SlideShare a Scribd company logo
1 of 10
Download to read offline
IOSR Journal of Engineering (IOSRJEN) www.iosrjen.org
ISSN (e): 2250-3021, ISSN (p): 2278-8719
Vol. 05, Issue 05 (May. 2015), ||V2|| PP 42-51
International organization of Scientific Research 42 | P a g e
Vehicle Speed Control Equipped with Special Combinations,
Brake System and Safe Distance Measurements
Salameh A. Sawalha
On leave from Faulty of Engineering Technology, Al- Balqa Applied University- Jordan.
Abstract: - It is a system that aims to control vehicle‟s speed in accordance with the street and road speed limit.
The system finds out the whereabouts of the vehicle then it identifies the allowed speed for that particular place.
After this, it starts decreasing the speed gradually until it reaches the desirable limit.
When the vehicle runs, The GPS finds the location of the vehicle then it sends the longitude and the latitude to
the control unit to identify the speed limit of the street. If it has been found that the vehicle‟s speed exceeds the
limit, a signal will be sent to the brake system to reduce the speed until it drops to the limits.
One of the most important characteristics of the system that it senses the distances between two vehicles by
(Ultrasonic sensor) allowing a certain distance between them which is in correspondent to their speed and that
results in non- occurrence of accidents and crashes. All of which is done without exceeding the speed limit of
streets. If the system fails for any malfunction, a warning message containing the number of the vehicle and
information about it will be sent to the traffic department as a feedback.
Keywords: Digital Brake, Vehicle Speed, Digital Retarders, Speed Control, Safe Distance, Special Combination
Brake, Injectors.
INTRODUCTION
Traffic accidents are increasingly being recognized as a major cause of death and a growing health
problem. According to the world health organization (WHO), annually about 1.2 million people killed, and 50
million people injured [1].
The economic cost of road crashes and injuries is estimated to be 1% of Gross National Product (GNP) in low-
income countries, 1.5% in middle-income countries and 2% in high income countries. The global cost is
estimated to be US$ 518 billion per year. Low- income and middle income countries
account for US$ 65 billion more than they receive in over all development assistance [2].
The health system spends about 2.2 million Euros (1.3%) of total hospitalizations cost per year for residents in
Florence) in treating people injured in road traffic accidents [3].
Traffic accidents can be attributed to human, vehicular, and environmental factors. Human factors have been
found to contribute to 57 percent of the accidents in the developed countries. Together with vehicular and
environmental factors, human factors account for about 92 percent. In this context, found that 46% and more
attributed to the driving exceeding the limited speed [4], [5], [6], [7].
Fatality risk continues to rise. In contrast, fatality risks for different developed countries actually decreased with
time, while in some countries are increased. In Saudi Arabia, more than 540000 accidents happened in 2012 (the
estimated cost of crashes is excess of $3.47 Billion), resulted in sixty eight thousand injured, and more than
seven thousands deaths (about twenty deaths per day), which is the highest all over the world [6].
Vehicle Speed Control Equipped with Special Combinations, Brake System and Safe Distance
International organization of Scientific Research 43 | P a g e
The competent authorities of traffic in all countries are working to prevent and avoid the traffic
accidents, through traffic awareness, legislation and laws, traffic rules and regulations, improvement of roads,
traffic services and the imposition of fines and penalties. A lot of researches, studies and patents interested in
forcibly controlling the vehicle speed, in addition to the efforts of the industrial companies to provide their
vehicle products with modern systems and devices to prevent the traffic accidents and to help driving safely on
the road.
Equipping the vehicle with extra safety features has contributed in some cases to reduce the number of
accidents, but the increased number of accidents in many countries indicates that until this day the efforts of the
inventors, the researchers and the competent authorities of traffic still unable to achieve the desired goal.
Speed limit management, control and enforcement continue to be a major concern for the safety of human lives
around the globe. Without appropriate action by 2020, road traffic injuries are predicted to be the third leading
contributor to the global burden of disease and injury; whereas war related injuries will rank number nine [9].
DRIVING AT SPEEDS EXCEEDING LIMITED: AN OUTLOOK
There are a considerable number of researches, aimed to study the influence of high speed driving, in
order to achieve the proper solutions of reducing the traffic accidents and, to decrease the number of injuries and
deaths resulting from them.
Mohammed A.Khasawneh et al, suggested a novel approach, relying on intelligent engineering, whereby the
maximum speed limit at which vehicles on the road can cruise is controlled from some central or distributed
facility (CCF). This approach would decline the rates of speed-related traffic accidents by approximately 65–
70% according to existing statistics, as mention in this paper [10].
Figure 2, shows the number of reported accidents as a function of posted speed limit (km/h).Note that accident
rates increased in zones where the posted speed limits were in the lower speed limit ranges (30–60km/h) [8].
According to Bowie [11], it was reported that data analysis about the dangers of high speed driving, showed the
following main conclusions:
- More than half of fatal accidents have occurred at a speed greater than 55Km / h.
- An increase equivalent to each 5Km / h above the speed limit doubled the probability of danger.
-Driving the vehicle at 65Km / h doubled the risk, and at 70Km / h, the risk increased four times.
In the same context, the Swiss Nelson draws a conclusion which is the relationship between speed and fatal
collisions. Decrease speeding 3%, reduced the probability of danger at rate 12% [12].
Speed is cited as a related factor in 30% of fatal crashes and 12% of all crashes in the USA [13].
Dipaola J, Dobson R and Morse C designed a pre- programmed digital computer installed in the car which
controls the speed [14].
Mercedes-Benz have speed limit assistant, which detects speed-limit signs in milliseconds, in real time, and
reminds the driver of the current speed limit. The system based on intelligent, electronic image processing [15].
Speed humps prevent drivers to drive in a higher speed in specific locations like, building parks and service
stations. These humps made in different shapes, sizes, and colors [16].
METHODOLOGY
Finding the appropriate solution to force the driver to drive at a reasonable speed remains the most important
issue to reduce the number of traffic accidents.
Reducing the vehicle speed can be achieved by controlling the fuel amount entering the engine (through:
injection system, throttle valve position, and fuel pump), or by changing the brake system mechanism.
As known the amount of fuel injected to the combustion chamber in most types of engines is being computed in
the Engine Control Unit (ECU) through many factors which are [17]:
 RPM sensor.
 Crankshaft position sensor.
 Battery voltage sensor.
 Air flow sensor.
Vehicle Speed Control Equipped with Special Combinations, Brake System and Safe Distance
International organization of Scientific Research 44 | P a g e
 Throttle Position (TPS) sensor.
 Oxygen sensor.
The use of the fuel pump to control the speeds is not suitable because it pumps the fuel continuously, and
sometimes more than the needed quantity. In addition, it contains a back line to cycle the excess fuel back to the
fuel tank. This may result in errors and failure in the engine cycle, which causes knocking and extra fuel
consumption.
By using TPS (throttle position sensor) signal to reduce speed, the air ratio will be more than the fuel ratio,
which will lead to lean phase of combustion. As a result, the engine vibrations will rise and will increase the
chance of failure.
Taking into consideration the importance of the time required reducing the speed and nature of the road (flat or
downhill), we cannot reliance the throttle valve as one of the appropriate solution, because while driving on a
downhill road, the vehicle will continue accelerating even when the throttle valve is completely closed.
It may seem at first glance that the control of the fuel through the injection system is one of the most appropriate
solutions to control vehicle speed, because the injection system is the direct controller which controls delivering
fuel to the combustion chambers.
That‟s mean, reduce the fuel amount injected to the combustion chamber, can be achieved by controlling signal
from the injection system to the ECU. The second solution is applying brake in milliseconds which is achieved
by using an automatic brake system to decrease the response time to get immediate deceleration.
In this paper a system that aims to control vehicle‟s speed, based on GPS and, equipped with a special
combination brake system, injection system and safe distance measurements.
SYSTEM OVERVIEW
