SlideShare una empresa de Scribd logo
1 de 6
Descargar para leer sin conexión
1 Matrizes
As matrizes são tabelas de números reais utilizadas em quase todos os
ramos da ciência. Ela é composta de linhas (Horizontais) e colunas (Verticais). A
célula da matriz é o encontro de uma linha e de uma coluna e será indicada pelo
nome e tantos índices quantas forem as dimensões da matriz.
Exemplo
A i x j = 54
0145667
23679053
27817349
8477562
x












A representação anterior é uma matriz e cada número dentro da matriz é chamado
de elemento da matriz. A matriz pode ser representada entre parênteses ou entre
colchetes. No exemplo, a matriz A é do tipo 4 x 5 (quatro por cinco), isto é, 4 linhas
por 5 colunas.
Para indicarmos a ordem da matriz, dizemos primeiro o número de linhas e, em
seguida, o número de colunas. Por exemplo:





 
374
142
matriz de ordem 2 x 3 ( 2 Linhas e 3 colunas)
 491  matriz de ordem 1 x 3 ( 1 Linha e 3 colunas)
1.1 Representação Algébrica
Utilizamos letras minúsculas para indicar matrizes genéricas e letras
maiúsculas correspondentes aos elementos. Algebricamente a matriz pode ser
representada por:
mxnmnmmm
n
n
n
aaaa
aaaa
aaaa
aaaa
A






















321
3333231
2232221
1131211
com m e n  * . Como o A é bastante extenso podemos representar por
nxmijaA )(
a11 ( Lê-se a um um ) elemento localizado na 1ª Linha e 1ª Coluna
a12 ( Lê-se a um dois ) elemento localizado na 1ª Linha e 2ª Coluna
Onde, i = Linha da Matriz
j = Coluna da Matriz
2
1.2 Matriz Quadrada
Se o número de linhas de uma matriz for igual ao número de colunas, a matriz é dita
Quadrada.
Exemplo








43
41
A
é uma matriz de ordem 2












254
763
731
B
é uma matriz de ordem 3
Observações: Quando uma matriz tem todos os seus elementos iguais a zero,
dizemos que é uma matriz nula.
Os elementos aij onde i = j, formam a diagonal principal.
mxnmnmmm
n
n
n
aaaa
aaaa
aaaa
aaaa
A






















321
3333231
2232221
1131211
Diagonal Secundária Diagonal Principal
1.3 Matriz Unidade ou Identidade
A matriz quadrada de ordem n, em que todos as elementos da diagonal
principal são iguais a 1 (um) e os demais elementos iguais a 0 (zero) é denominada
matriz identidade.
Representação: In











100
010
001
nI
1.4 Matriz Transposta
Se A é uma matriz de ordem m x n , denominamos transposta de A a matriz
de ordem n x m obtida pela troca ordenada das linhas pelas colunas.
Representação : At
3
Exemplo









 

056
453
931
A
então a transposta será












049
553
631
t
A
1.5 Operação com Matrizes
As operações entre matrizes são:
1.5.1 Adição e Subtração
A adição ou a subtração de duas matrizes A e B, efetuada somando-se ou
subtraindo-se os seus elementos correspondentes e deverá ter a mesma dimensão.
Exemplo
Seja





 

54
81
A
e









43
22
B
então





 













 






 













 

17
61
43
22
54
81
91
103
43
22
54
81
BA
BA
1.5.2 Multiplicação
Na multiplicação de duas matrizes A e B, o número de colunas de A tem que ser
igual ao número de linhas de B ; O produto AB terá o mesmo número de linhas de A
e o mesmo número de colunas de B.
mxpnxpmxn BABA )( 
Sejam as matrizes A e B, então a multiplicação das matrizes é:
4




































323322321231313321321131
322322221221312321221121
321322121211311321121111
233231
2221
1211
33333231
232221
131211
babababababa
babababababa
babababababa
BA
bb
bb
bb
Be
aaa
aaa
aaa
A
xx
Obs.: A multiplicação de um número real K qualquer por uma matriz é feita
multiplicando cada um dos elementos da matriz pelo número real K.
Exemplo
Seja K = 3
Se a matriz















1512
06
54
02
AkA
1.6 Matriz Oposta
Denominamos de matriz oposta a matriz cujos elementos são simétricos dos
elementos correspondentes.
Exemplo:















