forma externa da planta. b) O balanço de energia: O ambiente por meio dos fatores climáticos, transfere energia para todos os seres vivos. Este fluxo de energia que determina o balanço de energia da planta e que afeta a sua temperatura é acompanhado primariamente pela radiação solar e terrestre, convecção e transpiração. Cada processo pelo qual a energia é transferida entre uma planta e o meio ambiente pode causar ganho ou perda de energia, mas a soma total da energia transferida tem que estar equilibrada. A energia ganhada pela planta do ambiente pode ser armazenada como calor ou convertida em energia fotoquímica pela fotossíntese; e pode ser perdida ao ambiente pela radiação da planta, pela condução do calor ou convecção ou pela evapotranspiração (combinação da evaporação da superfície do solo e a transpiração das plantas). c) A luz e o crescimento das árvores 9
  • 10. A biosfera recebe a radiação solar em comprimentos de onda de 0.3µm a aproximadamente 3.0µm. Em média, 45% da radiação proveniente do Sol se encontra dentro de uma faixa espectral de 0.18-0.71µm, a qual é utilizada para a fotossíntese das plantas (radiação fotossinteticamente ativa, RFA). A importância mais óbvia da radiação solar é a dependência da vida em relação à fotossíntese, a qual, por sua vez, depende da luz. A luz é a radiação solar nas bandas do visível do espectro eletromagnético. As bandas do visível vão de 0,4 a 0,7µm (1 µm = 1 x 10-6 m), com as cores visíveis entre 0,4-0,5 (azul); 0,5-0,6 (verde) e 0,6-0,7 (vermelho). A cor, a forma e o arranjo das folhas afetam a habilidade relativa de diferentes espécies em competir sob dada condição de luz. Ponto de compensação => é o nível de CO2 que está em perfeito equilíbrio (nem tira e nem coloca), ou seja, é o ponto que os ganhos fotossintéticos se equilibram com as perdas pela respiração. d) A luz e a morfologia da árvore As plantas que crescem sob sombra desenvolvem estrutura e aparência diferentes daquelas que crescem sob plena luz. Quando as folhas sob sombra são repentinamente expostas à plena luz, no caso de desmatamento (por exemplo), elas são incapazes de sobreviver. A parte aérea das plantas recebe radiação de vários tipos e por todos os lados: radiação solar direta, radiação que sofre espalhamento na atmosfera, radiação difusa em dias nublados e radiação refletida da superfície do solo. A forma de crescimento, tipo de ramificação, e a posição da folha condicionam a luminosidade da copa. A maioria das plantas ordena sua superfície de assimilação de forma que poucas folhas recebam radiação solar direta permanentemente, assim a maior parte das folhas se encontra parcialmente sombreada (Lacher, 2000). As plantas se adaptam de forma modificativa de acordo com as condições de radiação preponderante durante a morfogênese. A diferenciação fenotípica de órgãos e tecidos geralmente não é reversível. Se as condições de radiação mudam no caso de desmatamento (por exemplo), posteriormente, novos ramos são produzidos e as folhas dos ramos originais não adaptadas senescem e sofrem abscisão. e) Fotocontrole e a resposta da planta 10
  • 11. Fotoperiodismo => é a resposta da planta ao comprimento relativo do dia e da noite e as mudanças neste relacionamento ao longo do ano. A duração do período luminoso de um dia é denominada fotoperíodo enquanto que o período escuro corresponde ao nictoperíodo. As respostas sazonais são possíveis porque os organismos vegetais são capazes de “perceber” o período do ano em que se encontram, pela detecção do comprimento do dia. (ii) Temperatura Pouca atividade biológica ocorre abaixo de zero e acima de 50º C. Os fatores que influenciam a variação em temperatura são: latitude, altitude, topografia, proximidade à água, cobertura de nuvem e vegetação. A capacidade de grandes corpos d’água de absorver a energia solar e re-transmitir mais lentamente faz com que os extremos de temperaturas do dia e da noite não sejam tão acentuados, ou seja, verão e inverno menos rigorosos. O oposto ocorre no deserto, por exemplo, aonde a reflectância da luz é maior e a absorção é menor, deixando o dia muito quente e a noite muita fria, ou seja, da mesma maneira (velocidade) que o ambiente é aquecido, a dissipação do calor, quando cessa a incidência de luz, é igualmente rápida. As plantas regulam as suas temperaturas pela dissipação da energia absorvida e, dessa maneira, previnem-se da excessiva acumulação de calor e morte. Os 3 principais mecanismos são: re-radiação, transpiração e convecção. a) Temperatura na superfície do solo A exata temperatura da superfície do solo depende da taxa de absorção da energia solar e a taxa com que é dissipada, uma vez absorvida. Isto, por sua vez, depende primariamente da quantidade de vegetação e cobertura da serapilheira e, em segundo, da cor, conteúdo de água e outros fatores físicos do solo, se exposto. b) Temperatura dentro da floresta Quando as árvores estão com todas as folhas, os extremos dentro da floresta são geralmente menores do que fora da mesma e a diminuição da radiação dentro da floresta pode resultar em menores médias da temperatura do ar. c) A temperatura e o crescimento da planta Os processos mais influenciados pela temperatura são: - a atividade enzimática que catalisa as reações bioquímicas, especialmente fotossíntese e respiração. 11
  • 12. - a solubilidade do CO2 e o O nas células das plantas - transpiração - a habilidade de raízes em absorver água e minerais do solo. Todas as fases dos diferentes regimes de temperatura – temperatura do dia, temperatura da noite, somas de calor e termoperiodismo (diferença entre as temperaturas do dia e da noite) – também afetam o crescimento da planta. O arranjo das folhas e a orientação das mesmas, uma resposta à intensidade da luz, podem reduzir a quantidade de energia solar absorvida podendo impedir o superaquecimento da folha. d) Formas de vida A importância da sobrevivência durante os períodos desfavoráveis tem levado a uma classificação ecológica das formas de vida baseada na condição de dormência da planta sob condições climáticas desfavoráveis para o crescimento. Exemplo de classificação: sempre verde, decíduas, perenes e anuais. (iii) Água A água é a substância inorgânica mais requisitada pelas plantas e a sua presença nas mesmas é muito grande, em média 40% de seu peso total. A precipitação é a principal fonte da umidade do solo, que é a principal fonte d’água que alcança a árvore. Na atmosfera, a água está sempre presente na forma de vapor d’água. A troca de vapor d’água entre a planta e a atmosfera acontece ao longo dos gradientes da pressão do vapor. A transpiração ocorre quando a água é vaporizada e se move para fora das folhas (alta pressão) e se misturando com o ar circundante (baixa pressão). A precipitação ocorre quando a massa de ar quente é esfriada abaixo do seu ponto condensação. Este esfriamento pode resultar de correntes de ar que chegam a altas elevações como ocorre quando as massas de ar frio estão presas sob o ar quente ou quando o ar quente avança sobre o ar frio (frente quente); isto ocorre quando o ar úmido passa por cima das superfícies quentes da Terra (precipitação convencional) e quando as correntes de ar passam por cima das massas de terra elevada (precipitação orográfica). Se a condensação ocorre abaixo do ponto de congelamento, a neve é formada; se acima deste ponto, ocorre a chuva. A proximidade ao oceano, a temperatura e os teores de umidade das massas de ar, a elevação, latitude e o relacionamento entre as mudanças sazonais determinam a quantidade, tipo e 12
  • 13. distribuição da precipitação. Na floresta, 20% da chuva é comumente interceptada pela copa, de onde pode ser absorvida pela folhagem, ser evaporada, pode pingar diretamente para o solo ou escorrer pelo tronco. A água no solo disponível à planta existe na categoria gravitacional. O fornecimento da água à planta é realizado pela matriz sólida e a água do material poroso interagindo com a capilaridade (conjunto de fenômenos que se passam quando num capilar se forma uma interface líquido-vapor) e a adsorção (fixação das moléculas de uma substância na superfície de outra substância). O movimento da água no solo depende da interação entre o potencial da água no solo e condutividade hidráulica. Alguns mecanismos que as plantas usam para minimizar o efeito do estresse hídrico: (i) decíduas de seca (folhas presentes somente durante os períodos de baixo estresse), (ii) efêmeras (dormentes, como sementes, durante o período de estresse), (iii) ripárias (aquelas que crescem perto de áreas com grande disponibilidade de água); (iv) sempre verde (quando há uma fonte perene de água). a) As relações da água da planta O solo vai secando gradualmente conforme a água é removida das raízes adjacentes; dessa maneira, restringe a absorção até que a planta não pode mais extrair a água do solo (potencial osmótico da planta = potencial da água do solo) – isto é o ponto que a planta alcança uma pressão de turgescência igual a zero e murcha. Mantendo este processo de secagem do solo, a fotossíntese gradualmente diminui como uma resistência ao aumento da tomada de CO2 por causa do fechamento dos estômatos. Isso vai causar a diminuição do crescimento porque a pressão de turgescência é necessária para a expansão total de novas células. Sob severo estresse hídrico, são inibidas: a respiração, a síntese de proteínas e vários outros processos envolvendo as reações químicas – por causa da desnaturação da proteína. b) Troca de vapor d’água entre a planta e a atmosfera A água se moverá da planta para a atmosfera quando a pressão do vapor da planta é maior do que a da atmosfera. Isto é normal durante o dia sem chuvas. A água pode também mover da atmosfera para a planta quando as pressões de vapor são inversas, como num dia chuvoso ou 13