Figure 3, shows the block diagram of the system, which consists of the following:
1. GPS (Global Positioning System).
2. Ultrasonic module.
3. Control unit (PIC microcontroller).
4. Vehicle speed sensor.
5. Bipolar stepper motor.
6. GSM modem.
7. Control circuit that consists of relay and transistor.
8. Some peripherals needed to operate microcontroller.
Ultrasonic sensor generates high frequency sound waves and evaluates the echo which is received back
by the sensor. It calculates the time interval between sending the signal and receiving the echo to determine the
distance to an object. The ultrasonic sensor always senses objects and calculates distance between them and the
speed sensor measures vehicle speed and sends it to the microcontroller to deal with it.
When the vehicle enters a street with a speed limit of 90Km/hr (for example), the GPS receiver provides the
location (longitude and latitude) of it and sends a signal to PIC microcontroller. The speeds of each street are
stored in the microcontroller as a database, so it determines the street speed and analyzes data to match it. If the
actual speed is greater than speed limit, the injectors will stop the fuel injection through the N.C relay, and the
control unit immediately sends a digital signal to a stepper motor which is connected to the brake system. The
digital signal moves the stepper motor through certain number of steps which are determined by calculating the
necessary braking value to reduce the vehicle‟s speed to the required extent.
To achieve a safety distances in varies speeds, the sensor senses the existence of a vehicle on variable distances
relying on its variable speed. Then, the sensor determines whether or not the distance is safe depending on the
vehicle‟s traveling speed. Up to this point, future results are to be determined in accordance to the vehicles
speed and the distance between the two vehicles. Such process is needed for a decision to be taken which
controls the vehicle‟s speed depending on the required safe distance.
Vehicle Speed Control Equipped with Special Combinations, Brake System and Safe Distance
International organization of Scientific Research 45 | P a g e
Figure 4, shows the flowchart of the system. Once the system starts functioning, the buzzer gives a sound as a
notice to the beginning of that function.
The same process occurs when the Ultrasonic sensor (proximity sensor) gives notification to the control unit if
the distance measuring between the two vehicles was less than a certain limit, which depends on the distance
sensor specifications.
1. GPS (Global Positioning System) receiver.
2. PIC Microcontroller (PIC 16f877a).
3. Vehicle Speed Sensor.
4. Ultrasonic Module (HC-SR04).
5. Bipolar Stepper Motor.
6. Drive Circuit (ULN2803).
7. GSM modem.
8. Transistors (NPN).
Figure 5, shows the Circuit Diagram of the Control System, which consists of the following components:
9. Buzzer.
10. Normally Closed Relay.
11. Capacitors (22MF).
12. Resistors (1K, 10K).
13. Crystal Oscillator (4MH).
14. 5 volt Power supply.
15. 12 volt Power supply.
SIMULATION
The system was simulated on Proteus software. By simulating hardware actions, the future results must indicate:
response of system, time of response, mechanism of control like applying brake mechanism and controlling
injectors. In simulation, the system appears in five modes.
Vehicle Speed Control Equipped with Special Combinations, Brake System and Safe Distance
International organization of Scientific Research 46 | P a g e
 The first mode
Figure 6, shows the circuit diagram when the vehicle is turned off, we notice that all pins appear in blue except
MCLR pin, this because this pin is supplied by external power supply.
 The second mode
Figure 7, shows signals in a normal driving. P7 of port C and P0, P5 of port A look in red. This means that the
GPS receiver always provides latitude and longitude of the region or the street to the microcontroller.
The ultrasonic sensor always senses and calculates distance between the car and the following one.
 The third mode
After the GPS picks up latitude and longitude and the control unit process data, the speed limit is determined by
microcontroller and a decision will be taken. For the purpose of reducing vehicle speed to the speed limit, the
control unit sends signals to turn off injectors, at the same time a buzzer gives audio as reminder that the system
is working and the brake is applied. The VSS (vehicle Speed Sensor) signal is a very important feedback to let
the microcontroller determine if the speed reaches the required speed (figure 8).
 The fourth mode
If the vehicle speed reaches the ideal speed, the buzzer, injectors and brake will be back to function normally
and the ultrasonic sensor remains calculating distances to get the appropriate safe distance (figure 9).
Vehicle Speed Control Equipped with Special Combinations, Brake System and Safe Distance
International organization of Scientific Research 47 | P a g e
 The fifth mode
Figure 10, shows P6 of port c in red, this means that a warning message was sent to the traffic department when
the system fails to inform it of that.
DISCUSSION AND RESULTS
The time required to reduce the vehicle speed can be calculated by the following equation:
Total deceleration time = perception and reaction time + braking time (1)
Highway traffic and safety engineers have some general guidelines which have been developed over the years
and hold now as standards. As an example, if a street surface is dry, the average driver can safely decelerate an
automobile or light truck with reasonably good tires (with reasonably good coefficient of friction of about .75)
at the rate of about 4.5 meter per second (m/s²). That is, a driver can slow down at this rate without anticipated
probability of controlling the vehicle which will be lost in the process [18].
This means that the skilled driver could easily get deceleration rates in excess of 3.4 m/s2
without loss of
control. It is very possible and probable that with some efforts, the driver that attempts to be aware of braking
safety procedures and practices can and should get much better braking (safely) than the guidelines used
nationally, approaching that of the professionally driver published performance tests.
We calculated the time that required reducing vehicle speed such 10 Km/h in the following three cases:
Case 1: Traditional Brake System
The average mechanical braking time, which is required to reduce the vehicle speed about 10km/h
mechanically, equals to 0.62 s, and the average time of the driver's perception time and reaction time equals to
2.54 s, the time needed to the total reduction equals to 3.16 s [18].
Case 2: Automatic Brake System without the effect of injectors
After adding this system to the vehicle and connecting it to both: the injection system and the brake system, the
process of reducing speed becomes faster because it does not require any follow-up of the driver. The time
required receiving a signal by GPS ranges between 0.6 to 0.9 s, and it varies depending on the communications
network in the area. The full process is performed before the arrival of the vehicle into the street and then the
vehicle will not exceed the upper speed limit in the street; this because of the pre- programming of the system
and the high accuracy of the GPS that make the process begins before it reaches the street.
The total time required to reduce speed using vehicle speed control system can be calculated by the following
equation:
t total = t GPS + + t inject ors + t stepper + t braking (2)
Where,
t total : the total time of deceleration
t GPS : the time needed by the GPS to receive the signal.
t injectors : the time needed by the microcontroller to close the injectors.
t stepper : the time needed by the microcontroller to fulfill the task of the stepper motor.
Vehicle Speed Control Equipped with Special Combinations, Brake System and Safe Distance
International organization of Scientific Research 48 | P a g e
t braking : the braking time with injection system control.
According to the experiments performed in the laboratories of the Northern Border University the time that the
GPS takes to determine the position and send it to the control unit equals to 0.66 s, the time required to close
injectors is 0.21 seconds, and the time required to apply brake system by a stepper motor is 0.15 s.
So the time required to analyze the signal and begin the process of reduction is equal to 1.02 s.
The mechanical braking time is the same in all cases which equals 0.62 s. So the total time required for
decreasing speed such10 Km/h does not exceed 1.64 s.
Case 3: Injector's Effect
Closing injectors increases the efficiency of the system because it works to prevent the flow of fuel and arrival it
to the cylinders, therefore, the time required to reduce speed will be decreased.
In this system, there is an automatic braking system controlled by a stepper motor circuit in a time was
calculated previously which was 1.64 s. So actually the time required to reduce the speed 10 km/h must be less
than 1.64 s because of the involvement of injectors in the process which increases the efficiency of the braking
process.
According to experiment readings, the time required to reduce the vehicle speed such 10 km / h by closing
injectors only can be calculated by the following equations [19]:
v2= v1 - a ∆t (3)
(v2)² = (v1)² - 2 a ∆s (4)
Where,
V1: initial velocity (Km/h).
