SlideShare una empresa de Scribd logo
1 de 7
Descargar para leer sin conexión
Description
The Prisma II
“carrier-class” platform supports Scientific-Atlanta’s
revolutionary baseband digital reverse technology. The Prisma II
bdr
™
Digital Reverse 4:1 Multiplexing System provides a unique
approach for incorporating cost-effective network redundancy.
At the transmit end of the system, typically in a hub or remote
terminal, four analog reverse path signals are input to a two slot
wide Transmit Processor. The Transmit Processor converts each
signal to a baseband digital data stream and time division
multiplexes the four streams into a single data stream. The data
stream is split to enable routing for redundant optical transport.
One (non-redundant application) or two (redundant application)
Laser modules installed within the Transmit Processor frame
convert the high data rate stream to an optical signal for
transmission at either 1310 nm or 1550 nm wavelengths. 1550 nm ITU grid wavelengths are used for Dense
Wave Division Multiplexing (DWDM) applications.
On the receive end, typically in a large hub or headend, one or two Receiver Modules located in the Receive
Processor frame receive the optical signal and perform conversion back to the baseband data stream. The
Receive Processor de-multiplexes the data stream and converts the four resultant data streams back to analog
reverse path signals for routing to termination equipment.
Features
• High-performance baseband digital reverse technology with 12-bit encoding and advanced digital signal
processing enables transmission of analog video and high-order digital modulation signals (e.g.,16 QAM and
64 QAM)
• 4:1 time division multiplexing reduces requirements for costly 1550 nm ITU transmitters from four to one
• Long reach transmission capabilities eliminate need for optical amplifiers, reducing cost and space
requirements
• Capable of sending 96 individual reverse bands over a single fiber
-leverages 4:1 time division multiplexing for quadrupling fiber capacity
-compatible with Scientific–Atlanta’s 24 wavelength DWDM system
• Modular, cost-effective redundancy for reliable, carrier class performance
• Simplified set-up reduces installation time and expertise requirements
• Distance and temperature independent link performance simplifies engineering and maintenance
requirements
• Space-saving, high-density Prisma II platform increases deployment cost efficiency
• Extended temperature performance enables Remote Terminal applications
• High-speed remote control and monitoring via Scientific-Atlanta’s Transmission Network Control System
(TNCS)
Optoelectronics
Prisma II
bdr
Digital Reverse
4:1 Multiplexing System
Prisma II bdr Digital Reverse 4:1 Multiplexing System
2
Block Diagrams
Typical Application
7-42 MHz
RF Inputs
Input 1
Input 2
D
W
D
M
M
U
X
24:1
Output 1
Output 3
Output 93
Output 94
.
.
.
.
.
.
.
.
Hub Site or Remote TerminalHeadend or Hubsite
X 24 X 247-42 MHz
RF Outputs
Input 93
Input 94
4:1
Receive
Processor
Receiver
Module
4:1
Receive
Processor
Receiver
Module
Optical
Switch
D
W
D
M
D
E
M
U
X
1:24
Laser
Module
4:1
Transmit
Processor
Laser
Module
4:1
Transmit
Processor
.
.
.
.
.
.
Output 2
Output 4
Output 95
Output 96
Input 3
Input 4
Input 95
Input 96
Prisma II bdr Digital Reverse 4:1 Multiplexing System
3
Block Diagrams, continued
Laser Module
(Primary)
Optical
Output
1310 nm or 1550 nm ITU Grid
DFB
Laser
Laser
Driver
1310 nm or 1550 nm ITU Grid
DFB
Laser
Laser
Driver
Optical
Output
Optical Network
Optical
Input
Optical
Input
RF Input A
RF Input B
RF Input C
RF Input D A/D
A/D
0 to 10 dB Variable
Attenuator A/D
A/D
TDM
Mux
RF Output A
RF Output B
4:1 Receive Processor
Input
Select
Switch
RF Output C
RF Output D
D/A
TDM
Demux
D/A
D/A
D/A
Receiver Module
(Primary)
Photo
Detector
Limiting
Amp
Photo
Detector
Limiting
Amp
Selectable Input
Test Point -20 dB
Selectable Output
Test Point -20 dB
4:1 Transmit Processor
Laser Module
(Redundant)
0 to 10 dB Variable
Attenuator
0 to 10 dB Variable
Attenuator
0 to 10 dB Variable
Attenuator
0 to 10 dB Variable
Attenuator
0 to 10 dB Variable
Attenuator
0 to 10 dB Variable
Attenuator
0 to 10 dB Variable
Attenuator
Receiver Module
(Redundant)
Prisma II bdr Digital Reverse 4:1 Multiplexing System
4
Module Specifications
4:1 Transmit Processor Units Notes
RF Input Level Requirements dBmV/Hz See Link Performance Section
RF Input Return Loss dB 18
Input RF Variable Attenuation Range dB 0 to 10
Data Output to Laser Module Gbps 2.5
Input Test Point dB -20 (± 1.0) 1
Power Consumption (maximum) W 18.5
Laser Module Units Notes
Data Input from 4:1 Transmit Processor Gbps 2.5
Optical Wavelength nm 1550 ITU grid 100 GHz spacing
1550 non-ITU
1310 nm
Optical Output Power (modulated) dBm 0 (1550 non-ITU & 1310)
0 or 7 (1550 ITU)
Optical Interface SC/APC Connector
Power Consumption (maximum) W 8 (1550 nm), 6.5 (1310 nm)
4:1 Receive Processor Units Notes
Data Input from Receiver Module Gbps 2.5
RF Output Level dBmV/Hz See Link Performance Section
RF Output Return Loss dB 18
Output RF Variable Attenuation Range dB 0 to 10
RF Output Test Point dB -20 (± 0.5) 2
Power Consumption (maximum) W 16.5
Receiver Module Units Notes
Optical Input Power Range: (SR Module)
Optical Input Power Range: (ER Module)
dBm
dBm
-5 to -22
-10 to -29
3
3
Data Output to Receive Processor Gbps 2.5
Optical Interface SC/APC connector
Power Consumption (maximum) W 1
Mechanical Units Notes
Operating Temperature Range (ambient) °C
°F
-40 to +65
-40 to +149
4
Physical Dimensions (any Processor with 2
Receiver or 2 Laser Modules)
Depth in.
cm
9.8
24.9
Width in.
cm
2.1
5.3