  • 14. quando o orvalho cobrir uma planta que não esteja completamente túrgida. Normalmente, não há troca de vapor d’água durante a noite. Como o ar dentro da folha é normalmente saturado sob condições de crescimento, o vapor moverá das folhas para o ar circundante a menos que o ar externo esteja também saturado na mesma ou numa temperatura maior => a transpiração acaba ocorrendo. A taxa de transpiração é diretamente dependente da planta e da temperatura do ar, da umidade relativa do ar e o movimento do ar que afeta a espessura da camada de ar que circunda a superfície da folha. A transpiração é similar a evaporação, exceto quando o movimento do vapor d’água da célula da planta é controlado a ponto de afetar a resistência das folhas que não estão envolvidas na evaporação. Este é o processo dominante na relação da água das plantas porque é assim que é fornecido o gradiente de energia que causa o movimento para dentro e por meio das plantas. (iv) A floresta e o clima da Amazônia A floresta tem uma relação intrínseca com o clima. Os processos biológicos e ecológicos que determinam a produção e a produtividade de uma floresta dependem do clima e dos solos. O clima, por sua vez, é influenciado pela floresta da seguinte maneira: diminuição da temperatura em seu interior e acima dela; diminuição da umidade relativa do ar e possível alteração no regime de chuvas em áreas com cobertura florestal. Atualmente, sob as chancelas da Convenção do Clima e Protocolo de Quioto, a interação floresta x clima passou a ser oportunidades de negócios e motivos de disputas políticas entre países ricos e pobres. As plantas que originalmente se desenvolveram graças às condições primárias do ecossistema em evolução, hoje são partes integrantes e fundamentais para o equilíbrio estabelecido, fornecendo por meio da evapotranspiração os 50% do vapor d'água necessário para gerar o atual nível de precipitação. Outros 50% vêm do Oceano Atlântico (Salati e Ribeiro, 1979). Para esses autores, embora não se tenham ainda dados que permitam prever com precisão as conseqüências da substituição ou simples destruição da cobertura florestal da região, algumas previsões são possíveis: - O desmatamento reduzirá o tempo de permanência da água na bacia, por diminuir a permeabilidade do solo e conseqüentemente o seu armazenamento em reservatórios subterrâneos. 14
  • 15. A redução do período de trânsito das águas determinará inundações mais intensas durante os períodos chuvosos, enquanto que a diminuição dos reservatórios subterrâneos, reduzirá a vazão dos rios nos períodos secos. - 50% da precipitação da região é proveniente da evapotranspiração da floresta. Por meio deste processo, a floresta aumenta o tempo de permanência da água no sistema, devolvendo para a atmosfera na forma de vapor, a água presente no solo. Uma outra cobertura, cuja evapotranspiração não substitua a inicial da região determinará uma menor disponibilidade de vapor na atmosfera e, em conseqüência, uma redução na precipitação, especialmente nos períodos mais secos. - Uma redução da precipitação de 10 a 20% será suficiente para induzir profundas modificações nos atuais ecossistemas. - A energia solar que incide na região é em média 425 cal/cm2/dia e é, em grande parte (50 a 60%), utilizada no trabalho de evaporação das águas, por meio de da transpiração das plantas. No caso de desmatamento em grande escala, o balanço de energia será alterado. Dessa maneira, parte da energia que hoje é utilizada neste processo, será utilizada no processo de aquecimento do solo e do ar, fazendo aumentar a temperatura do ar. - As regiões tropicais absorvem mais radiação solar do que perdem por emissão de ondas longas. No caso de desmatamento, os padrões de evapotranspiração irão se alterar (provavelmente diminuirão). Tais mudanças acarretarão sensíveis modificações no micro, meso e clima global por meio da alteração do balanço de energia de circulação (transporte do calor dos trópicos para os pólos - células de Hadley). - A pressão parcial do CO2 na atmosfera é determinada pela interação deste gás com o oceano que libera e absorve CO2 numa velocidade muito grande. Em apenas algumas dezenas de anos, todo o CO2 da atmosfera é renovado por meio deste dinâmico processo de interação por troca molecular com o oceano. No entanto, a partir do início deste século, o equilíbrio deste processo foi rompido pela atividade humana. As causas deste aumento são principalmente a queima de combustíveis fósseis, o aumento populacional e a destruição das florestas. A floresta amazônica representa aproximadamente 20% do reservatório de carbono da biomassa do planeta. De acordo com Victória et al. (1991), do total de gases causadores do efeito estufa emitidos para a atmosfera, o CO2 contribui com cerca de 50% que, por sua vez, é o gás que tem as fontes de origem mais bem definidas e estudadas. Do total de CO2 emitido, cerca de 80% vem 15
  • 16. da queima de combustíveis fósseis e 20% da queima de florestas, principalmente de países tropicais em desenvolvimento. (v) Fatores do solo O solo tem um papel de fundamental importância nos ciclos da natureza, participando, direta e indiretamente da maioria das atividades que ocorrem no planeta. A qualidade do solo pode ser amplamente definida como a capacidade do solo de aceitar, estocar e reciclar água, nutrientes e energia. O solo além de sustentar fisicamente as plantas, é intermediário no fornecimento de água, oxigênio e nutrientes às plantas, através das raízes. Seus componentes são: grãos minerais, matéria orgânica, água e ar. A primeira fase da formação do solo é a intemperização da rocha matriz e, a segunda, é a intemperização bioquímica. A formação do solo depende do clima, organismos, topografia, rocha matriz e tempo, conforme o desenvolvimento do perfil do solo, que se fecha com o desenvolvimento dos horizontes do solo. Em regiões temperadas, 4 horizontes são típicos em perfil de solo bem drenado: orgânico (O), lixiviado (A), enriquecido (B) e o horizonte não afetado (C). Os solos de regiões tropicais são normalmente altamente intemperizados e laterizados, ou seja, os horizontes não são nítidos ou paraticamente não existem. Os solos da Amazônia, por exemplo, são antigos, intemperizados e pobres em nutrientes, possuindo uma baixa capacidade de troca catiônica. A biota do solo é composta pela macrobiota (participam da estruturação do solo facilitando a infiltração de água e a aeração do solo; é composta em sua maioria por anelídeos e cupins); a mesobiota (fragmentadores de matéria orgânica, facilitam a decomposição; composta por protozoários, nematóides, formigas e colêmbolas) microbiota (da qual fazem parte fungos e bactérias, são responsáveis pela decomposição de matéria orgânica, transformando-a quimicamente). A biota do solo pode refletir o equilíbrio biológico resultante da ação de todas as propriedades físicas e químicas do solo e do ambiente. A principal rota de ciclagem de nutrientes da floresta amazônica se dá pela decomposição da serapilheira, cuja velocidade depende principalmente da época do ano. Na estação seca a decomposição é mais lenta, e ocorre acúmulo da matéria orgânica, enquanto que na estação chuvosa a decomposição é mais rápida. Outros fatores que podem influenciar na velocidade da 16
  • 17. decomposição são: a natureza da matéria orgânica, pH do solo, natureza da fração mineral, umidade e acessibilidade dos decompositores. 2.3. Interações As interações das espécies podem ser negativas ou positivas; a distribuição espacial da planta pode dar uma boa pista para certificar-se da interação – v. quadro 1. 17
