2

I N D I C E

TEMA

PAGINA

PRESENTACION

3

ALGEBRA

5

RAZONAMIENTO LOGICO

93

MISCELANEA DE RAZONAMIENTO LOGICO

121...
3

PRESENTACION
La Facultad de Ingeniería de la Universidad de Cuenca, una de las más prestigiosa del
País, por su elevado...
4

Con la finalidad de que los aspirantes tengan una orientación sobre el nivel mínimo de
conocimientos requeridos para su...
5

RESUMEN TEORICO
El concepto de conjunto es aceptado en matemáticas como primitivo, pues es imposible dar una
definición...
6

4.
5.

CONJUNTO UNIVERSO.-

Es el que contiene a todos los conjuntos, se le denota como U.

CONJUNTO UNITARIO.- Es aque...
7

Ejemplo:
Dado A = { 1, 3 } ; su conjunto potencia será: 2 = { ∅, {1}, {3}, {1, 3} } ; n( 2 ) = 4
A

El número de elemen...
8

A continuación se indican varios

Observemos los siguientes diagramas lineales que

diagramas de Venn – Euler.

represe...
9

OPERACIONES ENTRE CONJUNTOS.1.

UNION.- La unión de los conjuntos A y B , es el conjunto formado por los elementos que
...
10

PROPIEDADES.-

1.-

A∩A=A

Idempotencia

8.- Si A ∩ B = ∅ → A y B son disjuntos

2.-

A∩B=B∩A

Conmutativa

9.- A ∪ ( ...
11

5.-

(B–A) ∪(A∩B) =B

7.-

Si: A ⊂ B → A - B = ∅

6.-

A-B⊂A

8.-

Si A y B son disjuntos:

4.-

y

A-B⊂B

COMPLEMENTO...
12

EJERCICIOS:
1. Sea A = { a, 1, +, b, 2, x } y B = { b, +, a } , ¿Cuál de las siguientes relaciones es falsa?
a) b ⊆ A
...
13
8. Si A = { a, b, c } , B = { a, b } ; se afirma que:
I) 2

(A-B)

tiene un sólo elemento.

II)

∅

2

(A∩B)

III)

2A ...
14
14. Dados los conjuntos:
A = { Todas las universidades } ; B = { Los países de Latinoamérica } ;
C = { Brasil, Perú, Bo...
15
18. Dados los conjuntos A={ -1, -2, 0, 1, 2 } y B={ -1, 2, 3, 4, 5 } el conjunto (B–A) ⋃ (A–B) es :
a) { -7, -5, -1, 1,...
16
a) 28
24.

b) 30

c) 33

d) 26

e) Ninguno de los anteriores.

Los socios de los clubes A y B constituyen un total de 1...
17
29. Si A = { r, s, t, u, v } y B = { t, e, v } ; de los siguientes enunciados, el verdadero es:
a) A – B = {r, s, u }

...
18
B
A
3
2
1

5
4

6
7
C

A = { Polígonos regulares }
B = { Cuadriláteros }

C = { Triángulos equiláteros }

¿ Cuáles de l...
19
40. En una clase de 78 estudiantes; 41 están tomando francés, 22 están tomando alemán y 9 estudiantes
están tomando fra...
20
48. Sean los conjuntos: A = { a / a es divisor de 18 } ; B = { b / b es divisor de 12 } ; se
puede afirmar:
I.- A ∩ B =...
21
54. De un total de 100 alumnos, 51 están matriculados en el curso de Física y 47 en Matemática. Si 27
alumnos no regist...
22
62. Si: A' , B' , ( A – B ) y ( A ∪ B ) tienen respectivamente 128, 32, 2 y 64 subconjuntos; ¿ El número
de elementos d...
23

RESUMEN TEORICO
PROPOSICION CERRADA.-

Es toda expresión coherente que se caracteriza por el hecho de poseer un valor ...
24

Símbolo
^
ν

Operación
Lógica
conjunción
disyunción

Esquema
p^q
pνq

⊻

disyunción
exclusiva

p⊻q

→

condicional

p→...
25
Si 4 442 4 4 4 , entonces ingresará
1 Isabel se esfuerza 1 4 1
3
42 3 42 4
3
→

p

↑

q
↑

68
7
causa

6 4 7 44
4
8
con...
26
4. ASOCIATIVA:

a.- ( p ν q ) ν r ⇔ p ν ( q ν r )
b.- ( p ^ q ) ^ r ⇔ p ^ ( q ^ r )

5. DISTRIBUTIVA:

a.- p ν ( q ^ r ...
27
EJERCICIOS:
1. Señale la proposición compuesta conjuntiva:
:
a) Navegaremos siempre que tengamos brújula.
b) Si es un c...
28
7. ¿ Cuáles de las siguientes proposiciones son leyes lógicas?
I.

(p^q)→q

II.

[( p → q ) ^ ( q → r )] → ( p → r )

I...
29
d) No me gusta el estudio.

e) Nunca fui estudiante.
)

13. La negación de : “ Todos los hombres son honestos “ es:
a) ...
30
17. ¿Cuál de las siguientes proposiciones es equivalente a? : “Todos los diplomáticos no son católicos “
a) Ningún dipl...
31
22. Formalizar: “ Si luchas por triunfar, entonces triunfarás, sin embargo no luchas por triunfar ”
a) p → ( q ∧ r )

b...
32

RESUMEN TEORICO
1. NUMEROS NATURALES ( N ):

Son los enteros positivos. Se representan así:

N = { 1, 2, 3, 4, 5, 6………...
33
2. AXIOMAS DE LA MULTIPLICACION.2.1 CLAUSURA O EXISTENCIA: Si a, b

R →a.b

R

R →a.b=b.a

2.2

CONMUTATIVA: Si a, b

2...
34
3.

( a + b )⁴ - ( a – b )⁴ = 8ab ( a² + b² )
⁴
⁴

4. BINOMIO AL CUBO.4.1 BINOMIO SUMA AL CUBO:
( a + b )³ = a³ + 3a²b ...
35
EJERCICIOS:
1. ¿ 21 de que número es el 7% ?
a) 300

b) 120

c) 25

d) 310

e) 147

2. Si x es 5% de r y r es 20% de s,...
36
11. El promedio de 50 números es 62.1; se retiran 5 números cuyo promedio es 18. ¿ En cuanto varía el
promedio ?
a) 4.9...
37
21. Si P.Q.R=1, R.S.T=0 y S.P.R=0, ¿Cuál de los siguientes factores debe ser cero?
a) P

b) Q

c) R

d) S

e) T

22. En...
38
30. Cuando x se divide para 9, el residuo es 6 y cuando x se divide para 6 el residuo es 0. ¿Cuál de los
siguientes núm...
39
37. Un cubo perfecto es un entero cuya raíz cúbica es un entero. Por ejemplo: 27, 64 y 125 son cubos
perfectos. Si p y ...
40

45. Si x, y, z son números reales, ¿Cuál de las siguientes igualdades es falsa?

a)
b)
c)
d)
e)

x (y – z) = xy – xz
x...
41
52. Dados dos polinomios P( x ) y Q( x ), donde los grados de los polinomios
{ [ P(x)] ². Q(x) ] } y { [ P(x) ] ³ ÷ Q(x...
42
58. La expresión a³ - a⁻³ es igual a:
a) ( a – 1/a ) ( a² + 1 + 1/ a² )

b) ( 1/a – a ) (a² - 1 + 1/ a² )

c) ( a – 1/a...
43
66. Si x⁻¹ - 1 se divide por x – 1 el cociente es :
a) 1

b) 1 / ( x – 1 )

c) - 1 / ( x – 1 )

d) 1 / x

e) - 1 / x

6...
44
74. Si con x = -1, la expresión ax⁵ + bx³ - 4 es igual a 0 ; ¿ Cuál es su valor cuando x = 1 ?
a) - 4

b) - 8

c)

0

d...
45
e) Ninguno de los anteriores.
81. En una caja de cubos de azúcar los cubos están empacados por capas. Una capa contiene...
46
a) 6

b) 7

c) 8

d) 12

e) Ninguno de los anteriores.

88. Cuatro veces la cuarta parte de la edad de una persona es 3...
47
e) Ninguno de los anteriores.
97. Si la expresión x⁸ + ax² + b , es divisible por ( x² - 1 ) ( x – 1 ) , el valor de
a)...
48
105. Una toalla cuadrada de 0.4m de lado cuesta $ 4. ¿Cuánto costaría si tuviera 0.2m más de lado?
a) 6
106. Dado que

...
49
114. Para hallar el valor de la siguiente expresión: F = x² - 5x + y² - 2xy + 5y + 1 ; la información brindada:
I.- x +...
50

RESUMEN TEORICO
DEFINICION.- Se llama así a la igualdad entre dos expresiones matemáticas donde a las variables que ap...
51
Luego el CS = { }
ECUACIONES EQUIVALENTES.- Dos o más ecuaciones; se dice que son equivalentes si tienen las mismas
sol...
52
a.- Operando e igualando a cero, se tiene:
4x² - 3x + 5 = 2x² - 4x + 26

; 2x² + x – 21 = 0 ; ahora factorizando: ( 2x ...
53
“D“

D = b² - 4ac

Debido a esto, los casos que se presentan son:
a.- Si D>0 ; las dos raíces son reales y desiguales.
...
54
EJERCICIOS:
1. La igualdad 1 / ( x – 1 ) = 2 / ( x – 2 ) se satisface para :
a) Ningún valor real de x.

b) x = 1

ó

x...
55
9. La solución de la ecuación ( 2x – 3 )² + x ( x – 1 ) = 9 es:
a) 13 / 5 , 0

b) -1 , 1

c) 1 / 2 , 7 / 6 d) 3 / 2 , 2...
56
17. La diferencia entre el cubo de un número entero y el mismo número es 210. ¿ Cuál es dicho número ?
a) 5

b) 6

c) 7...
57
26. La solución de la ecuación
a) 18

b) 20

x x x
+ + = 18 es:
2 3 6
c) 4

d) 6

e) Ninguno de los anteriores.

27. En...
58
35. Hoy Carlos es 5 años mayor que lo que Juan fue hace 2 años. Juan tiene ahora j años. En términos de j
¿Cuál es la e...
59
42. La solución de la ecuación (2x-3)(x)(x+3) = 0 ; para x elemento de los números enteros es el conjunto
formado por l...
60
51. La suma de los valores de k que hacen que la ecuación: (4-k)x² + 2kx +2 =0, tenga sus raíces iguales,
es:
a) 2

b) ...
61
60. Si a = 4 + b y 3a = 12 − 2b ¿Cuál es el valor de a?
a) 24

61. El sistema:

b) 12

c) 8

d) 4

e) 3

3x + 4y + z = ...
62

66. Si:

32 b c 4
= = =
; el valor de ( r + c ) es:
b c 4 r
a) 1 / 2

67. Se da

b) 10

c) 8

d) 14

e) 20

a c
a +1 c...
63
74. Dos números se diferencian en 45 unidades. Hallar estos números si se sabe que están en relación
como 5 es a 2 .
a)...
64

82. Si:

x + 7 2y + 8 z + 3
=
=
= 4 ; entonces x + y + z es:
x - 14
y -1
3
a) 30

b) 36

c) 32

d) 24

e) 40

83. El p...
65

RESUMEN TEORICO
SIGNOS.- Los signos que se utilizan para designar desigualdades, son:
> que se lee: “ mayor que “
< qu...
66
Ejemplos: 1. x² + 10 > 0
2. a² + b² + 8 > 0
DESIGUALDAD RELATIVA.- Llamada inecuación, se verifica solo para un cierto
...
67
a>b 
m>n +

a.
______ 

a+m>b+n

b.

a<b 

m<n +
_______ 

a+m<b+n

6. Solo se podrán restar desigualdades de...
68

b. Si

1 1
<
a b

→ a>b

11. a. Para: b > 1; si:

bm > bn

→ m>n

b. Para: 0 < b < 1; si:

bm > bn

a<

a+b
<b
2

12. ...
69
EJERCICIOS:
En los ejercicios del 1 al 14 se presentan 2 columnas A y B, las respuestas se tomarán de acuerdo al
siguie...
70
5. m y p son enteros de 3 dígitos más grandes que 100. El dígito de las decenas de m es 5 y el dígito de
las decenas de...
71
11. Para todos los números positivos n y k, se define la operación n ⊗ k como: n ⊗ k = (n − k )k .
Adicionalmente: 0 < ...
72
17. Si x<x3<x2 ¿Cuál de los siguientes valores puede ser el de x?
a) 5/3

b) 3/5

c) -2/5

d) -5/2

e) ninguno de los a...
73
26. ¿ Cuál es el mayor entero x para el cual - 2x – 3 > 6 ?
a) - 4

b)

4

c)

3

d) - 5

e) - 2

d) x < 0

e) x = x

2...
74
36. El mayor número entero cuyo triple sea menor que 63 es:
a) 16

b) 17

c) 20

d) 21

e) Ninguno de los anteriores.

...
75
44. Eduardo tiene un cierto número de canicas. Si este número es duplicado y se tira una canica, por lo
menos tendría c...
76
52. Dado: -12 < x – 14 < - 10 . Hallar ( a + b ) en: 2a < 3x + 4 < 2b
a)

11

b)

13

c) 12

d)

14

e) 10

53. Cinco s...
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Banco de problemas
Próxima SlideShare
Cargando en…5
×

Banco de problemas

12.372 visualizaciones

Publicado el

problemas razonaminto

Publicado en: Educación
2 comentarios
3 recomendaciones
Estadísticas
Notas
Sin descargas
Visualizaciones
Visualizaciones totales
12.372
En SlideShare
0
De insertados
0
Número de insertados
12
Acciones
Compartido
0
Descargas
149
Comentarios
2
Recomendaciones
3
Insertados 0
No insertados

No hay notas en la diapositiva.

