SlideShare una empresa de Scribd logo
1 de 111
Descargar para leer sin conexión
Lecture 12

Genetic Linkage Analysis and
     Map Construction
  1
2
Experiments with Plant Hybrids (1866)
  Seed shape: 5474 round vs 1850 wrinkled
  Cotyledon color: 6022 yellow vs 2001 green
  Seed coat color: 705 grey-brown vs 224
  white
  Pod shape: 882 inflated vs 299 constricted
  Unripe pod color: 428 green vs 152 yellow
  Flower position: 651 axial vs 207 terminal
  Stem length: 787 long (20-50cm) vs 277
  short (185-230cm)
Rediscovered in 1900
4
Ear length of maize (East 1911)




P1: 7cm; P2: 17cm
One locus
  a=(17-7)/2=5; F2: 1/4 aa (7) + 2/4 Aa (12) + 1/4 AA (17)
Two locus
  a=(17-7)/4=2.5
  F2: 1/16 (7) + 4/16 (9.5) + 6/16 (12) + 4/16 (14.5) +1/16 (17)
                                                               5
6
7
8
1        2
VF 2   2   ka
P1    ka      P2   ka

                     2
             (P1   P2 )
k              1
     8[VF2     2 (VP1 VP2 )]
1       2   1        2
VA   2   a       2   ka

                          2
     (P1       P )2
k
             8V A
12
Mendel and Fisher
Annuals of Science 1:115-
close to the values that Mendel expected under his theory
that there must have been some manipulation, or
omission, of data
Dominant trait: 1/3 AA + 2/3 Aa
  Family size: 10
  Non-segregating (AA) :
  Segregating (Aa) = 1:2 (Mendel)
  Fisher: Pro {Aa family classified as
  AA} = 0.75^10=0.0563
  Pro {Non-segregating (AA)}
  =2/3*(1-0.0563)=0.6291
  Non-segregating (AA) :
  Segregating (Aa) = 0.3709 : 0.6291
  = 1 : 1.6961                                         13
14
Genetic populations and pair-
   wise linkage analysis




                                15
Populations handled in QTL IciMapping
                 Parent P1                        Parent P2                                Legends

                                                                                       Hybridization
                                     F1

                                                                                             Selfing
                1. P1BC1F1          7. F2       2. P2BC1F1

                                                                                   Repeated selfing
9. P1BC2F1      13. P1BC1F2         8. F3       14. P2BC1F2      10. P2BC2F1

                                                                                   Doubled haploids
15. P1BC2F2                                                      16. P2BC2F2


11. P1BC2RIL    5. P1BC1RIL       4. F1RIL      6. P2BC1RIL      12. P2BC2RIL    BC3F1, BC4F1 etc.

  P1BC2F1        P1BC1F1             F1           P2BC1F1          P2BC2F1        Marker-assisted
                                                                                     selection

19. P1BC2DH     17. P1BC1DH       3. F1DH       18. P2BC1DH      20. P2BC2DH         CSS lines or
                                                                                 Introgression lines

  P1 × CP         P2 × CP         P3 × CP                          Pn × CP       CP=common parent


 RIL family 1   RIL family 2     RIL family 3     RIL family i    RIL family n

                             One NAM population
Example: 10 RILs in a rice population
                                 (Linkage map of Chr. 5)
                                                                                                           Grain
Marker     C263   R830   R3166    XNpb387   R569   R1553   C128   C1402   XNpb81   C246   R2953   C1447    width
                                                                                                           (mm)

Position
           0.0    3.5    8.5      19.5      32.0   66.6    74.1   78.6    81.8     91.9   92.7    96.8
(cM)
RIL1       0      0      0        0         0      0       0      0       0        0      0       0        2.33
RIL2       2      2      2        2         2      0       0      0       0        2      2       2        1.99
RIL3       0      2      2        2         2      2       2      2       2        2      2       2        2.24
RIL4       0      0      0        0         0      0       2      2       2        2      2       2        1.94
RIL5       0      0      0        0         0      2       2      0       0        0      0       0        2.76
RIL6       0      0      0        2         2      2       2      2       2        2      2       2        2.32
RIL7       0      0      0        0         0      0       0      0       0        0      0       0        2.32
RIL8       2      2      0        2         2      0       0      0       0        2      2       2        2.08
RIL9       0      0      0        0         2      2       0      0       0        0      0       0        2.24
                                                                                                          17

RIL10      0      0      0        0         2      2       0      0       0        0      0       0        2.45
Genetic markers in linkage analysis
 Morphological traits

  hybridization experiments
 Cytogenetic and bio-chemistry
 markers (e.g. isozyme)
 DNA molecular markers
  RFLP, SSR, SNP etc.
The four gametes (haplotypes) of an F1
               P1: AABB                            P2: aabb

                   A          B                     a         b
                   A          B                     a         b

                                    F1: AaBb

                                     A         B
                                     a         b
                                     Meiosis



A              B          A              b     a          B       a             b
     (1-r)/2                  r/2                   r/2               (1-r)/2
                                                                              19
Parental type             Recombinant          Recombinant        Parental type
                              type                 type
Expected genotypic frequency in backcross
          and DH populations
            P1: AABB; P2: aabb




                                       20
MLE of recombination frequency
Likelihood function
                                n1         n2         n3                    n4
          n!        1                1          1           1
L                     (1 r )           r          r           (1 r )                C (1 r ) n1   n4
                                                                                                       ( r ) n2   n3

    n1!n2 !n3! n4 ! 2                2          2           2

Logarithm of likelihood
ln L    ln C     (n1      n4 ) ln(1 r ) (n2                           n3 ) ln r
                                     n2    n3               n2         n3
                    r
MLE of r                  n1         n2    n3    n4               n

Fisher information
                   d 2 ln L                 n1 n4           n2        n3             n
          I     E(     2
                            )         E
                     d r                    (1 r ) 2             r2              r (1 r )

Variance of estimated r                                    Vr
                                                                  1        r (1 r )
                                                                  I            n
Significance test of linkage
Null hypothesis H0: r = 0.5 (no genetic linkage, or
locus A-a and B-b are independent)
Alternative hypothesis HA

Likelihood ratio test (LRT) or LOD score
               L(r 0.5)          2
LRT      2 ln[          ]~           (df   1)
                  L(r )
            L(r )
LOD
         L(r 0.5)
An example P1BC1 population
Genotypes of two inbred parents P1 and P2
are AABB and aabb
Observed samples of the four genotypes in
P1BC1
     AABB   162    AABb     40    AaBB     41   AaBb
     158
          40 41             81
 r                                20.20%
      162 40 41 158         401
      r (1 r )              4
Vr                4.02 10                              23
          n
Test of linkage
Null hypothesis H0: r = 0.5
Alternative hypothesis HA

   L( r )    (1 r ) n1 n4 r n2 n3
                                    6.3 10153
L( r 0.5)      ( 1 ) n1 n2 n3 n4
                 4


Likelihood ratio test (LRT) (P<0.0001) and LOD
score
                 L( r )
LRT   2 * ln[           ]    708.27
              L( r 0.5)
              L(r )
LOD   log[           ] 153.80                    24
           L (r 0.5)
Genotypic frequencies in RIL
       populations, compared with DH
DH           Theoretical   RIL          Theoretical
population   frequency     population   frequency
AABB         f1=(1-r)/2    AABB         f1=(1-R)/2

AAbb         f2=r/2        AAbb         f2=R/2

aaBB         f3=r/2        aaBB         f3=R/2

aabb         f4=(1-r)/2    aabb         f4=(1-R)/2

                                                      25
                      R=2r/(1+2r)
Parent type or
RIL     Marker 1   Marker 2
                              recombinant
        C263       XNpb387                     n1=6
RIL1    0 or A     0 or A     P1 type
                                               n2=2
                                               n3=0
RIL2    2 or B     2 or B     P2 type
                                               n4=2
RIL3    0 or A     2 or B     Recombinant
RIL4    0 or A     0 or A     P1 type          R=2/10=0.2
RIL5    0 or A     0 or A     P1 type          r=0.125
RIL6    0 or A     2 or B     Recombinant
RIL7    0 or A     0 or A     P1 type          LRT=17.72 (P=2.56   10-5)
RIL8    2 or B     2 or B     P2 type          LOD=3.85
RIL9    0 or A     0 or A     P1 type
RIL10   0 or A     0 or A     P1 type
Expected genotypic
frequencies in F2 populations
MLE of r in F2: dominant markers
                                                                                  2
    Logarithm of the likelihood ratio                               k    (1 r )
ln L     C      n1 ln(3 2r       r 2 ) (n3    n7 ) ln(2r     r2)        n9 ln(1 2r    r2)
         C          n1 ln(2   k ) (n3     n7 ) ln(1 k )     n9 ln k
    MLE of r
                2       ( 2n 3n1   n9 )      ( 2n 3n1      n9 ) 2       n n9
k      (1 r )
                                             2n
    Variance of the estimated r
        (1 k )(2 k )          (2r r 2 )(3 2r r 2 )
Vr
          2n(1 2k )             2n(3 4r 2r 2 )
MLE of r in F2: co-dominant markers
              (Newton-Raphson algorithm)
 Log-likelihood function
 ln L    ln C         (2n1          2n9         n2                  n4           n6       n8 ) ln(1 r )
  ( n2   n4           n6       n8       2n3             2n7 ) ln r                    n5 ln(1 2r                          2r 2 )

 The first-order derivative of LogL
 f'(r) ) d dr L 2n 2n n 1n n n n n n rn 2n 2n 1n (24rr 22r)
           ln
                        r
                           1        9       2       4           6        8        2       4       6       8       3          7     5
                                                                                                                                       2



 The second-order derivative of LogL
              2                                                                                                                            2
          d ln L  2 n 2n n n n n     n n n n 2n 2n  n ( 4r 4r )
 f''(r) d r
        )         2
                          ( r 1)
                                1       9
                                              r
                                                2
                                                        2
                                                            4
                                                   (1 2r 2r )
                                                                     6       8        2       4       6
                                                                                                          2
                                                                                                              8       3      7     5
                                                                                                                                       2 2




