REFUERZO DE TRIGONOMETRIA PRESENTADO POR:  DILSA YELA RUALES   DIANA CARDONA, LORENA ARANGO DIRIGIDO A: LUZ ENEIDA DAZA GR...
Introducción Puente Tacoma en el estado de Washington. El puente fue terminado y abierto al público en el año de 1940 y rá...
En la antigüedad los babilonios y los Egipcios ya empleaban los ángulos de un triangulo y las razones  trigonométricas par...
Llamamos razones trigonométricas a las distintas razones existentes entre los lados de un triángulo rectángulo. Se define:...
 
RESOLUCION DE TRIANGULOS RECTANGULOS Una de las aplicaciones más inmediatas de la trigonometría es la resolución de triáng...
SUS APORTES EN EL MUNDO DE GRANDES CONSTRUCIONES
RAZONE TRIGONOMETRICAS RECIPROCAS  cuando el ángulo se da en radianes y a que un radian es el arco de una circunferencia, ...
y  es igual al coseno de x, la función recíproca: X= arccos  y x  es el arco cuyo coseno vale y, que se dice:  x es el  ar...
2. Aplicaciones de funciones  trigonométricas en Solución de problemas . 1.Obtener la longitud de una escalera recargada e...
2)  Seleccionar una razones  trigonométrica que relacione al  �ángulo  y lado conocidos con el lado que se desea calcular....
E)  obtener  el  valor natural del �ángulo por medio de las tablas trigonométricas o de la calculadora y efectuar las oper...
3. Obtención del valor de un  �ángulo  agudo, conocidos dos lados del triangulo Obtener el  � ángulo que forma un poste de...
Ahora se tienen  � nicamente los valores de dos lados, con los cuales se debe obtener e! valor del  �ángulo . Procedimient...
d) Efectuar la división indicada. cos = 0.5454 E) Obtener, en las tablas de funciones trigonométricas o con la calculadora...
Angulo  de elevación El ángulo O, formado por la horizontal   y la visual situadas en el mismo plano vertical es el  � áng...
  Angulo de depresión   situadas en el mismo plano vertical, es el  � ángulo de depresión del punto A. El  � ángulo B, for...
a) Nótese  que: son congruentes por ser  � ángulos alternos internos entre paralelas. son complementarios porque sus medid...
  Cuando se habla de razón en un triángulo recto, se hace referencia al cociente entre las longitudes de dos de sus lados,...
Como se puede notar, la distancia entre el punto B y la carretera de 20 m es de 30m, y la distancia entre la carretera de ...
De donde 80 (30) = 20(x+30) Producto de medios con extremos. 2400 = 20x+600.Despejando la incógnita de la ecuación resulta...
Actividad 4: Calcular el valor de la incógnita a partir de la información suministrada en el grafico. Plantee la ecuación ...
Concentraremos nuestra atención en aquellas proporciones que resultan de la solución de triángulos rectos
5.M  arta, que vive en primera línea de playa, observa un hidropedal averiado bajo un ángulo de depresión de 10º. Ella est...
Funciones Seno y Coseno Ecuaciones trigonométricas
3 . Hallemos las partes que faltan del triangulo Rectángulo ACB, en el cual C = 36m y <A = 56 tal como muestra la figura C...
<ul><li>Para determinar la longitud de “a” debemos utilizar: </li></ul><ul><li>Seno A = a/c </li></ul><ul><li>Ya que allí ...
De acuerdo a este gráfico, un avión que se encuentra en el punto A de la figura  es observado por dos estaciones terrestre...
Tenemos A-L-A. Como <A+<B+<C = 180® Entonces  <A = 180®-127® = 53® Apliquemos la ley de los senos para calcular la distanc...
3.Una persona que se encuentra en el punto A de la siguiente figura desea dirigirse al punto C, que se encuentra 2,8 Km en...
Solución : De nuevo tenemos A-L-A  Como <A+<B+<C = 180® entonces <C = 180®-165®= 15® Apliquemos la ley de los seno para ca...
Un topógrafo encuentra que el ángulo en el punto A de la figura, desde donde se observa los puntos B y C, en cada orilla d...
Solución: Los datos son dos lados y el ángulo comprendido entre ellos; es decir, el criterio L-A-L Por lo tanto, aplicamos...
5.  Solución:  Tenemos el caso L-A-L.  Por lo tanto, aplicamos la ley de los cosenos para  calcular el lado “a” a²=b²+c²-2...
a²= 36+169-156(0.809017) a²= 78.79 a= 8.9 Para hallar la medida del ángulo B también aplicamos la ley de los Cosenos (aunq...
Finalmente,  <C= 180®- <A- <C <C=180®-36®-120.2® <C=23.8® 4.Aporte  La trigonometría es una de las ramas de la matemática ...
Próxima SlideShare
Cargando en…5
×

