MODULO DE ESTADÍSTICA
2 MÉTODOS TABULARES Y GRÁFICOS PARA LA ORGANIZACIÓN Y
PRESENTACIÓN DE LOS DATOS
2.1 INTRODUCCIÓN
Una...
de 10, que 14 alumnos no aprobaron el examen, etc.
En el análisis previo, se ha descrito una muestra mediante la presentac...
Tabla 2.3 Peso de 60 alumnos elegidos al azar de una escuela
Si se quiere resumir la información acerca del número de estu...
otros métodos de presentación de los datos que subsanan tales inconvenientes, tales
métodos serán estudiados en unidades p...
Distribución porcentual acumulada
• Que el 23.33% de los alumnos reprobaron el examen de admisión.
• Que el 71.67% de los ...
Próxima SlideShare
Cargando en…5
×

Capitulo ii

158 visualizaciones

Publicado el

0 comentarios
0 recomendaciones
Estadísticas
Notas
  • Sé el primero en comentar

  • Sé el primero en recomendar esto

Sin descargas
Visualizaciones
Visualizaciones totales
158
En SlideShare
0
De insertados
0
Número de insertados
1
Acciones
Compartido
0
Descargas
1
Comentarios
0
Recomendaciones
0
Insertados 0
No insertados

No hay notas en la diapositiva.