  • 18. Quadro 1 – tipos de interações, interação e exemplos. TIPOS DEFINIÇÃO EXEMPLOS COMPETIÇÃO INTER- Ambas as espécies são prejudicadas. Para GAFANHOTO/GADO (-) (-) ESPECÍFICA diminuir a competição as espécies ocupam Vivem em um campo alimentando-se de capim, competem por esse recurso. nichos ecológicos diferentes. COMPETIÇÃO INTRA- Competição entre indivíduos da mesma PLANTAS ENDÊMICAS (-)(-) ESPECÍFICA espécie. Competem entre si, mas são restritas aos habitats severos porque elas são competidoras fracas em sítios menos severos. AMENSALISMO É uma interação que prejudica um organismo FUNGOS/BACTÉRIAS (0)(-) enquanto o outro permanece estável. O fungo libera substâncias antibióticas que matam bactérias, assim o fungo evita que as bactérias venham a competir com ele por alimento. COMENSALISMO (alimento) Apenas os indivíduos de uma das espécies são HIENAS/LEÕES (+)(+) beneficiados, e os de outra espécie não têm, As hienas acompanham, à distância, os bandos de leões, servindo-se dos restos da INQUILINISMO (local) aparentemente, nenhum prejuízo ou benefício. caça abandonados por eles. EPÍFITAS/ÁRVORES (+)(+) As epífitas vivem habitualmente instaladas como “inquilinas” sobre árvores de grande porte que não sofrem qualquer prejuízo, e as epífitas conseguem, dessa maneira luminosidade. São verdes e fotossintetizantes. PROTOCOOPERAÇÃO Benefícios para ambas as espécies ainda que AVE/CAVALO (+) (+) não seja obrigatória, ou seja, o crescimento A ave come os carrapatos do cavalo. continua ... mesmo na ausência da interação MUTUALISMO É uma interação obrigatória, ou seja, a ausência MICORRIZAS/PLANTAS (+)(+) da interação prejudica os dois parceiros. Fixação simbiótica do nitrogênio (bactéria do gênero Rhyzobium) em plantas leguminosas. HERBIVORISMO É o consumo de parte ou do total de uma planta GIRAFA/PLANTAS (+) (-) por um consumidor. As girafas se alimentam das plantas, existindo, então, prejuízo para as plantas, que são devoradas parcial ou totalmente por eles. 18
  • 19. Capítulo 3 - Comunidades florestais (conceitos) Comunidade é um termo geral usado para designar as unidades sociológicas de certo grau de extensão e de complexidade. Formação é a maior e o mais compreensivo tipo de comunidade de plantas, como boreal, temperada, tropical etc. Cada formação é composta de várias outras comunidades distintas denominadas de associações (ex.: beech-maple, oak- hickory, pinheiro-imbuia etc.). O termo tipo florestal se refere a uma comunidade florestal definida somente pela composição do dossel. Como a comunidade ou associação pode ou não ser definida pela soma total do ecossistema, a sua designação normalmente leva em conta as características das plantas inferiores também ou, alternativamente, as características do sítio. As comunidades não são compostas de arranjos de espécies sucessivos e mutuamente exclusivos. Espécies individuais têm diferentes tolerâncias fisiológicas e genéticas e podem existir em várias comunidades diferentes. A natureza de uma dada comunidade florestal é governada pela interação de 3 grupos de fatores: (a) o sítio ou habitat disponível para o crescimento da planta; (b) as plantas e os animais disponíveis para colonizar e ocupar o sítio; (c) as mudanças no sítio e na biota durante um certo período de tempo, capaz de influenciar as estações do ano, os climas, os solos, a vegetação e os animais => em outras palavras, a história do habitat. As descrições de comunidades baseadas na fisionomia, forma de vida, superposição de nicho e outros traços funcionais são úteis porque permitem comparações de povoamentos bem separados que tem pouco ou nenhuma similaridade florística. Os tipos de chaparral da Califórnia e do Chile, por ex., têm poucas similaridades florísticas, mesmo em nível de família, mas exibem similares números de espécies, formas de crescimento, tamanho e fenologia das folhas e a % de cobertura do dossel pelas espécies suculentas e espinhentas. (i) Associação: Associação é um tipo, particular, de comunidade, que tem: (a) uma composição florística relativamente consistente, (b) uma fisionomia uniforme e (c) uma distribuição que é característica de um habitat particular. (a) A visão discreta: 19
  • 20. As espécies numa associação têm os limites similares de distribuição ao longo de eixo horizontal e a maioria delas se eleva à máxima abundância no mesmo ponto – MODA. Os ecótonos (cinturões de transição) entre associações adjacentes são estreitos com uma pequena superposição do limite das espécies, exceto para poucos taxa onipresentes em várias associações. (b) A visão do continuum: Continuum significa que todas as comunidades de tipo de vegetação, por ex., floresta ou campo, poderiam ser organizadas ou ordenadas numa série abstrata da qual a composição de espécies muda gradual-tipicamente ao longo de um ou mais gradientes ambientais. A vegetação num continuum é o produto de um continuum no espaço (espécies e comunidades influenciadas pelos fatores ambientais e bióticos) e um continuum em tempo (sucessão). Entretanto, há objeções substantivas à abordagem do continuum. Alguns estudos mostram que nem a dominância de um táxon simples e nem a presença e abundância de grupos de espécies mudam abruptamente ao longo do gradiente ambiental. (ii) Métodos de amostragem de comunidades de plantas: (a) Método “releve” Cada povoamento é representado por um grande quadrado cujo tamanho tem que encontrar a exigência da área mínima. Os dados coletados incluem: cobertura, sociabilidade, vitalidade e periodicidade (importância estacional). A tabela resumo revela os traços sintetizados (presença e constância). Se a espécie X ocorre em 8 dos 10 quadrados, esta espécie tem 80% de presença. Constância, em contraste, é baseada nas espécies encontradas em transectos. A espécie X estando presente em 8 quadrados, mas em somente 6 dos 10 transectos, a constância será de 60%. (b) Métodos dos quadrados aleatórios (c) Método da distância (iii) Métodos para descrever a comunidade de plantas: (a) Tabelas As associações são definidas na base dos diferenciais ou nas espécies características que têm altos valores confiáveis e consistentes. As associações são apresentadas numa grande tabela diferenciada que é manejada para preservar a maioria dos dados originais das espécies e dos povoamentos. 20
  • 21. (b) Ordenação Os dados amostrados são reduzidos em 1 ou 2 gráficos que mostra os povoamentos como pontos no espaço. Algumas limitações da forma mais simples de ordenação são parcialmente corrigidas, mas a um custo mais elevado e, às vezes, o resultado é difícil de ser interpretado ecologicamente. (c) Gradiente direto A importância das espécies é uma função de cada posição do povoamento no gradiente. Geralmente, curvas não-sincronizadas para todas espécies são produzidas. Sendo assim, o gráfico não serve para a classificação. (d) Análise de agrupamentos É o uso dos pares de coeficientes dos povoamentos para construir o dendrograma (padrões de similaridade). (e) Análise de associação Também produz um dendrograma dos relacionamentos povoamento a povoamento, mas a sua construção é baseada nas espécies diferenciais em vez dos valores dos coeficientes da comunidade. 21
  • 22. Capítulo 4 - Dinâmica florestal (introdução) A população de plantas tem atributos que permite usá-los como ferramentas para avaliar o meio ambiente. Esses fatores incluem o arranjo dos indivíduos no espaço dentro de uma dada comunidade, o arranjo dos indivíduos no tempo, que é a estrutura de idade e a taxa de crescimento de uma população e o padrão de alocação de recursos dos indivíduos que caracteriza o modo de sobrevivência de uma população em um ambiente particular. Depois do corte raso, o espaço antes ocupado pela floresta, passa pelas seguintes fases: reorganização, acumulação, transição e steady-state (estabilização). (i) O arranjo dos indivíduos no espaço a) Densidade É o número de indivíduos por unidade de área. Daí = ni/A b) Padrão de distribuição O padrão de distribuição espacial de uma espécie refere-se à distribuição no espaço dos indivíduos pertencentes à dita espécie. Os indivíduos de uma espécie podem apresentar- se: aleatoriamente distribuídos, regularmente distribuídos e em grupos ou agregados. A distribuição do Poisson é usada para verificar se a distribuição é aleatória ou não. Se o teste qui-quadrado for não significante, o padrão é aleatório; caso contrário, pode ser agregado ou regular (ou uniforme). Se a população for agregada, vários quadrados poderiam ter zero ou mais do que uma planta e poucas poderia ter uma planta. Por dedução, se a população não é aleatória e nem agregada, ela é regular. O tipo de distribuição pode refletir o tipo de reprodução, irregularidade no micro-clima, os graus de competitividade e o estágio da sucessão. Uma vez que as comunidades vegetais são constituídas por um conjunto de variáveis com maior ou menor grau de inter-relação e com densidade absoluta (abundância) variável, desde comuns até raras, e dado que a maioria dos estudos fitossociológicos, se baseia em análises florísticas provenientes de amostras de comunidades que se estudam, é importante conhecer algumas das características da vegetação vinculadas ao padrão espacial das espécies e à distribuição de freqüências. (ii) Arranjo dos indivíduos no tempo: demografia 22