91
72
91
72
AA
1.7 Propriedades
Adição
A + B = B + A (Comutativa)
(A + B) + C = A + (B + C) (Associativa)
A + 0 = A (Elemento Neutro)
A + (-A) = 0 (Elemento Oposto)
Multiplicação
A . (BC) = (AB) . C (Associativa)
A . (B + C) = AB + AC (Distributiva à Direita)
(B + C) . A = BA + CA (Distributiva à Esquerda)
Obs.: A multiplicação de matrizes não é comutativa, mas se ocorrer AB = BA,
dizemos que as matrizes A e B comutam.
5
1.8 Matriz Inversa
Seja A uma matriz quadrada, se existir uma matriz B tal que A.B = B.A = I, dizemos
que a matriz B é uma matriz inversa de A e a indicaremos por A-1. Vale lembrar que
I é a matriz identidade. Caso exista a inversa dizemos que a matriz A é inversível e,
em caso contrário, não inversível ou singular. Se a matriz quadrada A é inversível, a
sua inversa é única.
nIAAAA   11
Exemplo:
Determinar a inversa da matriz







23
21
A
. Fazendo







dc
ba
A 1
e sabendo que
nIAA  1
teremos:





























































4
1
4
3
2
1
2
1
4
1
2
1
123
02
4
3
2
1
023
12
10
01
2323
22
10
01
23
21
1
A
deb
db
db
ceaca
ca
dbca
dbca
dc
ba
1.9 DETERMINANTES
É um número real associado a matriz quadrada.
1.9.1 Determinante de uma matriz quadrada de 2ª Ordem
O determinante de uma matriz quadrada de 2ª ordem é obtido pela diferença
entre o produto dos elementos da diagonal principal e o produto dos elementos da
diagonal secundária.
6
21122211
2221
1211
det aaaa
aa
aa
AA 
Exemplo
Achar o valor do determinante
33)5(28)1(574
71
54


1.9.2 Determinante de uma matriz quadrada de 3ª Ordem
Para calcular o determinante de uma matriz quadrada de 3ª ordem
utilizaremos uma regra muita prática denominada regra de Sarrus.
Seja a matriz












154
230
321
A
. Para Calcularmos o determinante vamos repetir a 1ª e
a 2ª colunas à direita da matriz, conforme o esquema abaixo:










 54154
30230
21321
- - - + + +
det A = | A | = (1)(3)(-1) + (2)(2)(4) + (3)(0)(-5) – (2)(0)(-1) – (1)(2)(-5) – (3)(3)(4)
det A = | A | = -3 + 16 – 0 + 0 + 10 – 36 = -13

Más contenido relacionado

La actualidad más candente

Raiz quadrada aproximada
Raiz quadrada aproximadaRaiz quadrada aproximada
Raiz quadrada aproximadaSILVIA MESSIAS
 
22ª aula função afim
22ª aula   função afim22ª aula   função afim
22ª aula função afimjatobaesem
 
âNgulos formados por duas retas paralelas cortadas por
âNgulos formados por duas retas paralelas cortadas porâNgulos formados por duas retas paralelas cortadas por
âNgulos formados por duas retas paralelas cortadas porAlexandre Cirqueira
 
Projeto de Planejamento - Função Quadrática
Projeto de Planejamento - Função QuadráticaProjeto de Planejamento - Função Quadrática
Projeto de Planejamento - Função Quadráticamauriciocampos10mjcg
 
Equações do 1º grau - Conceitos
Equações do 1º grau - ConceitosEquações do 1º grau - Conceitos
Equações do 1º grau - Conceitosearana
 
Conjuntos numéricos e intervalos na reta real
Conjuntos numéricos e intervalos na reta realConjuntos numéricos e intervalos na reta real
Conjuntos numéricos e intervalos na reta realAntonio Carlos Luguetti
 
Sistema de Numeração: Babilónico, Egípcio, Chinês e Decimal
Sistema de Numeração: Babilónico, Egípcio, Chinês e DecimalSistema de Numeração: Babilónico, Egípcio, Chinês e Decimal
Sistema de Numeração: Babilónico, Egípcio, Chinês e Decimalcatcarvalho
 