Banco de problemas

  1. 1. 2 I N D I C E TEMA PAGINA PRESENTACION 3 ALGEBRA 5 RAZONAMIENTO LOGICO 93 MISCELANEA DE RAZONAMIENTO LOGICO 121 FISICA 153 GEOMETRIA 209 TRIGONOMETRIA 251 GEOMETRIA ANALITICA 277 ANEXO 1 294
  2. 2. 3 PRESENTACION La Facultad de Ingeniería de la Universidad de Cuenca, una de las más prestigiosa del País, por su elevado nivel académico, a través del presente documento hace llegar un cordial saludo a todos los señores bachilleres, y al mismo tiempo invitarles a que sean parte de nuestra Facultad, participando en el examen de admisión a una de las carreras que ofrecemos, y cuyos perfiles brevemente nos permitimos describir: INGENIERÍA CIVIL: Formar profesionales de excelencia, líderes emprendedores con sólidos valores morales y éticos. Preparados en el campo científico y tecnológico con miras a obtener un ingeniero generalista con conocimientos en las áreas de vialidad, construcciones, hidráulica y sanitaria en el que se incluyen aspectos relacionados con la conservación del medio ambiente, que contribuyan al desarrollo del país, para mejorarlo en lo social, económico, ambiental y político. INGENIERÍA ELÉCTRICA: Formar Ingenieros Eléctricos, altamente competitivos, con bases sólidas en el campo tecnológico y humanístico; con habilidades y conocimientos en las áreas de gestión y administración, de manera que apliquen la Tecnología en las áreas de Potencia, Electrónica y Control, a fin de plantear soluciones adecuadas a problemas de la sociedad. INGENIERÍA DE SISTEMAS: Formar Ingenieros de Sistemas, altamente competitivos, con bases sólidas en el campo tecnológico y humanístico, de manera que apliquen las Tecnologías de Información y Comunicación para proponer soluciones adecuadas para el desarrollo de las empresas e instituciones tanto privadas como públicas. INGENIERÍA EN ELECTRÓNICA Y TELECOMUNICACIONES: Proporcionar a la región y al país profesionales altamente capacitados e íntegros en el área de las telecomunicaciones, quienes a través de su aporte creativo permitan una mayor y mejor participación de los ecuatorianos en la sociedad de la información y la comunicación. Considerando la creciente demanda de aspirantes que tiene nuestra Facultad y la limitada disponibilidad de espacios en aulas y laboratorios, nos obliga a fijar los siguientes cupos para los nuevos estudiantes que aspiran a ingresar: Ingeniería Civil: 120 Ingeniería Eléctrica: 70 Ingeniería Informática: 100 Ingeniería Electrónica y Telecomunicaciones: 90 Para cubrir estos cupos, se tomará un examen de admisión a los aspirantes a la carrera que previamente se hayan inscrito.
  3. 3. 4 Con la finalidad de que los aspirantes tengan una orientación sobre el nivel mínimo de conocimientos requeridos para su ingreso a nuestra Facultad, se pone a consideración el documento adjunto que lo hemos llamado BANCO DE PROBLEMAS, que cubre las áreas de: Algebra, Razonamiento Lógico, Geometría, Trigonometría, Geometría Analítica, y Física. Todos los aspirantes, previo al examen de admisión, en forma obligatoria, deberán inscribirse a través del portal web de la Universidad de Cuenca www.ucuenca.edu.ec , en la opción INSCRIPCIONES a partir del 16 de MAYO 2011 hasta el 17 DE JUNIO DE 2011. El examen de admisión se receptará el día miércoles 03 de agosto de 2011 a partir de las 8 horas, y sus resultados serán expuestos como máximo hasta el día jueves 04 de agosto de 2011. TODOS LOS ASPIRANTES PARA RENDIR EL EXAMEN DE ADMISIÓN DEBERÁN PORTAR SU CÉDULA DE IDENTIDAD O SU PASAPORTE. Se recomienda a los aspirantes revisar el Anexo 1: Instructivo Básico para rendir el Examen de Admisión. El Decano
  4. 4. 5 RESUMEN TEORICO El concepto de conjunto es aceptado en matemáticas como primitivo, pues es imposible dar una definición en términos de conceptos más elementales. Es un término no definido. Intuitivamente, un conjunto es una reunión, colección o agrupación bien definida de objetos, llamados elementos. NOTACION.- Los conjuntos se nombran con letras mayúsculas, mientras que los elementos con letras minúsculas, encerrados entre llaves y separados por comas. Ejemplo: El conjunto A, formado por los números impares positivos menores que 9, entonces: A = { 1, 3, 5, 7 } . Si un objeto x es elemento de un conjunto A se escribe: x A ; lo que se lee: “ x pertenece al conjunto A. En caso contrario escribiremos: x ∉ A. DETERMINACION DE UN CONJUNTO.1. POR EXTENSION O TABULACION: Un conjunto queda determinado por extensión, cuando se nombra a todos y cada uno de los elementos. Ejemplo: B = { 2, 4, 6, 8 } C = { a, b, c, d, e, f } 2. POR COMPRENSION O CONSTRUCCION: Un conjunto queda determinado por comprensión o construcción, cuando se nombra una propiedad común que caracteriza a todos los elementos del conjunto, se emplea generalmente x / x : “ x tal que x ” Ejemplo: B = { x / x es par positivo menor que 10 } C = { x / x es una de las primeras seis letras del alfabeto } CARDINALIDAD DE UN CONJUNTO.- La cardinalidad de un conjunto es el número de elementos de dicho conjunto y se denota como n( … ). En los … se coloca el nombre del conjunto; así: Ejemplo: n( B ) = 4 n( C ) = 6 CLASES DE CONJUNTOS.1. CONJUNTO FINITO.- Tiene una cantidad de elementos contables. 2. CONJUNTO INFINITO.- Tiene una cantidad ilimitada de elementos, imposible de contar. 3. CONJUNTO VACIO.- Llamado también conjunto NULO; es aquel conjunto que carece de elementos. Se denota como: { } = ∅ . Al conjunto vacío se le considera incluido en cualquier otro conjunto. El conjunto vacío no tiene ningún subconjunto propio y su cardinalidad es n(∅ ) = 0 ∅
  5. 5. 6 4. 5. CONJUNTO UNIVERSO.- Es el que contiene a todos los conjuntos, se le denota como U. CONJUNTO UNITARIO.- Es aquel conjunto que tiene un solo elemento. Ejemplos: A={x I/2<x<4} D={∅} 6. CONJUNTO DE CONJUNTOS.- Es aquel conjunto, cuyos integrantes, o elementos son a su vez conjuntos. También se les llama Familia de conjuntos. Ejemplos: A = { { 2, 3 }, {2}, {4, 5 } } B = { ∅, { ∅}, {1, 2} } RELACIONES ENTRE CONJUNTOS.1. RELACION DE COORDINABILIDAD O DE EQUIVALENCIA.- Dos conjuntos A y B son coordinables, o son equivalentes cuando entre sus elementos pueden establecerse una correspondencia biunívoca. Cuando dos conjuntos finitos son coordinables, estos tienen en mismo número de elementos. 2. RELACION DE INCLUSION O SUBCONJUNTO.- Se dice que el conjunto A está incluido en el conjunto B , si todos los elementos de A están en B. Se denota como: A ⊆ B “ A incluido en B; o A es subconjunto de B ”. Ejemplo: A = { 3, 5, m } ; n( A ) = 3 B = { 4, m, 6, 3, 5, p } n( B ) = 6 Se observa que todos los elementos de A son también elementos de B, luego A ⊆ B . En caso de que A ⊆ B y por lo menos un elemento de B no es de A, entonces A es un subconjunto propio de B. Y se denota así: A ⊂ B . Si A ⊆ B , o A ⊂ B se dice que A y B son comparables. 3. RELACION DE IGUALDAD.- Dos conjuntos A y B son iguales cuando tienen los mismos elementos. Si: A=B → A⊆B y B⊆A Dos conjuntos A y B son iguales si y solo si, A es subconjunto de B y B es subconjunto de A. Cuando se repiten los elementos en el conjunto como: A = { 2, 2, 3, 3, 4, 5 }, solo se debe considerar uno de ellos así: A = { 2, 3, 4, 5 } ; n( A ) = 4. 4. CONJUNTO POTENCIA.- Se llama conjunto potencia de A , al conjunto formado por todos ... los subconjuntos de A y se denota como 2 . En los … irá el nombre del conjunto.
  6. 6. 7 Ejemplo: Dado A = { 1, 3 } ; su conjunto potencia será: 2 = { ∅, {1}, {3}, {1, 3} } ; n( 2 ) = 4 A El número de elementos de 2 A A A o número de subconjuntos de A , está dado por: n( 2 ) = 2 m donde “ m” representa en número de elementos del conjunto A. Número de subconjuntos propios.- Dado el conjunto A, su número de subconjuntos propios m será: 2 - 1 . No se considera el mismo conjunto A. Propiedades del conjunto Potencia.1. 2 , puesto que ∅ ⊆ A. 2. A 2 , puesto que A ⊆ A. 3. 2 4. Si A ⊆ B → 2 ⊆ 2 . 5. Si A = B → 2 = 2 . 6. 2 ∪ 2 B =2 7. 5. ∅ 2 ∩ 2 B =2 A A ∅ = { ∅ }. A B A A A (A∪B) (A∩B) B . . CONJUNTOS INTERSECANTES.- Dos conjuntos A y B son intersecantes, cuando tienen elementos comunes; suficiente que haya un elemento común para que sean considerados como tales. Si dos conjuntos son intersecantes, entonces pueden o no ser comparables. 6. CONJUNTOS DISJUNTOS.- Dos conjuntos A y B son disjuntos cuando no tienen integrantes o elementos comunes. Si dos conjuntos son disjuntos, entonces no son comparables. Si dos conjuntos no son comparables, no necesariamente serán disjuntos. DIAGRAMAS.Los conjuntos se pueden representar de dos maneras; gráficamente mediante diagramas llamados de Venn Euler, y linealmente mediante diagramas llamados lineales. 1. DIAGRAMAS DE VENN – EULER.- Para representar los conjuntos se emplean diversas figuras geométricas, como círculos, cuadrados, triángulos, rombos, etc. Dejando generalmente el rectángulo para el conjunto universo. Los símbolos que representan los conjuntos pueden colocarse dentro o fuera del gráfico. Dentro de la representación gráfica pueden colocarse pequeñas marcas y las notaciones que representan a los elementos siempre que sea necesario. 2. DIAGRAMAS LINEALES.- Emplea líneas en lugar de figuras geométricas, y se utilizan para representar subconjuntos únicamente. En estos diagramas, la representación sagital como: B ➟ A significa que B está incluido en A.
  7. 7. 8 A continuación se indican varios Observemos los siguientes diagramas lineales que diagramas de Venn – Euler. representan las mismas relaciones dadas en los diagramas de Venn – Euler. Diagramas de Venn – Euler Diagramas Lineales 1. 1. B B A A A⊂B A⊂B 2. 2. C C B B A A⊂B⊂C A⊂B 3. y B⊂C 3. C C A B A A⊂C y B⊂C B A⊂C y B⊂C 4. 4. A C D D⊂C y C ⊂ A  C ⊂ B B A B C D⊂C y C ⊂ A  C ⊂ B
  8. 8. 9 OPERACIONES ENTRE CONJUNTOS.1. UNION.- La unión de los conjuntos A y B , es el conjunto formado por los elementos que pertenecen a A , a B o a ambos. Se denota como A ∪ B. A∪B={x/x A o/y x B} U A B PROPIEDADES.1.- A ∪ A = A A∪∅=A Conmutativa 2.- A ∪ B = B ∪ A 3.- (A ∪ B )∪ C =A ∪ ( B ∪ C ) ∪ 4. 5.- 6.- A ⊂ (A ∪ B ) Asociativa 7.- Si: A ⊂ B → A ∪ B = B Idempotencia A∪U=U Identidad y B ⊂ (A ∪ B ) Identidad n (A ∪ B ) = n( A ) + n( B ) 8.- 9.- 2. Si A y B son disjuntos: Si A y B son intersecantes: n (A ∪ B ) = n( A ) + n( B ) – n( A ∩ B ) INTERSECCION.- La intersección de dos conjuntos A y todosaquellos elementos que pertenecen a A y a B a la vez ( elementos comunes ). Se denota como A ∩ B . A∩B={x/x A y x A B , es el conjunto formado por B} B
  9. 9. 10 PROPIEDADES.- 1.- A∩A=A Idempotencia 8.- Si A ∩ B = ∅ → A y B son disjuntos 2.- A∩B=B∩A Conmutativa 9.- A ∪ ( A ∩ B) = A Absorción 3.- (A ∩ B)∩C=A∩(B∩C) ∩ ∩ ∩ Asociativa 10.- A ∩ ( A ∪ B ) = A Absorción 4.- A∩∅=∅ Identidad 11.- A ∩ ( B ∪ C ) = ( A ∩ B ) ∪ ( A ∩ C ) Distributiva 5. –A ∩ U = A Identidad 12.- A ∪ ( B ∩ C ) = ( A ∪ B ) ∩ ( A ∪ C ) 6.- A ⊃ (A ∩ B ) y B ⊃ (A ∩ B ) Distributiva 7.- 3. Si: A ⊂ B → A ∩ B = A DIFERENCIA.- La diferencia de A con B es el conjunto formado por todos los elementos de A que no son elementos de B. Se denota por A – B . A–B={x/x A y x∉B} U A B PROPIEDADES.1.- A - A = ∅ 2.- ∅ - A = ∅ 3.- A - B ≠ B - A 4.- ( A – B ) ∪ (A ∩ B ) = A
  10. 10. 11 5.- (B–A) ∪(A∩B) =B 7.- Si: A ⊂ B → A - B = ∅ 6.- A-B⊂A 8.- Si A y B son disjuntos: 4.- y A-B⊂B COMPLEMENTO.- A–B=A El complemento de un conjunto A es el conjunto que tiene como elementos los del conjunto Universo ( U ) y no los del conjunto A. Se denota por A' = U – A ' A' = { x / x ' U y x∉A} U A PROPIEDADES.1. –A' = U – A ' 2.- U' = ∅ ' 3.- ∅' = U 4.- A ∪ A' = U ' 5.- A ∩ A' = ∅ ' 6.- ( A' ) ' = A ' 7.- ( A ∪ B ) ' = A' ∩ B ' ' De Morgan 8.- ( A ∩ B ) ' = A' ∪ B ' ' De Morgan
  11. 11. 12 EJERCICIOS: 1. Sea A = { a, 1, +, b, 2, x } y B = { b, +, a } , ¿Cuál de las siguientes relaciones es falsa? a) b ⊆ A b) 2 ∈ B' c) { a, b } ⊆ B d) ∅ ⊆ B e) { b } ∉ B 2. Siendo A = { {1}, {2}, {1,2} }, ¿ Cuál de las siguientes expresiones es verdadera ? a) {1} ∉ A b) {1} ⊂ A c) 2 ∈ A d) {1} ⋂ {2} ⊄ A e) {1} ⋃ {2} ∈ A 3. Dado el conjunto: A = { 0, 1, 2, ∅, { 0 } , { 1, 2 }, 3 } ; determine la verdad o falsedad de: I) 0 A V) { ∅ } II) A ∅⊂A VI) { 1,2,3} III) A ∅ A IV) VIII) VII) {1,2,3} ⊂ A {∅}⊂A {0,2} ⊂ A El número de verdaderas es: a) 7 b) 4 c) 5 4. En un avión viajan 120 personas, de las cuales: d) 6 e) 2 Los 2/3 de ellas no beben. Los 4/5 de ellas no fuman. 72 no fuman ni beben. ¿Cuántas personas fuman y beben ? a) 17 b) 16 c) 19 d) 18 e) 10 5. El número de subconjuntos propios de A = { 3, {4,8}, 9, 7 } es: a) 13 b) 15 c) 17 d) 19 e) 21 6. En una población: 50% toma leche, el 40% come carne, además sólo los que comen carne o sólo los que toman leche son el 54%. ¿Cuál es el porcentaje de los que no toman leche ni comen carne? a) 18% b) 44% c) 28% d) 36% e) 20% 7. En una oficina hay 16 personas de las cuales el 25% son mujeres. Si se desea que el 60% del personal sean hombres; ¿ Cuántas mujeres se deben contratar ? a) 10 b) 8 c) 6 d) 9 e) 4