 The iteration algorithm:
                       ri+1 = ri - f'(ri)/f''(ri)
MLE of r in F2: co-dominant
       markers (EM algorithm)
EM for expectation and maximization


E-step: for an initial r0, calculate the probability of
crossover in each marker type
M-step: Update r, and repeat from the E-step

                 1
          r'     n       nk Pk ( R | G)
                     k
Expected probability of crossover




  r= [n1   0+ n2   0.5+ n3   1   n8   0.5+ n9   0]/n
Estimated r after 3 EM iterations (r0=0.5)
Estimated r after 3 EM iterations (r0=0.25)
Estimated r after 3 EM iterations (r0=0.0)
Co-dominant markers in other
       populations




         R=2r/(1+2r)
More populations (e.g. BC1F2, F3 etc):
   Generation transition matrix of
Distortion has little effect on
               linkage analysis!
DH pop     Theo. Freq.   Distortion        Freq. in distortion
AABB       f1=(1-r)/2    (1-r)/2           (1-r)/(1+s)
AAbb       f2=r/2        r/2               r/(1+s)
aaBB       f3=r/2        s     r/2         r   s/(1+s)
aabb       f4=(1-r)/2    s     (1-r)/2     (1-r)     s/(1+s)
Sum        1             (1+s)/2           1

 r     r /(1 s) r s /(1 s)               r (1 s) /(1 s)          r
Three-point analysis and linkage
       map construction




                                   38
Linkage analysis of three markers
         r13     r12     r23     21        r12 r23
When           0 interference),
               (no
 (1 r13 ) (1 r12 )(1 r23 ) r12 r23
 r13 r12 (1 r23 ) (1 r12 ) r23 r12          r23      2r12 r23
When          1 (complete interference),
 r13    r12    r23
The order of the three loci can be determined after
linkage analysis (3!/2=3 potential orders)
                                                                39
  1 2    3, or 1 3     2, or 2   1 3
Mapping distance and
     recombination frequency
Mapping distance m13       m12   m23
Unit of mapping distance
 M (Morgan) or cM (centi-Morgan), 1M=100cM
The function of mapping distance on
recombination frequency (Mapping
function):
            m    f (r )
                                             40
Common mapping functions
Morgan function (complete interference)

      In M: m =r (M)
      In cM: m =r       100 (cM)
Haldane function (no interference)
                                      1                                              2m
      In M:      m      f (r )        2   ln(1 2r )                  r   1
                                                                         2   (1 e         )
                                                                                    m / 50
      In cM:     m      f (r )       50 ln(1 2r )                    r   1
                                                                         2   (1 e            )

Kosambi function (interference depends on length of interval)
                                                            4m
      In M:            m
                            1 1 2r
                             ln                r
                                                    1   e        1
                                                         4m
                            4 1 2r                  2   e        1
                                                        m / 25
                                  1 2r             1e        1
                       m    25 ln          r                                                     41
      In cM:                      1 2r             2 em / 25 1
Comparison of the three functions
Mapping distance (cM)
                        (M)




                                                                  42


                                       Recombination frequency
Three steps in linkage map construction
Step 1: Grouping. Grouping can be based on
  (i) a threshold of LOD score
  (ii) a threshold of marker distance (cM)
  (iii) anchor information
Step 2: Ordering. Three ordering algorithms are
  (i) SER: SERiation (Buetow and Chakravarti, 1987. Am J Hum
  Genet 41:180 188)
  (ii) RECORD: REcombination Counting and ORDering (Van Os
  et al., 2005. Theor Appl Genet 112: 30 40)
  (iii) nnTwoOpt: nearest neighbor was used for tour construction,
  and two-opt was used for tour improvement, similar to Travelling
  Salesman Problem (TSP) (Lin and Kernighan, 1973. Oper. Res.
  21: 498 516.
Three steps in linkage map construction
Due to the large number of markers (n), it is impossible
to compare all possible orders (say n=50, possible
orders are n!/2=1.52x1064). Orders from the above
algorithms are regional optimizations.
Step 3: Rippling. Five rippling criteria are
  (i) SARF (Sum of Adjacent Recombination Frequencies)
  (ii) SAD (Sum of Adjacent Distances)
  (iii) SALOD (Sum of Adjacent LOD scores)
  (iv) COUNT (number of recombination events)
The MAP functionality in QTL
       IciMapping




                               45
Interface of the MAP functionality
A. Map of one chromosome   B. Map of all chromosomes




  Map outputs:
Linkage map for each
chromosome (A) or all
  chromosomes (B)
An example map of seven
chromosomes or groups




                          48
Linkage map and physical map
Species       Size of haploid   Size of linkage   kb/cM
              genome (kb)       map (cM)

Yeast         2.2   104         3700              6
Neurospora    4.2   104         500               80
Arabidopsis   7.0   104         500               140
Drosophila    2.0   105         290               700
Tomato        7.2   105         1400              510
Human         3.0   106         2710              1110
Wheat         1.6   107         2575              6214
Rice          4.4   105         1575              279
                                                          49
Corn          3.0   106         1400              2140
What is QTL Mapping?
The procedure to map individual genetic factors
with small effects on the quantitative traits, to
specific chromosomal segments in the genome
The key questions in QTL mapping studies are:
  How many QTL are there?
  Where are they in the marker map?
  How large an influence does each of them
  have on the trait of interest?
Grain
Marker     C263   R830   R3166   XNpb387   R569   R1553   C128   C1402   XNpb81   C246   R2953   C1447   width
                                                                                                         (mm)

Position
           0.0    3.5    8.5     19.5      32.0 66.6      74.1 78.6      81.8     91.9 92.7      96.8
(cM)
RIL1       0      0      0       0         0      0       0      0       0        0      0       0       2.33
RIL2       2      2      2       2         2      0       0      0       0        2      2       2       1.99
RIL3       0      2      2       2         2      2       2      2       2        2      2       2       2.24
RIL4       0      0      0       0         0      0       2      2       2        2      2       2       1.94
RIL5       0      0      0       0         0      2       2      0       0        0      0       0       2.76
RIL6       0      0      0       2         2      2       2      2       2        2      2       2       2.32
RIL7       0      0      0       0         0      0       0      0       0        0      0       0       2.32
RIL8       2      2      0       2         2      0       0      0       0        2      2       2       2.08
RIL9       0      0      0       0         2      2       0      0       0        0      0       0       2.24
RIL10      0      0      0       0         2      2       0      0       0        0      0       0       2.45
Bi-parental mapping populations (linkage
mapping)
  Temporary population: F2 and BC
  Permanent population: RIL, DH, CSSL
  Secondary population
Association mapping
  Natural populations: human and animals
Single marker analysis (Sax 1923; Soller et al. 1976)
The single marker analysis identifies QTLs based on the difference
between the mean phenotypes for different marker groups, but cannot
separate the estimates of recombination fraction and QTL effect.
 Interval mapping (IM) (Lander and Botstein 1989)
IM is based on maximum likelihood parameter estimation and provides
a likelihood ratio test for QTL position and effect. The major
disadvantage of IM is that the estimates of locations and effects of QTLs
may be biased when QTLs are linked.
  Regression interval mapping (RIM)
    (Haley and Knott 1992; Martinez and Curnow 1992 )
RIM was proposed to approximate maximum likelihood interval mapping
to save computation time at one or multiple genomic positions.
Composite interval mapping (CIM) (Zeng 1994)
CIM combines IM with multiple marker regression analysis,
which controls the effects of QTLs on other intervals or
chromosomes onto the QTL that is being tested, and thus
increases the precision of QTL detection.

  Multiple interval mapping (MIM) (Kao et al. 1999)
MIM is a state-of-the-art gene mapping procedure. But
implementation of the multiple-QTL model is difficult, since the
number of QTL defines the dimension of the model which is
also an unknown parameter of interest.

  Bayesian model (Sillanpää and Corander 2002)
In any Bayesian model, a prior distribution has to be
considered. Based on the prior, Bayesian statistics derives the
posterior, and then conduct inference based on the posterior
distribution. However, Bayesian models have not been widely
used in practice, partially due to the complexity of
computation and the lack of user-friendly software.
mm   Mm   MM              mm   Mm   MM

A.                        B.
     QTL                       QTL
Backcrosses (P1BC1 and P2BC1)
      of P1: MMQQ and P2: mmqq
                BC1                                  BC2

                         Genotypic                            Genotypic
Genotype   Frequency                 Genotype   Frequency
                           value                                value

            1                                    1
MMQQ        2   (1 r )     m+a        MmQq       2   (1 r )     m+d

                 1                                    1
MMQq             2   r     m+d        Mmqq            2   r     m-a

                 1                                    1
MmQQ             2   r     m+a        mmQq            2   r     m+d

            1                                    1
 MmQq       2   (1 r )     m+d        mmqq       2   (1 r )     m-a
Two marker types:
   MM   (1 r )     MMQQ   r   MMQq


        (1 r )(m a) r (m d )         m (1 r )a rd

   Mm   r   MmQQ    (1 r )    MmQq

        r (m a) (1 r )(m d ) m ra (1 r )d
Difference in phenotype between the two types

   MM       Mm     (1 2r )(a d )
Linear model (j=1 2          n)
 yi   b0 b* x* e j
             j

b* represent QTL effect x * is the indicator
                          j
variable (0 or 1) for QTL genotype
Likelihood profile
Support interval: One-LOD interval
P1: Mi       Q   Mi +1             P2: mi      q        mi +1



         Mi       Q   Mi +1                    mi   q        mi +1


                       F1: Mi      Q   Mi +1        P1: Mi    Q      Mi +1



                              mi   q   mi +1            Mi    Q      Mi +1


Mi   Q        Mi +1           Mi   Q   Mi +1            Mi    Q      Mi +1   Mi   Q   Mi +1



Mi   Q        Mi +1           Mi   Q   mi +1            mi    q      Mi +1   mi   q       mi +1

                              Mi   Q   Mi +1            Mi    Q      Mi +1



                              Mi   q   mi +1            mi    Q      Mi +1

              1                                                                       4
Assumption: No more than one QTL
per chromosome or linkage group