Operações com números decimais
Operações com números decimaisOperações com números decimais
Operações com números decimaisCélio Sousa
 
RelaçõEs Trigonometricas
RelaçõEs TrigonometricasRelaçõEs Trigonometricas
RelaçõEs Trigonometricasguest0eac51
 

La actualidad más candente (20)

Sequências 2
Sequências 2Sequências 2
Sequências 2
 
Raiz quadrada aproximada
Raiz quadrada aproximadaRaiz quadrada aproximada
Raiz quadrada aproximada
 
22ª aula função afim
22ª aula   função afim22ª aula   função afim
22ª aula função afim
 
âNgulos formados por duas retas paralelas cortadas por
âNgulos formados por duas retas paralelas cortadas porâNgulos formados por duas retas paralelas cortadas por
âNgulos formados por duas retas paralelas cortadas por
 
Noções de estatística 3º ano
Noções de estatística 3º anoNoções de estatística 3º ano
Noções de estatística 3º ano
 
Projeto de Planejamento - Função Quadrática
Projeto de Planejamento - Função QuadráticaProjeto de Planejamento - Função Quadrática
Projeto de Planejamento - Função Quadrática
 
Estatística
EstatísticaEstatística
Estatística
 
Função quadrática
Função quadráticaFunção quadrática
Função quadrática
 
Equações do 1º grau - Conceitos
Equações do 1º grau - ConceitosEquações do 1º grau - Conceitos
Equações do 1º grau - Conceitos
 
Conjuntos numéricos e intervalos na reta real
Conjuntos numéricos e intervalos na reta realConjuntos numéricos e intervalos na reta real
Conjuntos numéricos e intervalos na reta real
 
Sistema de Numeração: Babilónico, Egípcio, Chinês e Decimal
Sistema de Numeração: Babilónico, Egípcio, Chinês e DecimalSistema de Numeração: Babilónico, Egípcio, Chinês e Decimal
Sistema de Numeração: Babilónico, Egípcio, Chinês e Decimal
 
Transformações geométricas
Transformações geométricasTransformações geométricas
Transformações geométricas
 
Operações com números decimais
Operações com números decimaisOperações com números decimais
Operações com números decimais
 
Função exponencial
Função exponencialFunção exponencial
Função exponencial
 
Medidas de tempo
Medidas de tempoMedidas de tempo
Medidas de tempo
 
Matemática básica
Matemática básicaMatemática básica
Matemática básica
 
RelaçõEs Trigonometricas
RelaçõEs TrigonometricasRelaçõEs Trigonometricas
RelaçõEs Trigonometricas
 
Numeros complexos
Numeros complexosNumeros complexos
Numeros complexos
 
Função afim
Função afimFunção afim
Função afim
 
Polinómios
PolinómiosPolinómios
Polinómios
 

Destacado

Cotangente, cossecante e secante
Cotangente, cossecante e secante Cotangente, cossecante e secante
Cotangente, cossecante e secante Edson Marcos Silva
 
Dilatação Térmica (exercícios)
Dilatação Térmica (exercícios)Dilatação Térmica (exercícios)
Dilatação Térmica (exercícios)Edson Marcos Silva
 
Matrizes e determinantes exercícios
Matrizes e determinantes   exercícios Matrizes e determinantes   exercícios
Matrizes e determinantes exercícios Edson Marcos Silva
 
Fórmulário de área e volume
Fórmulário de área e volumeFórmulário de área e volume
Fórmulário de área e volumeEdson Marcos Silva
 
Slide: Matrizes, Matemática.
Slide: Matrizes, Matemática.Slide: Matrizes, Matemática.
Slide: Matrizes, Matemática.agendab
 
Análise combinatória
Análise combinatóriaAnálise combinatória
Análise combinatóriaDaniel Muniz
 
D17 (9º ano mat.) - identificar a localização de números racionais na reta...
D17 (9º ano   mat.)  - identificar a localização de números racionais na reta...D17 (9º ano   mat.)  - identificar a localização de números racionais na reta...
D17 (9º ano mat.) - identificar a localização de números racionais na reta...clenyo
 

Destacado (10)

Dilatação
DilataçãoDilatação
Dilatação
 
Cotangente, cossecante e secante
Cotangente, cossecante e secante Cotangente, cossecante e secante
Cotangente, cossecante e secante
 
