Enrique Montoya 20.149.528 “47”
República, Bolivariana de Venezuela
Ministerio del Poder popular para la educación superio...
Enrique Montoya 20.149.528 “47”
.
Sustitución: El método de sustitución consiste en despejar en una de las
ecuaciones cual...
Enrique Montoya 20.149.528 “47”
. Reducción: Este método suele emplearse mayoritariamente en los
sistemas lineales, siendo...
Enrique Montoya 20.149.528 “47”
Resolver aplicando sustitución, igualación y reducción:
F1 8x + y – z = 20 16x – 7z = 156
...
Próxima SlideShare
Cargando en…5
×

Algebra lineal tutorial subir

110 visualizaciones

Publicado el

Algebra lineal

Publicado en: Ingeniería
0 comentarios
0 recomendaciones
Estadísticas
Notas
  • Sé el primero en comentar

  • Sé el primero en recomendar esto

Sin descargas
Visualizaciones
Visualizaciones totales
110
En SlideShare
0
De insertados
0
Número de insertados
1
Acciones
Compartido
0
Descargas
2
Comentarios
0
Recomendaciones
0
Insertados 0
No insertados

No hay notas en la diapositiva.

Algebra lineal tutorial subir

  1. 1. Enrique Montoya 20.149.528 “47” República, Bolivariana de Venezuela Ministerio del Poder popular para la educación superior Instituto Universitario Politécnico Santiago Mariño Profesor: Sara Lopez Maracaibo, junio 2014.
  2. 2. Enrique Montoya 20.149.528 “47” . Sustitución: El método de sustitución consiste en despejar en una de las ecuaciones cualquier incógnita, preferiblemente la que tenga menor coeficiente o base, para, a continuación, sustituirla en otra ecuación por su valor. En caso de sistemas con más de dos incógnitas, la seleccionada debe ser sustituida por su valor equivalente en todas las ecuaciones excepto en la que la hemos despejado Igualación: El método de igualación se puede entender como un caso particular del método de sustitución en el que se despeja la misma incógnita en dos ecuaciones y a continuación se igualan entre sí la parte derecha de ambas ecuaciones. Tomando el mismo sistema utilizado como ejemplo para el método de sustitución, si despejamos la incógnita en ambas ecuaciones nos queda de la siguiente forma:
  3. 3. Enrique Montoya 20.149.528 “47” . Reducción: Este método suele emplearse mayoritariamente en los sistemas lineales, siendo pocos los casos en que se utiliza para resolver sistemas no lineales. El procedimiento, diseñado para sistemas con dos ecuaciones e incógnitas, consiste en transformar una de las ecuaciones (generalmente, mediante productos), de manera que obtengamos dos ecuaciones en la que una misma incógnita aparezca con el mismo coeficiente y distinto signo
  4. 4. Enrique Montoya 20.149.528 “47” Resolver aplicando sustitución, igualación y reducción: F1 8x + y – z = 20 16x – 7z = 156 F2 8y + z = - 4 8y + z = - 4 F3 x + 2y + 3z = - 2 x + 2y + 3z = - 2 F3 = f3 + f4 F4 - x + y – 2z = - 1 - x + y - 2z = - 1 F1 = multiplicando F1 . 8 y restando con F2 16x + 8y – 8z = 160 - 8y + z = - 4 16x – 7z = 156 16x - 7z = 156 8y – z = - 4 F2 = f2 + f3 3y + z = - 3 16x – 7z = 156 - X + y – 2z = - 1 11y = - 7 3y + z = - 3 despejando Y en F2 - X + y – 2z = - 1 11y = - 7 Sustituyendo Y y Z en F3 y despejando X Sustituyendo Y= - 7 11 en F3 y Despejando en Z -x - 7 11 + 12 11 = - 1 3Y + z = - 3 - x + 5 11 = - 1 3 - 7 11 + z = - 3 - x = - 1 – 5 11 - 1 - 21 11 + z = - 3 X = 1 + 5 11 = Z = - 3 + 21 11 Y = - 7 11 Z = - 12 11X = 16 11

×