V2: final velocity.
∆t: taken time.
∆S: traveled distance.
a: deceleration
When the vehicle is operated on the empty load -ideal speed during a movement on a straight road and the fuel
has been cut off, it continued travelling 577.5 meter before stopping completely(v2=0) [20] . By compensating
v1 as 70 Km/h, v2 as 0, and ∆S as 577.5 meter in equation 5, the deceleration will be equal to 4.24 m/s².
If the time required in the mechanical braking process to reduce speed 10 km / h is equal to 0.62 s, and the time
required to be reduced by shutting injectors only is 2.358 s, the ratio between the effect of injectors and a
mechanical braking effect will be 26.3 %.
This means that the vehicle decelerates in rate of 4.24 m/s² and the effect of injectors is 26.3 % of the total of
deceleration. In other words, the effect of injectors is equal to 0.263 of the influence of mechanical braking.
The time required for mechanical braking equals to 0.62 - (0.62 *0.263) = 0,457 s. So the total time (with the
effect of injectors) = 1.02 + 0.457 = 1.477 s.
SAFE DISTANCE EXPERIMENTS AND CALCULATIONS
In some countries such as the UAE, an instant violation is imposed for not leaving enough distance between
vehicles. The director of Dubai police stated "vehicles travels on a speed of 40 km/h have to leave a distance of
35 meters which is equivalent to seven cars‟ he added „and when a vehicle‟s speed is 120 km/h a distance of 104
meters have to be kept"[21].
The safety distance is calculated by multiplying the tenth of the speed indicator with 6. Meaning, if a car travels
on a speed of 40 km/h, the safety distance must not be less than 24 meters. We adopted this rule in calculating
the safety distance for each speed from 10 to 180 (Km/h), assuming that the following vehicle will stop in any
moment (figure 11).
If the deceleration rate of the vehicle varies, the safe distance between vehicles depends on the speed will vary.
It is calculated by the following equation [22]:
S= v δ+ v2
/2 df - v2
/2 df + N L+ x0 (5)
Where:
v = initial speed of two vehicles
dl = deceleration rate of the leading vehicle
df = deceleration rate of the following vehicle
δ= perception-reaction time of the following vehicle
x0 = safety margin after stop
L = length of vehicle
N = number of vehicles in a train
Vehicle Speed Control Equipped with Special Combinations, Brake System and Safe Distance
International organization of Scientific Research 49 | P a g e
Figure 11: The relation between the vehicle speed and the safe distance for constant deceleration rates of the
leading and the following vehicles.
The deceleration rate varies depending on the system used to reduce speed. There are three cases in which the
safe distance changes according to the deceleration of the leading vehicle change:
Case 1: when using the traditional brake system, the deceleration of the leading vehicle equals 4.24 m/s².
Case 2: when using an automatic brake system without the effect of injectors, the deceleration of the leading
vehicle is 6.096 m/s².
Case 3: when using the automatic brake system with the effect of injectors, the deceleration of the leading
vehicle equals 6.77 m/s².
Figure 12, shows the relation between safe distance and vehicle speed for different deceleration rates of the
leading vehicle.
Figure 12: The relation between the safe distance and vehicle speed for different deceleration rates of the
leading vehicle.
We notice that the safe distance values are closed to each other, but are not similar because of the leading
vehicle deceleration change in all cases.
On Highway roads, if we want to fix the safe distance for speeds from 90 – 180 Km/s, the safe distance is
calculated by the following equation [23]:
S= 1/k (6)
Where:
S: Safe distance in meters.
K: Traffic stream concentration in vehicles per kilometer
The average stream concentration on highway roads equals 62 vehicle/ Km [24]. Hence, the safe distance will
equal approximately 16 m.
By using the automatic brake system with the effect of injectors, the required time needed for keeping the safe
distance between two vehicles about 16 meter will vary if the vehicle speed varied (figure 13).
CONCLUSION
As a general illustration, the research proves the possible availability for a technological intervention
Vehicle Speed Control Equipped with Special Combinations, Brake System and Safe Distance
International organization of Scientific Research 50 | P a g e
Figure 13: the relation between the vehicle speed and time required for keeping constant safe distance.
factor when humans fail to control their behaviors. The tremendous negative consequences which sometimes
surf due to such behaviors are devastating.
The system takes 1.477 seconds to reduce speed 10 Km/h without any intervention of the driver, while it takes
3.16 seconds using traditional braking system. This means that by adding this system, the collision will be
reduced significantly, the driving will be easier than using the traditional brake system especially with using
injector's control, and the road for drivers and passengers will be very safe because of the existence of property
which saves safe distances between vehicles.
What would happen if the driver could not control vehicle's speed? What would be the results if people do not
feel safe on the road? Or how much financial losses collisions might cause? This system does not only protect
lives but also treasures it.
REFERENCES
[1] United Nations World Health Organization (WHO),” World Report on Road Traffic Injury Prevention”,
2004, Geneva, Switzerland.
[2 ] Dinesh Sethi, Francesca Racioppi and Francesco Mitis” Youth and road safety in Europe” ,Policy
briefing, WHO European Centre for Environment and Health, WHO Regional Office for Europe, pages
45, Italy, 2007.
[3] Road traffic accidents in an urban area: linkage between municipal police data-base and routinely
collected medical data to assess adverse health effects, health system activities and costs, Barchielli
A, Balzi D, 2007.
[4] Road Traffic Injuries in Saudi Arabia, and Its Impact on the Working Population, Mohamed A.
Elshinnawey, Lamiaa E. Fiala, Mostafa A.F. Abbas*, Nabil Othman, 2008.
[5] Epidemiology of road traffic injuries in Qassim region, Saudi Arabia: Consistency of police and health
Data, Issam Barrimah, Farid Midhet and Fawzi Sharaf,International Journal of health and
Sciences(IJHS),Vol.6(1),pp31-41 Qassim university, 2012.
[6] The Saudi Interior Ministry, Traffic Department: Traffic Reports [online][accessed 2013],available from
www.Saher.gov.sa.
[7] Nathan Naylor ”Nearly 50% of All Drivers Believes: speeding is a Problem on U.S Roads”
,December,2013, National Highway Traffic Administration.
[8] Hashem R. Al-Masaeid, Traffic Accidents in Jordan,(2009),Jordan Journal of Civil Engineering, Volume
3, No.4, pp. 331-343
[9] Khasawneh M., et al., A Wireless infrastructure for tele-traffic speed control, September 2006, Report
submitted to King Abdullah II Fund for Development (KAFD).
[10] Mohammad A. Khasawneha , Mohammad I.Malkaw., Munzer S., Sa‟ed M., Haytham Z. El-Shyoukh,
Sa‟ed M. Hayajneh, Hadeel Y. Qasaimeh, (2009), A security- mbedded infrastructure for Tele-Traffic
Speed Control, Journal of t he Franklin Institute, Volume 346, Issue 5, June 2009, Pages 431–448.
[11] N.N. Bowie, Jr., M. Waltz, “Data Analysis of the Speed-Related Crash Issue, and Traffic Safety”, vol. 2,
winter 1994, Auto Bureau of Transportation Statistics, U.S. Department of Transportation.
[12] Nilsson, G., “Traffic Safety Dimensions and the Power Model to Describe the Effect of Speed on Safety”,
PhD Thesis, Lund Institute of Technology and Society, Traffic Engineering, 2004, Lund, Sweden.
[13] S. C. Tignor and D. Warren, “Driver Speed Behavior on U.S. Streets and Highways”, Compendium of
Technical Papers, Institute of Transportation Engineers, 1990, Washington, DC.
[14] Dipaola J, Dobson R, Morse C,” Car retarder control system”, Patent No. US3844514, 1974,
USPTO.GOV.
[15] http://www.emercedesbenz.com/Nov08/12_001505_Mercedes_Benz_TecDay_Special_
Feature_Lane_Keeping_Assist_And_Speed_Limit_Assist.html .
Vehicle Speed Control Equipped with Special Combinations, Brake System and Safe Distance
International organization of Scientific Research 51 | P a g e
[16] Systemax company, Speed Bump, Available from URL ttp://www.globalindustrial.com/c/outdoor-
grounds-maintenance/parking-lot/speed-bumps
[17] The Internal Combustion Engine in Theory and Practice, Charles Fayette Taylor, Revised edition, 1985
[18] Akhilesh Kumar Maurya, Prashant Shridhar Bokare” Study Of Deceleration Behaviour Of Different
Vehicle Types”, International Journal for Traffic and Transport Engineering, 2012, 2(3): 253 – 270.
[19] R.C.Hibbeler “Engineering Mechanics – Dynamics”.12th
Edition, 2010.
[20] Salameh Sawalha,Jawadat Al-Jarrah,Ali Dbean Al- Rashidy” System to Control the Vehicles During the
Chasing”, International Journal of Mechanical Engineering (IJME),Vol.2,Issue 4,pp 87-98,2013.
[21] http://arabic.arabianbusiness.com/business/transportation/2009/dec/21/33476/
[22] Jan Valentin, “Traffic flow theory”,lecture notes, www.learningace.com.
[23] Yufei Yuan, Hans van Lint, Femke van Wageningen-Kessels, Serge Hoogendoorn "Lagrangian Traffic
State Estimation For Freeway Networks", 2nd International Conference on Models and Technologies for
Intelligent Transportation Systems, 22-24 June, 2011, Leuven, Belgium.
[24] Norman W. Garrick, Traffic Stream Flow Equations”, lecture notes, www.learningace.com.