Dilatação Térmica (exercícios)
Dilatação Térmica (exercícios)Dilatação Térmica (exercícios)
Dilatação Térmica (exercícios)
 
Dilatação superficial
Dilatação superficialDilatação superficial
Dilatação superficial
 
Matrizes e determinantes exercícios
Matrizes e determinantes   exercícios Matrizes e determinantes   exercícios
Matrizes e determinantes exercícios
 
Fórmulário de área e volume
Fórmulário de área e volumeFórmulário de área e volume
Fórmulário de área e volume
 
Apostila 20 matlab
Apostila 20 matlabApostila 20 matlab
Apostila 20 matlab
 
Slide: Matrizes, Matemática.
Slide: Matrizes, Matemática.Slide: Matrizes, Matemática.
Slide: Matrizes, Matemática.
 
Análise combinatória
Análise combinatóriaAnálise combinatória
Análise combinatória
 
D17 (9º ano mat.) - identificar a localização de números racionais na reta...
D17 (9º ano   mat.)  - identificar a localização de números racionais na reta...D17 (9º ano   mat.)  - identificar a localização de números racionais na reta...
D17 (9º ano mat.) - identificar a localização de números racionais na reta...
 

Similar a Matrizes: tabelas numéricas fundamentais em ciência

Similar a Matrizes: tabelas numéricas fundamentais em ciência (20)

Matrize
MatrizeMatrize
Matrize
 
Matriz aula-1-2-3
Matriz aula-1-2-3Matriz aula-1-2-3
Matriz aula-1-2-3
 
Aula de matrizes
Aula de matrizesAula de matrizes
Aula de matrizes
 
aula4_economia.ppt
aula4_economia.pptaula4_economia.ppt
aula4_economia.ppt
 
Matriz[1]
Matriz[1]Matriz[1]
Matriz[1]
 
Matrizes e operacoes com matrizes 01
Matrizes e operacoes com matrizes 01Matrizes e operacoes com matrizes 01
Matrizes e operacoes com matrizes 01
 
2º ano matriz
2º ano matriz2º ano matriz
2º ano matriz
 
Matrizes
MatrizesMatrizes
Matrizes
 
Aula de matrizes
Aula de matrizesAula de matrizes
Aula de matrizes
 
Matrizes
MatrizesMatrizes
Matrizes
 
Plano de trabalho matrizes e determinantes.
Plano de trabalho  matrizes e determinantes.Plano de trabalho  matrizes e determinantes.
Plano de trabalho matrizes e determinantes.
 
1_MatrizesSistemas (2).pdf
1_MatrizesSistemas (2).pdf1_MatrizesSistemas (2).pdf
1_MatrizesSistemas (2).pdf
 
Apostila de matrizes ju
Apostila de matrizes juApostila de matrizes ju
Apostila de matrizes ju
 
Objeto
ObjetoObjeto
Objeto
 
Objeto de aprendizagem
Objeto de aprendizagemObjeto de aprendizagem
Objeto de aprendizagem
 
Matrizes
MatrizesMatrizes
Matrizes
 
Matrizes aula 01
Matrizes aula 01Matrizes aula 01
Matrizes aula 01
 
Matrizes
MatrizesMatrizes
Matrizes
 
Apostila álgebra linear
Apostila   álgebra linearApostila   álgebra linear
Apostila álgebra linear
 
Matemática - Vídeo Aula Matrizes
Matemática - Vídeo Aula MatrizesMatemática - Vídeo Aula Matrizes
Matemática - Vídeo Aula Matrizes
 

Último

Aula - 1º Ano - Émile Durkheim - Um dos clássicos da sociologia
Aula - 1º Ano - Émile Durkheim - Um dos clássicos da sociologiaAula - 1º Ano - Émile Durkheim - Um dos clássicos da sociologia
Aula - 1º Ano - Émile Durkheim - Um dos clássicos da sociologiaaulasgege
 
Cenários de Aprendizagem - Estratégia para implementação de práticas pedagógicas
Cenários de Aprendizagem - Estratégia para implementação de práticas pedagógicasCenários de Aprendizagem - Estratégia para implementação de práticas pedagógicas
Cenários de Aprendizagem - Estratégia para implementação de práticas pedagógicasRosalina Simão Nunes
 