Large confidence interval
Biased effect estimation

Composite interval mapping (CIM)
(Zeng 1994)
In the algorithm of CIM, both QTL effect at the
current testing position and regression coefficients
of the marker variables used to control genetic
background were estimated simultaneously in an
expectation and maximization (EM) algorithm.
  Thus, this algorithm could not completely ensure
that the effect of QTL at current testing interval
was not absorbed by the background marker
variables and therefore may result in biased
estimation of the QTL effect.
Theoretical basis of ICIM
                            m
                 G               ajg j                  aa jk g j g k
                           j 1                    j k


                 E ( g j | X)                  j   xj           j    xj   1


E( g j gk | X)       j k   x j xk        j    k   x j xk   1         j k   x j 1xk    j   k   x j 1xk   1


                                    m 1
                 yi        b0                b j xij                 b jk xij xik    ei
                                    j 1                        j k
One-dimensional scanning (interval mapping)

  yi   yi           b j xij
            j k ,k 1

Two-dimensional scanning (interval mapping)

  yi   yi              br xir         brs xir xis
            r j , j 1,k ,k 1    r j, j 1
                                s k ,k 1
40                                                          2
                                                                  1.5
        30
LOD score
                                                                    1
                                                                  0.5




                                                            Effect
        20
                                                                    0
        10                                                       -0.5 11111111111222222222233333333334444444444
                                                                   -1
            0                                                    -1.5
                11111111111222222222233333333334444444444          -2
                   Scanning posoition along the genome                   Scanning posoition along the genome


        80                                                             3
                                                                       2
        60
LOD score




                                                                       1




                                                            Effect
        40                                                             0
                                                                      -1 11111111111222222222233333333334444444444
        20
                                                                      -2
            0                                                         -3
                11111111111222222222233333333334444444444             -4
                   Scanning posoition along the genome                      Scanning posoition along the genome


        70                                                           1.5
        60                                                            1
LOD score




        50
        40                                                           0.5
                                                            Effect




        30                                                            0
        20
                                                                 -0.5 11111111111222222222233333333334444444444
        10
         0                                                            -1
                11111111111222222222233333333334444444444        -1.5
                   Scanning posoition along the genome                     Scanning posoition along the genome
Detecting
epistasis where
the interacting

significant
additive effects
One-locus model in F2
One-locus model:   G         aw dv
where is mean of the two homozygous
genotypes QQ and qq, a is the additive
effect, d is the dominance effect . w and
v are the indicators for genotypes at the
QTL, valued at 1 and 0 for QQ, 0 and 1
for Qq, and -1 and 0 for qq, respectively
The expected genotypic value of an
   individual with known marker types

E (G | x1 , x2 , y1 , y2 )   a E ( w | x1 , x2 , y1 , y2 )
                             d E (v | x1 , x2 , y1 , y2 )
Probability of the three QTL
genotypes under given marker types

Left   Right        QQ (w=1, v=0)          Qq (w=0, v=1)                     qq (w=-1, v=0)
marker marker       (m+a)                  (m+d)                             (m-a)
                           2          2    1                                         1 2 2
AA     BB
                1
                4   (1 r1 ) (1 r2 )        2 1
                                                r (1 r1 )r2 (1 r2 )                   r r
                                                                                     4 1 2

                                                                                        2
AA     Bb
            1
            2   (1 r1 ) 2 r2 (1 r2 )      1
                                           r (1 r1 )(1 r2 )
                                          2 1
                                                              2   1
                                                                   r (1 r1 )r2
                                                                  2 1
                                                                                 2   1
                                                                                      r r (1 r2 )
                                                                                     2 1 2

                1          2     2
                    (1 r1 ) r2             1                                         1 2
AA     bb       4                           r (1 r1 )r2 (1 r2 )
                                           2 1                                        r (1 r2 ) 2
                                                                                     4 1
Estimation of marker class mean

                            Indicator
Marker                     for marker       E (w | x1 , x2 , y1 , y2 ) E (v | x1 , x2 , y1 , y2 )   Genetic mean
         n Frequency
 class                                                                                               of the class
                          x1 x2 y1 y2

AABB     n1   1
              4   (1 r ) 2 1 1 0 0                    f1                           g1                  f1a g1d

              1                                                                                        f2a g2d
AABb     n2   2   r (1 r ) 1    0 0 1                 f2                           g2

              1    2
AAbb     n3 4 r           1 -1 0 0                    f3                           g3                  f 3a g3d

                    1 2r1r2 /(1 r )          f1            2r1 (1 r1 )r2 (1 r2 ) /(1 r ) 2                  g1

    [(1 2r1 )r2 (1 r2 )] /( r r )     2
                                             f2      r1 (1 r1 )(1 2r2                2r22 ) /( r r 2 )     g2
                          (r2    r1 ) / r    f3                          2r1 (1 r1 )r2 (1 r2 ) / r 2       g3
Relationship between marker
 class mean and marker effect
      (including marker interactions)
f1a g1d     1   1   1 0 0     1   0   0 0          (d )   d

f 2a g 2d   1   1   0 0 1     0   1   0 0     (a ) A1
f 3a g 3d   1   1   1 0 0     1   0   0 0     (a ) A2
f 4a g 4d   1   0   1 1 0     0   0   1 0     (d ) D1
g5d         1   0   0   1 1   0   0   0   1   (d ) D2
f 4a g 4d   1   0   1 1 0     0   0   1 0     (d ) AA12
f 3a g 3d   1   1   1 0 0     1   0   0 0     AD12
f 2a g 2d   1   1   0 0 1     0   1   0 0     DA12
f1a g1d     1   1   1 0 0     1   0   0 0     (d ) DD12
Relationship between marker
               effects and QTL effects
                       1
    (d )    d          2
                           ( g1 g3 )d
(a) A1          f2a
                1
(a) A2          2   ( f1 f 3 )a
                     1        1
(d ) D1         (      g
                     2 1      2
                                  g3 g 4 )d
                     1                 1
(d ) D2         (      g g2
                     2 1               2   g 3 )d
(d ) AA12       1
                2   ( g1 g 3 )d
AD12            0
DA12            0
(d ) DD12       ( 1 g1 g 2
                  2
                                   1
                                   2
                                       g 3 g 4 g 5 )d
The linear model of genotypic
     values on markers in F2




E(w | x1 , x2 , y1 , y2 )          x
                                 1 1      2 2 x
E (v | x1 , x2 , y1 , y2 )       1 1  y   2   y2
                              xx
                             12 1 2           yy
                                          12 1 2
The linear model of genotypic
             values on markers in F2


E (G | x1 , x2 , y1 , y2 )   (a) A1 x1 (d ) D1 y1 (a) A2 x2 (d ) D2 y2

                             (d ) AA12 x1 x2 (d ) DD12 y1 y2
Properties of the linear model in F2
 The additive and dominance effects of the
 flanked QTL are completely absorbed by the
 six variables in the model above.
 Interactions between marker variables may be
 declared as interaction between QTL by
 mistake when using ANOVA.
 But from our analysis, interactions between
 marker variables can be caused simply by
 dominance effects of QTL .
Multiple QTL model in F2
For multiple QTL, assume there are m
QTL located on m intervals defined by
m+1 markers on one chromosome, then
the genotypic value of an F2 individual is
defined as:
                m
      G               [a j w j   d jv j ]
                j 1
The linear model in F2 under
           multiple QTL
 The genotypic value of an F2
individual with known marker types
can be re-organized as:
               m 1               m 1
E (G )                  j   xj           j   yj
               j 1               j 1
         m                                   m

                     j, j 1   xjxj   1             j, j 1   yj yj   1
         j 1                                 j 1
The linear model for QTL
          mapping in F2


                   m 1               m 1
P   E (G )               j    xj            j   yj
                   j 1               j 1
             m                             m

                     j, j 1   xjxj   1               j, j 1   yj yj   1
             j 1                           j 1
Property of the linear model
   for QTL mapping in F2
ICIM (Inclusive Composite
            Interval Mapping) in F2




Pi   Pi               [   j   xij        j   yij ]
            j k ,k 1

                  [       j , j 1 ijx xi , j   1     j, j 1   yij yi , j 1 ]
            j k
Hypothesis test of QTL
             mapping in F2
The two hypotheses used to test the existence
of QTL at the scanning position are:
vs. H 0 : 1    2   3
       H A : at least two of                1   ,   1   and       3   are not equal
The logarithm likelihood under HA is
               9                 3
                                                                       2
      LA                  log[         jk   f ( Pi ;          k   ,        )]
               j 1 i Sj          k 1
 where S j denotes individuals belonging to the j th marker class (j=1,
                                                        th
            jk k=1, 2, 3) is the proportion of the k QTL genotype in
     th
the j class, and    f ( ; k , 2 ) is the density function of the normal
                     2
distribution N ( k , ) .
EM algorithm of QTL mapping
            in F2
Use EM algorithm to get the estimation
of 1 , 2 and 3

So the genetic effects in G                  aw dv
were therefore estimated by
 1                     1
 2   (   1   3   ) a   2   (   1   3   ) d    2
EM algorithm of QTL mapping in F2

 Parameters under H0 were calculated as:
            n                  n
        1              2   1                        2
    0   n
                  Pi   0   n
                                     ( Pi   0   )
            i 1                i 1


 From which the maximum likelihood
 under H0, and the LOD score between HA
 and H0 can be calculated.
QTL distribution models in
       simulation
QTL distribution models in
       simulation
QTL distribution models in
        simulation
F2 populations were simulated by
the genetics and breeding
simulation tool of QuLine.
QTL mapping using ICIM was
implemented by the software QTL
IciMapping.
Theoretical marker effects in the
genetic model used in simulation
The expected additive, dominance,
additive by additive, and dominance by
dominance effects of the two flanking
markers associated with each QTL is
shown in the following table.
It indicated that the dominance of a QTL
could complicate the coefficients of the
two markers flanking a QTL, and cause
the interactions between markers.
The expected marker effects in
                 simulation

                                                                         Interaction
QTL   (d)    d    (a) A1    (a) A2 (d ) D1 (d ) D2 (d ) AA12 (d ) DD12   variation (%)