Dilsa ruales 115

251 visualizaciones

Publicado el

dilsa trigonometria

0 comentarios
0 recomendaciones
Estadísticas
Notas
  • Sé el primero en comentar

  • Sé el primero en recomendar esto

Sin descargas
Visualizaciones
Visualizaciones totales
251
En SlideShare
0
De insertados
0
Número de insertados
1
Acciones
Compartido
0
Descargas
3
Comentarios
0
Recomendaciones
0
Insertados 0
No insertados

No hay notas en la diapositiva.

Dilsa ruales 115

  1. 1. REFUERZO DE TRIGONOMETRIA PRESENTADO POR: DILSA YELA RUALES DIANA CARDONA, LORENA ARANGO DIRIGIDO A: LUZ ENEIDA DAZA GRADO 10. 04 FRANSISCO ANTONIO DE ULLOA POPAYAN-CAUCA 29 NOV 2011
  2. 2. Introducción Puente Tacoma en el estado de Washington. El puente fue terminado y abierto al público en el año de 1940 y rápidamente se observó que se inducían grandes oscilaciones en la calzada cuando el viento soplaba a través del puente. Se le llamó puente galopante. El 07 de noviembre del mismo año el puente se derrumbó completamente debido a las grandes oscilaciones.
  3. 3. En la antigüedad los babilonios y los Egipcios ya empleaban los ángulos de un triangulo y las razones trigonométricas para realizar medidas en agricultura los primeros y los segundos para la construcción de sus increíbles y magnificas pirámides La trigonometría avanzó mucho gracias al estudio de muchos matemáticas, hasta tal punto que lograron desarrollar teoremas aplicables en la solución de problemas de la vida cotidiana. Ej.: El teorema de Pitágoras. 1.L a trigonometría y sus aportes
  4. 4. Llamamos razones trigonométricas a las distintas razones existentes entre los lados de un triángulo rectángulo. Se define: Seno de un ángulo como la razón entre el cateto opuesto al ángulo y la hipotenusa. Coseno de un ángulo como la razón entre el cateto contiguo al ángulo y la hipotenusa. Tangente de un ángulo como la razón entre el cateto opuesto y el contiguo. Cosecante de un ángulo como la razón entre la hipotenusa y el cateto opuesto, de ahí se deduce que la consecante es 1 entre el seno Secante de un ángulo como la razón entre la hipotenusa y el cateto contiguo, es 1 entre el coseno. Cotangente de un ángulo es la razón entre el cateto contiguo y el cateto opuesto, es 1 entre la tangente.
  5. 6. RESOLUCION DE TRIANGULOS RECTANGULOS Una de las aplicaciones más inmediatas de la trigonometría es la resolución de triángulos. En este curso se abordan únicamente los triángulos rectángulos. También veremos como resolver triángulos no rectángulos por descomposición en triángulos rectángulos. Resolver un triángulo es conocer el valor de sus tres lados y sus tres ángulos. El uso de las razones trigonométricas junto con el teorema de Pitágoras, nos permiten resolver cualquier triángulo rectángulo conociendo dos datos, uno de ellos ha de ser un lado.
  6. 7. SUS APORTES EN EL MUNDO DE GRANDES CONSTRUCIONES
  7. 8. RAZONE TRIGONOMETRICAS RECIPROCAS cuando el ángulo se da en radianes y a que un radian es el arco de una circunferencia, suele denominarse arco a cualquier cantidad expresada en radianes; por eso las funciones recíproca se denominan con el prefijo arco, Y= sen x yes igual al  seno  de x, la función recíproca: X= = arsen y <ul><li>x es el arco cuyo seno vale  y , o también  x  es el arcoseno de y. </li></ul><ul><li>si: y = cos x </li></ul>
  8. 9. y  es igual al coseno de x, la función recíproca: X= arccos y x  es el arco cuyo coseno vale y, que se dice:  x es el  arcocoseno de y. si:   y=tan x <ul><li>y es igual al tangente de x, la función recíproca: </li></ul><ul><ul><li>X= =arctan y </li></ul></ul><ul><li>x  es el arco cuya tangente vale y, o x es igual al arcotangente de y. </li></ul>
  9. 10. 2. Aplicaciones de funciones trigonométricas en Solución de problemas . 1.Obtener la longitud de una escalera recargada en una pared de 4.33 m de altura que forma un �ángulo de 60� con respecto al piso a) Trazar el triángulo rectángulo anotando los datos e indicando, con una letra, el lado que se desea calcular