E agora?! Já não avalio as atitudes e valores?
E agora?! Já não avalio as atitudes e valores?E agora?! Já não avalio as atitudes e valores?
E agora?! Já não avalio as atitudes e valores?Rosalina Simão Nunes
 
ALMANANHE DE BRINCADEIRAS - 500 atividades escolares
ALMANANHE DE BRINCADEIRAS - 500 atividades escolaresALMANANHE DE BRINCADEIRAS - 500 atividades escolares
ALMANANHE DE BRINCADEIRAS - 500 atividades escolaresLilianPiola
 
Regência Nominal e Verbal português .pdf
Regência Nominal e Verbal português .pdfRegência Nominal e Verbal português .pdf
Regência Nominal e Verbal português .pdfmirandadudu08
 
ABRIL VERDE.pptx Slide sobre abril ver 2024
ABRIL VERDE.pptx Slide sobre abril ver 2024ABRIL VERDE.pptx Slide sobre abril ver 2024
ABRIL VERDE.pptx Slide sobre abril ver 2024Jeanoliveira597523
 
ATIVIDADE AVALIATIVA VOZES VERBAIS 7º ano.pptx
ATIVIDADE AVALIATIVA VOZES VERBAIS 7º ano.pptxATIVIDADE AVALIATIVA VOZES VERBAIS 7º ano.pptx
ATIVIDADE AVALIATIVA VOZES VERBAIS 7º ano.pptxOsnilReis1
 
UFCD_10392_Intervenção em populações de risco_índice .pdf
UFCD_10392_Intervenção em populações de risco_índice .pdfUFCD_10392_Intervenção em populações de risco_índice .pdf
UFCD_10392_Intervenção em populações de risco_índice .pdfManuais Formação
 
Família de palavras.ppt com exemplos e exercícios interativos.
Família de palavras.ppt com exemplos e exercícios interativos.Família de palavras.ppt com exemplos e exercícios interativos.
Família de palavras.ppt com exemplos e exercícios interativos.Susana Stoffel
 
COMPETÊNCIA 1 DA REDAÇÃO DO ENEM - REDAÇÃO ENEM
COMPETÊNCIA 1 DA REDAÇÃO DO ENEM - REDAÇÃO ENEMCOMPETÊNCIA 1 DA REDAÇÃO DO ENEM - REDAÇÃO ENEM
COMPETÊNCIA 1 DA REDAÇÃO DO ENEM - REDAÇÃO ENEMVanessaCavalcante37
 
Pedologia- Geografia - Geologia - aula_01.pptx
Pedologia- Geografia - Geologia - aula_01.pptxPedologia- Geografia - Geologia - aula_01.pptx
Pedologia- Geografia - Geologia - aula_01.pptxleandropereira983288
 
AD2 DIDÁTICA.KARINEROZA.SHAYANNE.BINC.ROBERTA.pptx
AD2 DIDÁTICA.KARINEROZA.SHAYANNE.BINC.ROBERTA.pptxAD2 DIDÁTICA.KARINEROZA.SHAYANNE.BINC.ROBERTA.pptx
AD2 DIDÁTICA.KARINEROZA.SHAYANNE.BINC.ROBERTA.pptxkarinedarozabatista
 
Prova uniasselvi tecnologias da Informação.pdf
Prova uniasselvi tecnologias da Informação.pdfProva uniasselvi tecnologias da Informação.pdf
Prova uniasselvi tecnologias da Informação.pdfArthurRomanof1
 
Programa de Intervenção com Habilidades Motoras
Programa de Intervenção com Habilidades MotorasPrograma de Intervenção com Habilidades Motoras
Programa de Intervenção com Habilidades MotorasCassio Meira Jr.
 
Grupo Tribalhista - Música Velha Infância (cruzadinha e caça palavras)
Grupo Tribalhista - Música Velha Infância (cruzadinha e caça palavras)Grupo Tribalhista - Música Velha Infância (cruzadinha e caça palavras)
Grupo Tribalhista - Música Velha Infância (cruzadinha e caça palavras)Mary Alvarenga
 
Habilidades Motoras Básicas e Específicas
Habilidades Motoras Básicas e EspecíficasHabilidades Motoras Básicas e Específicas
Habilidades Motoras Básicas e EspecíficasCassio Meira Jr.
 