QTL1 0.000       0.498     0.498   0.000    0.000   0.000    0.000       0.0
QTL2 0.253       0.000     0.000   0.248    0.248   -0.248   0.243       21.8
QTL3 0.253       0.498     0.498   0.248    0.248   -0.248   0.243       5.7
QTL4 -0.253      0.498     0.498   -0.248   -0.248 0.248     -0.243      5.7
QTL5 0.379       0.498     0.499   0.371    0.371   -0.371   0.364       9.6
QTL6 -0.379      0.498     0.498   -0.371   -0.371 0.371     -0.364      9.6
QTL mapping in simulated F2
       populations
QTL    LOD PVE      True       Est.     True Est. add. True     Est.
       score (%)    Position   Position add. effect    dom.     dom.
                    (cM)       (cM)     effect         effect   effect
QTL distribution model I
QTL1 16.52 6.67 25             28      1      0.88      0       -0.11
QTL2 7.67 3.27 55              53      0      0.03      1       0.85
QTL3 25.11 11.28 25            24      1      0.86      1       1.08
QTL4 35.46 16.43 55            57      1      0.74      -1      -1.58
QTL5 37.12 16.74 25            26      1      1.05      1.5     1.38
QTL6 28.44 13.16 55            55      1      0.84      -1.5    -1.22
180 individuals
The cross was made in Chengdu, China,
in July 2002 between the indica rice
variety and Nipponbare.
137 SSR markers.
The whole genome was of 2046.2 cM, and
the average marker distance was 17.1 cM.
A number of agronomic traits were
investigated in the field.
QTL mapping in the actual F2
       population
QTL distribution
Trait   R2 of      R2 of          Absolute degree of dominance (|d/a|) Total
        additive   additive and
                   dominance
        (%)                       <=0.25 (0.25, 0.75]   (0.75, 1.25]   >1.25
                   (%)
PH      25.84      51.56          2       1             1              5       9
HD      16.12      41.37          1       1             1              3       6
PL      25.58      61.26          5       3             1              8       17
FL      20.86      40.00          0       2             0              3       5
SPK     25.64      27.09          1       1             1              1       4
TKW     20.11      20.11          2       0             2              1       5
DP      19.45      24.87          1       1             0              1       3
GL      30.69      41.96          1       1             0              0       2
GW      26.63      26.63          2       2             0              0       4
RLW     37.63      45.70          1       3             1              1       6
                   Total          16      15            7              23      61
PVE distribution
                          20
                          18
Frequency across traits




                          16
                          14
                          12
                          10
                           8
                           6
                           4
                           2
                           0




                                 Phenotypic variation explained(%)
Trait    QTL       Chr Distance to    Add    Dom     LOD     PVE(%)
                       left marker
Plant     QPh1-1   1   12            -0.57   -7.98   8.04    12.03
height    QPh1-2   1   19.5          -8.59   0.59    15.54   25.57
(Ph)      QPh3-1   3   16.9          4.35    -4.86   6.51    13.30
          QPh3-2   3   11.4          -4.69   -1.00   5.04    6.84
          QPh4     4   13.7          -3.56   -2.09   4.61    5.53
          QPh5     5   13            -0.44   -4.48   3.13    3.86
          QPh6     6   6.2           -0.79   -5.05   3.17    4.96
          QPh7     7   7             0.26    6.48    5.27    7.56
          QPh12    12 2.4            -1.66   3.93    3.98    5.44
Heading QHd1       1   22.1          1.74    -0.30   3.65    7.27
date (Hd) QHd3     3   19.9          0.88    -3.70   6.04    21.09
          QHd4     4   0.2           -0.77   1.85    3.58    5.24
          QHd8     8   5.7           -1.41   -1.46   4.79    8.20
          QHd10    10 0.3            -1.78   -0.80   4.85    7.21
          QHd11    11 6.2            0.15    -3.03   5.71    11.70
Conclusions



              m 1                 m 1
P   E (G )          j   xj               j   yj
              j 1                 j 1
               m                                  m

                         j, j 1   xjxj   1              j, j 1   yj yj   1
              j 1                                 j 1
Six methods in BIP
SMA: single marker analysis (Soller et al., 1976. Theor.
Appl. Genet. 47: 35-39)
IM-ADD: the conventional simple interval mapping
(Lander and Botstein, 1989. Genetics 121: 185-199)
ICIM-ADD: inclusive composite interval mapping of
additive (and dominant) QTL (Li et al., 2007. Genetics
175: 361-374. Zhang et al., 2008. Genetics 180: 1177-
1190)
IM-EPI: interval mapping of digenic epistatic QTL
ICIM-EPI: inclusive composite interval mapping of
digenic epistatic QTL (Li et al., 2008. Theor. Appl.
Genet. 116: 243-260)
SGM: selective genotyping mapping (Lebowitz et al.,
1987. Theor. Appl. Genet. 73: 556 562)
Interface of the BIP functionality
LOD profile of ICIM additive mapping
             (ICIM-ADD)
Figures of interacting QTL from ICIM
    epistatic mapping (ICIM-EPI)

Más contenido relacionado

Más de FOODCROPS

2019. jauhar ali. genomics assisted breeding for climate smart rice varieties
2019. jauhar ali. genomics assisted breeding for climate smart rice varieties2019. jauhar ali. genomics assisted breeding for climate smart rice varieties
2019. jauhar ali. genomics assisted breeding for climate smart rice varietiesFOODCROPS
 
2018. jauhar ali. green super rice breeding technology achievements and advances
2018. jauhar ali. green super rice breeding technology achievements and advances2018. jauhar ali. green super rice breeding technology achievements and advances
2018. jauhar ali. green super rice breeding technology achievements and advancesFOODCROPS
 
2012. chang xiang mao. hybrid rice development in and outside china
2012. chang xiang mao. hybrid rice development in and outside china2012. chang xiang mao. hybrid rice development in and outside china
2012. chang xiang mao. hybrid rice development in and outside chinaFOODCROPS
 
2018. tm thiyagarajan. intercultivation in rice
2018. tm thiyagarajan. intercultivation in rice2018. tm thiyagarajan. intercultivation in rice
2018. tm thiyagarajan. intercultivation in riceFOODCROPS
 
2018. gwas data cleaning
2018. gwas data cleaning2018. gwas data cleaning
2018. gwas data cleaningFOODCROPS
 
2016. kayondo si. associatonn mapping identifies qt ls underlying cassava bro...
2016. kayondo si. associatonn mapping identifies qt ls underlying cassava bro...2016. kayondo si. associatonn mapping identifies qt ls underlying cassava bro...
2016. kayondo si. associatonn mapping identifies qt ls underlying cassava bro...FOODCROPS
 
2017. Phương pháp backcrossing giả định quy tụ nhanh chống các tính trạng kin...
2017. Phương pháp backcrossing giả định quy tụ nhanh chống các tính trạng kin...2017. Phương pháp backcrossing giả định quy tụ nhanh chống các tính trạng kin...
2017. Phương pháp backcrossing giả định quy tụ nhanh chống các tính trạng kin...FOODCROPS
 
2017. ung dung tin sinh xac dinh tinh chong chiu cay trong (c d ha) [compatib...
2017. ung dung tin sinh xac dinh tinh chong chiu cay trong (c d ha) [compatib...2017. ung dung tin sinh xac dinh tinh chong chiu cay trong (c d ha) [compatib...
2017. ung dung tin sinh xac dinh tinh chong chiu cay trong (c d ha) [compatib...FOODCROPS
 
2017. Giới thiệu giống lúa CNC11
2017. Giới thiệu giống lúa CNC112017. Giới thiệu giống lúa CNC11
2017. Giới thiệu giống lúa CNC11FOODCROPS
 
2017. TS Cao Lệ Quyên. Nghiên cứu phân lập và chuyển gen liên quan đến tính c...
2017. TS Cao Lệ Quyên. Nghiên cứu phân lập và chuyển gen liên quan đến tính c...2017. TS Cao Lệ Quyên. Nghiên cứu phân lập và chuyển gen liên quan đến tính c...
2017. TS Cao Lệ Quyên. Nghiên cứu phân lập và chuyển gen liên quan đến tính c...FOODCROPS
 
2017. Nhìn về quá khứ định hướng tương lai
2017.  Nhìn về quá khứ định hướng tương lai2017.  Nhìn về quá khứ định hướng tương lai
2017. Nhìn về quá khứ định hướng tương laiFOODCROPS
 
2017. TS Cồ Thị Thuỳ Vân. Một số kết quả nổi bật và định hướng nghiên cứu về ...
2017. TS Cồ Thị Thuỳ Vân. Một số kết quả nổi bật và định hướng nghiên cứu về ...2017. TS Cồ Thị Thuỳ Vân. Một số kết quả nổi bật và định hướng nghiên cứu về ...
2017. TS Cồ Thị Thuỳ Vân. Một số kết quả nổi bật và định hướng nghiên cứu về ...FOODCROPS
 
2017. Nguyễn Thị Ngọc Lan. Nghiên cứu nhận dạng phân tử một số nguồn gen đậu ...
2017. Nguyễn Thị Ngọc Lan. Nghiên cứu nhận dạng phân tử một số nguồn gen đậu ...2017. Nguyễn Thị Ngọc Lan. Nghiên cứu nhận dạng phân tử một số nguồn gen đậu ...
2017. Nguyễn Thị Ngọc Lan. Nghiên cứu nhận dạng phân tử một số nguồn gen đậu ...FOODCROPS
 
2017. Con đường từ phân tích thực tiễn đến phòng thí nghiệm
2017. Con đường từ phân tích thực tiễn đến phòng thí nghiệm2017. Con đường từ phân tích thực tiễn đến phòng thí nghiệm
2017. Con đường từ phân tích thực tiễn đến phòng thí nghiệmFOODCROPS
 
2017. TS Nguyễn Văn Cửu. Xác định đặc tính gen chống chịu ngập ở lúa vùng Đô...
2017.  TS Nguyễn Văn Cửu. Xác định đặc tính gen chống chịu ngập ở lúa vùng Đô...2017.  TS Nguyễn Văn Cửu. Xác định đặc tính gen chống chịu ngập ở lúa vùng Đô...
2017. TS Nguyễn Văn Cửu. Xác định đặc tính gen chống chịu ngập ở lúa vùng Đô...FOODCROPS
 