  12. 12. 13 8. Si A = { a, b, c } , B = { a, b } ; se afirma que: I) 2 (A-B) tiene un sólo elemento. II) ∅ 2 (A∩B) III) 2A ∩ 2B = 2B Son falsas: a) Sólo I b) Sólo II y III c) Todas son falsas d) Ninguna es falsa e) Ninguna de las anteriores. 9. ¿ Cuántas de las siguientes afirmaciones son verdaderas? I) ∅≠{0} II) { ∅ } = { 0 } IV) ∅ ⊄ { ∅ } a) 1 V) ∅ b) 2 III) 0 {∅} {{∅}} c) 3 d) 4 e) 5 10. Si A y B son dos conjuntos no vacíos y además A ⊂ B , entonces la expresión verdadera es: a) A ⋃ B = B b) A ⋂ B = ∅ c) A ⋂ B = B d) B ⊂ A e) Ninguno de los anteriores. 11. Dados los conjuntos A = { a, b, c } , B = { b, c, d } y C = { a, c, d, e } el conjunto ( A – C ) ⋃ ( C – B ) ⋃ ( A ⋂ B ⋂ C ) es: a) { a, b, c, e } b) { b, d, e } c) { a, c, e } d) A e) { b, c, d, e } 12. Dado el conjunto A = { 0 }, sólo uno de los siguientes enunciados es verdadero: a) 0 ⊂ A 13. b) A = ∅ c) { 0 } ⊆ A d) { 0 } ∈ A e) Ninguno de los anteriores. Si D = { azul, rojo, verde, amarillo } y A = { colores cuyo nombre empieza por la letra a }; entonces el enunciado verdadero es: a) D ⋂ A = A d) D ⋂ A = { amarillo } b) D ⋂ A = { azul } e) Ninguno de los anteriores. c) D ⋂ A = { azul, amarillo }
  13. 13. 14 14. Dados los conjuntos: A = { Todas las universidades } ; B = { Los países de Latinoamérica } ; C = { Brasil, Perú, Bolivia, Venezuela }. El conjunto: { Universidades de Guayaquil } es un subconjunto de : a) A b) B c) C d) B ⋂ C e) B ⋃ C 15. Considerando los conjuntos A = { 0, 2, 4 } , B = { 0, 4, 0, 2 } se puede afirmar que : a) A es subconjunto propio de B. b) Los conjuntos son iguales . c) Los conjuntos son diferentes. d) Los conjuntos son disjuntos. e) Ninguna de las anteriores. 16. De los conjuntos A = { a, b, c, d } , B = { c, b, a, d } se hacen las siguientes afirmaciones: 1.- Los conjuntos son diferentes. 2.- Los conjuntos son iguales. 3.- A es subconjunto de B. 4.- Su intersección es vacía. Lo anterior es cierto para: a) 1 y 3 solamente. b) solamente 2. d) 2 y 4 solamente. e) Ninguna de las anteriores. 17. Consideremos la siguiente igualdad: c) 2 y 3 solamente. ( B ⋂ B )’ = ( A ⋂ A )’ Podemos afirmar que esta igualdad es: a) Siempre verdadera para B ⊂ A c) Verdadera apenas para A = B = ∅ e) Ninguna de las anteriores. b) Siempre falsa para B ⊆ A d) Verdadera siempre que A = B
  14. 14. 15 18. Dados los conjuntos A={ -1, -2, 0, 1, 2 } y B={ -1, 2, 3, 4, 5 } el conjunto (B–A) ⋃ (A–B) es : a) { -7, -5, -1, 1, 5, 7 } b) { -7, -1, 1, 5, 7, 3 } d) { -7, 1, 0, 7, 4, 2 } c) Ø e) { -2, 0, 1, 3, 4, 5 } 19. De los conjuntos P = { 1, 5, 3 }, Q = { 1, 2, 3 } , R = { 1, 3 }, se afirma que: 1.- P ⋂ Q = R 2.- R ⊂ Q 3.- P ⋃ R = P 4.- Q ⋂ R = R Lo anterior es cierto para: a) 1 y 4 solamente. b) 2 y 3 solamente. c) 3 y 4 solamente. d) Todas son verdaderas. e) Ninguna de las anteriores. 20. Dados los conjuntos A = { -1, 0, 1, 2, 3, 4, 5 } y B = { -1, 4, 2, 0, 5, 7 } y siendo Ø el conjunto vacío, señalar el enunciado verdadero: a) A ⋃ B = { 0, 1, 2, 4 } b) A ⋂ ( B – A ) = Ø c) A ⋂ B = { -1, 0, 2, 3, 4, 5, 7 } d) ( A ⋃ B ) ⋂ A = { -1,0 } e) Ninguno de los anteriores. 21. Dos conjuntos A y B se dice que son iguales si y sólo si: a) Todo elemento de A es también elemento de B. b) Tienen la misma medida. c) Tienen los mismos elementos. d) Cuando son subconjuntos de conjuntos iguales. e) Ninguno de los anteriores. 22. Durante el mes de febrero de 2008. Julver salió a pasear con Mercy, Maribel o con ambas. Si 16 días paseó con Mercy y 22 con Maribel. ¿ Cuántos días paseó con ambas sabiendo que el día de los enamorados salió sólo con Marcia.? a) 12 23. b) 10 c) 6 d) 9 e) 8 En una clase se hizo una encuesta sobre los diversos espectáculos preferidos por los estudiantes. Hubo 3 estudiantes que preferían el teatro y el cine al mismo tiempo. En total había 9 estudiantes que tenían al teatro como una de sus distracciones preferidas, y 10 estudiantes que elegían el cine entre ellas, mientras que eran 14 los estudiantes que preferían otras diversiones distintas del cine y el teatro. El número de estudiantes que fueron encuestados es:
  15. 15. 16 a) 28 24. b) 30 c) 33 d) 26 e) Ninguno de los anteriores. Los socios de los clubes A y B constituyen un total de 140. ¿ Cuál es el número de los socios de A , si en B existen 60 y hay 40 que pertenecen a los dos clubes ?. a) 40 b) 80 c) 60 d) 120 e) 100 25. ¿Cuál de los siguientes enunciados es falso?: a) A ⋃ B = Ø ⇒ A = Ø ⋀ B = Ø b) A = Ø ⋀ B = Ø ⇒A ⋃ B = Ø c) A ⋂ B = Ø ⇒A = Ø ⋀ B = Ø d) A = Ø ⋀ B = Ø ⇒ A ⋂ B = Ø e) Ninguno de los anteriores. 26. En un examen fueron propuestos dos problemas y se sabe que: 413 alumnos acertaron el primer problema. 199 alumnos erraron el segundo problema. 230 alumnos acertaron los dos problemas. 485 alumnos acertaron apenas un problema. ¿Cuál es el número de alumnos que dieron el examen ? a) El problema tiene muchas soluciones. b) 230 alumnos presentaron el examen. c) 485 alumnos presentaron el examen. d) 731 alumnos presentaron el examen. e) El problema no se puede resolver. 27. El conjunto A contiene 10 elementos y el conjunto B tres elementos. ¿Cuál de las siguientes proposiciones es verdadera ? a) A ⋂ B contiene exactamente cinco elementos. b) A ⋃ B contiene al menos un elemento. c) A ⋃ B contiene exactamente cuatro elementos. d) A ⋃ B no puede contener más de ocho elementos. e) Si A ⋂ B contiene tres elementos, entonces B ⊂ A . 28. Sean A y B dos conjuntos disjuntos. Entonces A – B es necesariamente igual a : a) B = A b) A ⋃ B c) ∅ d) A e) Ninguno de los anteriores.
  16. 16. 17 29. Si A = { r, s, t, u, v } y B = { t, e, v } ; de los siguientes enunciados, el verdadero es: a) A – B = {r, s, u } b) A – B = B – A c) No se puede hablar de A – B, porque B no es subconjunto de A. d) No se puede hablar de B – A, porque A no es subconjunto de B. e) Ninguno de los anteriores. 30. Dados los conjuntos A = { 2, 4, 6 } y B = { 1, 2, 3, 4, 5 } podemos afirmar que: a) A y B no son disjuntos b) A y B son disjuntos c) A ⋂ B = ∅ d) A ⋃ B = ∅ e) Ninguno de los anteriores. 31. El conjunto F = { rosa, clavel } a) Está definido por extensión. b) Está definido por comprensión. c) Está definido por construcción. d) No está definido. e) Ninguno de los anteriores. 32. El producto cartesiano A x B de los conjuntos: A = { 3, 4, 5 } y B = { 4 } es: a) { (4,3 ),(4,4),(4,5) } b) A c) B d) { (3,4),(4,4),(5,4) } e) { 12, 16, 20 } 33. ¿ Cuál de los siguientes enunciados es verdadero? : a) A x B = B x A ; para todos los conjuntos A y B. c) A x B = ∅ ⇒ A = ∅ y B = ∅ 34. Se tiene los siguientes conjuntos: d) A ⋃ B = ∅ ⇒ A x B = ∅ b) A ⋂ B = ∅ ⇒ A x B = ∅ e) Ninguno de los anteriores.
  17. 17. 18 B A 3 2 1 5 4 6 7 C A = { Polígonos regulares } B = { Cuadriláteros } C = { Triángulos equiláteros } ¿ Cuáles de las regiones enumeradas en el diagrama son conjuntos vacíos ? a) 3; 5; 7 b) 3; 6; 7 c) 4; 5; 6 d) 5; 6; 7 e) 2; 5; 7 d) A ⋃ B e) A' – B 35. La expresión ( A - B' ) ∪ ( A' ∪ B' ) ' es igual a: a) A ⋃ B' b) A ⋂ B' c) A ⋂ B 36. Si los conjuntos M y N son unitarios M = { ( a² + 1 ) , ( 4a – 3 ) } ; N = { ( y+3x ) , ( x + 8 – y ) } . Entonces la suma de x + a + y es: a) 8 b) 7 c) 6 d) 5 e) 4 37. Si: n(A ∪ B ) = 14 , n(A ∩ B ) = 6. Entonces n( A ) + n( B ) es: a) 24 b) 10 c) 20 d) 15 e) 25 38. Dos conjuntos de 4 números positivos consecutivos tienen exactamente un número en común. La suma de los enteros en el conjunto con números más grandes es cuánto más grande que la suma de los enteros en el otro conjunto. a) 4 b) 7 c) 8 d) 12 e) Ninguna de las anteriores. 39. De los 504 primeros números naturales, ¿ Cuántos no son múltiplos de 3 ni de 7? a) 168 b) 240 c) 284 d) 288 e) 216
  18. 18. 19 40. En una clase de 78 estudiantes; 41 están tomando francés, 22 están tomando alemán y 9 estudiantes están tomando francés y alemán, ¿ Cuántos estudiantes no están enrolados en ningún curso? a) 6 b) 15 c) 24 d) 33 e) 42 41. En una clase de 24 estudiantes; 9 estudiantes tienen en el examen entre 80% y 90%, 4 obtienen sobre el 90% y 5 obtienen entre 70% y 80%. ¿ Qué porcentaje de estudiantes obtuvieron en la prueba por debajo del 70% ? a) 63% b) 83% c) 79% d) 75% e) 25% 42. La expresión ( B - A )' ∩ ( A' ∩ B ) ' es igual a: a) A ⋃ B' b) A ⋂ B' c) A ⋂ B d) A ⋃ B e) A' ∪ B 43. Dado el conjunto: A = { 0, 1, 2, ∅, { 0 } , { 1, 2 }, 3 } ; el número de elementos del conjunto es: a) 4 b) 7 c) 6 d) 8 e) Ninguno de los anteriores. 44. Si A ⋃ B = {1,2,3,4} ; A ⋂ B = {1,3} ; y A – B = {2}; entonces B – A es: a) {2,4} b) {4} c) {3} d) {1} e) {3,4} 45. Sean A y B dos conjuntos tales que; n(A ⋃ B) = 24 , n(A – B) = 10 , n(B – A) = 6 ; entonces 5 n(A) – 4 n(B) es: a) 18 b) 22 c) 27 d) 34 e) Ninguno de los anteriores. 46. Los valores de verdad de las proposiciones siguientes , son: 1. Para cada a ∈ I y para cada b ∈ N , a – b ∈ ( I – N ). 2. Existe a ∈ ( I – { 0 } ) tal que a⁴ ∉ N. 3. Para cada n ∈ N , existe e ∈ I tal que ( n + e ) ∈ N. a) FFF b) FFV c) FVV d) VVV e) VFF 47. Sean los conjuntos: M = { x² / 1 < x < 7 ; x es primo } ; L = { n + 1 / n ∈ [ 1 , 7 ] ; n ∈ I } ; ¿ Cuántos elementos tiene M ∪ L ? a) 10 b) 8 c) 9 d) 7 e) Ninguno de los anteriores.
  19. 19. 20 48. Sean los conjuntos: A = { a / a es divisor de 18 } ; B = { b / b es divisor de 12 } ; se puede afirmar: I.- A ∩ B = { 1, 2, 3, 6 } II.- { x / x es divisor de 6 } ⊂ A III.- { x / x es divisor de 6 } ⊂ B IV.- B – A = ∅ a) I y II b) II y III c) I , II y III d) I , II y IV e) Todas 49. Sean los conjuntos: T = { x ∈ N / - 3 < x < 4 } ; S = { x/2 ∈ I / x ∈ N , x ≤ 5 } ; M = { x ∈ Q / ( x³ - x² )( x – 1 ) = 0 } . ¿ Cuántos subconjuntos propios tiene T ∪ S ∪ M ? a) 31 b) 15 c) 7 d) 63 e) 3 50. Sean los conjuntos: A = { x ∈ I / ( 60 / x ) = n ; n ∈ N } ; B = { x ∈ R / x = 5m ; m ∈ N } . El número de elementos de A ∩ B es: a) 5 b) 8 c) 6 d) 4 e) Ninguno de los anteriores. 51. El número de elementos del conjunto ( A ∩ B ) es: Si A = { x ∈ I / 4 < x + 3 < 8 } y B = { x ∈ I / x² - 3x + 2 < 0 } a) 1 b) 2 c) 3 d) 4 e) Ninguno de los anteriores. 52. Dados los conjuntos: B = { x ∈ I / x² - 3x + 2 < 0 } y C = { x ∈ I / x = k + 2 ; 3 < k < 7 } ; el número de elementos de ( B ∩ C ) es: a) 4 b) 3 c) 2 d) 1 e) Ninguno de los anteriores. 53. En un aula de 35 alumnos, 7 hombres aprobaron Matemática, 6 hombres aprobaron Química, 5 hombres y 8 mujeres no aprobaron ningún curso, hay 16 hombres en total, 5 aprobaron los dos cursos, 11 aprobaron sólo Matemática. ¿ Cuántas mujeres aprobaron sólo Química ? a) 1 b) 3 c) 2 d) 4 e) Ninguno de los anteriores.
  20. 20. 21 54. De un total de 100 alumnos, 51 están matriculados en el curso de Física y 47 en Matemática. Si 27 alumnos no registran matrícula en Física ni Matemática; ¿ El número de matriculados en ambos cursos será ? : a) 15 b) 25 c) 27 d) 35 e) Ninguno de los anteriores. 55. Si: A ⊂ B y A ∩ D = ∅ ; El siguiente conjunto [( A ∩ D' ) ∩ B' ] ∪ [ B ∪ ( A – D ) ] simplificado será: a) A ∩ B b) A c) ∅ d) B e) D ∩ B 56. Del siguiente conjunto A = { 1, 2, { 2, a }, { 2, 1, b } } , la proposición verdadera es: a) 1∈ { 2, 1, b } b) b ∈ { 2, 1, b } c) { 2 } ∈ A d) { 2, a } ∈ A e) { 2, a } ∈ { 2, 1, b } 57. De una muestra recogida a 200 turistas se determinó: 64 eran norteamericanos. 86 eran europeos. 90 eran economistas. De estos últimos, 30 eran norteamericanos y 36 europeos. ¿ Cuántos de los que no eran europeos tampoco eran norteamericanos ni economistas ? a) 24 b) 26 c) 36 d) 34 e) Ninguno de los anteriores. 58. Si: n( A ∪ B ) = 30 , n( B – A ) = 8 y n( A – B ) = 10 . El valor de n( A ) + n( B ) es: a) 8 b) 10 c) 13 d) 12 e) 11 59. Si A = { ∅, { ∅ } } , ¿ Cuántas son verdadera ?: I.- ∅ ∈ A ; II.- ∅ ⊂ A ; III.- { ∅ } ∈ A ; IV.- { ∅ } ⊂ A ; V.- {{ ∅ }} ∈ A VI.- {{ ∅ }} ⊂ A a) 6 60. Si U = { x ∕ x ∈ N } b) 5 ; c) 4 A = { 2x ∕ x ∈ N y x < 6 } d) 3 ; e) 2 B={(x+4)/2 ∕x∈A} ; C= { ( 2y + 1 ) / 3 ∕ y ∈ B } . ¿ El número de elementos de C es? : a) 6 b) 1 c) 4 d) 3 e) 2 61. Sabiendo que el conjunto: A = { a + b , a + 2b – 2 , 10 } es unitario. El valor de a .b es: a) 10 b) 15 c) 18 d) 16 e) 20
  21. 21. 22 62. Si: A' , B' , ( A – B ) y ( A ∪ B ) tienen respectivamente 128, 32, 2 y 64 subconjuntos; ¿ El número de elementos del conjunto potencia de A ∩ B , es?: a) 0 b) 1 c) 2 d) 3 e) 4 63. Si: A = ( - 3 , 3 ] ; B = [ 1 , 5 ) ; C = ( - 1 , 4 ) ; el conjunto A – ( B ∪ C ) es: a) ( - 3 , - 1 ] b) ( - 3 , - 1 ) c) [ - 3 , - 1 ] 64. La suma de los elementos del conjunto A = a) 40 b) 45 b) ( - ∞ , 10 ) e) Ninguno de los anteriores.  x2 - 9  / x ∈ N y 2 < x < 9 son:   x -3  c) 35 65. Si T es el conjunto solución de la ecuación a) [ 0 , ∞ ) d) [ - 3 , - 1 ) d) 36 e) 48 x - 2 = x − 2 ; el conjunto T es: c) { 0 } d) ( - ∞ , 0 ] e) ( 0 , ∞ )
  22. 22. 23 RESUMEN TEORICO PROPOSICION CERRADA.- Es toda expresión coherente que se caracteriza por el hecho de poseer un valor de verdad sin ambigüedad en un determinado contexto. Es decir puede ser verdadera ( V ) o falsa ( F ). Por lo general las proposiciones se denotan con cualquier letra minúscula, pero preferentemente con: p, q, r, s, t, etc. Ejemplo: p: Quito es la capital del Ecuador ⇒ (V) q: 5+7 = 8 ⇒ (F) Las preguntas, mandatos, deseos, exclamaciones, no son proposiciones lógicas ya que no se pueden clasificar como verdaderas o falsas. Ejemplo: + ¿ Cómo te llamas ? + Que pases bien + ¡ Cállate! VARIABLE.- Es aquella palabra, letra o símbolo que representa apersonas, entes u objetos, susceptibles a tomar valores diferentes. PROPOSICION ABIERTA.- Es toda expresión en la que interviene una variable, que admite la posibilidad de convertirse en una proposición cerrada cuando cada variable asume un valor determinado. Ejemplo: El es un cantante ecuatoriano. “ Si te das cuenta, aún no se puede decir si es verdadera o falsa, donde la variable es El. Vamos a darle valores a la variable y observemos que sucede: Juanes es un cantante ecuatoriano …………………… (F) José Luis del Hierro es un cantante ecuatoriano …….. (V) Se observa que la proposición abierta se convirtió en una cerrada al darle un valor a la variable. OPERTADOR LOGICO.- Es la palabra que cambia el valor veritativo de una proposición. Si la proposición es p , el operador lógico cambia a la proposición en ~ p que es no p o también negación de p. Las palabras: no, no es verdad que, es falso que, no ocurre que, no es el caso que, etc. equivalen al operador lógico ~ . CONECTORES LOGICOS.- Se llaman así a las palabras que sirven para enlazar proposiciones. Sean las proposiciones p , q :
