3 MEDIDAS DESCRIPTIVAS
3.1 INTRODUCCIÓN
Se presentaron los métodos tabulares y gráficos más usuales para destacar las
part...
3.2.3 Mediana
La mediana de un conjunto de n observaciones se representa por Md y se define como el
valor central de los d...
una medida adecuada siempre que se desee una estimación aproximada rápida de la
tendencia central, o cuando sólo estamos i...
En unidades anteriores se presentaron las medidas de tendencia central más comunes
para caracterizar conjuntos de datos. S...
La amplitud (A) de un conjunto de datos es la diferencia entre las observaciones de mayor
y menor valor numérico en el mis...
dispersión de dos o más conjuntos de datos que tienen diferente unidad de medida. Esto
se debe a que la unidad de medida u...
para determinar el peso de un alumno que esta situada a una desviación estándar por
encima de la media, o bien, restar la ...
Para las distribuciones que presentan un solo pico, si a x < 0, se dice que la distribución
es asimétrica negativa; si a x...
presenta un solo pico relativamente alto y recibe el nombre de leptocúrtica; si a *
 x < 3, la
distribución es relativamen...
Próxima SlideShare
Cargando en…5
×

Capitulo iii

187 visualizaciones

Publicado el

0 comentarios
0 recomendaciones
Estadísticas
Notas
  • Sé el primero en comentar

  • Sé el primero en recomendar esto

Sin descargas
Visualizaciones
Visualizaciones totales
187
En SlideShare
0
De insertados
0
Número de insertados
2
Acciones
Compartido
0
Descargas
1
Comentarios
0
Recomendaciones
0
Insertados 0
No insertados

No hay notas en la diapositiva.