  10. 11. 2) Seleccionar una razones trigonométrica que relacione al �ángulo y lado conocidos con el lado que se desea calcular. c ) Despejar algebraicamente la letra que representa el lado que se desea calcular. b) Seleccionar una razones trigonométrica que relacione al � ángulo y lado conocidos con el lado que se desea calcular.
  11. 12. E) obtener el valor natural del �ángulo por medio de las tablas trigonométricas o de la calculadora y efectuar las operaciones. c = 5 m f) Dar solución al problema. c = longitud de la escalera Por lo tanto, la escalera mide 5 m.
  12. 13. 3. Obtención del valor de un �ángulo agudo, conocidos dos lados del triangulo Obtener el � ángulo que forma un poste de 7.5 m de alto con un cable tirante que va, desde la punta del primero hasta el piso, y que tiene un largo de 13.75 m
  13. 14. Ahora se tienen � nicamente los valores de dos lados, con los cuales se debe obtener e! valor del �ángulo . Procedimiento: a)Trazar un triangulo rectángulo anotando en � l los datos. b) Seleccionar la función trigonométrica que relacione a los lados conocidos con el � ángulo. Sustituir las literales por sus valores numéricos
  14. 15. d) Efectuar la división indicada. cos = 0.5454 E) Obtener, en las tablas de funciones trigonométricas o con la calculadora, el valor del ángulo. cos = 0.5454 e) Obtener, en las tablas de funciones trigonométricas o con la calculadora, el valor del ángulo f) Dar respuesta al problema. El � ángulo formado por el poste y el cable tirante es de 56 � 57' Para resolver algunos problemas, donde se aplica la trigonometría, es conveniente conocer lo que es un � ángulo de elevación y un � ángulo de depresión.
  15. 16. Angulo de elevación El ángulo O, formado por la horizontal   y la visual situadas en el mismo plano vertical es el � ángulo de elevación del punto   N, que es, a su vez, el punto m ,e s elevado del objeto.
  16. 17.   Angulo de depresión   situadas en el mismo plano vertical, es el � ángulo de depresión del punto A. El � ángulo B, formado por la horizontal BD y la visual   Situadas en el mismo plano vertical, es el � ángulo de depresión del punto A.
  17. 18. a) Nótese que: son congruentes por ser � ángulos alternos internos entre paralelas. son complementarios porque sus medidas suman 90 � . c) Triangulo ABC es congruente con el triangulo ABD. En el siguiente cuadro se resumen los dos procedimientos para la resolución de triángulos rectángulos
  18. 19.   Cuando se habla de razón en un triángulo recto, se hace referencia al cociente entre las longitudes de dos de sus lados, con el propósito de resolver un problema geométrico que implica semejanza de figuras planas. La razón más común es la que se establece entre lados correspondientes. Recordemos que dos lados de un triángulo son correspondientes cuando la medida de sus ángulos adyacentes es la misma. Por ejemplo en la gráfica de abajo al segmento que representa la carretera de 80m. le corresponde la el segmento que representa la carretera de 20 m., siendo las dos carreteras paralelas. Según la información ¿qué distancia separa las dos carreteras?
  19. 20. Como se puede notar, la distancia entre el punto B y la carretera de 20 m es de 30m, y la distancia entre la carretera de 20m y 80 m. es desconocida y la llamaremos X. De acuerdo con esto, la razón entre 80 y 20 debe dar lo mismo que la razón entre x+30 y 30, escrito en forma de proporción sería:
  20. 21. De donde 80 (30) = 20(x+30) Producto de medios con extremos. 2400 = 20x+600.Despejando la incógnita de la ecuación resultante. 2400-600=20x 1800=20x 90=x Significa que las dos carreteras están separadas 90 metros.
  21. 22. Actividad 4: Calcular el valor de la incógnita a partir de la información suministrada en el grafico. Plantee la ecuación en forma de proporción y despeje la incógnita .
  22. 23. Concentraremos nuestra atención en aquellas proporciones que resultan de la solución de triángulos rectos