2017. TS Đồng Thị Kim Cúc. Giới thiệu một số giống lạc mới
2017. TS Đồng Thị Kim Cúc. Giới thiệu một số giống lạc mới 2017. TS Đồng Thị Kim Cúc. Giới thiệu một số giống lạc mới
2017. TS Đồng Thị Kim Cúc. Giới thiệu một số giống lạc mới FOODCROPS
 
2015. ming tsair chan. the application of plant transformation
2015. ming tsair chan. the application of plant transformation2015. ming tsair chan. the application of plant transformation
2015. ming tsair chan. the application of plant transformationFOODCROPS
 
2007. stephen chanock. technologic issues in gwas and follow up studies
2007. stephen chanock. technologic issues in gwas and follow up studies2007. stephen chanock. technologic issues in gwas and follow up studies
2007. stephen chanock. technologic issues in gwas and follow up studiesFOODCROPS
 
2016. daisuke tsugama. next generation sequencing (ngs) for plant research
2016. daisuke tsugama. next generation sequencing (ngs) for plant research2016. daisuke tsugama. next generation sequencing (ngs) for plant research
2016. daisuke tsugama. next generation sequencing (ngs) for plant researchFOODCROPS
 
2017. Genome học hiện trạng và triển vọng
2017. Genome học hiện trạng và triển vọng2017. Genome học hiện trạng và triển vọng
2017. Genome học hiện trạng và triển vọngFOODCROPS
 

Más de FOODCROPS (20)

2019. jauhar ali. genomics assisted breeding for climate smart rice varieties
2019. jauhar ali. genomics assisted breeding for climate smart rice varieties2019. jauhar ali. genomics assisted breeding for climate smart rice varieties
2019. jauhar ali. genomics assisted breeding for climate smart rice varieties
 
2018. jauhar ali. green super rice breeding technology achievements and advances
2018. jauhar ali. green super rice breeding technology achievements and advances2018. jauhar ali. green super rice breeding technology achievements and advances
2018. jauhar ali. green super rice breeding technology achievements and advances
 
2012. chang xiang mao. hybrid rice development in and outside china
2012. chang xiang mao. hybrid rice development in and outside china2012. chang xiang mao. hybrid rice development in and outside china
2012. chang xiang mao. hybrid rice development in and outside china
 
2018. tm thiyagarajan. intercultivation in rice
2018. tm thiyagarajan. intercultivation in rice2018. tm thiyagarajan. intercultivation in rice
2018. tm thiyagarajan. intercultivation in rice
 
2018. gwas data cleaning
2018. gwas data cleaning2018. gwas data cleaning
2018. gwas data cleaning
 
2016. kayondo si. associatonn mapping identifies qt ls underlying cassava bro...
2016. kayondo si. associatonn mapping identifies qt ls underlying cassava bro...2016. kayondo si. associatonn mapping identifies qt ls underlying cassava bro...
2016. kayondo si. associatonn mapping identifies qt ls underlying cassava bro...
 
2017. Phương pháp backcrossing giả định quy tụ nhanh chống các tính trạng kin...
2017. Phương pháp backcrossing giả định quy tụ nhanh chống các tính trạng kin...2017. Phương pháp backcrossing giả định quy tụ nhanh chống các tính trạng kin...
2017. Phương pháp backcrossing giả định quy tụ nhanh chống các tính trạng kin...
 
2017. ung dung tin sinh xac dinh tinh chong chiu cay trong (c d ha) [compatib...
2017. ung dung tin sinh xac dinh tinh chong chiu cay trong (c d ha) [compatib...2017. ung dung tin sinh xac dinh tinh chong chiu cay trong (c d ha) [compatib...
2017. ung dung tin sinh xac dinh tinh chong chiu cay trong (c d ha) [compatib...
 
2017. Giới thiệu giống lúa CNC11
2017. Giới thiệu giống lúa CNC112017. Giới thiệu giống lúa CNC11
2017. Giới thiệu giống lúa CNC11
 
2017. TS Cao Lệ Quyên. Nghiên cứu phân lập và chuyển gen liên quan đến tính c...
2017. TS Cao Lệ Quyên. Nghiên cứu phân lập và chuyển gen liên quan đến tính c...2017. TS Cao Lệ Quyên. Nghiên cứu phân lập và chuyển gen liên quan đến tính c...
2017. TS Cao Lệ Quyên. Nghiên cứu phân lập và chuyển gen liên quan đến tính c...
 
2017. Nhìn về quá khứ định hướng tương lai
2017.  Nhìn về quá khứ định hướng tương lai2017.  Nhìn về quá khứ định hướng tương lai
2017. Nhìn về quá khứ định hướng tương lai
 
2017. TS Cồ Thị Thuỳ Vân. Một số kết quả nổi bật và định hướng nghiên cứu về ...
2017. TS Cồ Thị Thuỳ Vân. Một số kết quả nổi bật và định hướng nghiên cứu về ...2017. TS Cồ Thị Thuỳ Vân. Một số kết quả nổi bật và định hướng nghiên cứu về ...
2017. TS Cồ Thị Thuỳ Vân. Một số kết quả nổi bật và định hướng nghiên cứu về ...
 
2017. Nguyễn Thị Ngọc Lan. Nghiên cứu nhận dạng phân tử một số nguồn gen đậu ...
2017. Nguyễn Thị Ngọc Lan. Nghiên cứu nhận dạng phân tử một số nguồn gen đậu ...2017. Nguyễn Thị Ngọc Lan. Nghiên cứu nhận dạng phân tử một số nguồn gen đậu ...
2017. Nguyễn Thị Ngọc Lan. Nghiên cứu nhận dạng phân tử một số nguồn gen đậu ...
 
2017. Con đường từ phân tích thực tiễn đến phòng thí nghiệm
2017. Con đường từ phân tích thực tiễn đến phòng thí nghiệm2017. Con đường từ phân tích thực tiễn đến phòng thí nghiệm
2017. Con đường từ phân tích thực tiễn đến phòng thí nghiệm
 
2017. TS Nguyễn Văn Cửu. Xác định đặc tính gen chống chịu ngập ở lúa vùng Đô...
2017.  TS Nguyễn Văn Cửu. Xác định đặc tính gen chống chịu ngập ở lúa vùng Đô...2017.  TS Nguyễn Văn Cửu. Xác định đặc tính gen chống chịu ngập ở lúa vùng Đô...
2017. TS Nguyễn Văn Cửu. Xác định đặc tính gen chống chịu ngập ở lúa vùng Đô...
 
2017. TS Đồng Thị Kim Cúc. Giới thiệu một số giống lạc mới
2017. TS Đồng Thị Kim Cúc. Giới thiệu một số giống lạc mới 2017. TS Đồng Thị Kim Cúc. Giới thiệu một số giống lạc mới
2017. TS Đồng Thị Kim Cúc. Giới thiệu một số giống lạc mới
 
2015. ming tsair chan. the application of plant transformation
2015. ming tsair chan. the application of plant transformation2015. ming tsair chan. the application of plant transformation
2015. ming tsair chan. the application of plant transformation
 
2007. stephen chanock. technologic issues in gwas and follow up studies
2007. stephen chanock. technologic issues in gwas and follow up studies2007. stephen chanock. technologic issues in gwas and follow up studies
2007. stephen chanock. technologic issues in gwas and follow up studies
 
2016. daisuke tsugama. next generation sequencing (ngs) for plant research
2016. daisuke tsugama. next generation sequencing (ngs) for plant research2016. daisuke tsugama. next generation sequencing (ngs) for plant research
2016. daisuke tsugama. next generation sequencing (ngs) for plant research
 
2017. Genome học hiện trạng và triển vọng
2017. Genome học hiện trạng và triển vọng2017. Genome học hiện trạng và triển vọng
2017. Genome học hiện trạng và triển vọng
 

Último

Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 

Último (20)

Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 

Genetic Linkage Analysis

  • 1. Lecture 12 Genetic Linkage Analysis and Map Construction 1
  • 2. 2
  • 3. Experiments with Plant Hybrids (1866) Seed shape: 5474 round vs 1850 wrinkled Cotyledon color: 6022 yellow vs 2001 green Seed coat color: 705 grey-brown vs 224 white Pod shape: 882 inflated vs 299 constricted Unripe pod color: 428 green vs 152 yellow Flower position: 651 axial vs 207 terminal Stem length: 787 long (20-50cm) vs 277 short (185-230cm) Rediscovered in 1900
  • 4. 4
  • 5. Ear length of maize (East 1911) P1: 7cm; P2: 17cm One locus a=(17-7)/2=5; F2: 1/4 aa (7) + 2/4 Aa (12) + 1/4 AA (17) Two locus a=(17-7)/4=2.5 F2: 1/16 (7) + 4/16 (9.5) + 6/16 (12) + 4/16 (14.5) +1/16 (17) 5
  • 6. 6
  • 7. 7
  • 8. 8
  • 9. 1 2 VF 2 2 ka
  • 10. P1 ka P2 ka 2 (P1 P2 ) k 1 8[VF2 2 (VP1 VP2 )]
  • 11. 1 2 1 2 VA 2 a 2 ka 2 (P1 P )2 k 8V A
  • 12. 12
  • 13. Mendel and Fisher Annuals of Science 1:115- close to the values that Mendel expected under his theory that there must have been some manipulation, or omission, of data Dominant trait: 1/3 AA + 2/3 Aa Family size: 10 Non-segregating (AA) : Segregating (Aa) = 1:2 (Mendel) Fisher: Pro {Aa family classified as AA} = 0.75^10=0.0563 Pro {Non-segregating (AA)} =2/3*(1-0.0563)=0.6291 Non-segregating (AA) : Segregating (Aa) = 0.3709 : 0.6291 = 1 : 1.6961 13
  • 14. 14
  • 15. Genetic populations and pair- wise linkage analysis 15
  • 16. Populations handled in QTL IciMapping Parent P1 Parent P2 Legends Hybridization F1 Selfing 1. P1BC1F1 7. F2 2. P2BC1F1 Repeated selfing 9. P1BC2F1 13. P1BC1F2 8. F3 14. P2BC1F2 10. P2BC2F1 Doubled haploids 15. P1BC2F2 16. P2BC2F2 11. P1BC2RIL 5. P1BC1RIL 4. F1RIL 6. P2BC1RIL 12. P2BC2RIL BC3F1, BC4F1 etc. P1BC2F1 P1BC1F1 F1 P2BC1F1 P2BC2F1 Marker-assisted selection 19. P1BC2DH 17. P1BC1DH 3. F1DH 18. P2BC1DH 20. P2BC2DH CSS lines or Introgression lines P1 × CP P2 × CP P3 × CP Pn × CP CP=common parent RIL family 1 RIL family 2 RIL family 3 RIL family i RIL family n One NAM population
  • 17. Example: 10 RILs in a rice population (Linkage map of Chr. 5) Grain Marker C263 R830 R3166 XNpb387 R569 R1553 C128 C1402 XNpb81 C246 R2953 C1447 width (mm) Position 0.0 3.5 8.5 19.5 32.0 66.6 74.1 78.6 81.8 91.9 92.7 96.8 (cM) RIL1 0 0 0 0 0 0 0 0 0 0 0 0 2.33 RIL2 2 2 2 2 2 0 0 0 0 2 2 2 1.99 RIL3 0 2 2 2 2 2 2 2 2 2 2 2 2.24 RIL4 0 0 0 0 0 0 2 2 2 2 2 2 1.94 RIL5 0 0 0 0 0 2 2 0 0 0 0 0 2.76 RIL6 0 0 0 2 2 2 2 2 2 2 2 2 2.32 RIL7 0 0 0 0 0 0 0 0 0 0 0 0 2.32 RIL8 2 2 0 2 2 0 0 0 0 2 2 2 2.08 RIL9 0 0 0 0 2 2 0 0 0 0 0 0 2.24 17 RIL10 0 0 0 0 2 2 0 0 0 0 0 0 2.45
  • 18. Genetic markers in linkage analysis Morphological traits hybridization experiments Cytogenetic and bio-chemistry markers (e.g. isozyme) DNA molecular markers RFLP, SSR, SNP etc.
  • 19. The four gametes (haplotypes) of an F1 P1: AABB P2: aabb A B a b A B a b F1: AaBb A B a b Meiosis A B A b a B a b (1-r)/2 r/2 r/2 (1-r)/2 19 Parental type Recombinant Recombinant Parental type type type
  • 20. Expected genotypic frequency in backcross and DH populations P1: AABB; P2: aabb 20
  • 21. MLE of recombination frequency Likelihood function n1 n2 n3 n4 n! 1 1 1 1 L (1 r ) r r (1 r ) C (1 r ) n1 n4 ( r ) n2 n3 n1!n2 !n3! n4 ! 2 2 2 2 Logarithm of likelihood ln L ln C (n1 n4 ) ln(1 r ) (n2 n3 ) ln r n2 n3 n2 n3 r MLE of r n1 n2 n3 n4 n Fisher information d 2 ln L n1 n4 n2 n3 n I E( 2 ) E d r (1 r ) 2 r2 r (1 r ) Variance of estimated r Vr 1 r (1 r ) I n
  • 22. Significance test of linkage Null hypothesis H0: r = 0.5 (no genetic linkage, or locus A-a and B-b are independent) Alternative hypothesis HA Likelihood ratio test (LRT) or LOD score L(r 0.5) 2 LRT 2 ln[ ]~ (df 1) L(r ) L(r ) LOD L(r 0.5)
  • 23. An example P1BC1 population Genotypes of two inbred parents P1 and P2 are AABB and aabb Observed samples of the four genotypes in P1BC1 AABB 162 AABb 40 AaBB 41 AaBb 158 40 41 81 r 20.20% 162 40 41 158 401 r (1 r ) 4 Vr 4.02 10 23 n
  • 24. Test of linkage Null hypothesis H0: r = 0.5 Alternative hypothesis HA L( r ) (1 r ) n1 n4 r n2 n3 6.3 10153 L( r 0.5) ( 1 ) n1 n2 n3 n4 4 Likelihood ratio test (LRT) (P<0.0001) and LOD score L( r ) LRT 2 * ln[ ] 708.27 L( r 0.5) L(r ) LOD log[ ] 153.80 24 L (r 0.5)
  • 25. Genotypic frequencies in RIL populations, compared with DH DH Theoretical RIL Theoretical population frequency population frequency AABB f1=(1-r)/2 AABB f1=(1-R)/2 AAbb f2=r/2 AAbb f2=R/2 aaBB f3=r/2 aaBB f3=R/2 aabb f4=(1-r)/2 aabb f4=(1-R)/2 25 R=2r/(1+2r)
  • 26. Parent type or RIL Marker 1 Marker 2 recombinant C263 XNpb387 n1=6 RIL1 0 or A 0 or A P1 type n2=2 n3=0 RIL2 2 or B 2 or B P2 type n4=2 RIL3 0 or A 2 or B Recombinant RIL4 0 or A 0 or A P1 type R=2/10=0.2 RIL5 0 or A 0 or A P1 type r=0.125 RIL6 0 or A 2 or B Recombinant RIL7 0 or A 0 or A P1 type LRT=17.72 (P=2.56 10-5) RIL8 2 or B 2 or B P2 type LOD=3.85 RIL9 0 or A 0 or A P1 type RIL10 0 or A 0 or A P1 type
  • 28. MLE of r in F2: dominant markers 2 Logarithm of the likelihood ratio k (1 r ) ln L C n1 ln(3 2r r 2 ) (n3 n7 ) ln(2r r2) n9 ln(1 2r r2) C n1 ln(2 k ) (n3 n7 ) ln(1 k ) n9 ln k MLE of r 2 ( 2n 3n1 n9 ) ( 2n 3n1 n9 ) 2 n n9 k (1 r ) 2n Variance of the estimated r (1 k )(2 k ) (2r r 2 )(3 2r r 2 ) Vr 2n(1 2k ) 2n(3 4r 2r 2 )
  • 29. MLE of r in F2: co-dominant markers (Newton-Raphson algorithm) Log-likelihood function ln L ln C (2n1 2n9 n2 n4 n6 n8 ) ln(1 r ) ( n2 n4 n6 n8 2n3 2n7 ) ln r n5 ln(1 2r 2r 2 ) The first-order derivative of LogL f'(r) ) d dr L 2n 2n n 1n n n n n n rn 2n 2n 1n (24rr 22r) ln r 1 9 2 4 6 8 2 4 6 8 3 7 5 2 The second-order derivative of LogL 2 2 d ln L 2 n 2n n n n n n n n n 2n 2n n ( 4r 4r ) f''(r) d r ) 2 ( r 1) 1 9 r 2 2 4 (1 2r 2r ) 6 8 2 4 6 2 8 3 7 5 2 2 The iteration algorithm: ri+1 = ri - f'(ri)/f''(ri)
  • 30. MLE of r in F2: co-dominant markers (EM algorithm) EM for expectation and maximization E-step: for an initial r0, calculate the probability of crossover in each marker type M-step: Update r, and repeat from the E-step 1 r' n nk Pk ( R | G) k
  • 31. Expected probability of crossover r= [n1 0+ n2 0.5+ n3 1 n8 0.5+ n9 0]/n
  • 32. Estimated r after 3 EM iterations (r0=0.5)
  • 33. Estimated r after 3 EM iterations (r0=0.25)
  • 34. Estimated r after 3 EM iterations (r0=0.0)
  • 35. Co-dominant markers in other populations R=2r/(1+2r)
  • 36. More populations (e.g. BC1F2, F3 etc): Generation transition matrix of
  • 37. Distortion has little effect on linkage analysis! DH pop Theo. Freq. Distortion Freq. in distortion AABB f1=(1-r)/2 (1-r)/2 (1-r)/(1+s) AAbb f2=r/2 r/2 r/(1+s) aaBB f3=r/2 s r/2 r s/(1+s) aabb f4=(1-r)/2 s (1-r)/2 (1-r) s/(1+s) Sum 1 (1+s)/2 1 r r /(1 s) r s /(1 s) r (1 s) /(1 s) r
  • 38. Three-point analysis and linkage map construction 38
  • 39. Linkage analysis of three markers r13 r12 r23 21 r12 r23 When 0 interference), (no (1 r13 ) (1 r12 )(1 r23 ) r12 r23 r13 r12 (1 r23 ) (1 r12 ) r23 r12 r23 2r12 r23 When 1 (complete interference), r13 r12 r23 The order of the three loci can be determined after linkage analysis (3!/2=3 potential orders) 39 1 2 3, or 1 3 2, or 2 1 3
  • 40. Mapping distance and recombination frequency Mapping distance m13 m12 m23 Unit of mapping distance M (Morgan) or cM (centi-Morgan), 1M=100cM The function of mapping distance on recombination frequency (Mapping function): m f (r ) 40
  • 41. Common mapping functions Morgan function (complete interference) In M: m =r (M) In cM: m =r 100 (cM) Haldane function (no interference) 1 2m In M: m f (r ) 2 ln(1 2r ) r 1 2 (1 e ) m / 50 In cM: m f (r ) 50 ln(1 2r ) r 1 2 (1 e ) Kosambi function (interference depends on length of interval) 4m In M: m 1 1 2r ln r 1 e 1 4m 4 1 2r 2 e 1 m / 25 1 2r 1e 1 m 25 ln r 41 In cM: 1 2r 2 em / 25 1