Height in.
cm
7.6
19.3
Weight lb
kg
5.0
2.3
Notes:
1. Test point level is referenced to RF input
2. Test point level is referenced to RF output
3. System designs should consider the effects of wavelength dispersion in long fiber lengths. This can result in up to 2 dB
loss of Rx sensitivity over a 100 km distance.
4. Recommended for use only in non-condensing environments.
Prisma II bdr Digital Reverse 4:1 Multiplexing System
5
Link Performance
General Units Notes
Bandpass (factory configured – customer must specify) MHz 5-40,7-42 or 10-45
Full Scale Single CW Carrier Amplitude dBmV 49 1,2,3
Optical Link Budget with 0 dBm Laser (SR, ER)
Optical Link Budget with 7 dBm Laser (SR, ER)
dB
22,29
29,36
Full RF Link Gain (± 1 dB) dB 20 1,3,4,5
Response Flatness (7 – 42 MHz) dB ±1.0
Response Flatness (5 – 40 MHz) dB ±1.75
Notes:
1. With respect to the input port on 4:1 Transmit Processor.
2. A CW carrier of this amplitude applied to the RF input will exercise the full scale range of the A/D converter. Full scale is
analogous to 100% OMI for Analog Lasers.
3. Variable RF Attenuation on 4:1 Transmit Processor set to 0 dB.
4. Variable RF Attenuation on 4:1 Receive Processor set to 0 dB.
5. Add Link Gain (dB) to Transmit Processor RF input level to determine Receive Processor RF output level.
Noise Power Ratio (NPR) Performance
25
27
29
31
33
35
37
39
41
43
45
-65 -60 -55 -50 -45 -40 -35 -30
Transmit Processor Input Power per Hz (dBmV/Hz)
NPR(dB)
(Applies to Constant Power / Hz Loading over 35 MHz band)
NPR Notes:
1. Input power is specified with respect to the input port of the Transmit Processor module.
2. Variable RF Attenuation on 4:1 Transmit Processor set to 0 dB and Variable RF Attenuation on 4:1 Receive Processor set
to 6 dB.
Prisma II bdr Digital Reverse 4:1 Multiplexing System
6
Ordering Information
For a complete system, a minimum of one each (Transmit Processor, Laser Module, Receive Processor and
Receiver Module) is required. Please consult with your Account Representative, Customer Service
Representative, or Applications Engineer to determine the best configuration for your particular application.
Prisma II bdr Laser ModulesDWDM
ITU Channel**
Wavelength (nm)
0 dBm Output Power 7 dBm Output Power
12 1567.95 741273.12 741277.12
13 1567.13 741273.13 741277.13
14 1566.31 741273.14 741277.14
15 1565.50 741273.15 741277.15
16 1564.68 741273.16 741277.16
17 1563.86 741273.17 741277.17
18 1563.05 741273.18 741277.18
19 1562.23 741273.19 741277.19
20 1561.42 741273.20 741277.20
21 1560.61 741273.21 741277.21
22 1559.79 741273.22 741277.22
23 1558.98 741273.23 741277.23
24 1558.17 741273.24 741277.24
25 1557.36 741273.25 741277.25
26 1556.55 741273.26 741277.26
27 1555.75 741273.27 741277.27
28 1554.94 741273.28 741277.28
29 1554.13 741273.29 741277.29
30 1553.33 741273.30 741277.30
31 1552.52 741273.31 741277.31
32 1551.72 741273.32 741277.32
33 1550.92 741273.33 741277.33
34 1550.12 741273.34 741277.34
35 1549.32 741273.35 741277.35
36 1548.51 741273.36 741277.36
37 1547.72 741273.37 741277.37
38 1546.92 741273.38 741277.38
39 1546.12 741273.39 741277.39
40 1545.32 741273.40 741277.40
41 1544.53 741273.41 741277.41
42 1543.73 741273.42 741277.42
43 1542.94 741273.43 741277.43
44 1542.14 741273.44 741277.44
45 1541.35 741273.45 741277.45
46 1540.56 741273.46 741277.46
47 1539.77 741273.47 741277.47
48 1538.98 741273.48 741277.48
49 1538.19 741273.49 741277.49
50 1537.40 741273.50 741277.50
51 1536.61 741273.51 741277.51
52 1535.82 741273.52 741277.52
53 1535.04 741273.53 741277.53
54 1534.25 741273.54 741277.54
55 1533.47 741273.55 741277.55
56 1532.68 741273.56 741277.56
57 1531.90 741273.57 741277.57
58 1531.12 741273.58 741277.58
59 1530.33 741273.59 741277.59
Note:
**Wavelengths (ITU #21 through #35) are primary wavelengths used in 8 channel, 200GHz spacing, DWDM systems. The balance of
wavelengths are incremental for greater DWDM efficiency requirements.
Prisma II bdr Digital Reverse 4:1 Multiplexing System
7
Ordering Information, continued
Prisma II bdr Laser Modules (standard Frequencies) Part Number
1310 nm - DFB 741275-40
1550 nm - DFB 741274-40
Prisma II bdr Receiver Modules
bdr 4:1 Receiver Module (standard range) 741242
bdr 4:1 Receiver Module (extended range) 741244
Prisma II bdr 4:1 Transmit Processors
Prisma II 4:1 Transmit Processor (5-40 MHz) 748905
Prisma II 4:1 Transmit Processor (7-42 MHz) 748906
Prisma II 4:1 Transmit Processor (10-45 MHz) 748907
Prisma II bdr 4:1 Receive Processor
Prisma II 4:1 Receive Processor 738963
Additional Required Equipment
Model 6940 Optical Node Refer to Model 6940 Data Sheet
Model 6942 Optical Node Refer to Model 6942 Data Sheet
Model 6944 Optical Node Refer to Model 6944 Data Sheet
Prisma II products include the industry’s most complete range of high performance optical components:
For more information refer to:
Platform Prisma II Data Sheet Part Number 739199
1310 nm Transmitters Prisma II Data Sheet Part Number 739200
1550 nm Transmitters Prisma II Data Sheet Part Number 739201
1550 nm Optical Amplifiers Prisma II Data Sheet Part Number 739202
Receivers Prisma II Data Sheet Part Number 739203
Ancillary Modules Prisma II Data Sheet Part Number 739205
Scientific-Atlanta, the Scientific-Atlanta logo, and Prisma are registered trademarks of Scientific-Atlanta, Inc.
Prisma II and bdr are trademarks of Scientific-Atlanta, Inc.
Specifications and product availability are subject to change without notice.
 2003 Scientific-Atlanta, Inc. All rights reserved.
Scientific-Atlanta, Inc.
1-800-722-2009 or 770-236-6900
www.scientificatlanta.com Part Number 746623 Rev A
May 2003

