Concepto de variablePor ejemplo, supongamos que queremos sacarfotocopias. Una fotocopia vale $25 y necesitamossacar 20. ¿C...
Tenemos dos variables:- La cantidad de fotocopias que necesitamos.- La cantidad de dinero que debemos pagar.La cantidad de...
Entonces podemos definir variable                                como:        “Una variable es cualquier cantidad         ...
Tener presente que:En general las variables independientes (x), son aquellasen las que no podemos intervenir fácilmente. ...
ActividadSupongan que van con su familia a la playa, devacaciones, y arriendan una cabaña. Si elarriendo diario es de $8.0...
Concepto de función      Una función f asocia cada elemento de un       conjunto A con un único elemento de un     conjunt...
Actividad¿Cuales de los siguientes esquemas respeta la      definición de función?¿Por qué?
Concepto de función   Las funciones que estudiaremos son expresiones  matemáticas que asocia dos conjuntos de números     ...
Imagen y preimagen.Cada valor que puede tomar la variable independientese llama “preimagen”, y a ella le corresponde un ún...
Dominio y recorridoEl conjunto de todos los valores que puede tomar la variable independiente se denomina dominio y se    ...
Dominio y recorrido  El conjunto de todos los valores que puede tomar lavariable dependiente se denomina recorrido y se es...
Dominio y recorrido                        Importante:En los tipos de funciones que estudiaremos el dominio y recorrido ge...
Funciones1.
Próxima SlideShare
Cargando en…5
×

Funciones1.

276 visualizaciones

Publicado el

0 comentarios
0 recomendaciones
Estadísticas
Notas
  • Sé el primero en comentar

  • Sé el primero en recomendar esto

Sin descargas
Visualizaciones
Visualizaciones totales
276
En SlideShare
0
De insertados
0
Número de insertados
3
Acciones
Compartido
0
Descargas
8
Comentarios
0
Recomendaciones
0
Insertados 0
No insertados

No hay notas en la diapositiva.

Funciones1.

  1. 1. Concepto de variablePor ejemplo, supongamos que queremos sacarfotocopias. Una fotocopia vale $25 y necesitamossacar 20. ¿Cuánto va a pagar?Simplemente:20 x $25 = $500Qué pasa si necesitamos 15, 18, o 30 fotocopias.• ¿Qué les dice el término variable?• ¿Qué variables observan en la situación anterior?
  2. 2. Tenemos dos variables:- La cantidad de fotocopias que necesitamos.- La cantidad de dinero que debemos pagar.La cantidad de dinero que pagaremos depende dela cantidad de fotocopias que necesitemos Veámoslo en la tabla Cantidad de Dinero a fotocopias pagar 15 375 18 450 30 750
  3. 3. Entonces podemos definir variable como: “Una variable es cualquier cantidad que varía. Cualquier fenómeno o evento que puede tener diferentes valores”Ya dijimos que la cantidad a pagar depende del n°de fotocopias, por lo tanto ésta es la variableindependiente, será x. Por otro lado la cantidada pagar es la variable dependiente, su valordepende del de x, esta será y.
  4. 4. Tener presente que:En general las variables independientes (x), son aquellasen las que no podemos intervenir fácilmente. Ejemplos:- Precio- Tiempo- Temperatura- Peso
  5. 5. ActividadSupongan que van con su familia a la playa, devacaciones, y arriendan una cabaña. Si elarriendo diario es de $8.000:a) ¿Cuánto deberán pagar por 15 días dearriendo?b) ¿Cuáles serían las variables dependiente eindependiente en ésta situación?
  6. 6. Concepto de función Una función f asocia cada elemento de un conjunto A con un único elemento de un conjunto B. Esto se puede representar por el siguiente diagrama.Variable independiente Variable dependiente
  7. 7. Actividad¿Cuales de los siguientes esquemas respeta la definición de función?¿Por qué?
  8. 8. Concepto de función Las funciones que estudiaremos son expresiones matemáticas que asocia dos conjuntos de números Ejemplo: f(x) = 2x+1Variable independiente Variable dependiente 0 1 1 3 2 5 3 7 4 9
  9. 9. Imagen y preimagen.Cada valor que puede tomar la variable independientese llama “preimagen”, y a ella le corresponde un único valor de la variable dependiente, y se llama“imágen” Ejemplo: f(x) = 2x+1 0 1 1 3 2 5 3 7 4 9 « 1 es una preimagen a la que le corresponde una única imagen que es 3» « 9 es la única imagen de la preimagen 4»
  10. 10. Dominio y recorridoEl conjunto de todos los valores que puede tomar la variable independiente se denomina dominio y se escribe como, Dom f(x). Ejemplo: f(x) = 2x+1 0 1 1 3 2 5 3 7 4 9
  11. 11. Dominio y recorrido El conjunto de todos los valores que puede tomar lavariable dependiente se denomina recorrido y se escribe como, Rec f(x). Ejemplo: f(x) = 2x+1 0 1 1 3 2 5 3 7 4 9
  12. 12. Dominio y recorrido Importante:En los tipos de funciones que estudiaremos el dominio y recorrido generalmente serán conjuntos muy grandes (infinitos), por ejemplo:

×