  • 23. Demografia é a ciência ou estudo das estatísticas vitais: nascimentos, mortes, taxas reprodutivas e idades dos indivíduos na população. Diferentemente dos animais, que cessa o crescimento quando maduro (adulto), as plantas perenes possuem os meristemas primário e secundário, que, teoricamente, permitem o crescimento contínuo em comprimento e largura para sempre. Além disso, muitas plantas têm a habilidade de reproduzir-se assexuadamente. a) Ciclos de vida - Plantas anuais - Plantas bianuais - Herbáceas perenes - Arbóreas perenes - Arbustos b) Distribuições de idade 1) sementes viáveis 2) mudas 3) juvenis 4) imatura, vegetativa 5) madura, vegetativa 6) reprodutiva inicial 7) máximo vigor (reprodutiva e vegetativa) 8) senescente - se uma população apresentar apenas os primeiros 4 ou 5 estados, é óbvio que ela é invasora e é parte de uma comunidade seral (em evolução). - se uma população apresentar todos os 8 estados, ela é estável e é muito provável que seja parte de uma comunidade clímax (comunidade que ganha ocupação permanente do habitat e se perpetua por si só nesse local indefinidamente). - se ela apresentar apenas os 4 últimos estados, ela pode não manter sozinha e pode ser parte de uma comunidade seral. c) Tabelas de vida 23
  • 24. - Tipo I: populações têm baixa mortalidade quando jovem - Tipo II: mortalidade constante em todas idades - Tipo III: alta mortalidade quando jovem. (iii) Comportamento dos indivíduos: alocação de recursos A espécie de planta tem um padrão de alocação de recursos que minimiza as suas chances de extinção. Tais padrões têm sido mantidos e melhorados durante o processo de seleção natural. O padrão de alocação determina, em parte, o nicho de uma espécie – seu endereço funcional numa comunidade. Os organismos têm uma quantidade limitada de tempo e energia para completar o ciclo de vida. O tempo, por si só, não é alocado, mas é importante no ganho de energia fotossintética e na utilização de energia para a sua manutenção. Uma fração da energia total disponível é distribuída para cada atividade no ciclo de vida: a quantidade de tempo gasto no estado de dormência, na fase juvenil, no estágio vegetativo ou na fase madura etc. O organismo parece ficar sobre um continuum entre dois extremos de alocação de recursos: r e k. Seleção – r => planta de vida curta que amadurece rapidamente, ocupa um habitat aberto numa comunidade seral e gasta uma grande fração de seus recursos fotossintéticos para produzir flores, frutos e sementes. O tamanho de suas populações é densidade-independente, isto é, elas são reguladas por fatores físicos como fogo, inundação, congelamento, seca etc. Seleção – k => planta de vida longa que tem um prolongado estágio vegetativo, ocupa uma comunidade fechada, seral tardia ou clímax e gasta uma pequena fração de seus recursos para reprodução. O tamanho de suas populações é densidade-dependente, isto é, elas são reguladas por interações bióticas como a competição. 24
  • 25. Características morfofisiológicas das estratégias evolutivas r e k (O’BRIEN & O’BRIEN, 1985) Seleção r Seleção k Oportunistas Equilíbrio Habitat Florestas sujeitas a mudanças bruscas, instáveis, Florestas estáveis e previsíveis, com teia de teia alimentar simples alimentar complexa Estágio de sucessão Início Final Mortalidade Densidade, independente, não direcionada ou Densidade, dependente, mais direcionada catastrófica Tamanho da população Não mostra equilíbrio, usualmente abaixo da Em equilíbrio, constante ao longo do tempo, capacidade de suporte do ambiente, próximo da capacidade de suporte do comunidades insaturadas, recolonização ambiente, sem necessidade de recolonização periódica Competição Variável, usualmente frouxa Usualmente forte O que a seleção favorece - Crescimento rápido - Crescimento lento - Alto índice de aumento populacional - Baixo índice de aumento populacional - Reprodução cedo - Reprodução tardia - Porte menor - Porte maior - Reprodução sem padrão determinado - Reprodução cíclica, repetida - Diásporas pequenas em grande quantidade - Diásporas grandes em pequena quantidade Dispersão Longa distância Local Longevidade Curta, poucos anos Longa, mais de 20 anos Leva à Produtividade Eficiência 25
  • 26. Capítulo 5 - Dinâmica florestal (sucessão) Aos olhos dos seres humanos, a floresta amazônica parece ser estática, sem nenhuma mudança perceptível, resultando em uma paisagem monótona. Entretanto, incríveis mudanças são processadas, a todo instante, dentro de um ecossistema florestal. Seguindo a morte natural de uma árvore e sua queda, muitas outras são envolvidas e, ao final, aparece uma clareira. Na seqüência, há um aumento em quantidade e mudança de qualidade de luz, aumento na temperatura do solo, diminuição na umidade relativa e umidade da superfície do solo, mudanças nas propriedades do solo incluindo o aumento no processo de decomposição e disponibilidade de nutrientes, o solo mineral é exposto, mudas estabelecidas morrem, plântulas começam a surgir, varas e arvoretas são injuriadas, outras respondem positivamente às mudanças, as árvores crescem, a floresta é reconstruída naquela clareira, o dossel se fecha, a clareira desaparece etc. (Shuggart, 1984). Tudo muda numa clareira. A primeira resposta às mudanças é o aparecimento de mudas. Algumas são provenientes do banco de sementes, que ficam adormecidas até que as condições microclimáticas sejam favoráveis à germinação. Outras são trazidas pelo vento e encontram as condições favoráveis e germinam. E tem também a rebrota a partir de raízes ou de troncos danificados. Atrás das folhas novas e brotos surgem os animais herbívoros e atrás desses, os carnívoros .... e, o resto é como no final do filme “O Rei Leão”. Para muitos ecólogos, a sucessão envolve a mudança no sistema natural e o entendimento das causas e das direções de tal mudança. “A sucessão da planta é uma mudança cumulativa direcional (em direção ao clímax) na espécie que ocupa uma dada área, com o tempo” (Barbour et al., 1980). Se mudanças significativas na composição de espécies para uma dada área não ocorrer dentro de um certo período, a comunidade é considerada MADURA ou CLIMAX. Comunidades clímax não são estáticas. As mudanças ocorrem, mas elas não são cumulativas nos seus efeitos. Se uma comunidade exibe alguma mudança direcional, cumulativa e não aleatória em um período de 1 a 500 anos, ela é considerada SUCESSIONAL ou SERAL. As comunidades serais ou espécies serão substituídas até que a comunidade CLIMAX é alcançada. A progressão inteira dos estágios serais, da primeira espécie que ocupa o chão desnudo (comunidade pioneira) até a clímax, é chamada de SUCESSÃO. 26
  • 27. Os estádios sucessionais podem ser iniciais médios e avançados, nos quais pode-se observar diferentes fisionomias, distribuição diamétrica, ausência ou presença de sub-bosque, espessura da serrapilheira e diversidade biológica. (i) Tipos de sucessão: a) Primária versus secundária Primária => estabelecimento de plantas sobre áreas previamente não vegetadas. Secundária => é a invasão da terra que foi previamente vegetada; a vegetação pré- existente tendo sido destruída por perturbações naturais ou humanas. b) Autógena versus alógena Autógena (biótica) => quando a mudança do ambiente e da comunidade é causada pelas atividades dos organismos da própria comunidade. Alógena => causada pelas mudanças ambientais que vão além do controle dos organismos nativos. c) Progressiva versus regressiva Progressiva => quando a sucessão leva às comunidades a uma maior complexidade e maior acúmulo de biomassa; os habitats com mais e mais umidade (mesófilo). Regressiva => leva à direção oposta, em direção a algo mais simples, a uma comunidade mais empobrecida (com poucas espécies) e em direção a um habitat mais hidrófilo (úmido) ou a um mais xerófilo (seco) d) Cíclica versus direcional Direcional é caracterizada por uma acumulação de mudanças que levam às mudanças de comunidades amplas. Mesmo em comunidade clímax, entretanto, as mudanças sucessionais cíclicas ocorrem em uma escala muito local. Essas mudanças ocorrem porque o ciclo de vida das plantas de dossel é finito e o desaparecimento delas do dossel podem abrir o sítio para invasão de novas espécies. Em algumas comunidades clímax, as formas juvenis das plantas de dossel são bem adaptadas à vida sob a árvore matriz e, quando esta morrer, ela a substituirá no dossel; em tal situação, não há sucessão local (ou cíclica). Quando o dossel pode inibir o crescimento de 27