Más contenido relacionado

La actualidad más candente

Multiband Transceivers - [Chapter 7] Spec. Table
Multiband Transceivers - [Chapter 7]  Spec. TableMultiband Transceivers - [Chapter 7]  Spec. Table
Multiband Transceivers - [Chapter 7] Spec. TableSimen Li
 
Teleste power saving innovation - Reduce operational costs and save nature
Teleste power saving innovation - Reduce operational costs and save natureTeleste power saving innovation - Reduce operational costs and save nature
Teleste power saving innovation - Reduce operational costs and save natureTeleste Corporation
 
Extended Upstream - The heat is on!
Extended Upstream - The heat is on!Extended Upstream - The heat is on!
Extended Upstream - The heat is on!Teleste Corporation
 
PLNOG 8: Norbert Gulczyński - 100G w sieciach szkieletowych i miejskich
PLNOG 8: Norbert Gulczyński - 100G w sieciach szkieletowych i miejskich PLNOG 8: Norbert Gulczyński - 100G w sieciach szkieletowych i miejskich
PLNOG 8: Norbert Gulczyński - 100G w sieciach szkieletowych i miejskich PROIDEA
 
TCP/IP performance over Optical Fiber
TCP/IP performance over Optical FiberTCP/IP performance over Optical Fiber
TCP/IP performance over Optical FiberShethwala Ridhvesh
 
Digital Earth Station
Digital Earth Station  Digital Earth Station
Digital Earth Station Susmita Pandey
 
Rf receiver design case studies
Rf receiver design case studiesRf receiver design case studies
Rf receiver design case studiesPhani Kumar
 
Anywave transmitter efficiency 2016.01 v2
Anywave transmitter efficiency 2016.01 v2Anywave transmitter efficiency 2016.01 v2
Anywave transmitter efficiency 2016.01 v2Frank Massa
 
51602253 bts-power-control
51602253 bts-power-control51602253 bts-power-control
51602253 bts-power-controlAbdou Obado
 
400 Gbs e 1 TBs systems and fiber nonlinearities Jacklyn Dias Reis
400 Gbs e 1 TBs systems and fiber nonlinearities   Jacklyn Dias Reis400 Gbs e 1 TBs systems and fiber nonlinearities   Jacklyn Dias Reis
400 Gbs e 1 TBs systems and fiber nonlinearities Jacklyn Dias ReisCPqD
 
AirTight 11ac Webinar Series, Aession 1 - Intro to 802.11ac - June 10 2014
AirTight 11ac Webinar Series, Aession 1 - Intro to 802.11ac - June 10 2014AirTight 11ac Webinar Series, Aession 1 - Intro to 802.11ac - June 10 2014
AirTight 11ac Webinar Series, Aession 1 - Intro to 802.11ac - June 10 2014AirTight Networks
 
RFS Advanced Passive Components for UHF Broadcast Spectrum Reallocation
RFS Advanced Passive Components for UHF Broadcast Spectrum ReallocationRFS Advanced Passive Components for UHF Broadcast Spectrum Reallocation
RFS Advanced Passive Components for UHF Broadcast Spectrum ReallocationCReynhoutSVM
 
Carrier Aggregation Discussion
Carrier Aggregation DiscussionCarrier Aggregation Discussion
Carrier Aggregation Discussioncriterion123
 
Multiband Transceivers - [Chapter 5] Software-Defined Radios
Multiband Transceivers - [Chapter 5]  Software-Defined RadiosMultiband Transceivers - [Chapter 5]  Software-Defined Radios
Multiband Transceivers - [Chapter 5] Software-Defined RadiosSimen Li
 
How Future-Proof Antenna Systems Help Broadcasters in the U.S. Television Spe...
How Future-Proof Antenna Systems Help Broadcasters in the U.S. Television Spe...How Future-Proof Antenna Systems Help Broadcasters in the U.S. Television Spe...
How Future-Proof Antenna Systems Help Broadcasters in the U.S. Television Spe...RadioFrequencySystems
 
802.11n Tutorial
802.11n Tutorial802.11n Tutorial
802.11n Tutorialgopinathkn
 

La actualidad más candente (20)

Multiband Transceivers - [Chapter 7] Spec. Table
Multiband Transceivers - [Chapter 7]  Spec. TableMultiband Transceivers - [Chapter 7]  Spec. Table
Multiband Transceivers - [Chapter 7] Spec. Table
 
Teleste power saving innovation - Reduce operational costs and save nature
Teleste power saving innovation - Reduce operational costs and save natureTeleste power saving innovation - Reduce operational costs and save nature
Teleste power saving innovation - Reduce operational costs and save nature
 