  23. 23. 24 Símbolo ^ ν Operación Lógica conjunción disyunción Esquema p^q pνq ⊻ disyunción exclusiva p⊻q → condicional p→q opoq si p, entonces q ↔ bicondicional p↔q p, si y sólo si q Significado pyq poq CONJUNCIÓN.Ejemplo: Tito es futbolista y Carmen es basqueboli sta 1 4 42 4 43 { 1 4 4 442 4 4 4 4 3 ∧ p q p^q p q V V V V F F F V F F F F La conjunción es verdadera solo si sus componentes son verdaderos, en otros casos será falsa. Las palabras : pero, sin embargo, además, no obstante, aunque, a la vez, también, etc. Equivalen al conector ^. DISYUNCIÓN.Ejemplo: Carlos es Ingeniero o Carlos es arquitecto 144 2444 { 144 2444 4 3 ∨ 4 3 p q pνq p q V V V V F V F V V F F F La disyunción es falsa sólo si sus componentes son falsas, en otros casos será verdadera. DISYUNCION EXCLUSIVA.Ejemplo: O bien Boris juega o bien estudia 1 42 43 123 1 2 3 p ∨ q p⊻q p q V V F V F V F V V F F F La disyunción exclusiva es verdadera sólo si sus componentes tienen valores de verdad diferentes, caso contrario será falsa. CONDICIONAL.- Ejemplo:
  24. 24. 25 Si 4 442 4 4 4 , entonces ingresará 1 Isabel se esfuerza 1 4 1 3 42 3 42 4 3 → p ↑ q ↑ 68 7 causa 6 4 7 44 4 8 consecuenc ia antecedent e con sec uente p→q p q V V V V F F F V V F F V El condicional es falso sólo si su antecedente es verdadero y su consecuente es falso, en otros casos será verdadero. Las palabras: porque, puesto que, cuando, si, cada vez que, etc. Equivalen al conector → . BICONDICIONAL.- Ejemplo: Katy irá a la fiesta, si y sólo si tiene amigas 14 4 24 44 1424 142 43 4 3 3 4 4 p ↔ q p↔q p q V V V V F F F V F F F V El bicondicional es verdadero sólo si los valores de sus componentes son iguales, en caso contrario es falso. Las palabras: Cuando y sólo cuando, entonces y solamente entonces, etc. Equivalen al conector ↔ . LEYES LOGICAS.- Consideremos la proposición: [ ( p → q ) ^ p ] → q ; cuya tabla de verdad es: (p→q) ^ p [(p→q)^p]→q p q p→ q V V V V V V F F F V F V V F V F F V F V La proposición compuesta es V, independientemente de los valores de verdad de las proposiciones componentes. Se dice entonces que tal proposición es una tautología o ley lógica. La proposición p → p es V cualquiera sea el valor de verdad de p, es otro ejemplo de una ley lógica. En cambio p ^ ~ p es F cualquiera sea el valor de verdad de p. Se dice que es una contradicción. En el cálculo proposicional se utilizan las siguientes leyes o tautologías cuya demostración se reduce a la confección de la correspondiente tabla de valores de verdad. 1. INVOLUCION: ~(~p)⇔p 2. IDEMPOTENCIA: a.- ( p ν p ) ⇔ p b.- ( p ^ p ) ⇔ p 3. CONMUTATIVA: a.- ( p ν q ) ⇔ ( q ν p ) b.- ( p ^ q ) ⇔ ( q ^ p )
  25. 25. 26 4. ASOCIATIVA: a.- ( p ν q ) ν r ⇔ p ν ( q ν r ) b.- ( p ^ q ) ^ r ⇔ p ^ ( q ^ r ) 5. DISTRIBUTIVA: a.- p ν ( q ^ r ) ⇔ ( p ν q ) ^ ( p ν r ) b.- p ^ ( q ν r ) ⇔ ( p ^ q ) ν ( p ^ r ) 6. DE MORGAN: a.- ~ ( p ν q ) ⇔ ~ p ^ ~ q b.- ~ ( p ^ q ) ⇔ ~ p ν ~ q 7. ABSORCION: a.- p ν ( p ^ q ) ⇔ p b.- p ^ ( p ν q ) ⇔ p 8. CONDICIONAL: p→q⇔~pνq 9. BICONDICIONAL: p ↔ q ⇔ ( ~ p ν q ) ^ (~ q ν p )
  26. 26. 27 EJERCICIOS: 1. Señale la proposición compuesta conjuntiva: : a) Navegaremos siempre que tengamos brújula. b) Si es un caballo veloz y fuerte, ganará la carrera. c) Es un creyente musulmán; sin embargo, no ora cinco veces al día. d) Los fuegos artificiales se encienden porque lo ordena el mayordomo. e) Pedro y Pablo viven juntos, luego comparten los gastos. 2. La simbolización de: “ El jabalí es un mamífero y el murciélago también, por lo tanto ambos son cuadrúpedos “. Es: a) ( q ^ p ) → r b) ( p ^ q ) → ( r ^ s ) c) q ^ p ) → ( r → s ) d) ( p ^ q ) → r e) ( p ^ q ) → ( s ν r ) 3. “Quito es la capital del Ecuador y los lunes son festivos”. Es una proposición de la cual se afirma que : a) Es falsa y verdadera b) Ni verdadera ni falsa. c) Es verdadera. d) Es falsa. e) Ninguna de las anteriores. 4. La simbolización correcta de la proposición: “ El agua es un mineral y 6 no es múltiplo de 3 “ es: a) ~ ( r ⋀ s ) 5. b) ~ r ⋀ ~ s c) r ⋀ ~ s d) r ⋁ ~ s e) Ninguna de las anteriores. La gráfica muestra la relación “ser hijo de” en un conjunto de personas, mediante las flechas. Por tanto, c y g son respectivamente: a b c d f e g a) Hermanos. 6. b) Padre – hijo. c) Sobrino – tío. d) Hijo – padre. e) Tío – sobrino. Cuál será el esquema equivalente a la proposición: “ Puesto que es agosto, soleará todos los días “ a) ~ ( p ^ ~ q ) b) ~ p → q d) ~ q ν p e) p ^ ~ q c) q → p
  27. 27. 28 7. ¿ Cuáles de las siguientes proposiciones son leyes lógicas? I. (p^q)→q II. [( p → q ) ^ ( q → r )] → ( p → r ) III. p→(p^q) IV. p→(pνq) a) I – II – III d) II – III – IV b) Todas son leyes lógicas c) I – II – IV e) I – III – IV 8. De las siguientes proposiciones, ¿ Cuáles son equivalentes entre sí ? I. Es necesario que Juan no vaya al cine para que termine su tarea. II. No es cierto que Juan termine su tarea y vaya al cine. III. Juan no terminará su tarea y no irá al cine. a) I y III b) II y III d) I y II c) Ninguna e) Todas 9. Si: “ Ningún insecto es vertebrado “ ; entonces: : a) Todo insecto es vertebrado b) Algún insecto es vertebrado c) Algunos vertebrados son insectos d) Es falso que algún insecto es vertebrado e) Todo vertebrado es insecto. 10. Si: “ Todo matemático es hábil “ ; entonces: a) Algunos hábiles no son matemáticos b) Algunos matemáticos no son hábiles c) Ningún matemático es no hábil d) Ningún matemático es hábil e) Todo matemático es no hábil. 11. Si: ( p ^ ~ q ) → ( r → ~ s ) es falsa. Entonces los valores de verdad de: p, q, r, s son: a) V F V V b) F V F F d) F F V V c) V V V F e) F V V V 12. No es verdad que no sea estudiante, es equivalente a: a) Soy estudiante. b) No soy estudiante. c) Tal vez sea estudiante.
  28. 28. 29 d) No me gusta el estudio. e) Nunca fui estudiante. ) 13. La negación de : “ Todos los hombres son honestos “ es: a) Los hombres no son honestos. b) Algunos hombres son deshonestos. c) Algunos hombres son honestos. d) Todos los hombres son deshonestos. e) Ningún hombre es deshonesto. 14. No es ejemplo de proposición: a) Soy ángel. b) El hombre es inteligente. d) Tengo sed. c) No me mires. e) Los mares resucitaron. 15. El enunciado recíproco del condicional “ Si un número entero es divisible por 6, entonces es múltiplo de 3”; es: a) Si un número entero no es divisible por 6, entonces no es múltiplo de 3. b) Si un número es múltiplo de 3, entonces es divisible por 6. c) Si un número no es múltiplo de 3, entonces no es divisible por 6. d) Si un número no es divisible por 6, entonces es múltiplo de 3. e) Ninguna de las anteriores. 16. Una alternativa equivalente a la proposición lógica: “Todas las películas de ciencia ficción son irreales” es: a) Ninguna película de ciencia ficción es real. b) Algunas películas de ciencia ficción son reales. c) Algunas películas de ciencia ficción son irreales. d) No todas las películas de ciencia ficción son irreales. e) Todas las películas de ciencia ficción no son reales.
  29. 29. 30 17. ¿Cuál de las siguientes proposiciones es equivalente a? : “Todos los diplomáticos no son católicos “ a) Ningún diplomático es católico. b) Algunos diplomáticos son católicos. c) No todos los católicos son diplomáticos. d) Algunos diplomáticos no son católicos. e) Algunos católicos no son diplomáticos. 18. El equivalente a: “ Es falso que si usted ve un gato negro entonces tendrá mala suerte” es: a) Ve un gato negro y tiene mala suerte. b) No tiene mala suerte si ve un gato negro. c) Ve un gato negro y no tiene mala suerte. d) Ve un gato negro si tiene mala suerte. e) No tiene mala suerte dado que no ve un gato negro. 19. La proposición: ∼ { ( p ∧ q ) ∨ [ p ∧ ( ∼ p ∨ q ) ] } es equivalente a : a) p ∧ q b) ∼p ∨ ∼ q c) p ∨ ∼ p d) p ∨ q e) ∼ p ∧ ∼ q 20. “ No es cierto que, si no tengo novia no me casaré “. Decir la verdad o falsedad: I.- No se da el caso que tenga novia no me casé. II.- No tengo novia pero me casaré. III.- si tengo novia me casaré. a) VVV b) FFF c) VVF d) FVF e) FVV d) VFFV e) FFFV 21. La tabla de verdad de: ( ∼ p ∨ q ) ↔ ( p ∨ ∼ q ) es: a) VFVF b) VVVV c) FFFF
  30. 30. 31 22. Formalizar: “ Si luchas por triunfar, entonces triunfarás, sin embargo no luchas por triunfar ” a) p → ( q ∧ r ) b) p → ( q ∧ ∼ r ) c) ( p → q ) ∧ ∼ p d) ( p → q ) ∧ ( p ∨ q ) e) ( p → q ) ∨ ∼ q 23. Al simplificar: ∼ ( q ∧ ∼ r ) → ( p ∧ ∼ p ) se obtiene: a) p 24. Si: ( p ∧ ∼ q ) → r a) VVV b) q c) p ∧ q d) F e) V es falsa ; los valores de verdad de p , q y r son: b) VFF c) FFF 25. Ningún mentiroso es confiable; luego se puede afirmar: a) Algunos no confiables son mentirosos. b) Todo confiable es mentiroso. c) Algunos mentirosos son confiables. d) Algunos confiables son mentirosos. e) Ningún mentiroso es no confiable. d) FVV e) FVF
  31. 31. 32 RESUMEN TEORICO 1. NUMEROS NATURALES ( N ): Son los enteros positivos. Se representan así: N = { 1, 2, 3, 4, 5, 6………} 2. NUMEROS ENTEROS ( I ) : Resultan de la reunión de los números naturales y las diferencias de dichos números, es decir lo números negativos. Se pueden representar así: I = { ……-3, -2, -1, 0, 1, 2, 3, 4, ……. } Los números naturales están incluidos en los enteros. 3. NUMEROS RACIONALES ( Q ): Está dado como el cociente de dos números enteros. Ejemplo: 2 Q; porque: 2 = Son de la forma: Q = { x / x = 2 4 - 40 2a = = = .......... = ; donde a ≠ 0 1 2 - 20 a p , p ,q q I} Todo número entero es racional, pero no todo racional es entero. Los números racionales se pueden representar como fracciones decimales periódicas puras o mixtas. ) 3 1 0.3 = = 9 3 ) 32 - 3 29 2. 0.32222222….. = 0.32 = = 90 90 Ejemplo: 1. 0.333333333…. = 3. NUMEROS IRRACIONALES ( Q' ).- Resultan de extraer raíces de índice par a cantidades naturales inexactas. Ejemplo: 2 = 1.4142......... 3 = 1.7321........ ; A las constantes numéricas se les considera también números irracionales. Ejemplo: e = 2.7182818…………. 4. NUMEROS REALES ( R ) .- ; π = 3.14159266............. Resultan de la unión de los números racionales e irracionales; de la forma Q ∪ Q' . AXIOMAS DE LOS NUMEROS REALES: 1. AXIOMAS DE LA ADICION.1.1 CLAUSURA O EXISTENCIA: 1.2 CONMUTATIVA: Si a, b 1.3 ASOCIATIVA: Si a, b y c Si a, b R →a+b R R →a+b=b+a R →(a+b)+c=a+(b+c) 1.4 EXISTENCIA DEL ELEMENTO NEUTRO ADITIVO: Existe el elemento 0 todo a R, para R →a+0=a 1.5 EXISTENCIA DEL INVERSO ADITIVO U OPUESTO: Para todo a elemento ( - a ) R , tal que a + ( - a ) = 0 R , existe el
  32. 32. 33 2. AXIOMAS DE LA MULTIPLICACION.2.1 CLAUSURA O EXISTENCIA: Si a, b R →a.b R R →a.b=b.a 2.2 CONMUTATIVA: Si a, b 2.3 ASOCIATIVA: 2.4 EXISTENCIA DEL ELEMENTO NEUTRO MULTIPLICATIVO: Existe el elemento 1 Si a, b y c R, para todo a R →(a.b).c=a.(b.c) R → a .1 = 1.a = a 2.5 EXISTENCIA DEL INVERSO MULTIPLICATIVO O RECIPROCO: Para todo a – { 0 } , existe el elemento ( 1/ a ) R R , tal que a . ( 1/ a ) = 1 2.6 AXIOMA DE DISTRIBUCION DE LA MULTIPLICACION RESPECTO A LA ADICION: Si a, b, c R → a. ( b + c ) = a . b + a . c RESUMEN TEORICO PRODUCTOS NOTABLES.- Reciben el nombre de productos notables aquellos productos que se pueden determinar directamente sin necesidad de efectuar la operación de la multiplicación algebraica. PRINCIPALES PRODUCTOS NOTABLES: 1. BINOMIO AL CUADRADO.1.1 BINOMIO SUMA AL CUADRADO: ( a + b )² = a² + 2 ab + b² 1.2 BINOMIO DIFERENCIA AL CUADRADO: ( a – b )² = a² - 2 ab + b² OBSERVACION: ( a + b ) 2 = a 2 42ab +42 + 2 b 1 24 4 3 1 4 43 Binomio suma al cuadrado Trinomio cuadrado perfecto RECONOCIMIENTO DE UN TRINOMIO CUADRADO PERFECTO: 1. Se saca raíz cuadrada a los extremos. 2. El doble producto de los resultados debe coincidir con el término central. 2. SUMA DIFERENCIAL.- ( DIFERENCIA DE CUADRADOS ) ( a + b ) . ( a – b ) = a² - b² 3. IDENTIDADES DE LEGENDRE.1.- ( a + b ) ² + ( a – b ) ² = 2( a² + b² ) 2. ( a + b ) ² - ( a – b ) ² = 4ab
  33. 33. 34 3. ( a + b )⁴ - ( a – b )⁴ = 8ab ( a² + b² ) ⁴ ⁴ 4. BINOMIO AL CUBO.4.1 BINOMIO SUMA AL CUBO: ( a + b )³ = a³ + 3a²b + 3ab² + b³ 4.2 BINOMIO DIFERENCIA AL CUBO: ( a – b )³ = a³ - 3a²b + 3ab² - b³ 5. SUMA Y DIFERENCIA DE CUBOS.a³ + b³ = ( a + b ) ( a² - ab + b² ) a³ - b³ = ( a - b ) ( a² + ab + b² ) GENERAL: a 3m ± b 3n = ( a m ± b n )( a 2m m a m b n + b 2n ) 6. TRINOMIO AL CUADRADO.( a + b + c )² = a² + b² + c² + 2ab + 2ac + 2bc 7. TRINOMIO AL CUBO.( a + b + c ) ³ = a³+ b³ + c³ + 3(a+b)(a+c)(b+c) ³ ³ ³