More Related Content

What's hot

iirdem CRASH IMPACT ATTENUATOR (CIA) FOR AUTOMOBILES WITH THE ADVOCATION OF M...
iirdem CRASH IMPACT ATTENUATOR (CIA) FOR AUTOMOBILES WITH THE ADVOCATION OF M...iirdem CRASH IMPACT ATTENUATOR (CIA) FOR AUTOMOBILES WITH THE ADVOCATION OF M...
iirdem CRASH IMPACT ATTENUATOR (CIA) FOR AUTOMOBILES WITH THE ADVOCATION OF M...Iaetsd Iaetsd
 
Automated control system for emission level 287
Automated control system for emission level 287Automated control system for emission level 287
Automated control system for emission level 28720116522
 
Iain Peat-06012564-main report
Iain Peat-06012564-main reportIain Peat-06012564-main report
Iain Peat-06012564-main reportIain Peat
 
Accidents studies by ravindra c
Accidents studies by ravindra cAccidents studies by ravindra c
Accidents studies by ravindra cŔąvî Bøňđ
 
P0333086093
P0333086093P0333086093
P0333086093theijes
 
Speed Radar - Traffic Analytics - Mine Safety
Speed Radar - Traffic Analytics - Mine Safety Speed Radar - Traffic Analytics - Mine Safety
Speed Radar - Traffic Analytics - Mine Safety Brett Paxman
 
Wireless Reporting System for Accident Detection at Higher Speeds
Wireless Reporting System for Accident Detection at Higher SpeedsWireless Reporting System for Accident Detection at Higher Speeds
Wireless Reporting System for Accident Detection at Higher SpeedsIJERA Editor
 
Traffic speed analysis presentation- ahmed ferdous-1004137 buet
Traffic speed analysis presentation- ahmed ferdous-1004137 buetTraffic speed analysis presentation- ahmed ferdous-1004137 buet
Traffic speed analysis presentation- ahmed ferdous-1004137 buetAhmed Ferdous Ankon
 
Implementation of intelligent cap with drowsy detection and vehicle monitoring
Implementation of intelligent cap with drowsy detection and vehicle monitoringImplementation of intelligent cap with drowsy detection and vehicle monitoring
Implementation of intelligent cap with drowsy detection and vehicle monitoringijiert bestjournal
 
Vehicle security system using ARM controller
Vehicle security system using ARM controllerVehicle security system using ARM controller
Vehicle security system using ARM controllerIOSRJECE
 
Contribution of road traffic accidents ppt
Contribution of road traffic accidents pptContribution of road traffic accidents ppt
Contribution of road traffic accidents pptluisitomontemayor
 
Shared Steering Control between a Driver and an Automation: Stability in the ...
Shared Steering Control between a Driver and an Automation: Stability in the ...Shared Steering Control between a Driver and an Automation: Stability in the ...
Shared Steering Control between a Driver and an Automation: Stability in the ...paperpublications3
 
Motor vehicle regulation in ethiopia
Motor vehicle regulation in ethiopiaMotor vehicle regulation in ethiopia
Motor vehicle regulation in ethiopiajiodadi
 
Traffic analysis with respect to pedestrian facilities
Traffic analysis with respect to pedestrian facilitiesTraffic analysis with respect to pedestrian facilities
Traffic analysis with respect to pedestrian facilitiesAbhinav Pateriya
 
IRJET- Disaster Notification System
IRJET- Disaster Notification SystemIRJET- Disaster Notification System
IRJET- Disaster Notification SystemIRJET Journal
 
06 safety ethiopia
06 safety ethiopia06 safety ethiopia
06 safety ethiopiaBusra Baykal
 

What's hot (20)

iirdem CRASH IMPACT ATTENUATOR (CIA) FOR AUTOMOBILES WITH THE ADVOCATION OF M...
iirdem CRASH IMPACT ATTENUATOR (CIA) FOR AUTOMOBILES WITH THE ADVOCATION OF M...iirdem CRASH IMPACT ATTENUATOR (CIA) FOR AUTOMOBILES WITH THE ADVOCATION OF M...
iirdem CRASH IMPACT ATTENUATOR (CIA) FOR AUTOMOBILES WITH THE ADVOCATION OF M...
 
Ijmet 10 01_152
Ijmet 10 01_152Ijmet 10 01_152
Ijmet 10 01_152
 
Automated control system for emission level 287
Automated control system for emission level 287Automated control system for emission level 287
Automated control system for emission level 287
 
Iain Peat-06012564-main report
Iain Peat-06012564-main reportIain Peat-06012564-main report
Iain Peat-06012564-main report
 
Accidents studies by ravindra c
Accidents studies by ravindra cAccidents studies by ravindra c
Accidents studies by ravindra c
 
P0333086093
P0333086093P0333086093
P0333086093
 
Speed Radar - Traffic Analytics - Mine Safety
Speed Radar - Traffic Analytics - Mine Safety Speed Radar - Traffic Analytics - Mine Safety
Speed Radar - Traffic Analytics - Mine Safety
 
1
11
1
 
Wireless Reporting System for Accident Detection at Higher Speeds
Wireless Reporting System for Accident Detection at Higher SpeedsWireless Reporting System for Accident Detection at Higher Speeds
Wireless Reporting System for Accident Detection at Higher Speeds
 
Traffic speed analysis presentation- ahmed ferdous-1004137 buet
Traffic speed analysis presentation- ahmed ferdous-1004137 buetTraffic speed analysis presentation- ahmed ferdous-1004137 buet
Traffic speed analysis presentation- ahmed ferdous-1004137 buet
 
Implementation of intelligent cap with drowsy detection and vehicle monitoring
Implementation of intelligent cap with drowsy detection and vehicle monitoringImplementation of intelligent cap with drowsy detection and vehicle monitoring
Implementation of intelligent cap with drowsy detection and vehicle monitoring
 
He final ppt
He final pptHe final ppt
He final ppt
 
Vehicle security system using ARM controller
Vehicle security system using ARM controllerVehicle security system using ARM controller
Vehicle security system using ARM controller
 
Contribution of road traffic accidents ppt
Contribution of road traffic accidents pptContribution of road traffic accidents ppt
Contribution of road traffic accidents ppt
 
Shared Steering Control between a Driver and an Automation: Stability in the ...
Shared Steering Control between a Driver and an Automation: Stability in the ...Shared Steering Control between a Driver and an Automation: Stability in the ...
Shared Steering Control between a Driver and an Automation: Stability in the ...
 
Motor vehicle regulation in ethiopia
Motor vehicle regulation in ethiopiaMotor vehicle regulation in ethiopia
Motor vehicle regulation in ethiopia
 
Traffic Speed Analysis
Traffic Speed   AnalysisTraffic Speed   Analysis
Traffic Speed Analysis
 
Traffic analysis with respect to pedestrian facilities
Traffic analysis with respect to pedestrian facilitiesTraffic analysis with respect to pedestrian facilities
Traffic analysis with respect to pedestrian facilities
 
IRJET- Disaster Notification System
IRJET- Disaster Notification SystemIRJET- Disaster Notification System
IRJET- Disaster Notification System
 
06 safety ethiopia
06 safety ethiopia06 safety ethiopia
06 safety ethiopia
 

Similar to G05524251

Development of a microcontroller based automobile speed limiting device and ...
Development of a microcontroller based automobile speed  limiting device and ...Development of a microcontroller based automobile speed  limiting device and ...
Development of a microcontroller based automobile speed limiting device and ...IJECEIAES
 
ACTIVE SAFETY CONTROL TECHNIQUE TO PREVENT VEHICLE CRASHING
ACTIVE SAFETY CONTROL TECHNIQUE TO PREVENT VEHICLE CRASHINGACTIVE SAFETY CONTROL TECHNIQUE TO PREVENT VEHICLE CRASHING
ACTIVE SAFETY CONTROL TECHNIQUE TO PREVENT VEHICLE CRASHINGP singh
 
Sensor based System for Computation of Speed, Momentum of Vehicle, Traffic De...
Sensor based System for Computation of Speed, Momentum of Vehicle, Traffic De...Sensor based System for Computation of Speed, Momentum of Vehicle, Traffic De...
Sensor based System for Computation of Speed, Momentum of Vehicle, Traffic De...iosrjce
 
Android application for driver assistance using strain guage load cell and mo...
Android application for driver assistance using strain guage load cell and mo...Android application for driver assistance using strain guage load cell and mo...
Android application for driver assistance using strain guage load cell and mo...IJARIIT
 
Design And Development of Speed-Breaker Detection and Automatic Speed Control...
Design And Development of Speed-Breaker Detection and Automatic Speed Control...Design And Development of Speed-Breaker Detection and Automatic Speed Control...
Design And Development of Speed-Breaker Detection and Automatic Speed Control...IRJET Journal
 
IRJET- Smart Car Monitoring System using Arduino
IRJET- Smart Car Monitoring System using ArduinoIRJET- Smart Car Monitoring System using Arduino
IRJET- Smart Car Monitoring System using ArduinoIRJET Journal
 
Alcohol Sensing Alert with Engine Locking using IOT
Alcohol Sensing Alert with Engine Locking using IOTAlcohol Sensing Alert with Engine Locking using IOT
Alcohol Sensing Alert with Engine Locking using IOTIRJET Journal
 