Cultura e Sociedade - Texto de Apoio.pdf
Cultura e Sociedade - Texto de Apoio.pdfCultura e Sociedade - Texto de Apoio.pdf
Cultura e Sociedade - Texto de Apoio.pdfaulasgege
 

Último (20)

Aula - 1º Ano - Émile Durkheim - Um dos clássicos da sociologia
Aula - 1º Ano - Émile Durkheim - Um dos clássicos da sociologiaAula - 1º Ano - Émile Durkheim - Um dos clássicos da sociologia
Aula - 1º Ano - Émile Durkheim - Um dos clássicos da sociologia
 
Cenários de Aprendizagem - Estratégia para implementação de práticas pedagógicas
Cenários de Aprendizagem - Estratégia para implementação de práticas pedagógicasCenários de Aprendizagem - Estratégia para implementação de práticas pedagógicas
Cenários de Aprendizagem - Estratégia para implementação de práticas pedagógicas
 
E agora?! Já não avalio as atitudes e valores?
E agora?! Já não avalio as atitudes e valores?E agora?! Já não avalio as atitudes e valores?
E agora?! Já não avalio as atitudes e valores?
 
ALMANANHE DE BRINCADEIRAS - 500 atividades escolares
ALMANANHE DE BRINCADEIRAS - 500 atividades escolaresALMANANHE DE BRINCADEIRAS - 500 atividades escolares
ALMANANHE DE BRINCADEIRAS - 500 atividades escolares
 
Regência Nominal e Verbal português .pdf
Regência Nominal e Verbal português .pdfRegência Nominal e Verbal português .pdf
Regência Nominal e Verbal português .pdf
 
ABRIL VERDE.pptx Slide sobre abril ver 2024
ABRIL VERDE.pptx Slide sobre abril ver 2024ABRIL VERDE.pptx Slide sobre abril ver 2024
ABRIL VERDE.pptx Slide sobre abril ver 2024
 
ATIVIDADE AVALIATIVA VOZES VERBAIS 7º ano.pptx
ATIVIDADE AVALIATIVA VOZES VERBAIS 7º ano.pptxATIVIDADE AVALIATIVA VOZES VERBAIS 7º ano.pptx
ATIVIDADE AVALIATIVA VOZES VERBAIS 7º ano.pptx
 
UFCD_10392_Intervenção em populações de risco_índice .pdf
UFCD_10392_Intervenção em populações de risco_índice .pdfUFCD_10392_Intervenção em populações de risco_índice .pdf
UFCD_10392_Intervenção em populações de risco_índice .pdf
 
Família de palavras.ppt com exemplos e exercícios interativos.
Família de palavras.ppt com exemplos e exercícios interativos.Família de palavras.ppt com exemplos e exercícios interativos.
Família de palavras.ppt com exemplos e exercícios interativos.
 
COMPETÊNCIA 1 DA REDAÇÃO DO ENEM - REDAÇÃO ENEM
COMPETÊNCIA 1 DA REDAÇÃO DO ENEM - REDAÇÃO ENEMCOMPETÊNCIA 1 DA REDAÇÃO DO ENEM - REDAÇÃO ENEM
COMPETÊNCIA 1 DA REDAÇÃO DO ENEM - REDAÇÃO ENEM
 
Orientação Técnico-Pedagógica EMBcae Nº 001, de 16 de abril de 2024
Orientação Técnico-Pedagógica EMBcae Nº 001, de 16 de abril de 2024Orientação Técnico-Pedagógica EMBcae Nº 001, de 16 de abril de 2024
Orientação Técnico-Pedagógica EMBcae Nº 001, de 16 de abril de 2024
 
Pedologia- Geografia - Geologia - aula_01.pptx
Pedologia- Geografia - Geologia - aula_01.pptxPedologia- Geografia - Geologia - aula_01.pptx
Pedologia- Geografia - Geologia - aula_01.pptx
 
AD2 DIDÁTICA.KARINEROZA.SHAYANNE.BINC.ROBERTA.pptx
AD2 DIDÁTICA.KARINEROZA.SHAYANNE.BINC.ROBERTA.pptxAD2 DIDÁTICA.KARINEROZA.SHAYANNE.BINC.ROBERTA.pptx
AD2 DIDÁTICA.KARINEROZA.SHAYANNE.BINC.ROBERTA.pptx
 