  • 42. Comparison of the three functions Mapping distance (cM) (M) 42 Recombination frequency
  • 43. Three steps in linkage map construction Step 1: Grouping. Grouping can be based on (i) a threshold of LOD score (ii) a threshold of marker distance (cM) (iii) anchor information Step 2: Ordering. Three ordering algorithms are (i) SER: SERiation (Buetow and Chakravarti, 1987. Am J Hum Genet 41:180 188) (ii) RECORD: REcombination Counting and ORDering (Van Os et al., 2005. Theor Appl Genet 112: 30 40) (iii) nnTwoOpt: nearest neighbor was used for tour construction, and two-opt was used for tour improvement, similar to Travelling Salesman Problem (TSP) (Lin and Kernighan, 1973. Oper. Res. 21: 498 516.
  • 44. Three steps in linkage map construction Due to the large number of markers (n), it is impossible to compare all possible orders (say n=50, possible orders are n!/2=1.52x1064). Orders from the above algorithms are regional optimizations. Step 3: Rippling. Five rippling criteria are (i) SARF (Sum of Adjacent Recombination Frequencies) (ii) SAD (Sum of Adjacent Distances) (iii) SALOD (Sum of Adjacent LOD scores) (iv) COUNT (number of recombination events)
  • 45. The MAP functionality in QTL IciMapping 45
  • 46. Interface of the MAP functionality
  • 47. A. Map of one chromosome B. Map of all chromosomes Map outputs: Linkage map for each chromosome (A) or all chromosomes (B)
  • 48. An example map of seven chromosomes or groups 48
  • 49. Linkage map and physical map Species Size of haploid Size of linkage kb/cM genome (kb) map (cM) Yeast 2.2 104 3700 6 Neurospora 4.2 104 500 80 Arabidopsis 7.0 104 500 140 Drosophila 2.0 105 290 700 Tomato 7.2 105 1400 510 Human 3.0 106 2710 1110 Wheat 1.6 107 2575 6214 Rice 4.4 105 1575 279 49 Corn 3.0 106 1400 2140
  • 50.
  • 51.
  • 52.
  • 53.
  • 54. What is QTL Mapping? The procedure to map individual genetic factors with small effects on the quantitative traits, to specific chromosomal segments in the genome The key questions in QTL mapping studies are: How many QTL are there? Where are they in the marker map? How large an influence does each of them have on the trait of interest?
  • 55.
  • 56. Grain Marker C263 R830 R3166 XNpb387 R569 R1553 C128 C1402 XNpb81 C246 R2953 C1447 width (mm) Position 0.0 3.5 8.5 19.5 32.0 66.6 74.1 78.6 81.8 91.9 92.7 96.8 (cM) RIL1 0 0 0 0 0 0 0 0 0 0 0 0 2.33 RIL2 2 2 2 2 2 0 0 0 0 2 2 2 1.99 RIL3 0 2 2 2 2 2 2 2 2 2 2 2 2.24 RIL4 0 0 0 0 0 0 2 2 2 2 2 2 1.94 RIL5 0 0 0 0 0 2 2 0 0 0 0 0 2.76 RIL6 0 0 0 2 2 2 2 2 2 2 2 2 2.32 RIL7 0 0 0 0 0 0 0 0 0 0 0 0 2.32 RIL8 2 2 0 2 2 0 0 0 0 2 2 2 2.08 RIL9 0 0 0 0 2 2 0 0 0 0 0 0 2.24 RIL10 0 0 0 0 2 2 0 0 0 0 0 0 2.45
  • 57. Bi-parental mapping populations (linkage mapping) Temporary population: F2 and BC Permanent population: RIL, DH, CSSL Secondary population Association mapping Natural populations: human and animals
  • 58. Single marker analysis (Sax 1923; Soller et al. 1976) The single marker analysis identifies QTLs based on the difference between the mean phenotypes for different marker groups, but cannot separate the estimates of recombination fraction and QTL effect. Interval mapping (IM) (Lander and Botstein 1989) IM is based on maximum likelihood parameter estimation and provides a likelihood ratio test for QTL position and effect. The major disadvantage of IM is that the estimates of locations and effects of QTLs may be biased when QTLs are linked. Regression interval mapping (RIM) (Haley and Knott 1992; Martinez and Curnow 1992 ) RIM was proposed to approximate maximum likelihood interval mapping to save computation time at one or multiple genomic positions.
  • 59. Composite interval mapping (CIM) (Zeng 1994) CIM combines IM with multiple marker regression analysis, which controls the effects of QTLs on other intervals or chromosomes onto the QTL that is being tested, and thus increases the precision of QTL detection. Multiple interval mapping (MIM) (Kao et al. 1999) MIM is a state-of-the-art gene mapping procedure. But implementation of the multiple-QTL model is difficult, since the number of QTL defines the dimension of the model which is also an unknown parameter of interest. Bayesian model (Sillanpää and Corander 2002) In any Bayesian model, a prior distribution has to be considered. Based on the prior, Bayesian statistics derives the posterior, and then conduct inference based on the posterior distribution. However, Bayesian models have not been widely used in practice, partially due to the complexity of computation and the lack of user-friendly software.
  • 60. mm Mm MM mm Mm MM A. B. QTL QTL
  • 61. Backcrosses (P1BC1 and P2BC1) of P1: MMQQ and P2: mmqq BC1 BC2 Genotypic Genotypic Genotype Frequency Genotype Frequency value value 1 1 MMQQ 2 (1 r ) m+a MmQq 2 (1 r ) m+d 1 1 MMQq 2 r m+d Mmqq 2 r m-a 1 1 MmQQ 2 r m+a mmQq 2 r m+d 1 1 MmQq 2 (1 r ) m+d mmqq 2 (1 r ) m-a
  • 62. Two marker types: MM (1 r ) MMQQ r MMQq (1 r )(m a) r (m d ) m (1 r )a rd Mm r MmQQ (1 r ) MmQq r (m a) (1 r )(m d ) m ra (1 r )d Difference in phenotype between the two types MM Mm (1 2r )(a d )
  • 63. Linear model (j=1 2 n) yi b0 b* x* e j j b* represent QTL effect x * is the indicator j variable (0 or 1) for QTL genotype Likelihood profile Support interval: One-LOD interval
  • 64. P1: Mi Q Mi +1 P2: mi q mi +1 Mi Q Mi +1 mi q mi +1 F1: Mi Q Mi +1 P1: Mi Q Mi +1 mi q mi +1 Mi Q Mi +1 Mi Q Mi +1 Mi Q Mi +1 Mi Q Mi +1 Mi Q Mi +1 Mi Q Mi +1 Mi Q mi +1 mi q Mi +1 mi q mi +1 Mi Q Mi +1 Mi Q Mi +1 Mi q mi +1 mi Q Mi +1 1 4
  • 65.
  • 66. Assumption: No more than one QTL per chromosome or linkage group Large confidence interval Biased effect estimation Composite interval mapping (CIM) (Zeng 1994)
  • 67. In the algorithm of CIM, both QTL effect at the current testing position and regression coefficients of the marker variables used to control genetic background were estimated simultaneously in an expectation and maximization (EM) algorithm. Thus, this algorithm could not completely ensure that the effect of QTL at current testing interval was not absorbed by the background marker variables and therefore may result in biased estimation of the QTL effect.
  • 68. Theoretical basis of ICIM m G ajg j aa jk g j g k j 1 j k E ( g j | X) j xj j xj 1 E( g j gk | X) j k x j xk j k x j xk 1 j k x j 1xk j k x j 1xk 1 m 1 yi b0 b j xij b jk xij xik ei j 1 j k
  • 69. One-dimensional scanning (interval mapping) yi yi b j xij j k ,k 1 Two-dimensional scanning (interval mapping) yi yi br xir brs xir xis r j , j 1,k ,k 1 r j, j 1 s k ,k 1
  • 70. 40 2 1.5 30 LOD score 1 0.5 Effect 20 0 10 -0.5 11111111111222222222233333333334444444444 -1 0 -1.5 11111111111222222222233333333334444444444 -2 Scanning posoition along the genome Scanning posoition along the genome 80 3 2 60 LOD score 1 Effect 40 0 -1 11111111111222222222233333333334444444444 20 -2 0 -3 11111111111222222222233333333334444444444 -4 Scanning posoition along the genome Scanning posoition along the genome 70 1.5 60 1 LOD score 50 40 0.5 Effect 30 0 20 -0.5 11111111111222222222233333333334444444444 10 0 -1 11111111111222222222233333333334444444444 -1.5 Scanning posoition along the genome Scanning posoition along the genome
  • 72.
  • 73.
  • 74. One-locus model in F2 One-locus model: G aw dv where is mean of the two homozygous genotypes QQ and qq, a is the additive effect, d is the dominance effect . w and v are the indicators for genotypes at the QTL, valued at 1 and 0 for QQ, 0 and 1 for Qq, and -1 and 0 for qq, respectively
  • 75. The expected genotypic value of an individual with known marker types E (G | x1 , x2 , y1 , y2 ) a E ( w | x1 , x2 , y1 , y2 ) d E (v | x1 , x2 , y1 , y2 )