  34. 34. 35 EJERCICIOS: 1. ¿ 21 de que número es el 7% ? a) 300 b) 120 c) 25 d) 310 e) 147 2. Si x es 5% de r y r es 20% de s, ¿Qué porcentaje de s es x? a) 1 % 3. El b) 4% por ciento de a) 0.05 c) 10 % d) 40% e) 100% es: b) 0.25 c) 0.5 d) 2.5 e) 25 4. Dos descuentos sucesivos de 20% y 10%, equivalen a uno del: a) 72% b) 82% c) 28% d) 18% e) 30% 5. Dos aumentos sucesivos del 20% y 30% equivalen a uno del: a) 50% b) 10% c) 56% d) 25% e) 75% 6. A una reunión bailable asistieron 120 personas, si todos bailan a excepción de 26 mujeres. ¿ Cuántas mujeres hay en total ? a) 26 b) 37 c) 83 d) 91 e) 73 7. ¿Cuál es el promedio de todos los múltiplos de 10 desde 10 hasta 190 incluyendo los extremos? a) 90 b) 95 c) 100 d) 105 e) 110 8. El promedio de 3 enteros positivos diferentes es 12. si el primero de estos enteros es 9 veces el segundo entero, ¿Cuál es el menor valor posible para el tercer entero? a) 6 b) 4 c) 3 d) 2 e) 1 d) 0.004 e) 0.008 T 9. El promedio de (0.2) x y (0.3) x es 0.001. El valor de x es: a) 0.4 b) 0.1 c) 0.002 10. El promedio de 100 números consecutivos es 69.5 . El número menor es: a) 20 b) 18 c) 16 d) 24 e) 30
  35. 35. 36 11. El promedio de 50 números es 62.1; se retiran 5 números cuyo promedio es 18. ¿ En cuanto varía el promedio ? a) 4.9 b) 4.8 c) 4.6 d) 4.3 e) 4.2 12. El promedio de edad de 18 hombres es 16 años y la edad promedio de 12 mujeres es 14 años. El promedio del salón será: a) 15.2 b) 15.1 c) 18 d) 17.2 e) 16.8 d) 2n(n+1) e) n(n+1) d) 450 e) 500 13. La suma de los n primeros múltiplos positivos de 6 es: a) 6n(n+1) b) 3n(n+1) c) 4n(n+1) 14. ¿ Cuántos números pares de tres cifras existen ? a) 300 b) 350 c) 400 15. ¿ Cuántos números de tres cifras no tienen ninguna cifra impar en su escritura ? a) 300 b) 250 c) 200 d) 150 e) 100 16. ¿ Cuántos números de tres cifras tienen, por lo menos una cifra par y otra impar ?. Considere el cero como cifra par. a) 675 b) 375 c) 475 d) 575 e) 275 17. ¿ Cuántos números entre 200 y 400 comienzan o terminan con 3 ? a) 20 b) 60 c) 109 d) 110 e) 120 18. Si n es un entero positivo, ¿cuál de los siguientes NO puede ser el dígito de las unidades de 3 n ? a) 1 b) 3 c) 5 d) 7 e) 9 d) 21 e) 22 19. El número de cifras del producto 3² . 4⁹ . 5¹⁷ . 7 es: a) 18 20. Si b) 18 c) 20 xyz = z , ¿Cuál de las siguientes afirmaciones debe ser verdad? a) y=0 b) z=0 c) xy=1 d) y=1 e) z=1
  36. 36. 37 21. Si P.Q.R=1, R.S.T=0 y S.P.R=0, ¿Cuál de los siguientes factores debe ser cero? a) P b) Q c) R d) S e) T 22. En la suma siguiente, A, B, C y D representan dígitos diferentes, ¿ La suma de A, B, C y D es? 5A + BC D43 a) 23 b) 22 c) 18 d) 16 e) 14 23. Si el producto de 6 enteros es negativo, ¿Cómo máximo cuántos de los enteros pueden ser negativos? a) 2 b) 3 c) 4 d) 5 e) 6 24. Si n es par, ¿cuál de los siguientes literales no puede ser impar? i.- n+3 a) solamente i j.- 3n b) solamente j k.- n2-1 c) solamente k d) solamente i y j e) i, j y k 25. ¿Cuál de los siguientes números puede ser usado para mostrar que no todos los números primos son impares? a) 1 b) 2 c) 3 d) 4 e) 5 d) 1/500 e) 2/500 26. ¿ El número 0.127 es que tanto más grande que 1/8 ? a) 1/2 b) 2/10 c) 1/50 27. ¿Cuál es el mayor de 3 enteros consecutivos cuya suma es 24? a) 6 b) 7 c) 8 d) 9 e) 10 28. Un triángulo tiene un perímetro de 13. Los dos lados más cortos tienen longitudes enteras iguales a x y x + 1 . ¿Cuál de los siguientes puede ser la longitud del otro lado? a) 2 b) 4 c) 6 d) 8 e) 10 29. Un bloque cúbico de metal pesa 6 libras, ¿Cuánto pesará un cubo del mismo metal si sus lados son el doble de largos? a) 48 b) 32 c) 24 d) 18 e) 12
  37. 37. 38 30. Cuando x se divide para 9, el residuo es 6 y cuando x se divide para 6 el residuo es 0. ¿Cuál de los siguientes números puede ser x? a) 36 b) 100 c) 106 d) 108 e) 114 31. Si x/y es un entero, ¿Cuál de las siguientes afirmaciones es verdadera? a) x e y son enteros b) x es un entero c) ya sea x o y es negativo d) y/x es un entero e) x=ny donde n es un entero 32. Con referencia a la tabla, ¿cuál de los siguientes describe la relación entre A y B? A 2 10 4 17 5 b) B = 2 A + 1 5 3 a) B = A + 4 B 26 c) B = 3 A − 1 2 d) B = A + 1 2 e) B = A − 1 33. La suma de 3 enteros positivos consecutivos es x. ¿Cuál es el valor del más pequeño de los enteros? a) (x-6)/3 b) (x+6)/3 c) (x/3)-1 d) (x/3)+6 e) 3x-6 34. De los siguientes números: 17, 24, 41, 61, 63, 76 ; ¿ Cuánto suman los números primos ? a) 141 b) 119 c) 121 d) 145 e) 58 35. La distancia desde el pueblo A al pueblo B es 5 kilómetros. C está a 6 kilómetros desde B. Si se afirma que la distancia desde A a C puede ser: i) 11 j) 1 k) 7 Lo anterior es vedad para: a) solo i b) solo j c) solo i y j d) solo j y k e) i, j y k 36. Si 2 x = y ¿Cuál de los siguientes literales debe ser igual a 2 x +1 ? a) y+1 b) y+2 c) 2y d) 4y e) y2 2
  38. 38. 39 37. Un cubo perfecto es un entero cuya raíz cúbica es un entero. Por ejemplo: 27, 64 y 125 son cubos perfectos. Si p y q son cubos perfectos, ¿Cuál de los siguientes no es necesariamente un cubo perfecto? a) 8p b) pq c) pq+27 d) -p e) (pq)⁶ c) 63 d) 64/5 e) 64 38. El resultado de (65÷64)/5 es: a) 1/5 b) 6/5 39. -20, -16, -12, -8… En la secuencia anterior, cada término luego del primero es 4 más grande que el término anterior. ¿Cuál de los siguientes no puede ser un término de la secuencia? a) 0 b) 200 c) 440 d) 668 e) 762 d) 5/11 e) 6/13 40. De los siguientes cinco números, ¿cuál es mayor que 1/2? a) 2/5 b) 4/7 c) 4/9 41. Luego de que una pelota es soltada ésta siempre rebota 2/5 de la altura anterior. Después de su primer rebote la pelota alcanza una altura de 125cm. ¿Qué tan alto (en cm.) llegará la pelota luego de su cuarto rebote? a) 20 b) 15 c) 8 d) 5 e) 3.2 42. Un vestido que se encuentra de realización en una tienda está marcado en $D. Durante este tiempo su precio fue rebajado 15%, los empleados pueden comprar las prendas bajo descuento con un 10% adicional del precio ya descontado. Si uno de los empleados compra el vestido ¿cuánto pagará por el vestido en términos de D? a) 0.75D b) 0.76D ( 43. El resultado de 3 × 10 a) 302400 4 c) 0.765D d) 0.775D e) 0.805D d) 3240 e) 324 ) + (2 × 10 ) + (4 × 10) es: 2 b) 32400 c) 30240 44. Si x/y es un entero, ¿Cuál de las siguientes afirmaciones es verdadera? a) b) c) d) e) x y y son enteros x es un entero ya sea x o y es negativo y/x es un entero x = ny donde n es un entero
  39. 39. 40 45. Si x, y, z son números reales, ¿Cuál de las siguientes igualdades es falsa? a) b) c) d) e) x (y – z) = xy – xz x (y – z) = x (z – y) x (y + z) = (y + z) x x (y + z) = x (z + y) x (y + z) = xy + xz 46. En el conjunto de los números reales.¿Cuál es la factorización completa de la expresión x² - 4? a) x⁴ - 4 d) (x - 47. b) (x² - 2) (x² + 2) 2 ) (x + c) (x² - 2) (x² + 8) 2 ) (x² + 2) e) (x - 2 ) (x + 2 ) (x + 4) a2 − b2 Al simplificar a + b se tiene: a) a2 + b2 +1 b) a+b c) a−b d) ab e) No se puede simplificar más. 48. Si V = a) 12R (r + R ) entonces R es: Vr 12 − V b) Vr + V 12 c) Vr − 12 V − 12 r d) e) V (r + 1) 12 49. ¿ Cuál de los siguientes términos no pertenecen al producto de los polinomios ( x² + 2x –1 ) y (x² - 4x + 3 ) ? a) x⁴ b) 2x² c) -6x³ d) 10x e) -3 50. En el conjunto de los números reales.¿Cuál es la factorización completa de la expresión x⁴ - 4 ? a) x⁴ - 4 d) (x - b) ( x² - 2 ) (x² + 2 ) 2 ) (x + 2 ) (x² + 2 ) e) (x - 2 ) (x + c) ( x² - 2 ) (x² + 8 ) 2 ) (x + 4 ) 51. ¿ Para qué valores de x y y se cumple la siguiente relación ? x – y + i = 3 + ( x + y ) i , si i = a) ( 4, -1 ) b) ( 1, 3 ) −1 c) ( 3, -1 ) d) ( 2, -1 ) e) ( 2, 4 )
  40. 40. 41 52. Dados dos polinomios P( x ) y Q( x ), donde los grados de los polinomios { [ P(x)] ². Q(x) ] } y { [ P(x) ] ³ ÷ Q(x) ] son 27 y 23 respectivamente, entonces el grado de P( x ) es: a) 2 b) 7 c) 8 d) 10 e) 12 53. Dado el siguiente enunciado. El sistema de los números enteros tiene para la adición, un elemento identidad, y cada número entero tiene un inverso aditivo, es válido solamente para: a) Los números naturales. b) Los números enteros. c) Los números enteros negativos. d) Los números naturales y los números enteros. e) Ninguno de los anteriores. 54. Si n es un entero, ¿ Cuál de las siguientes proposiciones es verdadera ? 1. Si n es impar, ( n + 1 )² es par. 3. Si n es par, es irracional. n -1 a) Unicamente 2. 2. Si n es par, ( n – 1 )² es impar. b) Unicamente 1. c) 1. y 2. d) 1. , 2. y 3. e) 1. y 3. 55. En una división de dos polinomios de una sola variable, se sabe que el grado del dividendo es 9 y el residuo es de tercer grado. ¿ Cuál es el máximo grado que puede tomar el cociente ? a) 3 b) 4 56. Al simplificar la siguiente expresión, c) 5 d) 6 e) 7 ( a + b ) ( a 3 - b3 ) + ( a - b ) ( a 3 + b3 ) a 4 - b4 se obtiene: a) 2 b) 4 c) 1 d) 3 e) 5 57. Si a y x son enteros positivos, ¿ Cuál de los siguientes números es siempre un entero ? a) 1 xa b) 1 x -a c) 2 xa d) - 1 xa e) ( x a )−2
  41. 41. 42 58. La expresión a³ - a⁻³ es igual a: a) ( a – 1/a ) ( a² + 1 + 1/ a² ) b) ( 1/a – a ) (a² - 1 + 1/ a² ) c) ( a – 1/a ) ( a² - 1 + 1/ a² ) d) ( 1/a – a ) (1/ a² + 1 + a² ) e) Ninguna de estas respuestas. 59. Si ( x + 5 )² = ( y + 1 )³, ¿ Cuál de las siguientes proposiciones es verdadera ? 1. Cuando x = 3 , y es igual a x. a) Unicamente 3. 2. Si x = 1 , y = 5. b) Unicamante 2. 3. Si x = 0 , y = 0. c) Unicamente 1. d) 1. y 2. e) 1. y 3. 60. Si los polinomios P(x) = 2( x + 7) y, Q(x) = m( x + 2) + n( x – 3) son idénticos. Entonces m.n es: a) -2 b) -8 c) -4 d) 2 e) 1 61. La forma simplificada de [( x² - 3x + 2 ) / ( x² - 2x – 3 )] . [( x² - x – 6 ) / ( x² - 4 )] es: a) ( x – 1 ) / ( x + 1 ) b) - 1 c) x² - 1 d) 1 e) x 62. Si x es un número positivo, ¿ Cuál de las siguientes expresiones es la mayor ? a) x / ( x + 2 ) b) ( x + 1 ) / x d) ( x + 1 ) / ( x – 1 ) c) x / ( x + 1 ) e) ( x + 2 ) / ( x + 3 ) 63. 36x² y 4y²z² , son el primero y último término de un trinomio que es cuadrado perfecto. ¿ Cuál de los siguientes es el término medio ? a) ± 24xyz 64. Si k + 1 b) ± 2xyz c) ± 12x²y²z² d) ± 12xyz e) ± 24x²y²z² representa un entero impar, ¿ Cuál de los siguientes es un entero impar ? a) 2 ( k + 1 ) b) k ( k + 1 ) d) ( k + 1 ) ( k – 1 ) c) ( k + 1 )² - 1 e) ( k + 1 ) ( k + 2 ) 65. La suma de los coeficientes numéricos en el desarrollo del binomio ( a + b )⁶ es: a) 32 b) 16 c) 64 d) 48 e) 7
  42. 42. 43 66. Si x⁻¹ - 1 se divide por x – 1 el cociente es : a) 1 b) 1 / ( x – 1 ) c) - 1 / ( x – 1 ) d) 1 / x e) - 1 / x 67. Una prueba tiene 40 preguntas. Cada pregunta correcta vale un punto, y se quitan dos puntos por cada pregunta que contesta mal. No se quitan ni se aumentan puntos por las preguntas que deje de contestar. Si a un estudiante se le da una nota de 25, y tiene 5 respuestas malas, ¿ Qué parte de las preguntas del test contestó ? a) 1 / 3 b) 4 / 5 c) 7 / 8 d) 3 / 4 e) 3 / 5 68. Si de 100 huevos se rompe el 4 % , y el 25 % salen defectuosos ¿Cuántos huevos se pueden vender? a) 96 b) 62 c) 71 d) 77 e) 72 d) 156.25 % e) 6.5 % 69. Si x se incrementa en 25 %, x² se aumenta en (?) % : a) 25.5 % b) 50.25 % c) 56.25 % 70. ¿ Cuál de las siguientes fracciones es la más cercana a 1 / 4 ?: a) 1 / 5 b) 3 / 10 c) 3 / 200 d) 7 / 20 e) 4 / 15 71. Una mezcla de 17 partes de la sustancia A, 3 partes de la sustancia B y 4 partes de la sustancia C pesan 72 gramos. ¿ Cuántos gramos de sustancia B hay en la mezcla ? a) 3.4 b) 9 c) 12 d) 17 e) 51 72. Una colección filatélica contiene estampillas de correo Alemanas, Americanas e Indias. Si la razón de estampillas Americanas a Indias es 5 a 2 y la razón de estampillas Alemanas a Indias es 5 a 1; ¿ Cuál es la razón de estampillas Americanas a Alemanas ? a) 1:5 b) 5:10 c) 2:15 d) 2:20 e) 2:12 73. Una pintura debe ser preparada con 2 partes de pintura pura y 1.5 partes de agua. El pintor por error ha preparado 6 litros de pintura la cual es mitad agua y mitad pintura pura. ¿Qué debe ser adicionado para hacer las proporciones de la mezcla correctas? a) 1 litro de pintura b) 1 litro de agua d) ½ de pintura y 1 litro de agua c) ½ litro de agua y 1 litro de pintura e) ½ de pintura
  43. 43. 44 74. Si con x = -1, la expresión ax⁵ + bx³ - 4 es igual a 0 ; ¿ Cuál es su valor cuando x = 1 ? a) - 4 b) - 8 c) 0 d) 6 e) 1 4x 2 y 2 + 4y 4 x 2 = 2xy , entonces xy² = ?: 75. Si a) 1 b) 2xy c) x = y d) 0 e) 2 ax - a se tiene: a +2 76. Al racionalizar el numerador en la expresión a) a (x -a ) ( a +2)( a +2) b) ax - a 2 a x +2 a c) ax - a 2 a x + a a + 2 ax + 2a d) ax + a 2 a x -2 a e) Ninguna de las anteriores. 77. Si i = a) d) 2+ 3i es : 1+ 2 i − 1 , el resultado de − 2+ 6 3 b) 2+ 6 + 3 78. Al factorizar 2+ 6 i 3 c) 3 -2 i 3 e) 3 -2 + 3 3-2 i 3 2+ 6 i 3 x² - 2xy + y² - z² se obtiene : a) (x+y)(x+y) b) ( x – y + z ) ( x – y – z ) d) (x+y)(x+y–z) c) ( x + y ) ( x + z ) e) ( x – z ) ( x + y – z ) 79. Un padre cumple 71 años y su hijo 34 años el mismo día. El padre tendrá el doble de la edad de su hijo dentro de: a) 2 años. b) 3 años. c) 4 años. d) 5 años. e) Ninguno de los anteriores. 80. Un ciclista en una hora de competencia gasta 8 calorías por cada kilogramo de peso. El número de calorías que gastará en una competencia de 4 horas si su peso es 55 kilogramos, es: a) 440 calorías. b) 880 calorías. c) 1760 calorías. d) 3520 calorías.