  • 28. juvenis sob o mesmo – de sua própria espécie ou de outras – vai ocorrer a sucessão local quando a matriz morrer. e) Cronosseqüência versus toposseqüência Cronosseqüência => quando o mosaico reflete uma perturbação local e periódica ou quando reflete a exposição progressiva da nova terra, como a retração glacial – representa diferentes estágios de recuperação (estágios serais) do fogo, ventanias ou outro tipo de perturbação. Toposseqüência => quando o mosaico reflete as diferenças topográficas, como as encostas frente-sul versus frente-norte, bacias com drenagens pobres e solos de textura fina versus encostas altas com boa drenagem e solos de textura grossa etc. (ii) Métodos para documentar a sucessão A sucessão pode ser documentada usando medidas repetidas numa parcela simples ou pela referência do histórico da parcela (sítio). Um método indireto é amostragem da vegetação em várias parcelas separadas de diferentes idades. Também, a composição de espécies de mudas e arvoretas pode ser comparada com o estrato do dossel. (iii) Tendências gerais durante a sucessão a) Vegetação e qualidade do sítio - A biomassa aumenta durante a sucessão - A fisionomia aumenta em complexidade porque a variação das formas de crescimento aumenta conforme a sucessão vai avançando. - A maior armazenagem de nutrientes do sítio se move do solo para a biomassa da planta. - O papel dos desintegradores no ciclo de nutrientes é potencializado durante a sucessão porque os nutrientes do solo são empobrecidos e vão ser armazenados por longo período de tempo na biomassa da planta. - A velocidade do ciclo de nutrientes do solo à planta e vice-versa diminui durante a sucessão porque vários nutrientes são armazenados em partes, ainda que inertes, das plantas de longa vida. - A produção primária diminui com a sucessão - O ambiente se torna mais mesófilo (úmido) durante a sucessão. 28
  • 29. b) Estabilidade e diversidade Estabilidade = falta de mudanças => aumenta com a sucessão. Estabilidade = resistência às menores mudanças no micro-ambiente => aumenta Estabilidade = a habilidade para retornar rapidamente ao ponto de equilíbrio (homeostase) seguindo a perturbação recorrente => as comunidades pré-clímax são mais estáveis; as clímax são menos estáveis e podem levar séculos para retornar. A diversidade de espécies de plantas aumenta no início da sucessão, mas decresce em zonas temperadas na sucessão tardia conforme o dossel se fecha e um pequeno número de espécies domina o dossel. c) Autoecologia Em geral, as interações planta-animal, planta-planta e planta-micróbios ocorrem mais na sucessão tardia do que na inicial. (iv) Forças motrizes da sucessão O revezamento florístico pode ser descrito por um processo de 6 passos: 1) Desnudamento => a exposição de uma nova superfície na sucessão primária ou de corte raso na sucessão secundária. 2) Migração => de sementes, de esporos, propágulos vegetativos de áreas adjacentes; na secundária muito desses materiais já estão presentes no solo. 3) Germinação, crescimento inicial e estabelecimento de plantas. 4) Competição => entre as plantas estabelecidas 5) Reação => os efeitos autógenos das plantas sobre o habitat 6) Estabilização => clímax O conceito mais simples de sucessão é aquele que a considera como um fenômeno da população que envolve a substituição gradual e inevitável de espécies oportunistas (seleção – r) com espécies de equilíbrio (seleção – k). Na ausência de qualquer perturbação, as espécies – k estão sempre em vantagem competitiva, como dominantes, sobre as espécies – r. A freqüência de perturbação espacial e temporal, entretanto, tem sido suficientemente grande para manter as espécies oportunistas e as clímax. (v) Modelos estatísticos para a sucessão florestal A maioria dos modelos tem as seguintes variáveis: 29
  • 30. - Recrutamento => brotação, produção de sementes, dispersão de sementes, germinação e crescimento de mudas até que a planta seja suficientemente grande para ser considerada como árvore. - Crescimento => aumento em altura e diâmetro da árvore - Competição geométrica => interações espaciais das árvores relacionadas à geometria atual da estrutura da árvore. Em geral, os indivíduos maiores são favorecidos na competição geométrica. - Competição por recursos => fatores limitantes de crescimento que podem limitar o desenvolvimento de todas as árvores numa floresta em um dado sítio. - Mortalidade => a morte da árvore. (vi) Modelos de clareiras Este tipo de modelo lida com nascimento ou recrutamento, crescimento e mortalidade. É muito usado para simular a composição de espécies e comportamento com o passar do tempo, em resposta às condições ambientais alteradas e para fornecer informações qualitativas das florestas. Clareira se refere a uma abertura na floresta criada pela morte de uma árvore de dossel. O ecossistema florestal maduro poderia ser visto como uma média das respostas da dinâmica de tais clareiras. A floresta é composta de um mosaico de clareiras; portanto, entendendo a dinâmica da clareira, fica mais fácil entender a dinâmica da floresta. As clareiras variam em tamanho (que influencia as condições microclimáticas dentro da clareira) e nas freqüências de ocorrências temporais e espaciais (que afetam a probabilidade de um propágulo alcançar uma clareira de um tamanho particular). a) Regeneração e tamanho da clareira A queda de uma grande árvore produz uma mudança abrupta no chão da floresta em relação às seguintes variáveis: - a luz é dramaticamente aumentada em quantidade e é também alterada a qualidade com mais radiação no vermelho final do espectro eletromagnético e menos no azul final. - aumento na temperatura do solo e diminuição da umidade relativa e da superfície do solo. - mudanças nas propriedades do solo depois da formação da clareira incluindo o aumento da decomposição e a disponibilidade de nutrientes. O solo mineral é exposto. 30
  • 31. A mudança repentina nessas e em outras importantes variáveis podem matar mudas já estabelecidas que se adaptaram ao micro-clima e favorecer novas mudas, provavelmente de outras espécies. Quando uma pequena árvore cai, a clareira é pequena e pode ser preenchida pelo crescimento de árvores que estão presentes na área. Em florestas tropicais, há 3 categorias de clareira: 1) Especialistas de clareiras grandes => a semente germina sob alta temperatura e luz de grandes clareiras – as sementes são altamente intolerantes. 2) Especialistas de clareiras pequenas => as sementes são capazes de germinar sob sombra, mas exige a presença de uma clareira para crescer até o dossel. 3) Especialistas de sub-bosque => aparentemente não exigem clareiras para germinar e nem para crescer até os tamanhos reprodutivos. b) O papel das espécies na determinação dos tamanhos de clareira O tamanho da árvore que morre e produz a clareira influencia a regeneração (que influencia a composição do dossel). Portanto, há influência entre a composição do dossel e o tamanho da clareira; logo, os traços das espécies fecham este ciclo (loop) causal. Por ex., de uma espécie de árvore que exige grande clareira para regeneração espera-se um crescimento diferenciado (grande) até a sua morte. 31
  • 32. Capítulo 6 - Análise de dimensão e produção primária líquida e Ciclagem de minerais Este capítulo é paraticamente dedicado aos estudos de biomassa (acima do nível do solo e abaixo do nível do solo) e a sua dinâmica. Neste caso, o grupo de manejo florestal superou o da ecologia. Há vários trabalhos publicados e serão discutidos na Parte III (Manejo Florestal) desta apostila. 6.1. Importância dos estudos de biomassa 6.2. Como estimar a biomassa 6.3. Modelos alométricos 6.4. Produção primária líquida (NPP) a) Estimativa de biomassa b) Produção abaixo do nível do solo 6.5. Distribuição da biomassa 6.6. Ciclagem de nutrientes Grande parte da floresta amazônica desenvolve-se sobre solos muito pobres em nutrientes e a sua manutenção depende, fundamentalmente de sua capacidade de conservar e reciclar os principais elementos que necessita por meio de mecanismos capazes de compensar as perdas de nutrientes (Schubart et al., 1984). Essas características podem dar, à primeira vista, a impressão de uma contradição com a sua exuberante cobertura florestal (Walter, 1979). De fato, quase todas as reservas de nutrientes exigidas pela floresta estão contidas na fitomassa acima do nível do solo. Cada ano, uma parte dessa fitomassa cai, é rapidamente mineralizada e, os nutrientes liberados, são imediatamente reabsorvidos pelas raízes. As grandes reservas nutricionais contidas na fitomassa das florestas virgens dependem de seu capital acumulado durante o tempo que a rocha matriz não estava ainda intemperizada. A elevada eficiência na reciclagem de nutrientes minerais é correlacionada com alta diversidade biológica. A reciclagem de nutrientes se contrapõe à lixiviação dos solos, pois representa um mecanismo de conservação de nutrientes no ecossistema; ao mesmo tempo, promove a produtividade biológica, mantendo o bom estado nutricional das plantas. O conhecimento disponível permite concluir que a manipulação dos recursos florestais da 32