  23. 24. 5.M arta, que vive en primera línea de playa, observa un hidropedal averiado bajo un ángulo de depresión de 10º. Ella estima que la altura de su apartamento es de 20 m y que la distancia del portal a las olas es de 15 m. Conocer lo que deben nadar sus ocupantes hasta llegar a la costa, con un transportador de ángulos hacer un triángulo semejante y, posteriormente, medir sus catetos. Por ser proporcionales con el triángulo real, M arta consigue averiguar lo que debían nadar sus ocupantes para alcanzar la playa .
  24. 25. Funciones Seno y Coseno Ecuaciones trigonométricas
  25. 26. 3 . Hallemos las partes que faltan del triangulo Rectángulo ACB, en el cual C = 36m y <A = 56 tal como muestra la figura Como los ángulos A Y B son complementarios, entonces: B=90-56 = 34.
  26. 27. <ul><li>Para determinar la longitud de “a” debemos utilizar: </li></ul><ul><li>Seno A = a/c </li></ul><ul><li>Ya que allí aparecen relacionados los datos conocidos (el ángulo A y la hipotenusa) y el desconocido (el cateto a); por lo tanto: </li></ul><ul><li>Sen 56 = a/36 </li></ul><ul><li>a= (36).(0,829) </li></ul><ul><li>a=29.8m </li></ul><ul><li>Para calcular la longitud de “b”, aplicamos la función coseno al ángulo A; así </li></ul><ul><li>Cos 56 = b/36 </li></ul><ul><li>b= (36) . (Cos 56 </li></ul><ul><li>b= (36). (0.559) </li></ul><ul><li>b= 20m </li></ul>
  27. 28. De acuerdo a este gráfico, un avión que se encuentra en el punto A de la figura es observado por dos estaciones terrestres ubicadas en los puntos B y C. ¿A qué distancia se halla el avión de B? 2.
  28. 29. Tenemos A-L-A. Como <A+<B+<C = 180® Entonces <A = 180®-127® = 53® Apliquemos la ley de los senos para calcular la distancia AB : 2.8 km/Seno 53® = AB/Seno 46® AB= 2,8Km x Seno 46®/ Seno 53® AB= 2.522 Km
  29. 30. 3.Una persona que se encuentra en el punto A de la siguiente figura desea dirigirse al punto C, que se encuentra 2,8 Km en línea recta. Debido a que el terreno está en malas condiciones, decide seguir la trayectoria de A ,B para dirigirse, finalmente hacia C. ¿Cuál es la distancia total que debe recorrer?
  30. 31. Solución : De nuevo tenemos A-L-A Como <A+<B+<C = 180® entonces <C = 180®-165®= 15® Apliquemos la ley de los seno para calcular el lado /AB: AB/ Sen 15® = 2,8km/ Sen 112® AB = 2,8Km x Sen 15®/ Sen 112® AB=0.7816Km Ahora, aplicamos de nuevo la ley de los Senos para calcular el lado /BC 0.7816/ Sen 15® = BC/ Sen ® BC = 0,7816 X Sen 53®/ Sen 15® BC=2,4127Km Por la tanto la distancia total recorrida es: AB + BC = 3,2 Km
  31. 32. Un topógrafo encuentra que el ángulo en el punto A de la figura, desde donde se observa los puntos B y C, en cada orilla del lago, es 72®. Hallar la distancia a través del lago determinado la separación que hay entre los puntos B y C. 4.
  32. 33. Solución: Los datos son dos lados y el ángulo comprendido entre ellos; es decir, el criterio L-A-L Por lo tanto, aplicamos la ley de los Cosenos Para calcular la distancia /BC: BC² = AB² + AC²-2(AB)(AC) Cos A BC²= (15m) ² + (21m) ²-2(15m)(21m) Cos 72® BC²=225m² + 441m²-(630m²)(0.3090169) BC²=666 m²-194.68071m² BC²=471.31929m² BC=21.71m
  33. 34. 5. Solución: Tenemos el caso L-A-L. Por lo tanto, aplicamos la ley de los cosenos para calcular el lado “a” a²=b²+c²-2bc Cos A a²= 6²+13²-2(6) (13) Cos 36²
  34. 35. a²= 36+169-156(0.809017) a²= 78.79 a= 8.9 Para hallar la medida del ángulo B también aplicamos la ley de los Cosenos (aunque también podríamos aplicar la ley de los Senos): b²=a²+c²-2acCosB Cos B= a²+c²-b²/2ac Cos B= (8,9)²+6²-13²/2(8.9) (6) Cos B = -0.50365169 <B= invCos (-0,50365169)=120.2®
  35. 36. Finalmente, <C= 180®- <A- <C <C=180®-36®-120.2® <C=23.8® 4.Aporte La trigonometría es una de las ramas de la matemática muy importante la cual nos ayuda a desenvolvernos en la vida diaria y también que no son difíciles si no que hay que poner tiempo y dedicación para poder entenderlas y se que mi desempeño no fue el mejor en todo el año o.

×