Ijett v5 n1p108
Ijett v5 n1p108Ijett v5 n1p108
Ijett v5 n1p108Athulya MB
 
A survey paper on Optimal Solution on Vehicular Adhoc Network for Congestion ...
A survey paper on Optimal Solution on Vehicular Adhoc Network for Congestion ...A survey paper on Optimal Solution on Vehicular Adhoc Network for Congestion ...
A survey paper on Optimal Solution on Vehicular Adhoc Network for Congestion ...IRJET Journal
 
Ieeepro techno solutions ieee 2014 embedded project gps-copilot real-time ...
Ieeepro techno solutions    ieee 2014 embedded project gps-copilot real-time ...Ieeepro techno solutions    ieee 2014 embedded project gps-copilot real-time ...
Ieeepro techno solutions ieee 2014 embedded project gps-copilot real-time ...srinivasanece7
 
Sensor Based Detection & Classification of Actionable & Non-Actionable Condit...
Sensor Based Detection & Classification of Actionable & Non-Actionable Condit...Sensor Based Detection & Classification of Actionable & Non-Actionable Condit...
Sensor Based Detection & Classification of Actionable & Non-Actionable Condit...IRJET Journal
 
Traffic Control management system using Inductive loop Sensor
Traffic Control management system using Inductive loop SensorTraffic Control management system using Inductive loop Sensor
Traffic Control management system using Inductive loop SensorIRJET Journal
 
DYNAMIC TRAFFIC LIGHT CONTROL SCHEME FOR REDUCING CO2EMISSIONS EMPLOYING ETC ...
DYNAMIC TRAFFIC LIGHT CONTROL SCHEME FOR REDUCING CO2EMISSIONS EMPLOYING ETC ...DYNAMIC TRAFFIC LIGHT CONTROL SCHEME FOR REDUCING CO2EMISSIONS EMPLOYING ETC ...
DYNAMIC TRAFFIC LIGHT CONTROL SCHEME FOR REDUCING CO2EMISSIONS EMPLOYING ETC ...ijmpict
 
IRJET- Analysis of Mechanical Properties and Microstructure of Al 7075-Glass ...
IRJET- Analysis of Mechanical Properties and Microstructure of Al 7075-Glass ...IRJET- Analysis of Mechanical Properties and Microstructure of Al 7075-Glass ...
IRJET- Analysis of Mechanical Properties and Microstructure of Al 7075-Glass ...IRJET Journal
 
Smart vehicle and smart signboard system with zonal speed regulation
Smart vehicle and smart signboard system with zonal speed regulationSmart vehicle and smart signboard system with zonal speed regulation
Smart vehicle and smart signboard system with zonal speed regulationIAEME Publication
 
11.1 automatic moving object extraction (1)
11.1 automatic moving object extraction  (1)11.1 automatic moving object extraction  (1)
11.1 automatic moving object extraction (1)shanofa sanu
 
ROAD SAFETY BY DETECTING DROWSINESS AND ACCIDENT USING MACHINE LEARNING
ROAD SAFETY BY DETECTING DROWSINESS AND ACCIDENT USING MACHINE LEARNINGROAD SAFETY BY DETECTING DROWSINESS AND ACCIDENT USING MACHINE LEARNING
ROAD SAFETY BY DETECTING DROWSINESS AND ACCIDENT USING MACHINE LEARNINGIRJET Journal
 
Expressway Life Saver Implementation Report
Expressway Life Saver Implementation ReportExpressway Life Saver Implementation Report
Expressway Life Saver Implementation ReportShakthi Weerasinghe
 

Similar to G05524251 (20)

Development of a microcontroller based automobile speed limiting device and ...
Development of a microcontroller based automobile speed  limiting device and ...Development of a microcontroller based automobile speed  limiting device and ...
Development of a microcontroller based automobile speed limiting device and ...
 
ACTIVE SAFETY CONTROL TECHNIQUE TO PREVENT VEHICLE CRASHING
ACTIVE SAFETY CONTROL TECHNIQUE TO PREVENT VEHICLE CRASHINGACTIVE SAFETY CONTROL TECHNIQUE TO PREVENT VEHICLE CRASHING
ACTIVE SAFETY CONTROL TECHNIQUE TO PREVENT VEHICLE CRASHING
 
B010620508
B010620508B010620508
B010620508
 
Sensor based System for Computation of Speed, Momentum of Vehicle, Traffic De...
Sensor based System for Computation of Speed, Momentum of Vehicle, Traffic De...Sensor based System for Computation of Speed, Momentum of Vehicle, Traffic De...
Sensor based System for Computation of Speed, Momentum of Vehicle, Traffic De...
 
Android application for driver assistance using strain guage load cell and mo...
Android application for driver assistance using strain guage load cell and mo...Android application for driver assistance using strain guage load cell and mo...
Android application for driver assistance using strain guage load cell and mo...
 
Design And Development of Speed-Breaker Detection and Automatic Speed Control...
Design And Development of Speed-Breaker Detection and Automatic Speed Control...Design And Development of Speed-Breaker Detection and Automatic Speed Control...
Design And Development of Speed-Breaker Detection and Automatic Speed Control...
 
IRJET- Smart Car Monitoring System using Arduino
IRJET- Smart Car Monitoring System using ArduinoIRJET- Smart Car Monitoring System using Arduino
IRJET- Smart Car Monitoring System using Arduino
 
Alcohol Sensing Alert with Engine Locking using IOT
Alcohol Sensing Alert with Engine Locking using IOTAlcohol Sensing Alert with Engine Locking using IOT
Alcohol Sensing Alert with Engine Locking using IOT
 
Ijett v5 n1p108
Ijett v5 n1p108Ijett v5 n1p108
Ijett v5 n1p108
 
A survey paper on Optimal Solution on Vehicular Adhoc Network for Congestion ...
A survey paper on Optimal Solution on Vehicular Adhoc Network for Congestion ...A survey paper on Optimal Solution on Vehicular Adhoc Network for Congestion ...
A survey paper on Optimal Solution on Vehicular Adhoc Network for Congestion ...
 
Ieeepro techno solutions ieee 2014 embedded project gps-copilot real-time ...
Ieeepro techno solutions    ieee 2014 embedded project gps-copilot real-time ...Ieeepro techno solutions    ieee 2014 embedded project gps-copilot real-time ...
Ieeepro techno solutions ieee 2014 embedded project gps-copilot real-time ...
 
Sensor Based Detection & Classification of Actionable & Non-Actionable Condit...
Sensor Based Detection & Classification of Actionable & Non-Actionable Condit...Sensor Based Detection & Classification of Actionable & Non-Actionable Condit...
Sensor Based Detection & Classification of Actionable & Non-Actionable Condit...
 
Traffic Control management system using Inductive loop Sensor
Traffic Control management system using Inductive loop SensorTraffic Control management system using Inductive loop Sensor
Traffic Control management system using Inductive loop Sensor
 
DYNAMIC TRAFFIC LIGHT CONTROL SCHEME FOR REDUCING CO2EMISSIONS EMPLOYING ETC ...
DYNAMIC TRAFFIC LIGHT CONTROL SCHEME FOR REDUCING CO2EMISSIONS EMPLOYING ETC ...DYNAMIC TRAFFIC LIGHT CONTROL SCHEME FOR REDUCING CO2EMISSIONS EMPLOYING ETC ...
DYNAMIC TRAFFIC LIGHT CONTROL SCHEME FOR REDUCING CO2EMISSIONS EMPLOYING ETC ...
 
IRJET- Analysis of Mechanical Properties and Microstructure of Al 7075-Glass ...
IRJET- Analysis of Mechanical Properties and Microstructure of Al 7075-Glass ...IRJET- Analysis of Mechanical Properties and Microstructure of Al 7075-Glass ...
IRJET- Analysis of Mechanical Properties and Microstructure of Al 7075-Glass ...
 