Prova uniasselvi tecnologias da Informação.pdf
Prova uniasselvi tecnologias da Informação.pdfProva uniasselvi tecnologias da Informação.pdf
Prova uniasselvi tecnologias da Informação.pdf
 
Programa de Intervenção com Habilidades Motoras
Programa de Intervenção com Habilidades MotorasPrograma de Intervenção com Habilidades Motoras
Programa de Intervenção com Habilidades Motoras
 
Grupo Tribalhista - Música Velha Infância (cruzadinha e caça palavras)
Grupo Tribalhista - Música Velha Infância (cruzadinha e caça palavras)Grupo Tribalhista - Música Velha Infância (cruzadinha e caça palavras)
Grupo Tribalhista - Música Velha Infância (cruzadinha e caça palavras)
 
Em tempo de Quaresma .
Em tempo de Quaresma                            .Em tempo de Quaresma                            .
Em tempo de Quaresma .
 
Habilidades Motoras Básicas e Específicas
Habilidades Motoras Básicas e EspecíficasHabilidades Motoras Básicas e Específicas
Habilidades Motoras Básicas e Específicas
 
Cultura e Sociedade - Texto de Apoio.pdf
Cultura e Sociedade - Texto de Apoio.pdfCultura e Sociedade - Texto de Apoio.pdf
Cultura e Sociedade - Texto de Apoio.pdf
 
XI OLIMPÍADAS DA LÍNGUA PORTUGUESA -
XI OLIMPÍADAS DA LÍNGUA PORTUGUESA      -XI OLIMPÍADAS DA LÍNGUA PORTUGUESA      -
XI OLIMPÍADAS DA LÍNGUA PORTUGUESA -
 