  44. 44. 45 e) Ninguno de los anteriores. 81. En una caja de cubos de azúcar los cubos están empacados por capas. Una capa contiene 18 cubos y la caja 126 cubos. El número de capas de cubos de azúcar que hay en la caja es: a) 5 b) 6 82. La expresión algebraica c) 7 x x-2 d) 8 e) Ninguno de los anteriores. tiene valor numérico real: a) Para todos los valores reales de x. b) Para todo valor real de x mayor que 2. c) Para todo valor real de x menor que 2. d) Para todo valor real de x distinto de 2. e) Ninguno de los anteriores. 83. El grado de una suma de polinomios es: a) La suma de los grados de los polinomios que se suman. b) El grado del polinomio sumando los de menor grado. c) El grado de los polinomios sumandos de menor grado. d) Igual o menor que el grado de los sumandos de mayor grado. e) Ninguno de los anteriores. 84. De las siguientes fracciones: 7 3 11 19 11 ; ; ; ; . La suma de los términos de la mayor 12 5 20 30 15 de ellas, es: a) 19 b) 8 c) 31 d) 49 e) 26 85. El valor de n.( n ) + n , cuando n = 2 es: n a) 10 b) 18 c) 36 86. El valor de x que cumple la igualdad a) 3 b) 9 c) 27 d) 64 e) Ninguno de los anteriores. 169 = 4 3 x + 1 es: d) 81 e) Ninguno de los anteriores. 87. Si { 1, 2, 3, 4, 6, 12 } son los divisores de 12. ¿Cuántos divisores tiene 24?
  45. 45. 46 a) 6 b) 7 c) 8 d) 12 e) Ninguno de los anteriores. 88. Cuatro veces la cuarta parte de la edad de una persona es 32 años. La edad de la persona es: a) 2 años. b) 16 años. c) 32 años. 89. Si un número se multiplica por a) 10 b) 100 d) 64 años. e) Ninguno de los anteriores. 0.16 el resultado es 40, entonces dicho número es: c) 1 / 10 d) 1 / 100 e) Ninguno de los anteriores. 90. En un colegio mixto hay p estudiantes en total, distribuidos en c cursos. Si hay r hombres por curso, ¿Cuántas mujeres hay en el colegio? a) p – r – c b) p – ( r – c ) c) c r – p d) p – r c e) Ninguno de los anteriores. 91. Uno de los siguientes números no es racional: a) 28 b) 13.6666…. c) 12.807978777675… d) 3 1− 19 27 e) 12 / 5 92. Un obrero gasta 28 días para realizar una obra completamente. ¿Qué parte de la obra realiza en cuatro días y medio? a) 1 / 7 b) 6 / 56 c) 14 / 56 d) 8 / 56 e) Ninguno de los anteriores. 93. El resultado de multiplicar los polinomios ( a + b ) y ( a – b ) es el polinomio: a) a² + b² + 2ab b) 2a + b² c) a² - b² d) a² + b² e) Ninguno de los anteriores. 94. El polinomio 2x³ - 3x² descompuesto en factores es: a) x² ( 2 – 3x ) b) 2x ( x – 3 ) c) 3x ( 2 – x ) d) x² ( 2x – 3 ) e) Ninguno de los anteriores. 95. La siguiente expresión 3x ( a + b ) – 2y ( a + b ) en factores, es: a) ( 3x – 2y ) ( a + b ) b) x ( a + b ) ( 3 – 2y ) d) y ( a + b ) ( 3x – 2 ) e) Ninguno de los anteriores. 96. Al factorizar la expresión a⁴ - 80 - a⁰ se obtiene: a) ( a + 3 ) ( a – 3 ) ( a² - 9 ) c) ( a + 3 ) ( a – 3 ) ( a² + 9 ) b) ( a² - 10 ) ( a² + 8 ) d) ( a + 4 ) ( a – 3 ) ( a² + 9 ) c) 3x [ ( a + b ) – 2y ]
  46. 46. 47 e) Ninguno de los anteriores. 97. Si la expresión x⁸ + ax² + b , es divisible por ( x² - 1 ) ( x – 1 ) , el valor de a) -6 b) -4 98. La simplificación de la fracción: c) -12 d) 6 e) -1 a 2 + b 2 + 2ab es: a 2 - b2 a) ( a + b ) / ( a² - b² ) b) 2ab / ab d) ( a – b ) / ( a + b ) 99. a + b es: e) Ninguno de los anteriores. El resultado de ( a) 5 − 2 6 100. La suma ) 2 2 − 3 es: b) 5 − 6 c) 1 − 2 6 d) 5 − 2 e) 1 2 30 + 2 30 + 2 30 + 2 30 es: a) 8 120 101. Si: T = c) ( a + b ) / ( a – b ) b) 8 30 c) 2 32 d) 2 30 e) 2 26 1 1 1 1 1 2 + + + + ....... + + ; su valor es: 12 20 30 40 110 22 a) 4 / 3 b) 2 / 3 c) 5 / 3 d) 1 / 3 e) 5 / 2 102. Si: S = 0.1 + 0.3 + 0.5 + …….. + 1.9 ; el valor de S es: a) 100 b) 10 c) 190 / 10 d) 15 e) 19 103. Si: R = 0.01 + 0.04 + 0.09 + ……. + 1.44 , entonces su valor es: a) 6 104. Si: b) 13 / 2 r n +1 = r n + a) 3.3 x 10 -8 c) 7 d) 15 / 2 e) 9 3 ; el valor de r 10 - r 8 es: 10 n b) 2.3 x 10 -8 c) 1.3 x 10 -8 d) 4.3 x 10 -8 e) Ninguna de las anteriores.
  47. 47. 48 105. Una toalla cuadrada de 0.4m de lado cuesta $ 4. ¿Cuánto costaría si tuviera 0.2m más de lado? a) 6 106. Dado que b) 13 d) 15 107. Al simplificar: b) 2 d) 5 c) 7 e) 9 ( 2n ) ! se obtiene: ( 2n - 1 ) ! ( 2n ) a) 2 108. El valor de E = b) 0 1 2 a) 3 -1 a) 6 d) n e) –n es: -2 b) -3 c) 1 d) -1 e) 2 d) 3 e) 9 ( 3 3 + 2 2 )(3 3 − 2 2 ) − 3 es: 109. El resultado de: E = 110. Al resolver: E = c) 1 ( 2 . 32 ) - 1 ( 4 ) (3) b) 4 c) 7 8  3 + 2 2 - 3 - 2 2  se obtiene:     b) 1024 c) 256 d) 16 111. Al calcular: E = ( a + b + 3 ) ( a + b – 3 ) – ( a – b )² + 9 a) a + b e) 9 a b + = 0.7 8 1 ; entonces a + b es: 5 11 a) 6 a) 64 c) 7 b) a – b c) 3 ab e) Ninguno de los anteriores. se obtiene: d) a / b e) Ninguno de los anteriores. x3 +1 x 3 −1 + , se obtiene: 112. Luego de simplificar: M = 2 x − x +1 x 2 + x +1 a) 2x b) x³ c) x + 1 d) x – 1 e) Ninguno de los anteriores. 113. Si: A = ( x + 8)( x + 9)–( x + 7)( x +10); B = ( x – 5) ( x – 4) – ( x – 6) ( x – 3), el producto A . B es: a) 6 b) 24 c) 12 d) 4 e) Ninguno de los anteriores.
  48. 48. 49 114. Para hallar el valor de la siguiente expresión: F = x² - 5x + y² - 2xy + 5y + 1 ; la información brindada: I.- x + y = 41 ; II.- x – y = 17 , será: a) La información I.- es suficiente. b) La información II.- es suficiente. c) Es necesario utilizar ambas informaciones. d) Cada una de las informaciones por separado, es suficiente e) Las informaciones dadas son insuficientes. 115. Al factorizar el polinomio x² + 2xy + y² - 81 en los enteros, la suma de los coeficientes del factor primo con mayor término independiente, es: a) – 8 b) 9 c) 10 116. Si a² + b² = 30 y a + b = a) 46 d) – 9 e) 11 6 ; el valor de ( a – b )² es: b) 54 c) 30 d) 16 e) 60 117. Si a²b³c³ es un número negativo, ¿Cuál de los siguientes productos resulta siempre negativo? a) bc b) b²c 118. El cuadrado de : a) 4 c) ac d) ab e) bc² 2 + 3 + 2 − 3 , es: b) 2 c) 0 d) 6 e) Ninguno de los anteriores. 2 1   3 1 119. Si:  a +  = 2 , luego ;  a + 3  , es igual a: a a    a) 3 b) 120. El recíproco de a) 2 2 2 c) - d) – 3 2 e) 3 108 − 75 es: b) 7 7 c) 5 5 d) 3 3 e) 6 6
  49. 49. 50 RESUMEN TEORICO DEFINICION.- Se llama así a la igualdad entre dos expresiones matemáticas donde a las variables que aparecen en la igualdad se les denomina incógnitas y a los valores que verifican la igualdad se les llama soluciones de la ecuación, las cuales forman el conjunto solución ( C S ). Ejemplo: Sea la ecuación: x(x-1) = x + 3 ; Si x = 3 → 3(3-1) = 3+3 → 6 = 6 Si x = -1 → -1(-1-1) = -1+3 → 2 = 2 Como 3 y -1 verifican la igualdad, son las soluciones de la ecuación, entonces el CS = { -1,3} No se debe confundir con la identidad algebraica , pues ésta cumple para todos los valores de sus letras. Ejemplos: 1. ( a + b )² = a² + 2ab + b² 2. a² - b² = ( a + b ) ( a – b ) Resolver una ecuación es hallar los valores de sus incógnitas que hacen cumplir la ecuación, llamándose las soluciones. CLASIFICACION DE LAS ECUACIONES.- Se clasifican de acuerdo a los siguientes aspectos: 1. Atendiendo a : 1.1 AL GRADO.- Pueden ser de primer grado, segundo grado, tercer grado, etc. 1.2 A LOS COEFICIENTES.- Pueden ser numéricas o literales. 1.3 A LAS INCOGNITAS.- Pueden ser de una, dos, tres incógnitas, etc. 2. De acuerdo al tipo de solución pueden ser compatibles e incompatibles. 2.1 ECUACIONES COMPATIBLES.- Cuando admiten soluciones, y estas se dividen en: 2.1.1 Ecuaciones determinadas.- Cuando tienen un número limitado de soluciones. Ejemplo: Si (x-2)(x+3)(x-1) = 0 → CS = { -3, 1, 2 } 2.1.2 Ecuaciones indeterminadas.- Cuando tienen un número ilimitado de soluciones. Ejemplo: Si ( x+1 )² +4 = x² + 2x + 5 , se verifica para cualquier valore de x . 2.2 ECUACIONES INCOMPATIBLES O ABSURDAS.- Cuando no admiten solución, el conjunto solución es el conjunto vacío. Ejemplo: 3x - 1 = x + 2 → 3x - 1 = 3x + 6 → - 1 = 6 es un absurdo . 3
  50. 50. 51 Luego el CS = { } ECUACIONES EQUIVALENTES.- Dos o más ecuaciones; se dice que son equivalentes si tienen las mismas soluciones; es decir que las soluciones de la una, son también soluciones de las otras. Ejemplo: 1. → 2. 6x + 3 = 4x + 9 mismo conjunto solución. CS={3} → x² - 6x + 9 = 0 CS={3} ; son ecuaciones equivalentes ya que tienen el Si dos ecuaciones son equivalentes, no necesariamente deben ser ellas del mismo grado. ECUACIONES LINEALES Son aquellas ecuaciones polinomiales, que pueden reducirse a la forma general: ;∀ a ≠ 0 ax + b = 0 cuya solución es: x = -b / a DISCUSIÓN DE LA SOLUCION.1. Si a ≠ 0 y b ≠ 0 , se tendrá: x = −b ; valor real. a 2. Si a ≠ 0 y b = 0 , se tendrá: x=0 ; 3. Si a = 0 y b = 0 , se tendrá: x = indeterminado. 4. valor real. Si a = 0 y b ≠ 0 , se tendrá que no hay solución, o es una ecuación incompatible o absurda. ECUACIONES CUADRATICAS FORMA GENERAL.Una ecuación cuadrática o de segundo grado con una incógnita es de la forma: ax² + bx + c = 0 ; ∀a≠0 Esta forma se denomina completa, cuando a, b, c son diferentes de cero, pero cuando b ó c, ó ambas son cero, se denomina incompleta. RESOLUCION DE UNA ECUACION DE SEGUNDO GRADO CON UNA INCOGNITA.Se resuelve mediante dos formas: a.- Factorizando mediante el aspa simple. b.- Aplicando la fórmula general. Ejemplo: Resolver la ecuación: 4x 2 - 3x + 5 =2 x 2 - 2x + 13
  51. 51. 52 a.- Operando e igualando a cero, se tiene: 4x² - 3x + 5 = 2x² - 4x + 26 ; 2x² + x – 21 = 0 ; ahora factorizando: ( 2x + 7 ) ( x – 3 ) = 0 Igualando cada factor a cero: Si: 2x + 7 = 0 → → Si: x – 3 = 0 x1 = - 7 / 2 x2 = 3 b.- Cuando la factorización no es inmediata, se aplica la fórmula. DEDUCCION DE LA FORMULA GENERAL.De la ecuación: ax² + bx + c = 0 ; multiplicando ambos miembros por 4a se tiene: 4a²x² + 4abx + 4ac = 0 ; ahora si sumamos -4ac + b² a los dos miembros se tiene: 4a²x² + 4abx + b² = b² - 4ac ; de aquí se tiene : operar: 2ax + b = ( 2ax + b )² = b² - 4ac ; que luego de ± b 2 - 4ac 2ax = - b ± b 2 - 4ac ; y finalmente: x= - b ± b 2 - 4ac 2a De donde se obtienen las soluciones: x1 = - b + b 2 - 4ac 2a x2 = - b − b 2 - 4ac 2a Ejemplo: Resolver la ecuación: 2x² - 3x – 2 = 0 Para resolver la ecuación dada por la fórmula, se observa que: a=2 , b= -3 , c= -2 , entonces se tiene: x= 3 ± 3 2 − 4 x2x(-2) 3 ± 9 + 16 3 ± 25 3± 5 = = = , de donde: 2x2 4 4 4 3+5 8 = =2 4 4 3 - 5 - 2 -1 x2 = = = 4 4 2 x1 = DISCUSIÓN DE LAS RAICES DE LA ECUACION DE SEGUNDO GRADO: Las raíces de la ecuación de segundo grado dependen de la cantidad subradical que se denomina DISCRIMINANTE
  52. 52. 53 “D“ D = b² - 4ac Debido a esto, los casos que se presentan son: a.- Si D>0 ; las dos raíces son reales y desiguales. b.- Si D=0 ; las dos raíces son reales e iguales. c.- Si D<0 ; las dos raíces son complejas y conjugadas. PROPIEDADES DE LAS RAICES DE UNA ECUACION DE SEGUNDO GRADO: De la ecuación ax² + bx + c = 0 se tiene que sus raíces son x1 y x 2 como se dedujo más arriba . 1. Si sumamos las raíces se tiene: x1 + x 2 = − b a x1 . x 2 = c a 2. Si multiplicamos las raíces se tiene: FORMACION DE UNA ECUACION DE SEGUNDO GRADO CONOCIENDO SUS RAICES: x1 y x2 son las raíces de la ecuación que quiere formarse, de acuerdo a las propiedades anteriores, la ecuación se formará así: x² - ( x 1 + x 2 )x + ( x1 . x 2 ) = 0 Si
  53. 53. 54 EJERCICIOS: 1. La igualdad 1 / ( x – 1 ) = 2 / ( x – 2 ) se satisface para : a) Ningún valor real de x. b) x = 1 ó x=2 c) Solamente para x = 1 d) Solamente para x = 2 e) Solamente para x = 0 2. ¿ Para que valor de x la igualdad 1 / x = 1 / ( x – 2 ) es una proposición verdadera ? a) 0 b) 1 c) - 2 d) 2 e) Ningún valor es posible. 3. ¿ En cuántos doceavos es 1 / 3 de 3 / 4 mayor que 1 / 4 de 2 / 3 ? a) 12 4. x= y− b) 6 c) 5 d) 1 e) 2 50 donde x y y son ambos mayor a cero. Si el valor de y es doblado en la ecuación y anterior, el valor de x: a) decrecerá b) se mantendrá igual d) se doblará e) se incrementará más del doble 5. Si x y y son enteros y a) 0 c) se incrementará 4 veces 3 x + 2 y = 13 , ¿Cuál de los siguientes puede ser el valor de y? b) 1 c) 2 d) 3 e) 4 6. En una fábrica la tercera parte de los trabajadores son mujeres, de las cuales la mitad son casadas, y la mitad de las mujeres casadas tienen niños. Si los 3 / 4 del total de hombres son casados y los 2/3 de los hombres casados tienen niños, ¿ Qué parte de los trabajadores no tienen niños ? a) 2 / 3 b) 7 / 12 c) 4 / 9 d) 17 / 36 e) 5 / 18 7. La razón de asistencia a un partido de fútbol en un colegio fue de 14 estudiantes por cada profesor. Si estuvieron 3000 personas en el partido, ¿Cuántos de ellos fueron profesores? a) 1 b) 14 c) 200 8. Los valores de x que satisfacen la ecuación 1 + a) 2 + 2i , 2 – 2i b) 4 , 0 c) 2 , - 2 d) 256 8 4 = x2 x e) 2800 son: d) 2 + 4i , 2 – 4i e) Ninguno de los anteriores.
  54. 54. 55 9. La solución de la ecuación ( 2x – 3 )² + x ( x – 1 ) = 9 es: a) 13 / 5 , 0 b) -1 , 1 c) 1 / 2 , 7 / 6 d) 3 / 2 , 2 e) Ninguna de las anteriores. 10. Las raíces de una ecuación cuadrática x² + bx + c = 0 son 2 y - 3; la ecuación es : a) x² - x + 6 = 0 b) x² + x + 2 = 0 d) x² - x – 3 = 0 c) x² + x – 6 = 0 e) Ninguna de las anteriores. 11. Diariamente cada niño de un orfanato recibía 30 caramelos, pero como llegaron 6 niños adicionales, ahora sólo reciben 28 caramelos. Si llegaran 15 niños más, ¿ Cuántos caramelos recibiría cada uno diariamente ? a) 26 b) 25 c) 24 d) 23 e) 22 12. Un tonel lleno de vino vale $ 7000. Si se sacan de él 80 litros, entonces valen solamente $ 1400. ¿ Cuál es la capacidad del tonel ? a) 80 b) 100 c) 90 d) 120 e) Ninguno de los anteriores. 13. Si en 80 lts. de agua de mar hay 2 lbs. de sal. ¿ Cuánta agua pura hay que agregar a estos 80 lts. para que en cada 10 lts. de la mezcla haya 1 / 6 lb. de sal ? a) 30 lts. b) 50 lts. c) 20 lts. d) 40 lts. e) Ninguna de las anteriores. 14. Diez obreros pueden hacer un trabajo en 24 días; ¿ Cuántos obreros de igual rendimiento se necesitarán para hacer un trabajo 7 veces más considerable en un tiempo 5 veces menor ? a) 350 b) 370 c) 390 d) 410 e) 340 15. ¿ Dentro de cuántos años la relación de las edades de dos personas será igual a 7 / 6, si sus edades actualmente son de 40 y 30 años ? a) 40 b) 20 c) 35 d) 30 e) 25 16. En la capilla los alumnos de la escuela están agrupados en bancos de a 9 en cada uno, si se le coloca en bancos de a 8, entonces ocupan 2 bancos más. Entonces el número de alumnos que están presentes serán: a) 122 b) 136 c) 144 d) 169 e) Ninguno de los anteriores.
