CALCULO INTEGRAL
Pérez José
CI : 24 394 244
Longitud De Curvas
La longitud de arco de una curva, también llamada rectificación de una curva,
es la medida de la distan...
Cuando la curva es suave, la longitud de cada pequeño segmentos de recta se puede
calcular mediante el teorema de Pitágora...
Próxima SlideShare
Cargando en…5
×

Longitud de una curva

167 visualizaciones

Publicado el

Presentación de calculo de longitud de una curva

Publicado en: Educación
0 comentarios
0 recomendaciones
Estadísticas
Notas
  • Sé el primero en comentar

  • Sé el primero en recomendar esto

Sin descargas
Visualizaciones
Visualizaciones totales
167
En SlideShare
0
De insertados
0
Número de insertados
3
Acciones
Compartido
0
Descargas
1
Comentarios
0
Recomendaciones
0
Insertados 0
No insertados

No hay notas en la diapositiva.

Longitud de una curva

  1. 1. CALCULO INTEGRAL Pérez José CI : 24 394 244
  2. 2. Longitud De Curvas La longitud de arco de una curva, también llamada rectificación de una curva, es la medida de la distancia o camino recorrido a lo largo de una curva o dimensión lineal. Históricamente, ha sido difícil determinar esta longitud en segmentos irregulares; aunque fueron usados varios métodos para curvas específicas, la llegada del calculo trajo consigo la fórmula general para obtener soluciones cerradas para algunos casos La longitud de una curva plana se puede aproximar al sumar pequeños segmentos de recta que se ajusten a la curva, esta aproximación será más ajustada entre más segmentos sean y a la vez sean lo más pequeño posible. , escogiendo una familia finita de puntos en C, y aproximar la longitud mediante la longitud de la poligonal que pasa por dichos puntos. Cuantos más puntos escojamos en C, mejor seria el valor obtenido como aproximación de la longitud de C Si la primera derivada de una función es continua en [a,b] se dice que es suave y su gráfica es una curva suave
  3. 3. Cuando la curva es suave, la longitud de cada pequeño segmentos de recta se puede calcular mediante el teorema de Pitágoras (dL)2=(dx)2+(dy)2. Si f es suave en [a,b], la longitud de la curva de f(x) desde a hasta b Deducción de la fórmula para funciones Suponiendo que se tiene una curva rectificable cualquiera, determinada por una función , y suponiendo que se quiere aproximar la longitud del arco de curva que va desde un punto a uno . Con este propósito es posible diseñar una serie de triángulos rectángulos cuyas hipotenusas concatenadas "cubran" el arco de curva elegido tal como se ve en la figura. Para hacer a este método "más funcional" también se puede exigir que las bases de todos aquellos triángulos sean iguales a , de manera que para cada uno existirá un cateto asociado, dependiendo del tipo de curva y del arco elegido, siendo entonces cada hipotenusa, , al aplicarse el teorema de Pitágoras Así, una aproximación de estaría dada por la sumatoria de todas aquellas hipotenusas desplegadas Métodos anteriores al cálculo A través de la historia de las matemáticas, grandes pensadores consideraron imposible calcular la longitud de un arco irregular. Aunque Arquímedes había descubierto una aproximación rectangular para calcular el área bajo una curva con un método de agotamiento, pocos creyeron que fuera posible que una curva tuviese una longitud definida, como las líneas rectas. Las primeras mediciones se hicieron posibles, como ya es común en el cálculo, a través de aproximaciones: los matemáticos de la época trazaban un polígono dentro de la curva, y calculaban la longitud de los lados de éste para obtener un valor aproximado de la longitud de la curva. Mientras se usaban más segmentos, disminuyendo la longitud de cada uno, se obtenía una aproximación cada vez mejor

×