Extended Upstream - The heat is on!
Extended Upstream - The heat is on!Extended Upstream - The heat is on!
Extended Upstream - The heat is on!
 
system project
system projectsystem project
system project
 
PLNOG 8: Norbert Gulczyński - 100G w sieciach szkieletowych i miejskich
PLNOG 8: Norbert Gulczyński - 100G w sieciach szkieletowych i miejskich PLNOG 8: Norbert Gulczyński - 100G w sieciach szkieletowych i miejskich
PLNOG 8: Norbert Gulczyński - 100G w sieciach szkieletowych i miejskich
 
TCP/IP performance over Optical Fiber
TCP/IP performance over Optical FiberTCP/IP performance over Optical Fiber
TCP/IP performance over Optical Fiber
 
Digital Earth Station
Digital Earth Station  Digital Earth Station
Digital Earth Station
 
Rf sys ppt tx and rx 1
Rf sys ppt tx and rx 1Rf sys ppt tx and rx 1
Rf sys ppt tx and rx 1
 
Rf receiver design case studies
Rf receiver design case studiesRf receiver design case studies
Rf receiver design case studies
 
Anywave transmitter efficiency 2016.01 v2
Anywave transmitter efficiency 2016.01 v2Anywave transmitter efficiency 2016.01 v2
Anywave transmitter efficiency 2016.01 v2
 
51602253 bts-power-control
51602253 bts-power-control51602253 bts-power-control
51602253 bts-power-control
 
400 Gbs e 1 TBs systems and fiber nonlinearities Jacklyn Dias Reis
400 Gbs e 1 TBs systems and fiber nonlinearities   Jacklyn Dias Reis400 Gbs e 1 TBs systems and fiber nonlinearities   Jacklyn Dias Reis
400 Gbs e 1 TBs systems and fiber nonlinearities Jacklyn Dias Reis
 
Qtrack
QtrackQtrack
Qtrack
 
AirTight 11ac Webinar Series, Aession 1 - Intro to 802.11ac - June 10 2014
AirTight 11ac Webinar Series, Aession 1 - Intro to 802.11ac - June 10 2014AirTight 11ac Webinar Series, Aession 1 - Intro to 802.11ac - June 10 2014
AirTight 11ac Webinar Series, Aession 1 - Intro to 802.11ac - June 10 2014
 
RFS Advanced Passive Components for UHF Broadcast Spectrum Reallocation
RFS Advanced Passive Components for UHF Broadcast Spectrum ReallocationRFS Advanced Passive Components for UHF Broadcast Spectrum Reallocation
RFS Advanced Passive Components for UHF Broadcast Spectrum Reallocation
 
Paso neo ip
Paso neo ipPaso neo ip
Paso neo ip
 
Carrier Aggregation Discussion
Carrier Aggregation DiscussionCarrier Aggregation Discussion
Carrier Aggregation Discussion
 
Multiband Transceivers - [Chapter 5] Software-Defined Radios
Multiband Transceivers - [Chapter 5]  Software-Defined RadiosMultiband Transceivers - [Chapter 5]  Software-Defined Radios
Multiband Transceivers - [Chapter 5] Software-Defined Radios
 
How Future-Proof Antenna Systems Help Broadcasters in the U.S. Television Spe...
How Future-Proof Antenna Systems Help Broadcasters in the U.S. Television Spe...How Future-Proof Antenna Systems Help Broadcasters in the U.S. Television Spe...
How Future-Proof Antenna Systems Help Broadcasters in the U.S. Television Spe...
 
802.11n Tutorial
802.11n Tutorial802.11n Tutorial
802.11n Tutorial
 

Destacado

Connect Labs - Our Reason is You.
Connect Labs - Our Reason is You.Connect Labs - Our Reason is You.
Connect Labs - Our Reason is You.Connect Labs
 
Marketing - DuPage Airport Authority Full
Marketing - DuPage Airport Authority FullMarketing - DuPage Airport Authority Full
Marketing - DuPage Airport Authority FullMichael Masciola
 
Konec dieselů_Halatka_Týden
Konec dieselů_Halatka_TýdenKonec dieselů_Halatka_Týden
Konec dieselů_Halatka_TýdenDavid Halatka
 
Pasi Pohjola: Sosiaalityön tietokäytännöt ja asiakkaan osallisuus tiedon rake...
Pasi Pohjola: Sosiaalityön tietokäytännöt ja asiakkaan osallisuus tiedon rake...Pasi Pohjola: Sosiaalityön tietokäytännöt ja asiakkaan osallisuus tiedon rake...
Pasi Pohjola: Sosiaalityön tietokäytännöt ja asiakkaan osallisuus tiedon rake...Lastensuojelun Keskusliitto
 
Discos compactos ii
Discos compactos iiDiscos compactos ii
Discos compactos iiPetro Galan
 
K Kris Carr Course Project Final Draft 10122015
K Kris Carr Course Project Final Draft 10122015K Kris Carr Course Project Final Draft 10122015
K Kris Carr Course Project Final Draft 10122015Kevin Carr
 
One indiabulls gurgaon 9999744778 indiabulls one gurgaon sector 104 indiabull...
One indiabulls gurgaon 9999744778 indiabulls one gurgaon sector 104 indiabull...One indiabulls gurgaon 9999744778 indiabulls one gurgaon sector 104 indiabull...
One indiabulls gurgaon 9999744778 indiabulls one gurgaon sector 104 indiabull...sachivchawla
 
Lapset ja perheet Siunsotessa - Rajoilla ja ytimessä?
Lapset ja perheet Siunsotessa - Rajoilla ja ytimessä?Lapset ja perheet Siunsotessa - Rajoilla ja ytimessä?
Lapset ja perheet Siunsotessa - Rajoilla ja ytimessä?Lastensuojelun Keskusliitto
 
NovemberNewsletter
NovemberNewsletterNovemberNewsletter
NovemberNewsletterCharos Apeah
 
Sales and Marketing Alignment for Revenue Growth
Sales and Marketing Alignment for Revenue Growth Sales and Marketing Alignment for Revenue Growth
Sales and Marketing Alignment for Revenue Growth Connect Labs
 

Destacado (17)

Connect Labs - Our Reason is You.
Connect Labs - Our Reason is You.Connect Labs - Our Reason is You.
Connect Labs - Our Reason is You.
 