  55. 55. 56 17. La diferencia entre el cubo de un número entero y el mismo número es 210. ¿ Cuál es dicho número ? a) 5 b) 6 c) 7 d) 8 e) 9 18. La suma de dos números es 270 y la raíz cuadrada de uno de ellos es igual a la raíz cuadrada del otro, aumentado en 18. Señale la suma de cifras de uno de los números. a) 9 b) 8 c) 10 d) 12 e) 7 19. Dos personas trabajando solas pueden terminar una obra en 8 y 10 días respectivamente. ¿ En cuántos días terminarán la obra si trabajan juntas ? a) 4 días b) 5 5 días 9 c) 4 5 días 9 d) 5 4 días 9 e) Ninguno de los anteriores. 20. Un equipo de baloncesto profesional anotó el 25 % de sus tantos en el primer cuarto del partido, el 15 % en el segundo cuarto y el 40 % en el tercer cuarto. Si el equipo obtuvo 21 puntos en el cuarto final del partido, ¿ Cuántos puntos el equipo obtuvo durante el partido ? a) 84 b) 96 c) 100 d) 105 e) No se da suficiente información. 21. Las dimensiones interiores de un envase de almacenaje de forma rectangular son de 10 pies de longitud, 6 pies de anchura y 8 pies de alto. Cuando el envase se llena hasta una profundidad de 3 pies, ¿ Cuántos paquetes de trigo caben, si un paquete de trigo ocupa 2 pies cúbicos ? a) 90 b) 240 c) 360 d) 480 e) 960 22. El último día del año A un padre y su hijo cumplen 30 y 5 años respectivamente. ¿En qué año la edad del hijo será la mitad de la edad del padre? a) A + 30 b) A + 20 c) A + 15 d) A + 10 e) Ninguno de los anteriores. 23. En la ecuación x + 1 / b = ( 1 + ab ) / b , la solución es cero si: a) a = 1 b) a = 0 c) b = 0 d) a.b ≠ 0 e) Ninguno de los anteriores. 24. Si x es elemento de los números enteros, la solución de la ecuación 24x + 15 = 60x – 10 es: a) 25 b) 36 / 5 c) 36 / 25 d) 25 / 36 e) Ninguno de los anteriores. 25. La solución de la ecuación ( x + 2 ) ² - ( x – 2 ) ² = 4x es: a) 1 b) 0 c) - 2 d) - 1 e) Ninguno de los anteriores.
  56. 56. 57 26. La solución de la ecuación a) 18 b) 20 x x x + + = 18 es: 2 3 6 c) 4 d) 6 e) Ninguno de los anteriores. 27. En toda ecuación de la forma a x² + bx = 0, una de las soluciones siempre es: a) x = a b) x = - b c) x = - a / b d) x = 0 e) Ninguno de los anteriores. 28. Si la suma de las raíces de una ecuación es 4 y el producto es 5, la ecuación será: a) x² - 4x + 5 = 0 b) x² + 4x + 4 = 0 c) 4x² + 5x + 1 = 0 d) 4x² - 5x + 1 = 0 e) Ninguno de los anteriores. 29. El producto de las raíces de la ecuación x² - 5x + 6 = 0 es: a) 8 b) - 5 c) 6 d) 30 e) Ninguno de los anteriores. 30. La suma de las raíces de la ecuación x² - 5x + 6 = 0 es: a) - 5 b) 5 c) 5 / 6 d) 11 e) Ninguno de los anteriores. 31. Una persona compró con $ 5550 un cierto número de calculadoras y computadoras, si cada calculadora le costó $ 160 y cada computadora $ 230, ¿ Cuántos artículos compró en total ? a) 26 b) 29 c) 24 d) 30 e) 21 32. Tres docenas de limones cuestan tantos centavos como limones dan por 1600 centavos. ¿ La docena de limones valdrá ? a) 80 centavos b) 70 centavos c) 120 centavos d) 90 centavos e) Ninguno de los anteriores. 33. Cuando se posa una paloma en cada poste hay 3 palomas volando, pero cuando en cada poste se posan 2 palomas, quedan 3 postes libres. ¿ Cuántas palomas hay ? a) 9 b) 10 c) 12 d) 16 e) Ninguno de los anteriores. 34. La edad de un niño será dentro de 4 años un cuadrado perfecto. Hace 8 años la edad era la raíz cuadrada de este cuadrado. Qué edad tendrá dentro de 8 años ? a) 28 b) 26 c) 24 d) 12 e) 20
  57. 57. 58 35. Hoy Carlos es 5 años mayor que lo que Juan fue hace 2 años. Juan tiene ahora j años. En términos de j ¿Cuál es la edad de Carlos ahora? a) j-5 b) j-3 c) j-2 d) j+2 e) j+3 36. Los tres hijos de Pepe tienen ( 2x + 9 ) , ( x + 1 ) y ( x + 2 ) años respectivamente. ¿ Cuántos años tendrán que transcurrir para que la suma de las edades de los últimos sea igual a la del primero ? a) 5 b) 8 c) 6 d) 9 e) 10 37. La suma de las edades de dos hombres dentro de 9 años será 98 años. Si el mayor tiene 30 años más que el menor. La edad del menor es: a) 20 b) 24 c) 26 d) 30 e) 25 38. Seis años atrás Anita fue P veces más vieja que Benjamín. Si Anita tiene ahora 17 años, ¿cuántos años tiene Benjamín en términos de P? a) (11/P)+6 b) (P/11)+6 c) 17-(P/6) d) 17/P e) 11.5P 39. Luis ha comprado 5 esferos y 4 reglas por 70 pesetas. Carlos ha pagado 46 pesetas por 3 esferos y 4 reglas. El valor de cada esfero es: a) 12 b) 2.5 c) 10 d) 5.5 e) Ninguno de los anteriores. 40. Un pastel grande cuesta lo mismo que tres pequeños. Siete grandes y cuatro pequeños cuestan $ 12 más que cuatro grandes y siete pequeños. Un pastel grande costará: a) 8 b) 6 c) 4 d) 2 e) Ninguno de los anteriores. 41. La solución de la ecuación ax2 + bx + c = 0 ; donde a,b,c son elementos de los números reales con a diferente de cero, indicar cual de las siguientes proposiciones es verdadera. a) Cuando b²- 4ac es positivo, las dos soluciones son reales e iguales b) Cuando b²- 4ac es positivo, las dos soluciones son complejas c) Cuando b²- 4ac es negativo, las dos soluciones son distintas y ninguna de ellas son reales d) Cuando b²- 4ac es igual a cero, las dos soluciones son iguales y ninguna de ellas es real
  58. 58. 59 42. La solución de la ecuación (2x-3)(x)(x+3) = 0 ; para x elemento de los números enteros es el conjunto formado por los elementos: a) { 0, 2/3, -3} b) { -3, 0, -2/3 } c) { 3/2, 0, -3} d) { 3/2, -3} e) { 0, -3} 43. La solución de la ecuación (2x-3)(x)(x+3) = 0 ; para x elemento de los números racionales es el conjunto formado por los elementos: a) { 0, 2/3, -3} b) { -3, 0, -2/3 } c) { 3/2, 0, -3} d) { 3/2, -3} e) { 0, -3} 44. La solución de la ecuación ( x² - 2 )( x² - 3 )( x – 2 )( x – 3 ) = 0 ; para x elemento de los números irracionales es el conjunto formado por los elementos: a) {2,3,-2,-3} b) {2,3} c) { 2 , 3 , 2,3 } d) { -2,-3 } e) Ninguno de los anteriores 45. La solución de la ecuación ( x² + 2 )( x² - 9 ) = 0 ; para x elemento de los números reales es el conjunto formado por : a) { 0,-2,3, -3} b) { 2,3 } c) { -2,-3 } d) { 2i,-2i,3,-3} e) Ninguno de los anteriores 46. La solución de la ecuación ( x² + 2 )( x² - 9 ) = 0 ; para x elemento de los números complejos es el conjunto formado por los elementos: a) { 0,-2,3,-3} b) { 2,3 } c) { -2,-3 } d) { 2i, -2i,3,-3} e) Ninguno de los anteriores 47. La solución de la ecuación ( x² +5x +6 )( x – 2 )( x + 3 ) = 0 ; para x elemento de los números naturales es el conjunto formado por los elementos: a) { -3, -2, 2 } b) { 2, -3 } c) { -3 } d) { -2 } e) { 2 } 48. El valor de K para que las soluciones de la ecuación 2x² -5x +K = 0 sean números complejos es: a) 0 b) 2 c) -4 d) -25/8 e) >25/8 49. El valor de K para que las soluciones de la ecuación 2x² -kx + 5 = 0 sean iguales es: a) 40 o -40 b) 40 0 - 40 c) -4 d) 4 e) > 40 50. El valor de K para que las soluciones de la ecuación kx² + 2x - 5 = 0 sean reales diferentes es: a) > - 0.2 b) 2 c) -2 d) 4 e) > 0.2
  59. 59. 60 51. La suma de los valores de k que hacen que la ecuación: (4-k)x² + 2kx +2 =0, tenga sus raíces iguales, es: a) 2 b) -2 c) 3 d) -3 e) -4 52. La menor raíz de la ecuación (k-2)x² - (2k-1)x + (k-1) = 0 sabiendo que el discriminante es 25 es: a) 3/4 b) 1/2 c) 4/5 d) 1/5 e) 5/3 53. Si la ecuación (a+4)x² - 1 = (2a+2)x – a presenta única solución, entonces el valor de a es: a) 5 b) 3 c) 2 d) 1 e) 0 54. Si una de las raíces de la ecuación 2x² - 4x +C² - 2C – 3 = 0 es cero, el valor de C (C<0) es: a) -2 b) -3 c) -1 d) -4 e) -10 55. Dada la ecuación polinomial : 3x² - 2bx + b = 0 halle b para que una de las raíces sea el triple de la otra. a) 1 b) 4 c) 2/3 d) -2/3 e) -3/4 56. Si los cuadrados de las dos raíces reales de la ecuación: 2x² + cx + 2(c-1) = 0 suman 23, entonces el valor de c es: a) -6 b) 6 57. Si las raíces de la ecuación x² raíces sean a) x² - 1 = 0 x1 2 59. Si 4 d) -4 e) 5 2 x + 1 = 0 son x1 y x2 construir la ecuación cuadrática cuyas 2 y x2 . b) x² + 1 = 0 58. En el sistema: 3x + y = 19 y a) 20 c) b) 18 c) 2x² + 1 = 0 d) 3x² + 2 = 0 e) x² + 3 = 0 x + 3y = 1 . El valor de 2x + 2y es: c) 11 d) 10 e) 5 5n + p = 3 y 2m − 10n = 2 , ¿Cuál es el valor de m + p ? a) 2 b) 4 c) 5 d) 7 e) 8
  60. 60. 61 60. Si a = 4 + b y 3a = 12 − 2b ¿Cuál es el valor de a? a) 24 61. El sistema: b) 12 c) 8 d) 4 e) 3 3x + 4y + z = 5 4x + 5y + z = 7 x – y – 2z = 4 a) No admite soluciones. b) Admite tres y sólo tres soluciones. c) Admite una única solución. d) Admite infinitas soluciones. e) Ninguna de las anteriores. 62. El sistema: x + 4y + 7z = - 6 2x + 3y + 6z = - 4 5x + y – z = 6 Tiene como solución el conjunto: a) {( -4, 0, 1)} b) {(0, -1, -1)} d) {(0, 4, -1)} e) Ninguno de los anteriores. 63. El determinante de la matriz: a) 19 b) 16 1 3 1  2 5 0    3 1 − 2   c) - 9 c) {(1, 0, -1)} es: d) -11 e) Ninguno de los anteriores. 64. Si x 2 − y 2 = 55 y x − y = 11 entonces y es: a) 8 b) 5 c) 3 d) -8 e) -3 d) -3 e) -8 65. Si x 2 − y 2 = 55 y x − y = 11 entonces x es: a) 8 b) 5 c) 3
  61. 61. 62 66. Si: 32 b c 4 = = = ; el valor de ( r + c ) es: b c 4 r a) 1 / 2 67. Se da b) 10 c) 8 d) 14 e) 20 a c a +1 c + 2 = . Entonces k vale: = = k , con 2b – d ≉ 0 . Además se sabe que: c d b+3 d+6 a) 1 / 5 b) 1 / 4 c) 1 d) 1 / 2 e) 1 / 3 68. El aceite que contiene un tanque vale 5600 dólares. Si se sacan 40 litros vales solamente 2400 dólares. ¿ Cuántos litros contenía el tanque ? a) 60 b) 70 c) 80 d) 100 e) 140 69. Si a cada uno de mis sobrinos les doy $ 3 sobraría $ 19, pero si a cada uno les doy $ 5 me sobraría $ 5 . ¿ Cuánto tengo ? a) $ 7 b) $ 21 c) $ 12 d) $ 42 e) $ 40 70. En una fiesta los hombres y mujeres asistentes están en la relación de 3 a 1. Después de transcurridas 6 horas se retiran 20 parejas y ocurre que la nueva relación de hombres a mujeres es de 5 a 1. Entonces el número original de asistentes a la fiesta fue de: a) 160 b) 180 c) 200 d) 220 e) 240 71. En una granja se observa que por cada 2 gallinas hay 3 patos y por cada 5 pavos hay 2 patos. Si se aumentaran 35 gallinas estas serían igual a la cantidad de pavos. El número de patos en el corral es: a) 18 b) 12 c) 36 d) 20 e) 24 72. En una reunión, el número de mujeres asistentes es al número de mujeres que no bailan como 10 es a 3 . Si todos los hombres estaban bailando y son 20 más que las mujeres que no bailan. ¿ Cuántas personas hay en la reunión ? a) 70 b) 85 c) 90 d) 35 e) 100 73. Hallar tres cantidades, si éstas suman 690 y están en la relación a 5; 7 y 11. Determinar el doble de la cantidad mayor: a) 700 b) 760 c) 660 d) 600 e) Ninguna de las anteriores.
  62. 62. 63 74. Dos números se diferencian en 45 unidades. Hallar estos números si se sabe que están en relación como 5 es a 2 . a) 70 y 115 b) 75 y 30 c) 90 y 45 d) 35 y 80 e) Ninguna de las anteriores. 75. Se tienen 2 barriles con vino de diferente calidad. El primero contiene 20 litros y el otro 30 litros. Se saca de cada barril la misma cantidad y se hecha en el primero lo que se sacó del segundo y viceversa. ¿Qué cantidad de vino ha pasado de un barril a otro, si el contenido de los dos resultó de la misma calidad? a) 20 b) 18 c) 14 d) 12 e) 10 76. Una florista por cada 5 rosas que vende regala 2. Si tenía 350 y al final no le queda ninguna, ¿ Cuántas rosas regaló ? a) 50 b) 70 c) 100 d) 140 e) 150 77. Del centro de un circulo se trazan 29 rayos formando ángulos centrales que son proporcionales a los 29 primeros números enteros positivos; luego, el mayor ángulo mide: a) 29° b) 28° c) 30° d) 26° e) 24° 78. Dos números son entre si como 5 es a 7. Si la suma de dichos números es 180, el número mayor es: a) 70 b) 84 c) 90 d) 91 e) 105 79. La razón de dos números es 13 / 8 . Si dichos números se diferencian en 45. El menor de dichos números es: a) 48 b) 72 c) 80 d) 88 e) 93 80. De un total de 320 hinchas del fútbol los que simpatizan con “ Liga “ y por el “ D. Cuenca “ están en la relación de 11 a 5 . ¿ Cuántos simpatizan por “ Liga “ ? a) 300 b) 110 c) 220 d) 88 e) 55 81. Las edades de Andrea y Melisa están en la relación de 8 a 9 . Si dentro de 12 años sus edades sumarán 75, entonces la diferencia de sus edades es?: a) 1 b) 2 c) 3 d) 5 e) 6
  63. 63. 64 82. Si: x + 7 2y + 8 z + 3 = = = 4 ; entonces x + y + z es: x - 14 y -1 3 a) 30 b) 36 c) 32 d) 24 e) 40 83. El promedio de las edades de 4 profesores es 30 años. Si ninguno de ellos es mayor de 35 años. ¿ Cuál será la mínima edad que uno de ellos puede tener ? a) 30 b) 11 c) 22 d) 15 e) 25 84. El promedio de 30 números es 41. Si el promedio de dos de ellos es 48. ¿ El promedio de los restantes es?: a) 30.5 b) 30.8 c) 40.8 d) 40.5 e) 40.0 85. El promedio de 77 números impares consecutivos es 97. La suma de las cifras del menor de ellos es: a) 3 b) 2 c) 4 d) 5 e) 6 86. El promedio de 20 números es 40. Si agregamos 5 números, cuyo promedio es 20. El promedio final es: a) 30 b) 36 c) 40 d) 46 e) 50 87. Pepe es el doble de rápido que Mario, y Mario es el triple de rápido que César. Si entre los tres pueden terminar una obra en 12 días; ¿ En cuántos días Mario junto con César harían la misma obra ? a) 30 b) 29 c) 32 d) 31 e) 33 88. Se quiere embotellar 111 lt. de aceite en 27 botellas; unas de 5 lt. y otras de 3 lt. ¿ Cuántas botellas más de 5 lt. hay que de 3 lt. ? a) 3 b) 6 c) 4 d) 5 e) 7 89. Katy al comprar 20 chaquetas, le sobra $ 480; pero al comprar 24 chaquetas; le faltarían $ 120. ¿ Cuánto cuesta cada chaqueta ? a) 130 b) 145 c) 140 d) 150 e) 155 90. Sabiendo que 6 varas de paño cuestan lo mismo que 5m y que 2m valen $30. ¿ Cuatro varas costarán?: a) 30 b) 45 c) 40 d) 50 e) 55