  • 33. Amazônia no sentido de uma redução drástica da sua diversidade biológica poderá ter conseqüências indesejáveis, tanto ecológicas quanto econômicas (Schubart et al., 1984). Diante dessas condições, Jordan (1991) questiona: como as florestas tropicais úmidas sobrevivem num ambiente que tem um grande potencial para perdas de nutrientes? Parece que um número de mecanismos se desenvolveu nas espécies tropicais que as capacitam a minimizar as perdas. Alguns dos mais importantes mecanismos de conservação de nutrientes de espécies tropicais são as árvores e o ecossistema subterrâneo. Das árvores, os mecanismos são: (i) grande biomassa das raízes; (ii) concentração de raízes perto da superfície; (iii) raízes aéreas; (iv) o relacionamento simbiótico entre as raízes de plantas superiores e os fungos micorrízicos; (v) tolerância aos solos ácidos; (vi) a cinética da tomada de nutrientes - como a disponibilidade de nutrientes no solo é baixa, as espécies com baixa exigência sobreviverão e crescerão, ao contrário de espécies com alta exigência como culturas anuais e pastagens; (vii) longa vida das espécies tropicais, que permite a tomada de nutrientes além de suas necessidades imediatas durante as estações de abundância de nutrientes, para usar mais tarde em períodos de escassez; (viii) morfologia e fisiologia da folha que reduzem a necessidade de absorção de nutrientes em substituição de folhas que caíram ou foram comidas; (ix) alelopatia; (x) translocação rápida de nutrientes das folhas para os ramos; (xi) eficiência do uso de nutrientes; (xii) padrão reprodutivo que não somente regula o uso de nutrientes como também pode manter populações de predadores de sementes em níveis relativamente baixos; (xiii) alta concentração de sílica na superfície do solo pode ser um importante mecanismo para assegurar um suprimento de fosfato para as raízes superficiais; (xiv) epífitas que têm um relacionamento mutualístico com as árvores, de tal maneira que as folhas fornecem suporte físico para as epífitas que, por sua vez, aumentam a disponibilidade de nutrientes para as folhas; (xv) "drip tips" que podem reduzir a quantidade de água sobre a folha e, conseqüentemente, a lixiviação potencial. Segundo ainda Jordan (1991), o mecanismo anterior de conservação de nutrientes parece ter evoluído em espécies como um resultado das pressões de seleção em ambientes pobres em nutrientes. Os mecanismos parecem capacitar indivíduos para superar, em parte, as limitações impostas pela baixa fertilidade do solo e baixo pH. Há um outro mecanismo em florestas naturais que também conserva nutrientes. Em contraste com os mecanismos associados com espécies de árvores, este mecanismo pode ou não ter sido desenvolvido como um resultado das pressões seletivas num ambiente de baixa fertilidade. Independente disso, ele serve para reduzir as perdas de nutrientes do ecossistema inteiro e parece ser mais importante em solos pobres em nutrientes do que em solos ricos em nutrientes. Este 33
  • 34. mecanismo é a comunidade de organismos que vivem sobre a superfície do solo e dentro do ambiente do solo mineral. Em florestas não perturbadas, os nutrientes liberados pelas plantas e animais mortos normalmente não movem diretamente as micorrizas e raízes das árvores, mas, em vez disso, passam por uma série inteira de ciclos de pequena escala ou "espirais" dentro da porção de matéria orgânica do solo, similares aos espirais de nutrientes em igarapés. Os ciclos às vezes começam com os artrópodes. As partículas passam pelos seus sistemas digestivos, os compostos orgânicos são trocados, freqüentemente por simbiose, por compostos mais simples que são mais facilmente utilizados por outros organismos do solo. A decomposição pode também começar com a invasão do tecido por bactérias e fungos. Se as concentrações de nutrientes nos tecidos são baixas, os fungos podem ser os primeiros invasores. Como as exoenzimas excretadas das hifas dos fungos quebram os compostos orgânicos complexos, a colonização de bacteriana pode ser favorecida. Os nutrientes no solo são relativamente susceptíveis a perdas quando eles estão na solução do solo, ou quando são adsorvidos sobre superfícies de argila mineral. Em contraste, os nutrientes incorporados nos tecidos de organismos da comunidade subterrânea podem não ser facilmente perdidos pela lixiviação, volatilização ou reação com ferro e alumínio, no caso do fósforo. 34
  • 35. Bibliografia: Barbour, M.G., Burk, J.H. e Pitts, W.D. 1980. Terrestrial plant ecology. The Benjamin/ Cummings Publishing Co. 604p. Hallé, F., Oldeman, R.A.A. e Tomlinson, P.B. 1978. Tropical Trees and Forests: An Architectural Analysis. Springer-Verlag Berlin Heidelberg New York. 441 p. Jordan, C.F. 1991. Nutrient Cycling Processes and Tropical Forest Management. In: Rain Forest Regeneration and Management, A. Gómez-Pompa, T.C. Whitmore e M. Hadley (eds.). UNESCO. The Parthenon Publishing Group Limited. pp.159-180. Lacher, W. 2000. Ecofisiologia Vegetal. São Carlos. Rima. 532p. O’BRIEN, M.J.P, O’BRIEN. 1985. Aspectos Evolutivos da Fenologia Reprodutiva das Árvores Tropicais. pp. 6-23. Oldeman, R.A.A. e van Dijk, J.. 1991. Diagnosis of the Temperament of Tropical Rain Forest Trees.In: Rain Forest Regeneration and Management, A. Gómez-Pompa, T.C. Whitmore e M. Hadley (eds.). UNESCO. The Parthenon Publishing Group Limited. pp.21-66. Pinto-Coelho, R.M. 2000. Fundamentos em ecologia. Editora Artes Médicas Sul Ltda. 252 p. Salati, E., Ribeiro, M.N.G, Absy, M.L e Nelson, B.W. 1991. Clima da Amazônia: Presente, Passado e Futuro. In: Bases Científicas para Estratégias de Preservação e Desenvolvimento da Amazônia - Fatos e Perspectivas, A.L. Val, R. Figliuolo e E. Feldberg (eds.). pp.21-34. Schubart, H.O.R., Franken, W. e Luizão, F.J. 1984. Uma Floresta sobre Solos Pobres. Ciência Hoje 2(10):26-32. Shuggart, H.H. 1984. A Theory of Forest Dynamics: The Ecological for Succession Model. Springer-Verlag Inc. New York. 278p. Victória, R.L., Brown, I.F., Martinelli, L.A e Salati, E.. 1991. In: Bases Científicas para Estratégias de Preservação e Desenvolvimento da Amazônia - Fatos e Perspectivas, A.L. Val, R. Figliuolo e E. Feldberg (eds.). pp.9-20. Walter, H. 1979. Vegetation of the Earth and Ecological Systems of the Geo-Biosphere. Springer-Verlag. New York. 274 p. 35
  • 36. Capítulo 7 - Desenvolvimento e crescimento de plantas Normalmente as plantas da floresta para chegar ao estágio de corte devem um dia ter começado como sementes viáveis, germinado passando pelo estágio de planta juvenil, depois de algum tempo alcançado a maturidade e finalmente chegando a senescência. E como se dá este processo crescer, desenvolver e morrer? GERMINAÇÃO Existem dois tipos de sementes uma com reservas de açúcares e outra com reservas de gorduras, que são chamadas recalcitrantes e ortodoxas, respectivamente. As primeiras podem, sob condições de baixa umidade no tecido, suprir energia para o embrião por um grande período, enquanto a última devido a sua composição, perde pouca umidade e sua principal fonte de energia é utilizada rapidamente pelo o embrião. Considerando as condições climáticas da floresta amazônica que apresentam temperaturas elevadas, altas umidades relativas do ar e altos índices de precipitação, seria pouco sensato do ponto de vista evolutivo se a floresta investisse em um banco de sementes que precisam estar secas para dispersar propágulos. Assim, geralmente a floresta investe em sementes grandes ricas em reservas de gordura com algum tipo de dormência (geralmente mecânica) e ao invés de um banco de semente na floresta é mais comum um banco de plântulas. Para chegar à plântula a semente precisa germinar. A germinação começa com o intumescimento da semente que embebida de água aumenta a respiração dos tecidos cotiledonares e fornece energia e esqueletos de carbono para o desenvolvimento do embrião, que promove o desenvolvimento de caulículo e radícula. E até que a reserva da semente se esgote, o caulículo e a radícula crescerão a ponto de mudas quando poderão começar a obter energia do meio ambiente. BANCO DE PLÂNTULAS Alcançando o estágio de plântulas os indivíduos na floresta começam a fazer a fotossíntese para fornecer açúcares que serão respirados para os processos de manutenção dos tecidos, principais vias metabólicas e o que sobra pode ser direcionado para o CRESCIMENTO da muda. Pensando em uma plântula da floresta podemos verificar que há um sombreamento natural devido às copas das árvores adultas e isso diminui as taxas fotossintéticas e, dependendo da situação, muitas vezes a fotossíntese é insuficiente até mesmo para gerar energia para a manutenção. 36