Lasten ja perheiden hyvinvointi tulevaisuudessa
Lasten ja perheiden hyvinvointi tulevaisuudessaLasten ja perheiden hyvinvointi tulevaisuudessa
Lasten ja perheiden hyvinvointi tulevaisuudessa
 
Marketing - DuPage Airport Authority Full
Marketing - DuPage Airport Authority FullMarketing - DuPage Airport Authority Full
Marketing - DuPage Airport Authority Full
 
larodney resume (1)
larodney resume (1)larodney resume (1)
larodney resume (1)
 
classical
classicalclassical
classical
 
Konec dieselů_Halatka_Týden
Konec dieselů_Halatka_TýdenKonec dieselů_Halatka_Týden
Konec dieselů_Halatka_Týden
 
Presentation
PresentationPresentation
Presentation
 
Mounted tv installation
Mounted tv installationMounted tv installation
Mounted tv installation
 
Pasi Pohjola: Sosiaalityön tietokäytännöt ja asiakkaan osallisuus tiedon rake...
Pasi Pohjola: Sosiaalityön tietokäytännöt ja asiakkaan osallisuus tiedon rake...Pasi Pohjola: Sosiaalityön tietokäytännöt ja asiakkaan osallisuus tiedon rake...
Pasi Pohjola: Sosiaalityön tietokäytännöt ja asiakkaan osallisuus tiedon rake...
 
Discos compactos ii
Discos compactos iiDiscos compactos ii
Discos compactos ii
 
K Kris Carr Course Project Final Draft 10122015
K Kris Carr Course Project Final Draft 10122015K Kris Carr Course Project Final Draft 10122015
K Kris Carr Course Project Final Draft 10122015
 
CV_Connor_Temple
CV_Connor_TempleCV_Connor_Temple
CV_Connor_Temple
 
One indiabulls gurgaon 9999744778 indiabulls one gurgaon sector 104 indiabull...
One indiabulls gurgaon 9999744778 indiabulls one gurgaon sector 104 indiabull...One indiabulls gurgaon 9999744778 indiabulls one gurgaon sector 104 indiabull...
One indiabulls gurgaon 9999744778 indiabulls one gurgaon sector 104 indiabull...
 
bdNOG Report
bdNOG Report bdNOG Report
bdNOG Report
 
Lapset ja perheet Siunsotessa - Rajoilla ja ytimessä?
Lapset ja perheet Siunsotessa - Rajoilla ja ytimessä?Lapset ja perheet Siunsotessa - Rajoilla ja ytimessä?
Lapset ja perheet Siunsotessa - Rajoilla ja ytimessä?
 
NovemberNewsletter
NovemberNewsletterNovemberNewsletter
NovemberNewsletter
 
Sales and Marketing Alignment for Revenue Growth
Sales and Marketing Alignment for Revenue Growth Sales and Marketing Alignment for Revenue Growth
Sales and Marketing Alignment for Revenue Growth
 

Similar a product_data_sheet0900aecd806c5ad4

Automated Traffic Density Detection and Speed Monitoring
Automated Traffic Density Detection and Speed MonitoringAutomated Traffic Density Detection and Speed Monitoring
Automated Traffic Density Detection and Speed MonitoringBharat Biyani
 
Radwin 2000 3.5_brochure
Radwin 2000 3.5_brochureRadwin 2000 3.5_brochure
Radwin 2000 3.5_brochurelcumaio
 
10Gb/s Tunable SFP+ Transceiver Hot Pluggable, Duplex LC, +3.3V, 100GHz, Mono...
10Gb/s Tunable SFP+ Transceiver Hot Pluggable, Duplex LC, +3.3V, 100GHz, Mono...10Gb/s Tunable SFP+ Transceiver Hot Pluggable, Duplex LC, +3.3V, 100GHz, Mono...
10Gb/s Tunable SFP+ Transceiver Hot Pluggable, Duplex LC, +3.3V, 100GHz, Mono...Allen He
 
Software Design of Digital Receiver using FPGA
Software Design of Digital Receiver using FPGASoftware Design of Digital Receiver using FPGA
Software Design of Digital Receiver using FPGAIRJET Journal
 
Free Space Optics
Free Space Optics Free Space Optics
Free Space Optics Falak Shah
 
VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks - Thesis Defense
VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks - Thesis DefenseVHF/UHF Uplink Solutions for Remote Wireless Sensor Networks - Thesis Defense
VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks - Thesis DefenseAlp Sayin
 
Light wave-system-3855513
Light wave-system-3855513Light wave-system-3855513
Light wave-system-3855513Pooja Shukla
 
UAV Presentation
UAV PresentationUAV Presentation
UAV PresentationRuyyan
 
Blueoptics bo25k13610d 40gbase-lr4 qsfp transceiver 4xwdm 10 kilometer single...
Blueoptics bo25k13610d 40gbase-lr4 qsfp transceiver 4xwdm 10 kilometer single...Blueoptics bo25k13610d 40gbase-lr4 qsfp transceiver 4xwdm 10 kilometer single...
Blueoptics bo25k13610d 40gbase-lr4 qsfp transceiver 4xwdm 10 kilometer single...CBO GmbH
 
Sspi day out_2014_advantech-mario_jorge
Sspi day out_2014_advantech-mario_jorgeSspi day out_2014_advantech-mario_jorge
Sspi day out_2014_advantech-mario_jorgeSSPI Brasil
 
Mtr 2000 800_900_catsheet
Mtr 2000 800_900_catsheetMtr 2000 800_900_catsheet
Mtr 2000 800_900_catsheetmontaluisam
 