Capitulo iii

  1. 1. 3 MEDIDAS DESCRIPTIVAS 3.1 INTRODUCCIÓN Se presentaron los métodos tabulares y gráficos más usuales para destacar las particularidades más importantes de un conjunto de datos. Sin embargo, tales métodos no son suficientes para caracterizarlos en forma resumida. Por ejemplo, si deseamos comparar dos conjuntos de datos, resulta difícil confrontarlos por simple inspección de sus gráficos o de sus distribuciones de frecuencia: En tal caso, resulta conveniente obtener medidas numéricas que describan resumidamente los conjuntos de datos. Existen fundamentalmente dos tipos de medidas de interés para cualquier conjunto de datos. Las de tendencia central y las de dispersión. Medidas que serán estudiadas en la presente unidad. 3.2 MEDIDAS DE TENDENCIA CENTRAL Las medidas de tendencia central resumen los datos en un valor central alrededor del cual se distribuyen todos los datos del conjunto. Entre tales valores están la media aritmética, la mediana, la moda y la media ponderada entre otras. 3.2.1 Media Aritmética La media aritmética, media o promedio de un conjunto de n observaciones x1 , x2 ,..., xn se representa por x y se define como : La media es la más importante de las medidas de tendencia central. Su interpretación corresponde geométricamente al punto de equilibrio de los datos. Posee propiedades teóricas excelentes para su empleo en la inferencia estadística. La desventaja que tiene es que es muy sensible a los valores extremos cuando éstos no están equilibrados entre sí. 3.2.2 Propiedades de la media aritmética La media aritmética posee las siguientes dos propiedades. I.- La suma de las desviaciones con respecto a la media es igual a cero, esto es II.-La suma de las desviaciones al cuadrado con respecto a la media es mínima que con respecto a cualquier otro valor, esto es
  2. 2. 3.2.3 Mediana La mediana de un conjunto de n observaciones se representa por Md y se define como el valor central de los datos, previamente ordenados creciente o decrecientemente. Otra forma de definir la mediana es la siguiente: es el valor a partir del cual el 50% de los datos están por debajo y el otro 50% por arriba. En un conjunto de datos originales la mediana puede determinarse aplicando uno de los siguientes casos. I.- Si n es impar, la mediana será el valor central del conjunto de datos ordenados. II.-Si n es par, la mediana será el promedio de los dos valores centrales, previo ordenamiento de los datos. 3.2.4 Moda La moda de un conjunto de n observaciones se representa por Mo y es el valor de la observación que se presenta con mayor frecuencia en un conjunto de datos. La moda es una medida de tendencia central poco usual, las razones se deben a que puede ocurrir que en un conjunto de datos no exista moda, como también puede suceder que la moda no se un valor único; esto es, que este compartida por dos o más observaciones. 3.2.5 Comparación de la media, mediana y moda En secciones precedentes se hizo notar que la media es el punto de equilibrio de un conjunto de datos. Que la mediana, divide al grupo de datos en dos partes iguales de tal modo que la mitad de los datos quedan por debajo de ella y la otra mitad por arriba. Finalmente, que la moda representa el valor de la observación que se presenta con mayor frecuencia con el conjunto de datos. Estas medidas, son las medidas de tendencia central más usuales por su fácil comprensión y su enorme utilidad. Sin embargo, de estas tres medidas, la media es la más usual para representar la tendencia central de un conjunto de datos. Esto se debe a que generalmente proporciona una mejor estimación de parámetro. Además, la media posee propiedades teóricas excelentes que no tienen la mediana y la moda, y que originan que la media sea ampliamente utilizada en la inferencia estadística. No obstante, pueden presentarse también algunas situaciones en las que se opta por el empleo de la mediana en lugar de la media para representar la tendencia central de un conjunto de datos. Estas situaciones se presentan en aquellos grupos de observaciones que contienen valores extremos que no están equilibrados en ambos lados del colectivo y que a causa de la sensibilidad de la media, ésta proporciona una estimación errónea de la tendencia central. En estas circunstancias, la mediana resulta ser la medida apropiada para representar la tendencia central de un conjunto de datos. Por otro lado, la moda es
  3. 3. una medida adecuada siempre que se desee una estimación aproximada rápida de la tendencia central, o cuando sólo estamos interesados en la ocurrencia del valor característico. La Figura 3.1 muestra las posiciones de la media, la mediana y la moda. Si la distribución es simétrica, como se aprecia en a), las tres mediadas de tendencia central coinciden, es decir, se verificará la igualdad x=Md=Mo . Si la distribución es asimétrica positiva, como se observa en b), las tres medidas de tendencia central divergen, de tal forma que se cumple la relación x>Md >Mo . Finalmente, si la distribución es asimétrica negativa, como se aprecia en c) las tres medidas de tendencia central divergen, verificandose en tal caso la relación x<Md <Mo . Al respecto cabe mencionar, que si una distribución presenta dos o más modas, la dirección de ésta se determina comparando únicamente la media y la mediana. Figura 3.1 Posición de la media, la mediana y la moda. 3.3 MEDIDAS DE POSICIÓN Las medidas de posición sirven para describir la localización de un dato específico en la relación con el resto de la muestra. Dos de las medidas de posición más populares son los llamados cuartiles y los centiles. 