Smart vehicle and smart signboard system with zonal speed regulation
Smart vehicle and smart signboard system with zonal speed regulationSmart vehicle and smart signboard system with zonal speed regulation
Smart vehicle and smart signboard system with zonal speed regulation
 
11.1 automatic moving object extraction (1)
11.1 automatic moving object extraction  (1)11.1 automatic moving object extraction  (1)
11.1 automatic moving object extraction (1)
 
ROAD SAFETY BY DETECTING DROWSINESS AND ACCIDENT USING MACHINE LEARNING
ROAD SAFETY BY DETECTING DROWSINESS AND ACCIDENT USING MACHINE LEARNINGROAD SAFETY BY DETECTING DROWSINESS AND ACCIDENT USING MACHINE LEARNING
ROAD SAFETY BY DETECTING DROWSINESS AND ACCIDENT USING MACHINE LEARNING
 
Expressway Life Saver Implementation Report
Expressway Life Saver Implementation ReportExpressway Life Saver Implementation Report
Expressway Life Saver Implementation Report
 
ITS (CAS)
ITS (CAS)ITS (CAS)
ITS (CAS)
 

More from IOSR-JEN

More from IOSR-JEN (20)

C05921721
C05921721C05921721
C05921721
 
B05921016
B05921016B05921016
B05921016
 
A05920109
A05920109A05920109
A05920109
 
J05915457
J05915457J05915457
J05915457
 
I05914153
I05914153I05914153
I05914153
 
H05913540
H05913540H05913540
H05913540
 
G05913234
G05913234G05913234
G05913234
 
F05912731
F05912731F05912731
F05912731
 
E05912226
E05912226E05912226
E05912226
 
D05911621
D05911621D05911621
D05911621
 
C05911315
C05911315C05911315
C05911315
 
B05910712
B05910712B05910712
B05910712
 
A05910106
A05910106A05910106
A05910106
 
B05840510
B05840510B05840510
B05840510
 
I05844759
I05844759I05844759
I05844759
 
H05844346
H05844346H05844346
H05844346
 
G05843942
G05843942G05843942
G05843942
 
F05843238
F05843238F05843238
F05843238
 
E05842831
E05842831E05842831
E05842831
 
D05842227
D05842227D05842227
D05842227
 

Recently uploaded

Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...Neo4j
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessPixlogix Infotech
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processorsdebabhi2
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountPuma Security, LLC
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEarley Information Science
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Miguel Araújo
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024The Digital Insurer
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxKatpro Technologies
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUK Journal
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfEnterprise Knowledge
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityPrincipled Technologies
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Igalia
 

Recently uploaded (20)

Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your Business
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
 