  • 76. Probability of the three QTL genotypes under given marker types Left Right QQ (w=1, v=0) Qq (w=0, v=1) qq (w=-1, v=0) marker marker (m+a) (m+d) (m-a) 2 2 1 1 2 2 AA BB 1 4 (1 r1 ) (1 r2 ) 2 1 r (1 r1 )r2 (1 r2 ) r r 4 1 2 2 AA Bb 1 2 (1 r1 ) 2 r2 (1 r2 ) 1 r (1 r1 )(1 r2 ) 2 1 2 1 r (1 r1 )r2 2 1 2 1 r r (1 r2 ) 2 1 2 1 2 2 (1 r1 ) r2 1 1 2 AA bb 4 r (1 r1 )r2 (1 r2 ) 2 1 r (1 r2 ) 2 4 1
  • 77. Estimation of marker class mean Indicator Marker for marker E (w | x1 , x2 , y1 , y2 ) E (v | x1 , x2 , y1 , y2 ) Genetic mean n Frequency class of the class x1 x2 y1 y2 AABB n1 1 4 (1 r ) 2 1 1 0 0 f1 g1 f1a g1d 1 f2a g2d AABb n2 2 r (1 r ) 1 0 0 1 f2 g2 1 2 AAbb n3 4 r 1 -1 0 0 f3 g3 f 3a g3d 1 2r1r2 /(1 r ) f1 2r1 (1 r1 )r2 (1 r2 ) /(1 r ) 2 g1 [(1 2r1 )r2 (1 r2 )] /( r r ) 2 f2 r1 (1 r1 )(1 2r2 2r22 ) /( r r 2 ) g2 (r2 r1 ) / r f3 2r1 (1 r1 )r2 (1 r2 ) / r 2 g3
  • 78. Relationship between marker class mean and marker effect (including marker interactions) f1a g1d 1 1 1 0 0 1 0 0 0 (d ) d f 2a g 2d 1 1 0 0 1 0 1 0 0 (a ) A1 f 3a g 3d 1 1 1 0 0 1 0 0 0 (a ) A2 f 4a g 4d 1 0 1 1 0 0 0 1 0 (d ) D1 g5d 1 0 0 1 1 0 0 0 1 (d ) D2 f 4a g 4d 1 0 1 1 0 0 0 1 0 (d ) AA12 f 3a g 3d 1 1 1 0 0 1 0 0 0 AD12 f 2a g 2d 1 1 0 0 1 0 1 0 0 DA12 f1a g1d 1 1 1 0 0 1 0 0 0 (d ) DD12
  • 79. Relationship between marker effects and QTL effects 1 (d ) d 2 ( g1 g3 )d (a) A1 f2a 1 (a) A2 2 ( f1 f 3 )a 1 1 (d ) D1 ( g 2 1 2 g3 g 4 )d 1 1 (d ) D2 ( g g2 2 1 2 g 3 )d (d ) AA12 1 2 ( g1 g 3 )d AD12 0 DA12 0 (d ) DD12 ( 1 g1 g 2 2 1 2 g 3 g 4 g 5 )d
  • 80. The linear model of genotypic values on markers in F2 E(w | x1 , x2 , y1 , y2 ) x 1 1 2 2 x E (v | x1 , x2 , y1 , y2 ) 1 1 y 2 y2 xx 12 1 2 yy 12 1 2
  • 81. The linear model of genotypic values on markers in F2 E (G | x1 , x2 , y1 , y2 ) (a) A1 x1 (d ) D1 y1 (a) A2 x2 (d ) D2 y2 (d ) AA12 x1 x2 (d ) DD12 y1 y2
  • 82. Properties of the linear model in F2 The additive and dominance effects of the flanked QTL are completely absorbed by the six variables in the model above. Interactions between marker variables may be declared as interaction between QTL by mistake when using ANOVA. But from our analysis, interactions between marker variables can be caused simply by dominance effects of QTL .
  • 83. Multiple QTL model in F2 For multiple QTL, assume there are m QTL located on m intervals defined by m+1 markers on one chromosome, then the genotypic value of an F2 individual is defined as: m G [a j w j d jv j ] j 1
  • 84. The linear model in F2 under multiple QTL The genotypic value of an F2 individual with known marker types can be re-organized as: m 1 m 1 E (G ) j xj j yj j 1 j 1 m m j, j 1 xjxj 1 j, j 1 yj yj 1 j 1 j 1
  • 85. The linear model for QTL mapping in F2 m 1 m 1 P E (G ) j xj j yj j 1 j 1 m m j, j 1 xjxj 1 j, j 1 yj yj 1 j 1 j 1
  • 86. Property of the linear model for QTL mapping in F2
  • 87. ICIM (Inclusive Composite Interval Mapping) in F2 Pi Pi [ j xij j yij ] j k ,k 1 [ j , j 1 ijx xi , j 1 j, j 1 yij yi , j 1 ] j k
  • 88. Hypothesis test of QTL mapping in F2 The two hypotheses used to test the existence of QTL at the scanning position are: vs. H 0 : 1 2 3 H A : at least two of 1 , 1 and 3 are not equal The logarithm likelihood under HA is 9 3 2 LA log[ jk f ( Pi ; k , )] j 1 i Sj k 1 where S j denotes individuals belonging to the j th marker class (j=1, th jk k=1, 2, 3) is the proportion of the k QTL genotype in th the j class, and f ( ; k , 2 ) is the density function of the normal 2 distribution N ( k , ) .
  • 89. EM algorithm of QTL mapping in F2 Use EM algorithm to get the estimation of 1 , 2 and 3 So the genetic effects in G aw dv were therefore estimated by 1 1 2 ( 1 3 ) a 2 ( 1 3 ) d 2
  • 90. EM algorithm of QTL mapping in F2 Parameters under H0 were calculated as: n n 1 2 1 2 0 n Pi 0 n ( Pi 0 ) i 1 i 1 From which the maximum likelihood under H0, and the LOD score between HA and H0 can be calculated.
  • 91. QTL distribution models in simulation
  • 92. QTL distribution models in simulation
  • 93. QTL distribution models in simulation F2 populations were simulated by the genetics and breeding simulation tool of QuLine. QTL mapping using ICIM was implemented by the software QTL IciMapping.
  • 94. Theoretical marker effects in the genetic model used in simulation The expected additive, dominance, additive by additive, and dominance by dominance effects of the two flanking markers associated with each QTL is shown in the following table. It indicated that the dominance of a QTL could complicate the coefficients of the two markers flanking a QTL, and cause the interactions between markers.
  • 95. The expected marker effects in simulation Interaction QTL (d) d (a) A1 (a) A2 (d ) D1 (d ) D2 (d ) AA12 (d ) DD12 variation (%) QTL1 0.000 0.498 0.498 0.000 0.000 0.000 0.000 0.0 QTL2 0.253 0.000 0.000 0.248 0.248 -0.248 0.243 21.8 QTL3 0.253 0.498 0.498 0.248 0.248 -0.248 0.243 5.7 QTL4 -0.253 0.498 0.498 -0.248 -0.248 0.248 -0.243 5.7 QTL5 0.379 0.498 0.499 0.371 0.371 -0.371 0.364 9.6 QTL6 -0.379 0.498 0.498 -0.371 -0.371 0.371 -0.364 9.6
  • 96. QTL mapping in simulated F2 populations
  • 97. QTL LOD PVE True Est. True Est. add. True Est. score (%) Position Position add. effect dom. dom. (cM) (cM) effect effect effect QTL distribution model I QTL1 16.52 6.67 25 28 1 0.88 0 -0.11 QTL2 7.67 3.27 55 53 0 0.03 1 0.85 QTL3 25.11 11.28 25 24 1 0.86 1 1.08 QTL4 35.46 16.43 55 57 1 0.74 -1 -1.58 QTL5 37.12 16.74 25 26 1 1.05 1.5 1.38 QTL6 28.44 13.16 55 55 1 0.84 -1.5 -1.22
  • 98.
  • 99.
  • 100.
  • 101. 180 individuals The cross was made in Chengdu, China, in July 2002 between the indica rice variety and Nipponbare. 137 SSR markers. The whole genome was of 2046.2 cM, and the average marker distance was 17.1 cM. A number of agronomic traits were investigated in the field.
  • 102. QTL mapping in the actual F2 population
  • 103. QTL distribution Trait R2 of R2 of Absolute degree of dominance (|d/a|) Total additive additive and dominance (%) <=0.25 (0.25, 0.75] (0.75, 1.25] >1.25 (%) PH 25.84 51.56 2 1 1 5 9 HD 16.12 41.37 1 1 1 3 6 PL 25.58 61.26 5 3 1 8 17 FL 20.86 40.00 0 2 0 3 5 SPK 25.64 27.09 1 1 1 1 4 TKW 20.11 20.11 2 0 2 1 5 DP 19.45 24.87 1 1 0 1 3 GL 30.69 41.96 1 1 0 0 2 GW 26.63 26.63 2 2 0 0 4 RLW 37.63 45.70 1 3 1 1 6 Total 16 15 7 23 61
  • 104. PVE distribution 20 18 Frequency across traits 16 14 12 10 8 6 4 2 0 Phenotypic variation explained(%)
  • 105. Trait QTL Chr Distance to Add Dom LOD PVE(%) left marker Plant QPh1-1 1 12 -0.57 -7.98 8.04 12.03 height QPh1-2 1 19.5 -8.59 0.59 15.54 25.57 (Ph) QPh3-1 3 16.9 4.35 -4.86 6.51 13.30 QPh3-2 3 11.4 -4.69 -1.00 5.04 6.84 QPh4 4 13.7 -3.56 -2.09 4.61 5.53 QPh5 5 13 -0.44 -4.48 3.13 3.86 QPh6 6 6.2 -0.79 -5.05 3.17 4.96 QPh7 7 7 0.26 6.48 5.27 7.56 QPh12 12 2.4 -1.66 3.93 3.98 5.44 Heading QHd1 1 22.1 1.74 -0.30 3.65 7.27 date (Hd) QHd3 3 19.9 0.88 -3.70 6.04 21.09 QHd4 4 0.2 -0.77 1.85 3.58 5.24 QHd8 8 5.7 -1.41 -1.46 4.79 8.20 QHd10 10 0.3 -1.78 -0.80 4.85 7.21 QHd11 11 6.2 0.15 -3.03 5.71 11.70
  • 106. Conclusions m 1 m 1 P E (G ) j xj j yj j 1 j 1 m m j, j 1 xjxj 1 j, j 1 yj yj 1 j 1 j 1
  • 107.
  • 108. Six methods in BIP SMA: single marker analysis (Soller et al., 1976. Theor. Appl. Genet. 47: 35-39) IM-ADD: the conventional simple interval mapping (Lander and Botstein, 1989. Genetics 121: 185-199) ICIM-ADD: inclusive composite interval mapping of additive (and dominant) QTL (Li et al., 2007. Genetics 175: 361-374. Zhang et al., 2008. Genetics 180: 1177- 1190) IM-EPI: interval mapping of digenic epistatic QTL ICIM-EPI: inclusive composite interval mapping of digenic epistatic QTL (Li et al., 2008. Theor. Appl. Genet. 116: 243-260) SGM: selective genotyping mapping (Lebowitz et al., 1987. Theor. Appl. Genet. 73: 556 562)
  • 109. Interface of the BIP functionality
  • 110. LOD profile of ICIM additive mapping (ICIM-ADD)
  • 111. Figures of interacting QTL from ICIM epistatic mapping (ICIM-EPI)