3.3.1 Cuartiles Los cuartiles son números que dividen al conjunto de datos ordenados en cuatro partes iguales. Estos se representan habitualmente por Q1, Q2, y Q3. El primer cuartil, Q1, es el valor que tiene por debajo la cuarta parte de los datos. El segundo cuartil, Q2, tiene por debajo la mitad de los datos. Nótese que Q2 tiene la misma ubicación que la mediana. El tercer cuartil Q3, tiene por debajo las tres cuartas partes de los datos. En términos de porcentaje, Q1 tiene por debajo el 25% de los datos, Q2 el 50% y Q3 el 75%. El rango intercuartílico (R.I) mide aproximadamente la distancia de la mediana que debemos recorrer en ambos lados antes de poder incluir una mitad de los valores del conjunto de datos. R.I.=Q3-Q1 . 3.3.2 Centiles Los centiles (o percentiles) son números que dividen al conjunto de datos ordenados en 100 partes iguales. Estos se representan por p1 , p2 ,..., p100. El centil ochenta, p80, tiene por debajo el 80% de los datos. El centil cuarenta y cinco p45 tiene por debajo el 45% de los datos. 3.4 MEDIDAS DE DISPERSIÓN
  4. 4. En unidades anteriores se presentaron las medidas de tendencia central más comunes para caracterizar conjuntos de datos. Sin embargo, tales medidas no son suficientes para realizar de manera completa la caracterización de éstos, puesto que otro aspecto que se debe considerar es la dispersión o variabilidad de los datos. Una dispersión pequeña, denota gran homogeneidad de los datos. Por el contrario, una dispersión grande indica heterogeneidad de los datos. La ausencia de dispersión significa que todos los datos del conjunto son iguales. La Figura 3.2 muestra que una medida de tendencia central no es suficiente para caracterizar dos conjuntos de datos, puesto que, es posible tener dos o más distribuciones con la misma medida de tendencia central y pertenecer a distribuciones muy diferentes. Por ejemplo, hay que apreciar en la Figura 2, la diferencia en la interpretación de la observación 80. En a) se observa que la distribución tiene menor dispersión, es decir, las observaciones están estrechamente distribuidas alrededor de la media, tanto así, que la observación de 80 está situada casi en el extremo de la distribución y puede por lo tanto considerarse como una observación muy alta. En b), por el contrario, las observaciones están más dispersas alrededor de la media. En este caso, la observación de 80 no se localiza tan al extremo de la distribución puesto que, tiene encima de ella un buen número de observaciones, tal como lo indica el área situada a la derecha de 80. Figura 3.2 Dos distribuciones con la misma medida de tendencia central pero con diferente dispersión. La dispersión de un conjunto de datos normalmente se expresa cuantitativamente. De esta manera, con el propósito de medir la dispersión de un conjunto de datos, se estudian en la presente sección las medidas siguientes: amplitud, varianza, desviación estándar y coeficiente de variación. 3.4.1 Amplitud o Rango
  5. 5. La amplitud (A) de un conjunto de datos es la diferencia entre las observaciones de mayor y menor valor numérico en el mismo. La amplitud es poco usual por su evidente inestabilidad. Esto se debe a que únicamente considera para su cálculo, los valores extremos del conjunto de datos. 3.4.2 Varianza La varianza de un conjunto de n observaciones x1, x2,..., xn; se representa por S2 y se define como la suma de los cuadrados de las desviaciones con respecto a su media, dividida por el número de observaciones menos uno, simbólicamente La varianza es una medida de dispersión de gran importancia en la estadística, debido a que constituye la base de algunas distribuciones que se estudian en la inferencia estadística. 3.4.3 Desviación Estándar La desviación estándar se representa por S y se define como la raíz cuadrada de la varianza esto es Debido a las propiedades teóricas que posee la desviación estándar es la más importante y la más usual de las medidas de dispersión. Se opta por el uso de la desviación estándar en la relación con la varianza, porque la varianza expresa las unidades al cuadrado, mientras que la desviación estándar presenta las unidades de su forma original. 3.4.4 Coeficiente de Variación El coeficiente de variación se representa por C.V., y se define como la medida de dispersión relativa de un conjunto de datos, que se obtiene dividiendo la desviación estándar del conjunto entre su media, esto es La forma más usual del coeficiente de variación es como se indica a continuación Se multiplica por l00 con el propósito de expresar la dispersión de un conjunto de datos en términos de porcentaje. El coeficiente de variación cobra mayor importancia cuando se desea comparar la
  6. 6. dispersión de dos o más conjuntos de datos que tienen diferente unidad de medida. Esto se debe a que la unidad de medida utilizada en los grupos que se comparan se elimina, y la dispersión de los datos, se da en términos de porcentaje. 