100G QSFP28 Optical Transceiver Data Sheet By JTOPTICS
100G QSFP28 Optical Transceiver Data Sheet By JTOPTICS100G QSFP28 Optical Transceiver Data Sheet By JTOPTICS
100G QSFP28 Optical Transceiver Data Sheet By JTOPTICSJayani Technologies Ltd
 
Dispersion Compensation Module for WDM -PON at 5 -GB/S Downstream with Variou...
Dispersion Compensation Module for WDM -PON at 5 -GB/S Downstream with Variou...Dispersion Compensation Module for WDM -PON at 5 -GB/S Downstream with Variou...
Dispersion Compensation Module for WDM -PON at 5 -GB/S Downstream with Variou...IRJET Journal
 
Implementation of Algorithms For Multi-Channel Digital Monitoring Receiver
Implementation of Algorithms For Multi-Channel Digital Monitoring ReceiverImplementation of Algorithms For Multi-Channel Digital Monitoring Receiver
Implementation of Algorithms For Multi-Channel Digital Monitoring ReceiverIOSR Journals
 

Similar a product_data_sheet0900aecd806c5ad4 (20)

Automated Traffic Density Detection and Speed Monitoring
Automated Traffic Density Detection and Speed MonitoringAutomated Traffic Density Detection and Speed Monitoring
Automated Traffic Density Detection and Speed Monitoring
 
Radwin 2000 3.5_brochure
Radwin 2000 3.5_brochureRadwin 2000 3.5_brochure
Radwin 2000 3.5_brochure
 
10Gb/s Tunable SFP+ Transceiver Hot Pluggable, Duplex LC, +3.3V, 100GHz, Mono...
10Gb/s Tunable SFP+ Transceiver Hot Pluggable, Duplex LC, +3.3V, 100GHz, Mono...10Gb/s Tunable SFP+ Transceiver Hot Pluggable, Duplex LC, +3.3V, 100GHz, Mono...
10Gb/s Tunable SFP+ Transceiver Hot Pluggable, Duplex LC, +3.3V, 100GHz, Mono...
 
Bandwidth optimization
Bandwidth optimizationBandwidth optimization
Bandwidth optimization
 
Software Design of Digital Receiver using FPGA
Software Design of Digital Receiver using FPGASoftware Design of Digital Receiver using FPGA
Software Design of Digital Receiver using FPGA
 
Free Space Optics
Free Space Optics Free Space Optics
Free Space Optics
 
HSR_Datasheet
HSR_DatasheetHSR_Datasheet
HSR_Datasheet
 
VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks - Thesis Defense
VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks - Thesis DefenseVHF/UHF Uplink Solutions for Remote Wireless Sensor Networks - Thesis Defense
VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks - Thesis Defense
 
Light wave-system-3855513
Light wave-system-3855513Light wave-system-3855513
Light wave-system-3855513
 
UAV Presentation
UAV PresentationUAV Presentation
UAV Presentation
 
Wlan 802.11n
Wlan 802.11nWlan 802.11n
Wlan 802.11n
 
J010234960
J010234960J010234960
J010234960
 
Blueoptics bo25k13610d 40gbase-lr4 qsfp transceiver 4xwdm 10 kilometer single...
Blueoptics bo25k13610d 40gbase-lr4 qsfp transceiver 4xwdm 10 kilometer single...Blueoptics bo25k13610d 40gbase-lr4 qsfp transceiver 4xwdm 10 kilometer single...
Blueoptics bo25k13610d 40gbase-lr4 qsfp transceiver 4xwdm 10 kilometer single...
 
Sspi day out_2014_advantech-mario_jorge
Sspi day out_2014_advantech-mario_jorgeSspi day out_2014_advantech-mario_jorge
Sspi day out_2014_advantech-mario_jorge
 
Part 2 planning of 3G
Part 2  planning of 3GPart 2  planning of 3G
Part 2 planning of 3G
 
Channel Modeling.pptx
Channel Modeling.pptxChannel Modeling.pptx
Channel Modeling.pptx
 
Mtr 2000 800_900_catsheet
Mtr 2000 800_900_catsheetMtr 2000 800_900_catsheet
Mtr 2000 800_900_catsheet
 
100G QSFP28 Optical Transceiver Data Sheet By JTOPTICS
100G QSFP28 Optical Transceiver Data Sheet By JTOPTICS100G QSFP28 Optical Transceiver Data Sheet By JTOPTICS
100G QSFP28 Optical Transceiver Data Sheet By JTOPTICS
 
Dispersion Compensation Module for WDM -PON at 5 -GB/S Downstream with Variou...
Dispersion Compensation Module for WDM -PON at 5 -GB/S Downstream with Variou...Dispersion Compensation Module for WDM -PON at 5 -GB/S Downstream with Variou...
Dispersion Compensation Module for WDM -PON at 5 -GB/S Downstream with Variou...
 
Implementation of Algorithms For Multi-Channel Digital Monitoring Receiver
Implementation of Algorithms For Multi-Channel Digital Monitoring ReceiverImplementation of Algorithms For Multi-Channel Digital Monitoring Receiver
Implementation of Algorithms For Multi-Channel Digital Monitoring Receiver
 