  • 37. Algumas plântulas “privilegiadas” têm a possibilidade de ter um balanço de taxas de assimilação e liberação do CO2 nulo ou pouco maior que zero; para o primeiro caso, as plantas permanecem neste estado até que alguma condição ambiental favoreça o seu crescimento, enquanto as segundas crescem lentamente e, na medida em que se desenvolvem, alcançam melhores condições para suprimento de energia para manutenção de tecidos, processos e crescimento. Os dois processos levam a um indivíduo que irá compor o dossel florestal, cada qual no seu nicho ecológico. PLANTAS QUE ALCANÇAM O DOSSEL Quando damos uma volta na floresta podemos observar os diferentes níveis de desenvolvimento das plantas. Olhando com cuidado encontramos sementes dispersas no solo, sem muita atenção é possível matar algumas plântulas, aquelas do banco de plântulas, pois são muito comuns no solo e são menos plantas que alcançam o nível de dossel, entre estas se pode notar que nem todas possuem o mesmo diâmetro. Estas plantas que alcançam a parte superior do dossel também têm que desenvolver para chegar a senescer. O desenvolvimento das plantas no dossel passa pelos processos de juvenilidade até alcançar a maturidade, quando desempenham o principal papel do ser vivo que é a reprodução e finalmente chegam a senescer. Na busca pela manutenção dos seus genes as plantas precisam disputar recursos e espaço. Portanto é necessário DESENVOLVER para completar o seu ciclo. Os diferentes tamanhos de árvores é o resultado do desenvolvimento das plantas no meio, por exemplo, árvores de grande porte são rodeadas de outras várias de pequeno porte que estão tentando desenvolver mais para completar seu ciclo perpetuando seus genes, ou seja, cada uma “querendo seu lugar ao sol” literalmente falando. Isto relata o quê e como ocorre o processo de desenvolvimento, mas explica muito pouco sobre a soma de processos que levam uma semente a se tornar um indivíduo adulto complexo (e grande o suficiente para que possa ser manejado). Assim é necessário falar destes processos que estão envolvidos com o desenvolvimento das plantas. CRESCIMENTO E DESENVOLVIMENTO O crescimento é todo aumento em volume que seja irreversível. Quando se fala de plantas é importante lembrar o caráter irreversível, pois muitas das variações de volume dos tecidos podem não ser permanente e ocorrem principalmente devido ao estado de turgidez do tecido vegetal. 37
  • 38. H2O Variação da turgidez celular Ocorrendo o fenômeno como na figura acima não é crescimento, pois conforme as setas indicam as células podem voltar ao volume inicial se houver a perda de água dos vacúolos. H2O + outras substancias Crescimento por alongamento Divisão celular Crescimento por divisão celular Basicamente é o crescimento com o processo de alongamento celular e divisão celular simples. Os tecidos da planta que são responsáveis por este crescimento são os meristemas que podem ser primários ou secundários. O meristema primário é aquele que está nas gemas apicais de galhos e raízes, promovendo o aumento em comprimento destes tecidos, enquanto o secundário é o que promove o crescimento em diâmetro e se localiza abaixo da casca das plantas. 38
  • 39. Meristema Apical Meristema secundário (Circulo pontilhado) Assim o crescimento nada mais é que uma seqüência de divisões seguidas de alongamento celular, causando o aumento de massa e volume dos tecidos em questão. O DESENVOLVIMENTO é o processo de crescimento adicionando os processos de diferenciação, pois uma planta precisa de diferentes tipos de tecido para manter suas funções. Assim para o aparecimento de uma nova folha, ou flor e fruto é necessário que o meristema se diferencie para compor o novo tecido. Para que ocorra o desenvolvimento é necessário o funcionamento de todo o metabolismo da planta, principalmente fotossíntese e respiração, que são os eixos centrais do metabolismo. FOTOSSÍNTESE As plantas precisam se alimentar para poder crescer e a fotossíntese é a forma com que elas fazem isto. Este processo na realidade é a soma de ações metabólicas que ocorrem ao nível de cloroplastos das partes verdes da planta que compreendem reações luminosas e bioquímicas da fotossíntese, que utilizando H2O, CO2 e luz formam glicose e liberam O2. A luz é absorvida por uma antena de pigmentos compostos por carotenóides e clorofilas a e b, que conduzem a energia para um centro de reação, fotossistema II e I (PS II e PS I). Esta transferência de energia do fóton conduzido pela antena até o PS II e posteriormente ao PS I ocorre ao nível de parede do tilacóide. E é basicamente um conjunto de reações de óxido-redução, que pela hidrólise libera elétrons que segue conforme o esquema em Z aumentando o valor de redução das moléculas, possibilitando a formação de moléculas ricas em energia. Esse elétron passa pela feofitina que o transfere para as plastoquinonas (Q a e Qb), o complexo citocromo b6f, plastocianina que reduz o PS I, este caminhamento de elétrons por um diferencial de energia torna o sistema capaz de reduzir o nicotinamida-di-fosfato (NADP +) 39
  • 40. a nicotinamida-di-fosfato reduzida (NADPH) e formação de dois grupamentos adenosinas trifosfatos (ATP) a partir de dois adenosina di-fosfato (ADP). Estes compostos energéticos formados na fase "clara" da fotossíntese serão utilizados para as fases bioquímicas que são: a carboxilação, redução e regeneração da ribulose 1,5 bis- fosfato (RUBP). Estas fases ocorrem no estroma dos cloroplastos. A carboxilação do CO2 é mediada pela atividade da ribulose 1,5 bis-fosfato carboxilase-oxigenase (RUBISCO) e não utiliza energia formada na fase luminosa da fotossíntese. A RUBISCO utiliza 1 RUBP e fixa a este 1 CO2, formando 2 fosfoglicerato que com o gasto de 1 ATP e 1 NADPH são levados a uma molécula de gliceraldeido-3-fosfato liberando um grupo CH2O que com seis voltas deste ciclo formam glicose (C6H12O6), a redução do CO2 a carboidrato. E finalmente utilizando o último ATP criado na fase luminosa da fotossíntese há a síntese da RUBP, a regeneração. Desta forma, a planta pode formar açúcares para ser utilizados como energia nos processos de manutenção de tecidos ou atividades metabólicas e para o crescimento e desenvolvimento da planta. RESPIRAÇÃO A fotossíntese fornece as unidades orgânicas básicas das quais dependem as plantas (e quase todos os tipos de vida). Com o seu metabolismo de carbono associado, a respiração libera, de maneira controlada, a energia armazenada nos compostos de carbono para uso celular. Grosseiramente a respiração é um processo de óxido-redução, que fornece energia na forma de ATP, nicotinamida dinucleotídeo reduzida (NADH) e flavina adenina di-nucleotídeo reduzido (FADH) gerando energia de 2880 kJ/mol de glicose. E libera também esqueletos de carbono para formação de compostos do metabolismo secundário do carbono e demais ações metabólicas da planta. A respiração celular ocorre em três etapas: (i) a glicólise, catalisada por enzimas solúveis localizadas no citoplasma, permite a oxidação de uma glicose, produzindo 2 piruvatos, ATP e gerando NADH; (ii) o ciclo dos ácidos tricarboxílicos (Ciclo de Krebs ou ciclo do ácido cítrico), que ocorre na matriz mitocondrial, por meio do qual o piruvato é oxidado completamente liberando CO2 gerando ATP e uma considerável quantidade de NADH e (iii) a cadeia de transporte de elétrons que ocorre na membrana interna das 40
  • 41. mitocôndrias, através da qual são transferidos elétrons do NADH para o O2 gerando-se um gradiente eletroquímico de prótons, que permite a síntese de ATP via enzima ATP-sintase. A respiração de manutenção dos tecidos é o direcionamento da energia para manter a integridade das membranas dos tecidos vivos da planta; a respiração de manutenção das ações metabólicas é a energia que é gasta para manter a pré-síntese de enzimas e metabólitos para que possam ocorrer todos os processos e haver a síntese de novo das enzimas com menor gasto de energia. Esta respiração também é chamada de respiração de perda, pois não se pode calcular o quanto é gasto de energia para este fim; e a energia que é utilizada para formação de novos tecidos é chamada de respiração de crescimento. 41