  64. 64. 65 RESUMEN TEORICO SIGNOS.- Los signos que se utilizan para designar desigualdades, son: > que se lee: “ mayor que “ < que se lee: “ menor que “ ≤ que se lee: “ menor o igual que “ ≥ que se lee: “ mayor o igual que “ LEY DE TRICOTOMIA EN R .- Dados dos números reales a y b , ellos verifican una y solo una de las siguientes relaciones: a=b “ a igual b “ a>b “ a mayor que b “ a < b “ a menor que b “ DESIGUALDAD.- Se llama desigualdad a la relación entre dos números reales de diferentes valores. Si a ≠ b → a>b ∨ a<b DESIGUALDADES ESTRICTAS: 1. a > b 2. a < b DESIGUALDADES NO ESTRICTAS: 1. a ≥ b 2. a ≤ b DEFINICIONES IMPORTANTES.1. Una cantidad a es mayor que otra cantidad b , si la diferencia ( a –b ) es positiva, es decir: a > b si a–b>0 2. Una cantidad a es menor que otra cantidad b , si la diferencia ( a – b ) es negativa, es decir: a < b si a–b<0 CLASES DE DESIGUALDADES.DESIGUALDAD ABSOLUTA.- Es aquella que se verifica para todos los valores reales que se dan a sus variables.
  65. 65. 66 Ejemplos: 1. x² + 10 > 0 2. a² + b² + 8 > 0 DESIGUALDAD RELATIVA.- Llamada inecuación, se verifica solo para un cierto conjunto solución de sus incógnitas. Ejemplo: 1. 3x – 4 > 0 2. x² - 3x + 1 < 0 RECTA REAL.- Es la recta geométrica donde a cada uno de sus puntos se hace corresponder uno y solo un número real. NUMEROS POSITIVOS.- Es aquel conjunto de números mayores que cero. ( x > 0 ). NUMEROS NEGATIVOS.- Es aquel conjunto de números menores que cero. ( x < 0 ). PROPIEDADES DE LAS DESIGUALDADES.1. El sentido de una desigualdad no se altera si se suma o resta una misma cantidad a ambos miembros. a. Si: x > y → x+n>y+n b. Si: x > y → x–n>y–n 2. Si a los dos miembros de una desigualdad se le multiplica o divide por una misma cantidad positiva, el sentido de la desigualdad no cambia. a. Dado x > y ; n > 0 → b. Dado x > y ; n > 0 → x.n>y.n x y > n n 3. Si a los dos miembros de una desigualdad se les multiplica o divide por una misma cantidad negativa, el sentido de la desigualdad cambia. a. Dado x > y ; n < 0 b. Dado x > y ; n < 0 4. → x.n<y.n → x y < n n a. Si a > b y b > c → a > c b. Si a < b y b < c → a < c 5. Se pueden sumar desigualdades del mismo sentido, teniendo la desigualdad resultante el mismo sentido.
  66. 66. 67 a>b  m>n +  a. ______   a+m>b+n b. a<b   m<n + _______   a+m<b+n 6. Solo se podrán restar desigualdades de sentidos contrarios y el sentido de la desigualdad resultante será el del minuendo. a<b m>n a>b m<n   a. ________   a-m<b-n   b. _________   a-m>b-n 7. Solo se podrán multiplicar desigualdades del mismo sentido y con números positivos y el sentido de la desigualdad resultante no varía. Para a , b , c , d > 0 a>b c<d   x ________   a .d > b.d 8. Solo se podrán dividir desigualdades se sentidos contrarios y con números positivos y el sentido de la desigualdad resultante será el mismo que el del dividendo. a>b c<d Para a , b , c , d > 0 9. a. Si b. Si a > 0 → a .b > 0 ; ( b ≠ 0) b a <0 → a .b< 0 b 10. Siendo a a. Si   ÷ ________   a b > c d y b 1 1 > a b del mismo signo, entonces: → a<b
  67. 67. 68 b. Si 1 1 < a b → a>b 11. a. Para: b > 1; si: bm > bn → m>n b. Para: 0 < b < 1; si: bm > bn a< a+b <b 2 12. Si: a<b → → m<n 13. Para: b ≥ 0 ; si: a² > b → a<-b 14. Para: b ≥ 0 ; si: a² < b → -b <a< b ∧ a>b
  68. 68. 69 EJERCICIOS: En los ejercicios del 1 al 14 se presentan 2 columnas A y B, las respuestas se tomarán de acuerdo al siguiente criterio: a) Si A>B b) Si B>A c) Si A=B d) No se puede establecer e) No será evaluado 1. x=0 Columna A Columna B x +1 x −1 0 2. El conjunto S consiste de todos los enteros de -50 a 0 incluyendo los extremos. El conjunto T consiste de todos los enteros de 0 a 50 incluyendo los extremos. Columna A Columna B El número de enteros en El número de enteros el conjunto S en el conjunto T 3. xo xo Columna A k Columna B 16 4. La suma de k y 7 es igual a la suma de m y 8 Columna A k Columna B m
  69. 69. 70 5. m y p son enteros de 3 dígitos más grandes que 100. El dígito de las decenas de m es 5 y el dígito de las decenas de p es 7 Columna A Columna B m 6. a>0 y p a =3 b Columna A Columna B a b 7. l xo xo yo Columna A Columna B yº 180-2xº 8. R, S y T son dígitos no cero de los números positivos: RS.T y 0.0RST Columna A 10 × RS.T 10000 9. Columna B 0.0RST x, y y z son números primos consecutivos en orden ascendente y x = 2 Columna A Columna B 1 1 1 + + x y z 1 10. El volumen de una esfera con radio r es igual a 4 3 πr 3 Columna A El volumen de una esfera de radio 6 Columna B El volumen total de 2 esferas radio 3 cada una de
  70. 70. 71 11. Para todos los números positivos n y k, se define la operación n ⊗ k como: n ⊗ k = (n − k )k . Adicionalmente: 0 < r < s Columna A Columna B r ⊗s s⊗r Columna A Columna B 12. a(b − c ) + f ab − c + f 13. 8 elementos químicos diferentes representan más del 99% de la composición de la corteza terrestre Columna A Columna B El porcentaje de la corteza terrestre formada de todos los elementos químicos excepto los 1% 8 mencionados 14. Columna A Columna B El área de un El área de un rectángulo con rectángulo con perímetro 40 perímetro 60 15. Si 2 < x < 5 y 3 < y < 8 ¿Cuál de los siguientes literales es verdad para x + y ? a) 1< x + y < 8 b) 2< x+ y <8 d) 3 < x + y < 13 e) 5 < x + y < 13 c) 3< x+ y <8 16. Si n≠0, ¿Cuál de las siguientes opciones debe ser mayor que n? i)2n j) n² a) solo i e) ninguno de ellos k) 2-n b) solo j c) solo i y j d) solo j y k
  71. 71. 72 17. Si x<x3<x2 ¿Cuál de los siguientes valores puede ser el de x? a) 5/3 b) 3/5 c) -2/5 d) -5/2 e) ninguno de los anteriores 18. ¿ Cuántos números racionales de la forma a/16 hay entre ½ y 7/8 ? a) 4 b) 5 c) 6 d) 7 e) 8 19. ¿ Cuántos números naturales tiene su raíz cúbica en el intervalo [ 15 , 16 ) ? a) 721 b) 821 c) 421 d) 521 e) 621 20. El menor valor entero de a que satisface la siguiente relación 3.5 > 0.2(1-4a) > 0.5 es: a) 4 b) 3 c) -1 d) -4 e) -3 21. x e y son enteros x + y < 11 y x > 6 . ¿Cuál es el valor más pequeño posible de x − y ? a) 1 b) 2 c) 4 22. Si: -10 < a < -5 ; -2< b < -1 ; 2 < c < 5 ; entonces a) (1,10) b) (5,20)  1 1  ,   11 7  b) 1 1  ,  5 3 c) e) -4 d) (1/10,1) e) (1/20,1/5) a.b es: c c) (1/5,1/2) 23. Si x pertenece al intervalo (2,4); entonces a) d) -2 1 pertenece al intervalo: 2x + 3 1 1  ,  2 6 d)  1 3  ,   12 4  e)  1 1  ,   13 6  24. ¿Para cuántos valores enteros de n el valor de la expresión 4n + 7 será un entero mayor que 1 y menor que 200? a) 48 b) 49 c) 50 d) 51 e) 52 25. ¿ Cuál de los siguientes puntos pertenece a la intersección de: x² + y² < 6 y x – 3y < 2 ? a) ( -2, -1 ) b) ( 2, -1 ) c) ( 0, -1 ) d) ( 1, 3 ) e) ( -1, -1 )
  72. 72. 73 26. ¿ Cuál es el mayor entero x para el cual - 2x – 3 > 6 ? a) - 4 b) 4 c) 3 d) - 5 e) - 2 d) x < 0 e) x = x 27. Si 0 > x , entonces: a) - x < 0 b) - x < x c) - x > 0 28. Si se sabe que: 0 < m < n < 1, ¿ Cuál de las siguientes expresiones es la mayor ? a) 2m/n b) 2n/m c) n/m d) n/(m+1) e) m/(n+1) 29. Si a > 0 , b < 0 , indique lo falso: a) ab < 0 b) a+b² > 0 c) a/b < 0 d) a-b > 0 e) a < b 30. Hallar un número entero positivo, sabiendo que su quíntuplo más 7 es mayor que 39 y que su cuádruple menos 4 es menor que 28. a) 5 b) 6 c) 7 d) 8 e) 9 31. Lucio vende 100 libros, le quedan más de la mitad de lo que tenía, si luego vende 52 le quedan menos de 50. ¿ Cuántos libros tenía? a) 201 b) 200 c) 203 d) 210 e) 199 32. Si a > b > c , en el conjunto N se cumple que: a) a+c < b+c b) a > b c c) c a b > c c d) b a > b c e) Todas las anteriores. 33. Dar los valores de x para los cuales se verifica la siguiente desigualdad: x² - 1 > 0 a) x > 1 ⋁ x < - 1 b) x > 2 c) 1 > x > 0 d) - 1 < x < 0 e) x > 1 . 34. Si el perímetro de un rectángulo de 10 cm. de largo debe ser menor de 30 cm. , los valores que puede tomar la altura son: a) < 10 cm. b) < 5 cm. c) < 2 cm. d) < 15 / 2 cm. 35. Si a = 1/ b ⋀ b ≤ -1, ¿ Cuál es el valor mínimo que a a) - 1 / 2 b) - 1 c) - 2 d) 0 e) Ninguna de las anteriores. puede alcanzar ? e) No se puede determinar.
  73. 73. 74 36. El mayor número entero cuyo triple sea menor que 63 es: a) 16 b) 17 c) 20 d) 21 e) Ninguno de los anteriores. 37. La base mayor de un trapecio tiene por medida 4x – 13 y la base menor 6x – 23 . ¿ Qué valores puede tomar x ? a) 5 b) 4 c) 7 d) 6 e) Ninguno de los anteriores. 38. La suma de un número real positivo y su triple no puede sobrepasar a 2. x puede tomar los valores: a) 0<x ≤ 1/2 b) 0<x ≤ 2 c) 0<x ≤ 3/2 d) 0<x ≤ 3 e) Ninguno de los anteriores. 39. Una máquina impresora de papel puede imprimir 5000 hojas por hora como máximo. Si en la primera media hora ha impreso 2000 hojas, ¿En que rango imprime en la segunda hora? a) 0≤ x ≤ 5000 b) 0≤ x ≤ 2000 c) 0≤ x ≤ 7000 d) 0≤ x ≤ 3000 e) Ninguno de los anteriores. 40. La longitud de un segmento es 3x – 12. ¿ Qué valores puede tomar x ? a) x ≥ 12 b) x ≥ 3 c) x ≥ 4 d) x ≥ 9 e) Ninguno de los anteriores. 41. A Manuel le dieron a vender una cierta cantidad de patos, vendió 35 y le quedaron más de la mitad. Luego le devuelven 3 y vende después 18, con lo que le resta menos de 22 patos. ¿ Cuántos patos le dieron ? a) 67 b) 68 c) 69 d) 70 e) 71 42. El precio de cierto tipo de fresa puede variar de $2.50 a $3.00 por cada libra y el precio de cierto tipo de cakes puede variar de $0.80 a $1.10 la docena. Para estar seguro de tener suficiente dinero para comprar c libras de fresas y r docenas de cakes, ¿una persona necesita al menos cuantos dólares en términos de c y r? a) c+r 3 + 1 .1 c r + 3 1. 1 b) c) 2.5c + 0.8r d) 3c + 1.1r e) (3 + 1.1)(c + r ) 43. La diferencia entre un número real positivo y su mitad no puede sobrepasar a 4.5. ¿ Qué valores tomará x ? a) 0≤ x ≤ 4.5 b) 0≤ x ≤ 6 c) 0≤ x ≤ 7.5 d) 0≤ x ≤ 9 e) Ninguno de los anteriores.
  74. 74. 75 44. Eduardo tiene un cierto número de canicas. Si este número es duplicado y se tira una canica, por lo menos tendría cinco canicas sobrantes. ¿ Cuantas canicas tenia Eduardo para empezar ? a) Por lo menos 8 b) Por lo menos 7 c) Por lo menos 4 d) Por lo menos 3 e) Ninguno de los anteriores. 45. En un viaje en canoa remamos durante un día. Si remamos 7 millas al día siguiente, recorrimos por lo menos 18 millas durante los dos días. ¿ Cuántas millas remamos durante el primer día ? a) Por lo menos 11 b) Por lo menos 9 c) Por lo menos 7 d) Por lo menos 5 e) Ninguno de los anteriores. 46. Si José pone $ 7 en el banco, tendrá como máximo $ 18. Como máximo, ¿ Cuántos dólares tenía para empezar ? a) Tenía como máximo 7 b) Tenía como máximo 18 d) Tenía como máximo 22 e) Ninguno de los anteriores. 47. Si: -5 < x – 3 < -2 a) -3<M<4 48. Si a y b ¿ Entre qué límites está M ? . b) -7<M<2 c) 1<M<4 c) Tenía como máximo 11 M = x +1 3 d) -4<M<3 e) -1<M<5 son números naturales, además a > b, ¿ Cuál es falsa? ? a+b >0 a) a a−b b) >0 a a−b c) <0 a d) sólo a) y b) 2a 3 + b a 3 e) > a-b b 49. Si a es un número real positivo tal que a² < a. ¿ Que alternativa es falsa? a) a³ > a b) a – 1 < 0 50. Siendo: 4 < b < 7 a) 5 y 8 51. Hallar n , si a) 1 y 9 < a < 15 . b) 2 y 12 a c) a³ < a² b) 3 e) 1/a > 1 Entre que límites varía ( a – b ): c) 5 y 9 es un número real: d) a² > 0 d) 2 y 10 e) 2 y 11 a2 1 ≤ 4 1+ a n c) 4 d) 8 e) 2
  75. 75. 76 52. Dado: -12 < x – 14 < - 10 . Hallar ( a + b ) en: 2a < 3x + 4 < 2b a) 11 b) 13 c) 12 d) 14 e) 10 53. Cinco sumado a un número x da como resultado un número que es mayor que el doble del número original. ¿ De qué conjunto podría haberse escogido el número original ? a) x<5 b) x<6 c) x<4 d) x<2 e) Ninguno de los anteriores. 54. La suma del doble de cierto número y 12 es mayor que cinco veces el número. ¿ Qué números naturales satisfacen esta condición ? a) 1, 2, 3, 4 b) 1, 2, 3 c) 4, 5, 6, 7 d) 1, 3, 4 e) Ninguno de los anteriores. 55. Para revelar una película, esta se mantiene entre 68 y 78 grados Fahrenheit ( F ). ¿ Cuál es la temperatura en grados centígrados ( C ) , si F = 9/5C + 32 ? a) 30 ≤ C ≤ 35 b) 40 ≤ C ≤ 45 c) 20 ≤ C ≤ 25 d) 10 ≤ C ≤ 15 e) Ninguno de los anteriores. 56. Si un kilo de naranjas contiene de 6 a 8 naranjas, ¿ El mayor peso que puede tener cuatro docenas de naranjas es? : a) 4 kg. b) 3 kg. 57. El valor de x en a) {0, 8} 59. Al resolver a) (-20,4) e) Ninguno de los anteriores. c) {1, 8} d) {3, 4} e) Ninguno de los anteriores. c) {-8, 8} d) {3, 4} e) Ninguno de los anteriores. d) (3, 4) e) Ninguno de los anteriores. x + 6 = 8 es: b) {-14, 2} x + 8 < 12 , el intervalo solución, es: b) (-14, 2) 60. Si: x ∈ (2, 4) , entonces a) 10 d) 8 kg. 2x - 8 = 8 es: b) {1, 2} 58. El valor de x en a) {2, 6} c) 7 kg. b) 11 c) (-8, 10) 1 1 1 ∈ ( , ). El valor de a + b es: 2x + 3 a b c) 18 d) 17 e) Ninguno de los anteriores.

×