product_data_sheet0900aecd806c5ad4

  • 1. Description The Prisma II “carrier-class” platform supports Scientific-Atlanta’s revolutionary baseband digital reverse technology. The Prisma II bdr ™ Digital Reverse 4:1 Multiplexing System provides a unique approach for incorporating cost-effective network redundancy. At the transmit end of the system, typically in a hub or remote terminal, four analog reverse path signals are input to a two slot wide Transmit Processor. The Transmit Processor converts each signal to a baseband digital data stream and time division multiplexes the four streams into a single data stream. The data stream is split to enable routing for redundant optical transport. One (non-redundant application) or two (redundant application) Laser modules installed within the Transmit Processor frame convert the high data rate stream to an optical signal for transmission at either 1310 nm or 1550 nm wavelengths. 1550 nm ITU grid wavelengths are used for Dense Wave Division Multiplexing (DWDM) applications. On the receive end, typically in a large hub or headend, one or two Receiver Modules located in the Receive Processor frame receive the optical signal and perform conversion back to the baseband data stream. The Receive Processor de-multiplexes the data stream and converts the four resultant data streams back to analog reverse path signals for routing to termination equipment. Features • High-performance baseband digital reverse technology with 12-bit encoding and advanced digital signal processing enables transmission of analog video and high-order digital modulation signals (e.g.,16 QAM and 64 QAM) • 4:1 time division multiplexing reduces requirements for costly 1550 nm ITU transmitters from four to one • Long reach transmission capabilities eliminate need for optical amplifiers, reducing cost and space requirements • Capable of sending 96 individual reverse bands over a single fiber -leverages 4:1 time division multiplexing for quadrupling fiber capacity -compatible with Scientific–Atlanta’s 24 wavelength DWDM system • Modular, cost-effective redundancy for reliable, carrier class performance • Simplified set-up reduces installation time and expertise requirements • Distance and temperature independent link performance simplifies engineering and maintenance requirements • Space-saving, high-density Prisma II platform increases deployment cost efficiency • Extended temperature performance enables Remote Terminal applications • High-speed remote control and monitoring via Scientific-Atlanta’s Transmission Network Control System (TNCS) Optoelectronics Prisma II bdr Digital Reverse 4:1 Multiplexing System
  • 2. Prisma II bdr Digital Reverse 4:1 Multiplexing System 2 Block Diagrams Typical Application 7-42 MHz RF Inputs Input 1 Input 2 D W D M M U X 24:1 Output 1 Output 3 Output 93 Output 94 . . . . . . . . Hub Site or Remote TerminalHeadend or Hubsite X 24 X 247-42 MHz RF Outputs Input 93 Input 94 4:1 Receive Processor Receiver Module 4:1 Receive Processor Receiver Module Optical Switch D W D M D E M U X 1:24 Laser Module 4:1 Transmit Processor Laser Module 4:1 Transmit Processor . . . . . . Output 2 Output 4 Output 95 Output 96 Input 3 Input 4 Input 95 Input 96
  • 3. Prisma II bdr Digital Reverse 4:1 Multiplexing System 3 Block Diagrams, continued Laser Module (Primary) Optical Output 1310 nm or 1550 nm ITU Grid DFB Laser Laser Driver 1310 nm or 1550 nm ITU Grid DFB Laser Laser Driver Optical Output Optical Network Optical Input Optical Input RF Input A RF Input B RF Input C RF Input D A/D A/D 0 to 10 dB Variable Attenuator A/D A/D TDM Mux RF Output A RF Output B 4:1 Receive Processor Input Select Switch RF Output C RF Output D D/A TDM Demux D/A D/A D/A Receiver Module (Primary) Photo Detector Limiting Amp Photo Detector Limiting Amp Selectable Input Test Point -20 dB Selectable Output Test Point -20 dB 4:1 Transmit Processor Laser Module (Redundant) 0 to 10 dB Variable Attenuator 0 to 10 dB Variable Attenuator 0 to 10 dB Variable Attenuator 0 to 10 dB Variable Attenuator 0 to 10 dB Variable Attenuator 0 to 10 dB Variable Attenuator 0 to 10 dB Variable Attenuator Receiver Module (Redundant)
  • 4. Prisma II bdr Digital Reverse 4:1 Multiplexing System 4 Module Specifications 4:1 Transmit Processor Units Notes RF Input Level Requirements dBmV/Hz See Link Performance Section RF Input Return Loss dB 18 Input RF Variable Attenuation Range dB 0 to 10 Data Output to Laser Module Gbps 2.5 Input Test Point dB -20 (± 1.0) 1 Power Consumption (maximum) W 18.5 Laser Module Units Notes Data Input from 4:1 Transmit Processor Gbps 2.5 Optical Wavelength nm 1550 ITU grid 100 GHz spacing 1550 non-ITU 1310 nm Optical Output Power (modulated) dBm 0 (1550 non-ITU & 1310) 0 or 7 (1550 ITU) Optical Interface SC/APC Connector Power Consumption (maximum) W 8 (1550 nm), 6.5 (1310 nm) 4:1 Receive Processor Units Notes Data Input from Receiver Module Gbps 2.5 RF Output Level dBmV/Hz See Link Performance Section RF Output Return Loss dB 18 Output RF Variable Attenuation Range dB 0 to 10 RF Output Test Point dB -20 (± 0.5) 2 Power Consumption (maximum) W 16.5 Receiver Module Units Notes Optical Input Power Range: (SR Module) Optical Input Power Range: (ER Module) dBm dBm -5 to -22 -10 to -29 3 3 Data Output to Receive Processor Gbps 2.5 Optical Interface SC/APC connector Power Consumption (maximum) W 1 Mechanical Units Notes Operating Temperature Range (ambient) °C °F -40 to +65 -40 to +149 4 Physical Dimensions (any Processor with 2 Receiver or 2 Laser Modules) Depth in. cm 9.8 24.9 Width in. cm 2.1 5.3 Height in. cm 7.6 19.3 Weight lb kg 5.0 2.3 Notes: 1. Test point level is referenced to RF input 2. Test point level is referenced to RF output 3. System designs should consider the effects of wavelength dispersion in long fiber lengths. This can result in up to 2 dB loss of Rx sensitivity over a 100 km distance. 4. Recommended for use only in non-condensing environments.