G05524251

  • 1. IOSR Journal of Engineering (IOSRJEN) www.iosrjen.org ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 05, Issue 05 (May. 2015), ||V2|| PP 42-51 International organization of Scientific Research 42 | P a g e Vehicle Speed Control Equipped with Special Combinations, Brake System and Safe Distance Measurements Salameh A. Sawalha On leave from Faulty of Engineering Technology, Al- Balqa Applied University- Jordan. Abstract: - It is a system that aims to control vehicle‟s speed in accordance with the street and road speed limit. The system finds out the whereabouts of the vehicle then it identifies the allowed speed for that particular place. After this, it starts decreasing the speed gradually until it reaches the desirable limit. When the vehicle runs, The GPS finds the location of the vehicle then it sends the longitude and the latitude to the control unit to identify the speed limit of the street. If it has been found that the vehicle‟s speed exceeds the limit, a signal will be sent to the brake system to reduce the speed until it drops to the limits. One of the most important characteristics of the system that it senses the distances between two vehicles by (Ultrasonic sensor) allowing a certain distance between them which is in correspondent to their speed and that results in non- occurrence of accidents and crashes. All of which is done without exceeding the speed limit of streets. If the system fails for any malfunction, a warning message containing the number of the vehicle and information about it will be sent to the traffic department as a feedback. Keywords: Digital Brake, Vehicle Speed, Digital Retarders, Speed Control, Safe Distance, Special Combination Brake, Injectors. INTRODUCTION Traffic accidents are increasingly being recognized as a major cause of death and a growing health problem. According to the world health organization (WHO), annually about 1.2 million people killed, and 50 million people injured [1]. The economic cost of road crashes and injuries is estimated to be 1% of Gross National Product (GNP) in low- income countries, 1.5% in middle-income countries and 2% in high income countries. The global cost is estimated to be US$ 518 billion per year. Low- income and middle income countries account for US$ 65 billion more than they receive in over all development assistance [2]. The health system spends about 2.2 million Euros (1.3%) of total hospitalizations cost per year for residents in Florence) in treating people injured in road traffic accidents [3]. Traffic accidents can be attributed to human, vehicular, and environmental factors. Human factors have been found to contribute to 57 percent of the accidents in the developed countries. Together with vehicular and environmental factors, human factors account for about 92 percent. In this context, found that 46% and more attributed to the driving exceeding the limited speed [4], [5], [6], [7]. Fatality risk continues to rise. In contrast, fatality risks for different developed countries actually decreased with time, while in some countries are increased. In Saudi Arabia, more than 540000 accidents happened in 2012 (the estimated cost of crashes is excess of $3.47 Billion), resulted in sixty eight thousand injured, and more than seven thousands deaths (about twenty deaths per day), which is the highest all over the world [6].
  • 2. Vehicle Speed Control Equipped with Special Combinations, Brake System and Safe Distance International organization of Scientific Research 43 | P a g e The competent authorities of traffic in all countries are working to prevent and avoid the traffic accidents, through traffic awareness, legislation and laws, traffic rules and regulations, improvement of roads, traffic services and the imposition of fines and penalties. A lot of researches, studies and patents interested in forcibly controlling the vehicle speed, in addition to the efforts of the industrial companies to provide their vehicle products with modern systems and devices to prevent the traffic accidents and to help driving safely on the road. Equipping the vehicle with extra safety features has contributed in some cases to reduce the number of accidents, but the increased number of accidents in many countries indicates that until this day the efforts of the inventors, the researchers and the competent authorities of traffic still unable to achieve the desired goal. Speed limit management, control and enforcement continue to be a major concern for the safety of human lives around the globe. Without appropriate action by 2020, road traffic injuries are predicted to be the third leading contributor to the global burden of disease and injury; whereas war related injuries will rank number nine [9]. DRIVING AT SPEEDS EXCEEDING LIMITED: AN OUTLOOK There are a considerable number of researches, aimed to study the influence of high speed driving, in order to achieve the proper solutions of reducing the traffic accidents and, to decrease the number of injuries and deaths resulting from them. Mohammed A.Khasawneh et al, suggested a novel approach, relying on intelligent engineering, whereby the maximum speed limit at which vehicles on the road can cruise is controlled from some central or distributed facility (CCF). This approach would decline the rates of speed-related traffic accidents by approximately 65– 70% according to existing statistics, as mention in this paper [10]. Figure 2, shows the number of reported accidents as a function of posted speed limit (km/h).Note that accident rates increased in zones where the posted speed limits were in the lower speed limit ranges (30–60km/h) [8]. According to Bowie [11], it was reported that data analysis about the dangers of high speed driving, showed the following main conclusions: - More than half of fatal accidents have occurred at a speed greater than 55Km / h. - An increase equivalent to each 5Km / h above the speed limit doubled the probability of danger. -Driving the vehicle at 65Km / h doubled the risk, and at 70Km / h, the risk increased four times. In the same context, the Swiss Nelson draws a conclusion which is the relationship between speed and fatal collisions. Decrease speeding 3%, reduced the probability of danger at rate 12% [12]. Speed is cited as a related factor in 30% of fatal crashes and 12% of all crashes in the USA [13]. Dipaola J, Dobson R and Morse C designed a pre- programmed digital computer installed in the car which controls the speed [14]. Mercedes-Benz have speed limit assistant, which detects speed-limit signs in milliseconds, in real time, and reminds the driver of the current speed limit. The system based on intelligent, electronic image processing [15]. Speed humps prevent drivers to drive in a higher speed in specific locations like, building parks and service stations. These humps made in different shapes, sizes, and colors [16]. METHODOLOGY Finding the appropriate solution to force the driver to drive at a reasonable speed remains the most important issue to reduce the number of traffic accidents. Reducing the vehicle speed can be achieved by controlling the fuel amount entering the engine (through: injection system, throttle valve position, and fuel pump), or by changing the brake system mechanism. As known the amount of fuel injected to the combustion chamber in most types of engines is being computed in the Engine Control Unit (ECU) through many factors which are [17]:  RPM sensor.  Crankshaft position sensor.  Battery voltage sensor.  Air flow sensor.
  • 3. Vehicle Speed Control Equipped with Special Combinations, Brake System and Safe Distance International organization of Scientific Research 44 | P a g e  Throttle Position (TPS) sensor.  Oxygen sensor. The use of the fuel pump to control the speeds is not suitable because it pumps the fuel continuously, and sometimes more than the needed quantity. In addition, it contains a back line to cycle the excess fuel back to the fuel tank. This may result in errors and failure in the engine cycle, which causes knocking and extra fuel consumption. By using TPS (throttle position sensor) signal to reduce speed, the air ratio will be more than the fuel ratio, which will lead to lean phase of combustion. As a result, the engine vibrations will rise and will increase the chance of failure. Taking into consideration the importance of the time required reducing the speed and nature of the road (flat or downhill), we cannot reliance the throttle valve as one of the appropriate solution, because while driving on a downhill road, the vehicle will continue accelerating even when the throttle valve is completely closed. It may seem at first glance that the control of the fuel through the injection system is one of the most appropriate solutions to control vehicle speed, because the injection system is the direct controller which controls delivering fuel to the combustion chambers. That‟s mean, reduce the fuel amount injected to the combustion chamber, can be achieved by controlling signal from the injection system to the ECU. The second solution is applying brake in milliseconds which is achieved by using an automatic brake system to decrease the response time to get immediate deceleration. In this paper a system that aims to control vehicle‟s speed, based on GPS and, equipped with a special combination brake system, injection system and safe distance measurements. SYSTEM OVERVIEW Figure 3, shows the block diagram of the system, which consists of the following: 1. GPS (Global Positioning System). 2. Ultrasonic module. 3. Control unit (PIC microcontroller). 4. Vehicle speed sensor. 5. Bipolar stepper motor. 6. GSM modem. 7. Control circuit that consists of relay and transistor. 8. Some peripherals needed to operate microcontroller. Ultrasonic sensor generates high frequency sound waves and evaluates the echo which is received back by the sensor. It calculates the time interval between sending the signal and receiving the echo to determine the distance to an object. The ultrasonic sensor always senses objects and calculates distance between them and the speed sensor measures vehicle speed and sends it to the microcontroller to deal with it. When the vehicle enters a street with a speed limit of 90Km/hr (for example), the GPS receiver provides the location (longitude and latitude) of it and sends a signal to PIC microcontroller. The speeds of each street are stored in the microcontroller as a database, so it determines the street speed and analyzes data to match it. If the actual speed is greater than speed limit, the injectors will stop the fuel injection through the N.C relay, and the control unit immediately sends a digital signal to a stepper motor which is connected to the brake system. The digital signal moves the stepper motor through certain number of steps which are determined by calculating the necessary braking value to reduce the vehicle‟s speed to the required extent. To achieve a safety distances in varies speeds, the sensor senses the existence of a vehicle on variable distances relying on its variable speed. Then, the sensor determines whether or not the distance is safe depending on the vehicle‟s traveling speed. Up to this point, future results are to be determined in accordance to the vehicles speed and the distance between the two vehicles. Such process is needed for a decision to be taken which controls the vehicle‟s speed depending on the required safe distance.
  • 4. Vehicle Speed Control Equipped with Special Combinations, Brake System and Safe Distance International organization of Scientific Research 45 | P a g e Figure 4, shows the flowchart of the system. Once the system starts functioning, the buzzer gives a sound as a notice to the beginning of that function. The same process occurs when the Ultrasonic sensor (proximity sensor) gives notification to the control unit if the distance measuring between the two vehicles was less than a certain limit, which depends on the distance sensor specifications. 1. GPS (Global Positioning System) receiver. 2. PIC Microcontroller (PIC 16f877a). 3. Vehicle Speed Sensor. 4. Ultrasonic Module (HC-SR04). 5. Bipolar Stepper Motor. 6. Drive Circuit (ULN2803). 7. GSM modem. 8. Transistors (NPN). Figure 5, shows the Circuit Diagram of the Control System, which consists of the following components: 9. Buzzer. 10. Normally Closed Relay. 11. Capacitors (22MF). 12. Resistors (1K, 10K). 13. Crystal Oscillator (4MH). 14. 5 volt Power supply. 15. 12 volt Power supply. SIMULATION The system was simulated on Proteus software. By simulating hardware actions, the future results must indicate: response of system, time of response, mechanism of control like applying brake mechanism and controlling injectors. In simulation, the system appears in five modes.
  • 5. Vehicle Speed Control Equipped with Special Combinations, Brake System and Safe Distance International organization of Scientific Research 46 | P a g e  The first mode Figure 6, shows the circuit diagram when the vehicle is turned off, we notice that all pins appear in blue except MCLR pin, this because this pin is supplied by external power supply.  The second mode Figure 7, shows signals in a normal driving. P7 of port C and P0, P5 of port A look in red. This means that the GPS receiver always provides latitude and longitude of the region or the street to the microcontroller. The ultrasonic sensor always senses and calculates distance between the car and the following one.  The third mode After the GPS picks up latitude and longitude and the control unit process data, the speed limit is determined by microcontroller and a decision will be taken. For the purpose of reducing vehicle speed to the speed limit, the control unit sends signals to turn off injectors, at the same time a buzzer gives audio as reminder that the system is working and the brake is applied. The VSS (vehicle Speed Sensor) signal is a very important feedback to let the microcontroller determine if the speed reaches the required speed (figure 8).  The fourth mode If the vehicle speed reaches the ideal speed, the buzzer, injectors and brake will be back to function normally and the ultrasonic sensor remains calculating distances to get the appropriate safe distance (figure 9).