Capitulo ii

  1. 1. MODULO DE ESTADÍSTICA 2 MÉTODOS TABULARES Y GRÁFICOS PARA LA ORGANIZACIÓN Y PRESENTACIÓN DE LOS DATOS 2.1 INTRODUCCIÓN Una vez obtenidos los datos de interés, surge la necesidad de presentarlos en forma organizada a fin de que puedan ser analizados fácil y correctamente. La presentación de los datos puede hacerse en forma tabular y/o gráfica. Los métodos a seguir en ambas presentaciones serán estudiados en la presente unidad. 2.2 MÉTODOS TABULARES PARA LA PRESENTACIÓN DE LOS DATOS En este apartado se estudian los métodos tabulares más usuales para presentar un conjunto de datos. 2.2.1 Distribución de frecuencias absolutas Una distribución de frecuencias absolutas es una tabla estadística que describe como se distribuyen las frecuencias con que aparece cada valor de la variable. Para ilustrar la distribución de frecuencias absolutas, consideremos los datos de la Tabla 2.1 Tabla 2.1 Calificación obtenida en un examen de admisión de 60 estudiantes elegidos al azar. ***Construya utilizando un software estadístico la BDE (Base de datos Estadística) para luego estudiar la Tabla de frecuencias de datos no agrupados. La distribución de frecuencias facilita el análisis de los datos, por ejemplo, podemos observar que las calificaciones de los alumnos varían de 4 a 10, que 20 alumnos obtuvieron una calificación de 7; que únicamente dos alumnos obtuvieron una calificación
  2. 2. de 10, que 14 alumnos no aprobaron el examen, etc. En el análisis previo, se ha descrito una muestra mediante la presentación tabular de los datos, siendo éste uno de los objetivos de la estadística descriptiva. Así mismo, a partir de los resultados de esta muestra se pueden hacer algunas conjeturas sobre la población de alumnos que presentaron dicho examen de admisión, siendo éste último, uno de los objetivos de la estadística inferencial. Una tabla de distribución de frecuencias absolutas, se puede emplear también para presentar datos nominales u ordinales. Para ilustrar el caso consideremos el siguiente ejemplo: se tomo una muestra aleatoria de n=50 ciudadanos de un pequeño poblado, con el propósito de investigar sus preferencias electorales, obteniéndose los datos que se presentan en la Tabla 2.2 Tabla 2.2 Preferenc ias electorales de 50 ciudadanos en edad de votar de un pequeño poblado A continuación proceda a obtener la tabla de frecuencias y ella nos dirá que: De los 50 ciudadanos elegidos al azar, 22 están a favor del Partido A, 19 al Partido P y 9 a favor del Partido R. 2.2.2 Distribución de frecuencias absolutas por intervalo (datos agrupados) Supóngase que se desea estudiar el peso de los alumnos de una escuela, para esto se selecciona una muestra aleatoria de 60 estudiantes, obteniéndose los resultados que se presentan en la Tabla 2.3
  3. 3. Tabla 2.3 Peso de 60 alumnos elegidos al azar de una escuela Si se quiere resumir la información acerca del número de estudiantes que tienen un determinado peso, esto puede hacerse presentando los datos como se ha realizado anteriormente. Sin embargo, este tipo de presentación no es conveniente cuando se tiene un número relativamente grande de datos y éstos presentan cierto grado de variabilidad. En este caso resulta difícil describir la tendencia del grupo de datos. Esto se debe a que la variable toma 33 valores diferentes. Cuando esto ocurre resulta conveniente agrupar los datos en lo que se conoce como una distribución de frecuencias absolutas por intervalo (o tabla de frecuencias de Datos Agrupados). En forma manual existen diferentes métodos para construir una distribución de frecuencias por intervalo. ***Utilice un software estadístico para realizar una tabla de datos agrupados considerando los intervalos: 45-50, 50-55, ...., 85-90 Se nota claramente que esta forma de presentación de los datos resulta de mayor provecho, ya que los datos se presentan de una manera más compacta y manejable. Una rápida mirada de la tabla se puede decir que 11 alumnos muestreados tienen un peso mayor o igual que 70 y menor que 75 kilos, que 10 tienen un peso mayor o igual que 65 y menor que 70 kilos. Se observa además, que la distribución de los datos proporciona una imagen razonablemente real de la característica en estudio. Cabe mencionar también que la reducción de los datos da como resultado la perdida de información a detalle. Por ejemplo, en la distribución de frecuencias de la Tabla 2.3, ya no se tiene conocimiento de cual es el peso que tiene cada alumno, sino únicamente se podría decir que 3 alumnos tienen un peso mayor o igual que 45 y menor que 50 kilos, o que 10 alumnos lo tienen mayor o igual que 65 y menor que 70 kilos. Al respecto, recientemente se han creado
  4. 4. otros métodos de presentación de los datos que subsanan tales inconvenientes, tales métodos serán estudiados en unidades posteriores. 2.2.3 Distribución de frecuencias acumulada, porcentual y porcentual acumulada Una distribución de frecuencias acumulada se obtiene sumando a la frecuencia absoluta correspondiente todas las precedentes y sólo tiene sentido determinarlas cuando los datos son cuantitativos. La frecuencia acumulada para un valor de la variable representa el número total de observaciones que son menores o iguales que dicho valor. Una distribución de frecuencias porcentuales se obtiene cuando las frecuencias absolutas se expresan en términos de porcentaje (p). Este porcentaje se obtiene al aplicar en cada valor de la variable la expresión. Una distribución de frecuencias porcentual acumulada se obtiene sumando al porcentaje correspondiente de cada valor de la variable todos los porcentajes precedentes. La distribución de frecuencias porcentuales acumulada solo tiene sentido cuando los datos son cuantitativos. El porcentaje acumulado para un valor de la variable representa el porcentaje de observaciones que son menores o iguales que dicho valor. A manera de ilustrar la forma de interpretar una distribución de frecuencias acumulada, porcentual y una porcentual acumulativa se mencionan los puntos siguientes, obtenidos de la tabla de frecuencias de los datos de la tabla 2.1. Distribución de frecuencias acumuladas • Que 14 alumnos obtuvieron una calificación menor o igual que 5. En otras palabras que 14 alumnos reprobaron el examen de admisión. • Que 43 alumnos obtuvieron una calificación menor o igual que 7. Distribución porcentual • Que el 33.33% de los alumnos muestreados obtuvieron una calificación de 7. • Que solo un 3.33% de los alumnos obtuvieron una calificación de 10.
  5. 5. Distribución porcentual acumulada • Que el 23.33% de los alumnos reprobaron el examen de admisión. • Que el 71.67% de los alumnos obtuvieron una calificación menor o igual que 7. 2.2.4 Distribución de frecuencias relativas La distribución de frecuencias relativas se obtiene cuando las frecuencias absolutas se expresan en términos de proporción. Esta se obtiene al aplicar en cada valor de la variable la expresión. En la Tabla 2.4 se presentan las distribuciones de frecuencias relativas para los datos de la Tabla 2.1 Tabla 2.4 Distribución de frecuencias relativas 2.3 MÉTODOS GRÁFICOS PARA LA REPRESENTACIÓN DE LOS DATOS

×