3.4.5 Comparación de las medidas de dispersión Por la rapidez y facilidad con que se obtiene, la amplitud se considera simplemente como un índice preliminar o aproximado de la variación existente entre las observaciones de un conjunto de datos. Como medida de dispersión debe emplearse con precaución, puesto que su valor depende únicamente de los dos valores extremos del conjunto. La varianza resulta ser una medida razonablemente buena de la dispersión debido a que si las desviaciones son grandes entonces el valor de la varianza será grande, por el contrario, si éstos son pequeños entonces el valor de la varianza será pequeño. La varianza puede sufrir un cambio bastante desproporcionado, aun más que la media, por la existencia de valores extremos en el conjunto. La varianza es una medida de dispersión en la que los resultados que se obtienen representan unidades al cuadrado, para superar éste inconveniente de la varianza y disponer de otra medida de dispersión que exprese las unidades en su forma original como fueron obtenidos, se extrae la raíz cuadrada de la varianza, obteniéndose, lo que se conoce como desviación estándar. La desviación estándar es la más utilizada e importante de las medidas de dispersión, esto se debe a las propiedades teóricas que posee, razón por la cual, se constituye en la base de los métodos inferenciales. El coeficiente de variación es una medida de dispersión independiente de la unidad de medida, puesto que la dispersión de un conjunto de datos se obtiene en términos de porcentaje. 3.4.6 Significado de la desviación estándar El resultado obtenido al calcular la desviación estándar de un conjunto de datos, nos lleva a preguntar ¿Qué significa realmente ese número?. El significado completo de la desviación estándar se comprende cuando se estudia la distribución normal puesto que el significado depende del entendimiento de la relación que existe entre la desviación estándar y la distribución normal. Sin embargo, a manera de ilustrar el significado de la desviación estándar consideremos el aspecto que se presenta a continuación. Supóngase que se desea medir la distancia que hay entre las plantas de un jardín. Se podría efectuar la medición de éstos, ya sea en metros o en centímetros. Por ejemplo, que el rosal esta a una distancia de 3 metros del tulipán o que la gardenia esta a 95 centímetros de la noche buena. Pero, ¿cómo medir la anchura del eje horizontal de un polígono de frecuencias?. Del mismo modo en que se midieron las plantas del jardín en metros o en centímetros, se puede medir también el eje horizontal de un polígono de frecuencias en unidades de desviación estándar. Desde este punto de vista, la desviación estándar se constituye en una especie de "vara de medir", que nos permite comparar datos de dos o más conjuntos. Con el propósito de ilustrar lo anterior considérese la distribución de frecuencias que se presento en la Tabla 2.5, perteneciente al peso de 60 alumnos elegidos al azar de una escuela. Tal característica tiene un peso promedio igual a x = 67.63 kg. y una desviación estándar igual a S = l l.02. Se podría sumar la desviación estándar al valor de la media
  7. 7. para determinar el peso de un alumno que esta situada a una desviación estándar por encima de la media, o bien, restar la desviación estándar al valor de la media y encontrar el alumno que esta ubicado a la misma distancia pero por debajo de la media. Si se realiza lo antes indicado se obtiene que el peso aproximado de ambos alumnos es 78.65 y 56.61 kg. respectivamente. La Figura 3.3 muestra el peso de los alumnos que están situados a una y dos desviaciones estándar por encima y por abajo de la media. Figura 3.3 Medición de observaciones en un polígono de frecuencias en unidades de desviación estándar. Se aprecia en la Figura 3.3 que el proceso de medir en el eje horizontal de un polígono, en unidades de desviación estándar, es en muchos aspectos, similar al medir en metros o en centímetros las plantas de un jardín. Sin embargo, la similitud se divide en por lo menos un aspecto importante: mientras que los metros o los centímetros son de dimensión constante, es decir, un metro siempre tendrá 100 centímetros y un centímetro iempre será la centésima parte de un metro, el valor de la desviación estándar variará de una distribución a otra. Por tal razón, se debe de calcular la desviación estándar de cualquier grupo de datos con el que se esté trabajando para efectuar las mediciones correspondientes. 3.5 COEFICIENTE DE ASIMETRÍA Y CURTOSIS En este apartado se estudian dos medidas que proporcionan información útil con respecto a la forma de la distribución de un conjunto de datos. 3.5.1 Coeficiente de asimetría El coeficiente de asimetría (ax) se utiliza para conocer si la distribución de un conjunto de datos es asimétrica o no. Este se calcula utilizando la expresión
  8. 8. Para las distribuciones que presentan un solo pico, si a x < 0, se dice que la distribución es asimétrica negativa; si a x > 0, la distribución es asimétrica positiva; y si a x =0, la distribución recibe el nombre de simétrica, los tres tipos de distribución se ilustran en la Figura 3.4. Figura 3.4 Simetría y asimetría de un conjunto de datos a) Asimétrica negativa, b) Simétrica c)Asimétrica positiva. 3.5.2 Curtosis La curtosis es una medida que indica qué tan puntiaguda es la distribución de un conjunto de datos. Esta se calcula utilizando la expresión Para las distribuciones que presentan un solo pico, si a * x > 3, la distribución de los datos
  9. 9. presenta un solo pico relativamente alto y recibe el nombre de leptocúrtica; si a * x < 3, la distribución es relativamente plana y recibe el nombre de platicúrtica; y si a * x = 3 la distribución presenta un pico ni muy alto ni muy bajo y recibe el nombre de mesocúrtica. Los tres tipos de distribuciones se ilustra en la Figura 3.5 Figura 3.5 Diferentes tipos de distribución de un conjunto de datos. a) Leptocúrtica b) Platicúrtica, c) Mesocúrtica. Es importante anotar que en la mayoría de paquetes estadísticos para determinar la curtosis no se realiza el corte en 3, s por facilidad se utiliza el cero, es decir: Si a * x < 0 entonces se dice que la curva es platicúrtica. Si a * x =0 entonces se dice que la curva es mesocúrtica. Si a * x > 0 entonces se dice que la curva es leptocúrtica.

×