  • 6. Vehicle Speed Control Equipped with Special Combinations, Brake System and Safe Distance International organization of Scientific Research 47 | P a g e  The fifth mode Figure 10, shows P6 of port c in red, this means that a warning message was sent to the traffic department when the system fails to inform it of that. DISCUSSION AND RESULTS The time required to reduce the vehicle speed can be calculated by the following equation: Total deceleration time = perception and reaction time + braking time (1) Highway traffic and safety engineers have some general guidelines which have been developed over the years and hold now as standards. As an example, if a street surface is dry, the average driver can safely decelerate an automobile or light truck with reasonably good tires (with reasonably good coefficient of friction of about .75) at the rate of about 4.5 meter per second (m/s²). That is, a driver can slow down at this rate without anticipated probability of controlling the vehicle which will be lost in the process [18]. This means that the skilled driver could easily get deceleration rates in excess of 3.4 m/s2 without loss of control. It is very possible and probable that with some efforts, the driver that attempts to be aware of braking safety procedures and practices can and should get much better braking (safely) than the guidelines used nationally, approaching that of the professionally driver published performance tests. We calculated the time that required reducing vehicle speed such 10 Km/h in the following three cases: Case 1: Traditional Brake System The average mechanical braking time, which is required to reduce the vehicle speed about 10km/h mechanically, equals to 0.62 s, and the average time of the driver's perception time and reaction time equals to 2.54 s, the time needed to the total reduction equals to 3.16 s [18]. Case 2: Automatic Brake System without the effect of injectors After adding this system to the vehicle and connecting it to both: the injection system and the brake system, the process of reducing speed becomes faster because it does not require any follow-up of the driver. The time required receiving a signal by GPS ranges between 0.6 to 0.9 s, and it varies depending on the communications network in the area. The full process is performed before the arrival of the vehicle into the street and then the vehicle will not exceed the upper speed limit in the street; this because of the pre- programming of the system and the high accuracy of the GPS that make the process begins before it reaches the street. The total time required to reduce speed using vehicle speed control system can be calculated by the following equation: t total = t GPS + + t inject ors + t stepper + t braking (2) Where, t total : the total time of deceleration t GPS : the time needed by the GPS to receive the signal. t injectors : the time needed by the microcontroller to close the injectors. t stepper : the time needed by the microcontroller to fulfill the task of the stepper motor.
  • 7. Vehicle Speed Control Equipped with Special Combinations, Brake System and Safe Distance International organization of Scientific Research 48 | P a g e t braking : the braking time with injection system control. According to the experiments performed in the laboratories of the Northern Border University the time that the GPS takes to determine the position and send it to the control unit equals to 0.66 s, the time required to close injectors is 0.21 seconds, and the time required to apply brake system by a stepper motor is 0.15 s. So the time required to analyze the signal and begin the process of reduction is equal to 1.02 s. The mechanical braking time is the same in all cases which equals 0.62 s. So the total time required for decreasing speed such10 Km/h does not exceed 1.64 s. Case 3: Injector's Effect Closing injectors increases the efficiency of the system because it works to prevent the flow of fuel and arrival it to the cylinders, therefore, the time required to reduce speed will be decreased. In this system, there is an automatic braking system controlled by a stepper motor circuit in a time was calculated previously which was 1.64 s. So actually the time required to reduce the speed 10 km/h must be less than 1.64 s because of the involvement of injectors in the process which increases the efficiency of the braking process. According to experiment readings, the time required to reduce the vehicle speed such 10 km / h by closing injectors only can be calculated by the following equations [19]: v2= v1 - a ∆t (3) (v2)² = (v1)² - 2 a ∆s (4) Where, V1: initial velocity (Km/h). V2: final velocity. ∆t: taken time. ∆S: traveled distance. a: deceleration When the vehicle is operated on the empty load -ideal speed during a movement on a straight road and the fuel has been cut off, it continued travelling 577.5 meter before stopping completely(v2=0) [20] . By compensating v1 as 70 Km/h, v2 as 0, and ∆S as 577.5 meter in equation 5, the deceleration will be equal to 4.24 m/s². If the time required in the mechanical braking process to reduce speed 10 km / h is equal to 0.62 s, and the time required to be reduced by shutting injectors only is 2.358 s, the ratio between the effect of injectors and a mechanical braking effect will be 26.3 %. This means that the vehicle decelerates in rate of 4.24 m/s² and the effect of injectors is 26.3 % of the total of deceleration. In other words, the effect of injectors is equal to 0.263 of the influence of mechanical braking. The time required for mechanical braking equals to 0.62 - (0.62 *0.263) = 0,457 s. So the total time (with the effect of injectors) = 1.02 + 0.457 = 1.477 s. SAFE DISTANCE EXPERIMENTS AND CALCULATIONS In some countries such as the UAE, an instant violation is imposed for not leaving enough distance between vehicles. The director of Dubai police stated "vehicles travels on a speed of 40 km/h have to leave a distance of 35 meters which is equivalent to seven cars‟ he added „and when a vehicle‟s speed is 120 km/h a distance of 104 meters have to be kept"[21]. The safety distance is calculated by multiplying the tenth of the speed indicator with 6. Meaning, if a car travels on a speed of 40 km/h, the safety distance must not be less than 24 meters. We adopted this rule in calculating the safety distance for each speed from 10 to 180 (Km/h), assuming that the following vehicle will stop in any moment (figure 11). If the deceleration rate of the vehicle varies, the safe distance between vehicles depends on the speed will vary. It is calculated by the following equation [22]: S= v δ+ v2 /2 df - v2 /2 df + N L+ x0 (5) Where: v = initial speed of two vehicles dl = deceleration rate of the leading vehicle df = deceleration rate of the following vehicle δ= perception-reaction time of the following vehicle x0 = safety margin after stop L = length of vehicle N = number of vehicles in a train
  • 8. Vehicle Speed Control Equipped with Special Combinations, Brake System and Safe Distance International organization of Scientific Research 49 | P a g e Figure 11: The relation between the vehicle speed and the safe distance for constant deceleration rates of the leading and the following vehicles. The deceleration rate varies depending on the system used to reduce speed. There are three cases in which the safe distance changes according to the deceleration of the leading vehicle change: Case 1: when using the traditional brake system, the deceleration of the leading vehicle equals 4.24 m/s². Case 2: when using an automatic brake system without the effect of injectors, the deceleration of the leading vehicle is 6.096 m/s². Case 3: when using the automatic brake system with the effect of injectors, the deceleration of the leading vehicle equals 6.77 m/s². Figure 12, shows the relation between safe distance and vehicle speed for different deceleration rates of the leading vehicle. Figure 12: The relation between the safe distance and vehicle speed for different deceleration rates of the leading vehicle. We notice that the safe distance values are closed to each other, but are not similar because of the leading vehicle deceleration change in all cases. On Highway roads, if we want to fix the safe distance for speeds from 90 – 180 Km/s, the safe distance is calculated by the following equation [23]: S= 1/k (6) Where: S: Safe distance in meters. K: Traffic stream concentration in vehicles per kilometer The average stream concentration on highway roads equals 62 vehicle/ Km [24]. Hence, the safe distance will equal approximately 16 m. By using the automatic brake system with the effect of injectors, the required time needed for keeping the safe distance between two vehicles about 16 meter will vary if the vehicle speed varied (figure 13). CONCLUSION As a general illustration, the research proves the possible availability for a technological intervention
  • 9. Vehicle Speed Control Equipped with Special Combinations, Brake System and Safe Distance International organization of Scientific Research 50 | P a g e Figure 13: the relation between the vehicle speed and time required for keeping constant safe distance. factor when humans fail to control their behaviors. The tremendous negative consequences which sometimes surf due to such behaviors are devastating. The system takes 1.477 seconds to reduce speed 10 Km/h without any intervention of the driver, while it takes 3.16 seconds using traditional braking system. This means that by adding this system, the collision will be reduced significantly, the driving will be easier than using the traditional brake system especially with using injector's control, and the road for drivers and passengers will be very safe because of the existence of property which saves safe distances between vehicles. What would happen if the driver could not control vehicle's speed? What would be the results if people do not feel safe on the road? Or how much financial losses collisions might cause? This system does not only protect lives but also treasures it. REFERENCES [1] United Nations World Health Organization (WHO),” World Report on Road Traffic Injury Prevention”, 2004, Geneva, Switzerland. [2 ] Dinesh Sethi, Francesca Racioppi and Francesco Mitis” Youth and road safety in Europe” ,Policy briefing, WHO European Centre for Environment and Health, WHO Regional Office for Europe, pages 45, Italy, 2007. [3] Road traffic accidents in an urban area: linkage between municipal police data-base and routinely collected medical data to assess adverse health effects, health system activities and costs, Barchielli A, Balzi D, 2007. [4] Road Traffic Injuries in Saudi Arabia, and Its Impact on the Working Population, Mohamed A. Elshinnawey, Lamiaa E. Fiala, Mostafa A.F. Abbas*, Nabil Othman, 2008. [5] Epidemiology of road traffic injuries in Qassim region, Saudi Arabia: Consistency of police and health Data, Issam Barrimah, Farid Midhet and Fawzi Sharaf,International Journal of health and Sciences(IJHS),Vol.6(1),pp31-41 Qassim university, 2012. [6] The Saudi Interior Ministry, Traffic Department: Traffic Reports [online][accessed 2013],available from www.Saher.gov.sa. [7] Nathan Naylor ”Nearly 50% of All Drivers Believes: speeding is a Problem on U.S Roads” ,December,2013, National Highway Traffic Administration. [8] Hashem R. Al-Masaeid, Traffic Accidents in Jordan,(2009),Jordan Journal of Civil Engineering, Volume 3, No.4, pp. 331-343 [9] Khasawneh M., et al., A Wireless infrastructure for tele-traffic speed control, September 2006, Report submitted to King Abdullah II Fund for Development (KAFD). [10] Mohammad A. Khasawneha , Mohammad I.Malkaw., Munzer S., Sa‟ed M., Haytham Z. El-Shyoukh, Sa‟ed M. Hayajneh, Hadeel Y. Qasaimeh, (2009), A security- mbedded infrastructure for Tele-Traffic Speed Control, Journal of t he Franklin Institute, Volume 346, Issue 5, June 2009, Pages 431–448. [11] N.N. Bowie, Jr., M. Waltz, “Data Analysis of the Speed-Related Crash Issue, and Traffic Safety”, vol. 2, winter 1994, Auto Bureau of Transportation Statistics, U.S. Department of Transportation. [12] Nilsson, G., “Traffic Safety Dimensions and the Power Model to Describe the Effect of Speed on Safety”, PhD Thesis, Lund Institute of Technology and Society, Traffic Engineering, 2004, Lund, Sweden. [13] S. C. Tignor and D. Warren, “Driver Speed Behavior on U.S. Streets and Highways”, Compendium of Technical Papers, Institute of Transportation Engineers, 1990, Washington, DC. [14] Dipaola J, Dobson R, Morse C,” Car retarder control system”, Patent No. US3844514, 1974, USPTO.GOV. [15] http://www.emercedesbenz.com/Nov08/12_001505_Mercedes_Benz_TecDay_Special_ Feature_Lane_Keeping_Assist_And_Speed_Limit_Assist.html .
  • 10. Vehicle Speed Control Equipped with Special Combinations, Brake System and Safe Distance International organization of Scientific Research 51 | P a g e [16] Systemax company, Speed Bump, Available from URL ttp://www.globalindustrial.com/c/outdoor- grounds-maintenance/parking-lot/speed-bumps [17] The Internal Combustion Engine in Theory and Practice, Charles Fayette Taylor, Revised edition, 1985 [18] Akhilesh Kumar Maurya, Prashant Shridhar Bokare” Study Of Deceleration Behaviour Of Different Vehicle Types”, International Journal for Traffic and Transport Engineering, 2012, 2(3): 253 – 270. [19] R.C.Hibbeler “Engineering Mechanics – Dynamics”.12th Edition, 2010. [20] Salameh Sawalha,Jawadat Al-Jarrah,Ali Dbean Al- Rashidy” System to Control the Vehicles During the Chasing”, International Journal of Mechanical Engineering (IJME),Vol.2,Issue 4,pp 87-98,2013. [21] http://arabic.arabianbusiness.com/business/transportation/2009/dec/21/33476/ [22] Jan Valentin, “Traffic flow theory”,lecture notes, www.learningace.com. [23] Yufei Yuan, Hans van Lint, Femke van Wageningen-Kessels, Serge Hoogendoorn "Lagrangian Traffic State Estimation For Freeway Networks", 2nd International Conference on Models and Technologies for Intelligent Transportation Systems, 22-24 June, 2011, Leuven, Belgium. [24] Norman W. Garrick, Traffic Stream Flow Equations”, lecture notes, www.learningace.com.