  • 42. PARTE II O MÍNIMO DE ESTATÍSTICA PARA O MANEJO FLORESTAL Capítulo 8 – Conceitos gerais A estatística é uma ferramenta importante para o manejo florestal, seja pra quem está interessado em trabalhar em pesquisas ou pra quem tem a responsabilidade de planejar, executar e acompanhar um projeto. Difícil é separar a estatística pra essas duas frentes. O objetivo desta Parte da apostila é aprofundar em conceitos dos indicadores estatísticos mais freqüentemente utilizados pelos florestais e ajudar na interpretação dos resultados. Estatística é um ramo do conhecimento científico que consta de conjunto de processos que têm por objeto a observação, a classificação formal e a análise dos fenômenos coletivos ou de massa (finalidade descritiva) e, por fim, investigar a possibilidade de fazer inferências indutivas válidas a partir dos dados observados e buscar métodos capazes de permitir esta inferência (finalidade indutiva). Em inventário florestal, produto sem estatística não é produto. Em inventários, o principal produto é o intervalo de confiança para a média estimada. Na pesquisa científica, a estatística pode ser vista como um instrumento de comunicação. O seu uso é absolutamente opcional. Quanto mais você a usa, mais você se comunica e, quanto melhor você a usa, melhor é a sua comunicação no meio científico. Às vezes, o seu uso é desnecessário, mas isso é raro. Assim como a revolução industrial mexeu com as comunicações, mexeu também com a estatística, na mesma proporção. Como dizia grande Chacrinha “quem não se comunica, se trumbica.” Já foi o tempo que a estatística consistia meramente de coleta de dados e apresentações em gráficos e tabelas. Hoje ela é parte da ciência que se baseia em dados observados, processamento e análise, os quais são fundamentais em tomadas de decisões, face às incertezas inerentes ao universo que trabalhamos. Isso é válido para um leque enorme de atuação, desde incertezas no cara-e-coroa ou quando o professor compara a habilidade de diferentes estudantes, quando o controle de qualidade aceita ou rejeita um produto 42
  • 43. manufaturado, quando um jornal ou revista faz previsão de uma eleição, quando um pesquisador projeta a dinâmica de uma floresta etc. É evidente que a estatística não é, por si só, capaz de resolver todos os problemas que envolvem incertezas, mas novas técnicas são constantemente desenvolvidas e a estatística moderna pode, pelo menos, te ajudar a olhar essas incertezas de uma maneira mais lógica e sistemática. Em outras palavras, a estatística fornece os modelos que são necessários para estudar as situações que envolvem incertezas, mas a palavra final é sua. O exercício, a análise e a interpretação do pensamento científico normalmente são feitos por meio da linguagem operacional dos conceitos e hipóteses científicas. Isso implica na formulação de hipóteses estatísticas e estabelecimento dos procedimentos de observações diretas ou de medições. Linguagem teórica: “quanto mais grossa é a árvore, mais madeira será oferecida à indústria de transformação.” Neste caso, dois conceitos são envolvidos: espessura e madeira. Com definir esses dois conceitos? Espessura pode ser o diâmetro de uma árvore. Madeira pode ser a quantidade de material lenhoso disponível para a indústria. E daí? Que fazemos agora? Temos que operacionalizar as observações e medições de espessura e madeira. Espessura pode ser traduzida operacionalmente, por exemplo, em centímetros de diâmetro à altura do peito (DAP), medido a 1,3 m do solo. E a madeira, por sua vez, pode ser traduzida como volume cúbico da árvore. Agora, a hipótese científica pode ser enunciada, em termos de hipótese estatística, da seguinte maneira: “Quanto maior o DAP, maior será o volume da árvore.” Dessa forma, o “pica-pau” fica mais à vontade. Depois de formulada a hipótese, o passo seguinte consiste em testá-la. Para se testar as hipóteses serão precisos: planejar a coleta de dados, coletar os dados, tratar os dados, processar os dados, analisar os resultados e, finalmente, tomar decisões para rejeitar ou não a hipótese estatística formulada. O papel da estatística na pesquisa científica é ajudar o pesquisador “pica-pau” a formular as hipóteses e a fixar as regras de decisão. Entretanto, é importante não perder de vista que a estatística de inferência não é obrigatória. Quando você sentir que, empiricamente, é capaz de separar o bom do ruim, o bonito do feio, do quente do frio .. você pode dispensar os testes estatísticos. Um pouco de filosofia. 43
  • 44. - Aristóteles escreveu: “A verdade é um alvo tão grande que dificilmente alguém deixará de tocá-lo, mas, ao mesmo tempo, ninguém será capaz de acertá-lo em cheio, num só tiro.” - A meta da ciência é a organização sistemática do conhecimento sobre o universo, baseado nos princípios explanatórios que são genuinamente testáveis. - O pesquisador tem os dons da instituição e criatividade para saber que o problema é importante e quais questões devem ser levantadas; a estatística, por sua vez, o assistirá por meio da maximização de output não ambíguos enquanto minimiza os inputs. - O pesquisador tem que ter em mente que a pesquisa freqüentemente levanta mais questões do que respostas. Os resultados quase sempre são meramente uma demonstração de nossa ignorância e uma declaração mais clara do que não sabemos. - O pesquisador tem que manter os olhos abertos, sua mente flexível e estar preparado para surpresas. - A pesquisa está na cabeça do pesquisador; o laboratório ou o campo meramente confirma ou rejeita o que a sua mente concebeu. A sabedoria consiste em conhecer mais as questões certas para fazer e não nas certas respostas. - A aplicação indiscriminada dos métodos quantitativos sobre inesgotáveis quantidades de dados não significa que o entendimento científico vai emergir só por causa disso. 8.1. A Natureza da Estatística: Basicamente, são dois tipos de estatística: descritiva e de inferência. A ciência da estatística inclui ambas, descritiva e de inferência. A estatística descritiva apareceu primeiro, nos censos feitos na época do império romano. A de Inferência é mais recente e é baseada na teoria da probabilidade que, por sua vez, não se estabeleceu antes da metade do século XVII. a) Estatística descritiva => consiste de métodos para organizar e sumarizar as informações. O propósito da organização e sumarização é te ajudar na interpretação de um monte de informações. Os métodos descritivos incluem a construção de gráficos, figuras e tabelas, como também, o cálculo de vários tipos de médias e índices. Exemplo: resultado final de uma eleição apresentado pelo Tribunal Superior Eleitoral (TSE), censo do IBGE etc. b) Estatística de inferência => consiste de métodos para inferir sobre uma população baseada na informação de uma amostra da população. A estatística de inferência moderna praticamente surgiu após as publicações científicas de 44
  • 45. Karl Pearson e Ronald Fisher, no início do século passado (XX). Depois disso, houve uma evolução fantástica dessa ciência, tornando-se aplicável a várias áreas de conhecimento, tais como: Eng. Florestal, Agronomia, Biologia, História, Física, Química, Psicologia etc. Exemplo 1: Pesquisas de opinião realizadas pelas empresas (DATAFOLHA, IBOPE, VOX POPULI etc), pouco antes de eleições. Esta parte da estatística de inferência evoluiu muito no Brasil. A prova disso são os resultados finais do primeiro e do segundo turno da eleição presidencial de 2002 que tem muito a ver com as previsões feitas pelas pesquisas de opinião dos vários institutos. O sucesso tem que ser creditado principalmente pela escolha correta do tipo de amostragem, coleta de dados e processamento & análise dos resultados A evolução da informática também contribuiu muito para o sucesso das pesquisas; o rápido processamento e, conseqüente, análise dos resultados, permitiu a repetição em intervalos de tempo menores – isso é fundamental para a validação dos métodos utilizados que, por sua vez, dá a robustez necessária para a pesquisa e a sociedade ganha com a maior precisão e confiabilidade das pesquisas de opinião. Exemplo 2: Resultados de inventários florestais. Exemplo 3: Todos os trabalhos de equações de volume que utilizam os modelos destrutivos (na maioria das vezes) para ajustar os dados de volume real observado em modelos matemáticos que serão utilizados, posteriormente, para estimar o volume da árvore em pé. Para concluir a discussão, em torno da natureza da estatística, é importante não perder de vista que a opção por uma das duas estatísticas pode ser pessoal. Entretanto, se a escolha recair sobre a de inferência, o pesquisador deve se sujeitar as suas regras e condicionantes. A estatística de inferência, por sua vez, deve ficar sob as condicionantes da teoria da probabilidade, da normalidade e da independência; a violação de uma dessas condicionantes implica em um comprometimento muito sério de todo o seu trabalho. 8.2. Conceitos Básicos: Talvez, os conceitos mais importantes para os florestais são erros amostrais e não amostrais. Se você conseguir distinguir esses dois conceitos, você sempre fará um trabalho confiável e, por conseguinte, a estatística será uma ferramenta útil na execução de seus trabalhos de pesquisa, encurtando caminhos para a produção de ciência e de resultados de inventário florestal. (i) Erro Amostral => é o erro que você comete por não medir toda a população. Este 45