  • 5. Prisma II bdr Digital Reverse 4:1 Multiplexing System 5 Link Performance General Units Notes Bandpass (factory configured – customer must specify) MHz 5-40,7-42 or 10-45 Full Scale Single CW Carrier Amplitude dBmV 49 1,2,3 Optical Link Budget with 0 dBm Laser (SR, ER) Optical Link Budget with 7 dBm Laser (SR, ER) dB 22,29 29,36 Full RF Link Gain (± 1 dB) dB 20 1,3,4,5 Response Flatness (7 – 42 MHz) dB ±1.0 Response Flatness (5 – 40 MHz) dB ±1.75 Notes: 1. With respect to the input port on 4:1 Transmit Processor. 2. A CW carrier of this amplitude applied to the RF input will exercise the full scale range of the A/D converter. Full scale is analogous to 100% OMI for Analog Lasers. 3. Variable RF Attenuation on 4:1 Transmit Processor set to 0 dB. 4. Variable RF Attenuation on 4:1 Receive Processor set to 0 dB. 5. Add Link Gain (dB) to Transmit Processor RF input level to determine Receive Processor RF output level. Noise Power Ratio (NPR) Performance 25 27 29 31 33 35 37 39 41 43 45 -65 -60 -55 -50 -45 -40 -35 -30 Transmit Processor Input Power per Hz (dBmV/Hz) NPR(dB) (Applies to Constant Power / Hz Loading over 35 MHz band) NPR Notes: 1. Input power is specified with respect to the input port of the Transmit Processor module. 2. Variable RF Attenuation on 4:1 Transmit Processor set to 0 dB and Variable RF Attenuation on 4:1 Receive Processor set to 6 dB.
  • 6. Prisma II bdr Digital Reverse 4:1 Multiplexing System 6 Ordering Information For a complete system, a minimum of one each (Transmit Processor, Laser Module, Receive Processor and Receiver Module) is required. Please consult with your Account Representative, Customer Service Representative, or Applications Engineer to determine the best configuration for your particular application. Prisma II bdr Laser ModulesDWDM ITU Channel** Wavelength (nm) 0 dBm Output Power 7 dBm Output Power 12 1567.95 741273.12 741277.12 13 1567.13 741273.13 741277.13 14 1566.31 741273.14 741277.14 15 1565.50 741273.15 741277.15 16 1564.68 741273.16 741277.16 17 1563.86 741273.17 741277.17 18 1563.05 741273.18 741277.18 19 1562.23 741273.19 741277.19 20 1561.42 741273.20 741277.20 21 1560.61 741273.21 741277.21 22 1559.79 741273.22 741277.22 23 1558.98 741273.23 741277.23 24 1558.17 741273.24 741277.24 25 1557.36 741273.25 741277.25 26 1556.55 741273.26 741277.26 27 1555.75 741273.27 741277.27 28 1554.94 741273.28 741277.28 29 1554.13 741273.29 741277.29 30 1553.33 741273.30 741277.30 31 1552.52 741273.31 741277.31 32 1551.72 741273.32 741277.32 33 1550.92 741273.33 741277.33 34 1550.12 741273.34 741277.34 35 1549.32 741273.35 741277.35 36 1548.51 741273.36 741277.36 37 1547.72 741273.37 741277.37 38 1546.92 741273.38 741277.38 39 1546.12 741273.39 741277.39 40 1545.32 741273.40 741277.40 41 1544.53 741273.41 741277.41 42 1543.73 741273.42 741277.42 43 1542.94 741273.43 741277.43 44 1542.14 741273.44 741277.44 45 1541.35 741273.45 741277.45 46 1540.56 741273.46 741277.46 47 1539.77 741273.47 741277.47 48 1538.98 741273.48 741277.48 49 1538.19 741273.49 741277.49 50 1537.40 741273.50 741277.50 51 1536.61 741273.51 741277.51 52 1535.82 741273.52 741277.52 53 1535.04 741273.53 741277.53 54 1534.25 741273.54 741277.54 55 1533.47 741273.55 741277.55 56 1532.68 741273.56 741277.56 57 1531.90 741273.57 741277.57 58 1531.12 741273.58 741277.58 59 1530.33 741273.59 741277.59 Note: **Wavelengths (ITU #21 through #35) are primary wavelengths used in 8 channel, 200GHz spacing, DWDM systems. The balance of wavelengths are incremental for greater DWDM efficiency requirements.
  • 7. Prisma II bdr Digital Reverse 4:1 Multiplexing System 7 Ordering Information, continued Prisma II bdr Laser Modules (standard Frequencies) Part Number 1310 nm - DFB 741275-40 1550 nm - DFB 741274-40 Prisma II bdr Receiver Modules bdr 4:1 Receiver Module (standard range) 741242 bdr 4:1 Receiver Module (extended range) 741244 Prisma II bdr 4:1 Transmit Processors Prisma II 4:1 Transmit Processor (5-40 MHz) 748905 Prisma II 4:1 Transmit Processor (7-42 MHz) 748906 Prisma II 4:1 Transmit Processor (10-45 MHz) 748907 Prisma II bdr 4:1 Receive Processor Prisma II 4:1 Receive Processor 738963 Additional Required Equipment Model 6940 Optical Node Refer to Model 6940 Data Sheet Model 6942 Optical Node Refer to Model 6942 Data Sheet Model 6944 Optical Node Refer to Model 6944 Data Sheet Prisma II products include the industry’s most complete range of high performance optical components: For more information refer to: Platform Prisma II Data Sheet Part Number 739199 1310 nm Transmitters Prisma II Data Sheet Part Number 739200 1550 nm Transmitters Prisma II Data Sheet Part Number 739201 1550 nm Optical Amplifiers Prisma II Data Sheet Part Number 739202 Receivers Prisma II Data Sheet Part Number 739203 Ancillary Modules Prisma II Data Sheet Part Number 739205 Scientific-Atlanta, the Scientific-Atlanta logo, and Prisma are registered trademarks of Scientific-Atlanta, Inc. Prisma II and bdr are trademarks of Scientific-Atlanta, Inc. Specifications and product availability are subject to change without notice.  2003 Scientific-Atlanta, Inc. All rights reserved. Scientific-Atlanta, Inc. 1-800-722-2009 or 770-236-6900 www.scientificatlanta.com Part Number 746623 Rev A May 2003