Matrizes: tabelas numéricas fundamentais em ciência

  • 1. 1 Matrizes As matrizes são tabelas de números reais utilizadas em quase todos os ramos da ciência. Ela é composta de linhas (Horizontais) e colunas (Verticais). A célula da matriz é o encontro de uma linha e de uma coluna e será indicada pelo nome e tantos índices quantas forem as dimensões da matriz. Exemplo A i x j = 54 0145667 23679053 27817349 8477562 x             A representação anterior é uma matriz e cada número dentro da matriz é chamado de elemento da matriz. A matriz pode ser representada entre parênteses ou entre colchetes. No exemplo, a matriz A é do tipo 4 x 5 (quatro por cinco), isto é, 4 linhas por 5 colunas. Para indicarmos a ordem da matriz, dizemos primeiro o número de linhas e, em seguida, o número de colunas. Por exemplo:        374 142 matriz de ordem 2 x 3 ( 2 Linhas e 3 colunas)  491  matriz de ordem 1 x 3 ( 1 Linha e 3 colunas) 1.1 Representação Algébrica Utilizamos letras minúsculas para indicar matrizes genéricas e letras maiúsculas correspondentes aos elementos. Algebricamente a matriz pode ser representada por: mxnmnmmm n n n aaaa aaaa aaaa aaaa A                       321 3333231 2232221 1131211 com m e n  * . Como o A é bastante extenso podemos representar por nxmijaA )( a11 ( Lê-se a um um ) elemento localizado na 1ª Linha e 1ª Coluna a12 ( Lê-se a um dois ) elemento localizado na 1ª Linha e 2ª Coluna Onde, i = Linha da Matriz j = Coluna da Matriz
  • 2. 2 1.2 Matriz Quadrada Se o número de linhas de uma matriz for igual ao número de colunas, a matriz é dita Quadrada. Exemplo         43 41 A é uma matriz de ordem 2             254 763 731 B é uma matriz de ordem 3 Observações: Quando uma matriz tem todos os seus elementos iguais a zero, dizemos que é uma matriz nula. Os elementos aij onde i = j, formam a diagonal principal. mxnmnmmm n n n aaaa aaaa aaaa aaaa A                       321 3333231 2232221 1131211 Diagonal Secundária Diagonal Principal 1.3 Matriz Unidade ou Identidade A matriz quadrada de ordem n, em que todos as elementos da diagonal principal são iguais a 1 (um) e os demais elementos iguais a 0 (zero) é denominada matriz identidade. Representação: In            100 010 001 nI 1.4 Matriz Transposta Se A é uma matriz de ordem m x n , denominamos transposta de A a matriz de ordem n x m obtida pela troca ordenada das linhas pelas colunas. Representação : At
  • 3. 3 Exemplo             056 453 931 A então a transposta será             049 553 631 t A 1.5 Operação com Matrizes As operações entre matrizes são: 1.5.1 Adição e Subtração A adição ou a subtração de duas matrizes A e B, efetuada somando-se ou subtraindo-se os seus elementos correspondentes e deverá ter a mesma dimensão. Exemplo Seja         54 81 A e          43 22 B então                                               17 61 43 22 54 81 91 103 43 22 54 81 BA BA 1.5.2 Multiplicação Na multiplicação de duas matrizes A e B, o número de colunas de A tem que ser igual ao número de linhas de B ; O produto AB terá o mesmo número de linhas de A e o mesmo número de colunas de B. mxpnxpmxn BABA )(  Sejam as matrizes A e B, então a multiplicação das matrizes é:
  • 4. 4                                     323322321231313321321131 322322221221312321221121 321322121211311321121111 233231 2221 1211 33333231 232221 131211 babababababa babababababa babababababa BA bb bb bb Be aaa aaa aaa A xx Obs.: A multiplicação de um número real K qualquer por uma matriz é feita multiplicando cada um dos elementos da matriz pelo número real K. Exemplo Seja K = 3 Se a matriz                1512 06 54 02 AkA 1.6 Matriz Oposta Denominamos de matriz oposta a matriz cujos elementos são simétricos dos elementos correspondentes. Exemplo:                91 72 91 72 AA 1.7 Propriedades Adição A + B = B + A (Comutativa) (A + B) + C = A + (B + C) (Associativa) A + 0 = A (Elemento Neutro) A + (-A) = 0 (Elemento Oposto) Multiplicação A . (BC) = (AB) . C (Associativa) A . (B + C) = AB + AC (Distributiva à Direita) (B + C) . A = BA + CA (Distributiva à Esquerda) Obs.: A multiplicação de matrizes não é comutativa, mas se ocorrer AB = BA, dizemos que as matrizes A e B comutam.
  • 5. 5 1.8 Matriz Inversa Seja A uma matriz quadrada, se existir uma matriz B tal que A.B = B.A = I, dizemos que a matriz B é uma matriz inversa de A e a indicaremos por A-1. Vale lembrar que I é a matriz identidade. Caso exista a inversa dizemos que a matriz A é inversível e, em caso contrário, não inversível ou singular. Se a matriz quadrada A é inversível, a sua inversa é única. nIAAAA   11 Exemplo: Determinar a inversa da matriz        23 21 A . Fazendo        dc ba A 1 e sabendo que nIAA  1 teremos:                                                              4 1 4 3 2 1 2 1 4 1 2 1 123 02 4 3 2 1 023 12 10 01 2323 22 10 01 23 21 1 A deb db db ceaca ca dbca dbca dc ba 1.9 DETERMINANTES É um número real associado a matriz quadrada. 1.9.1 Determinante de uma matriz quadrada de 2ª Ordem O determinante de uma matriz quadrada de 2ª ordem é obtido pela diferença entre o produto dos elementos da diagonal principal e o produto dos elementos da diagonal secundária.
  • 6. 6 21122211 2221 1211 det aaaa aa aa AA  Exemplo Achar o valor do determinante 33)5(28)1(574 71 54   1.9.2 Determinante de uma matriz quadrada de 3ª Ordem Para calcular o determinante de uma matriz quadrada de 3ª ordem utilizaremos uma regra muita prática denominada regra de Sarrus. Seja a matriz             154 230 321 A . Para Calcularmos o determinante vamos repetir a 1ª e a 2ª colunas à direita da matriz, conforme o esquema abaixo:            54154 30230 21321 - - - + + + det A = | A | = (1)(3)(-1) + (2)(2)(4) + (3)(0)(-5) – (2)(0)(-1) – (1)(2)(-5) – (3)(3)(4) det A = | A | = -3 + 16 – 0 + 0 + 10 – 36 = -13