SlideShare una empresa de Scribd logo
1 de 10
Descargar para leer sin conexión
IOSR Journal of Computer Engineering (IOSR-JCE)
e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 10, Issue 5 (Mar. - Apr. 2013), PP 75-84
www.iosrjournals.org
www.iosrjournals.org 75 | Page
Performance Evaluation of Filters for Enhancement of Images in
Different Application Areas
Yogendra Kumar Jain1
,GARIMA SILAKARI2
1
H.O.D. ,Department of Computer Science and Engineering , S.A.T.I Vidisha , India,
2
M.Tech Scholar , Department of Computer Science and Engineering , S.A.T.I Vidisha , India,
Abstract: Contrast stretching is a method to enhance the image details. Histogram equalization is one of the
most common spatial domain technique used for contrast enhancement. While stretching the contrast of an
image , it results in the degradation of brightness of the image. To overcome this hurdle a method known as Bi-
Histogram equalization was introduced to preserve the brightness level of the output image. As the contrast
enhancement enhances the image , it also enhances the noise in the signal that causes the blurrness in the
output image. The proposed BHEGF method reduces this drawback and provides more accurate and realistic
results. In this paper we use four different types of filters i.e. median filter , gaussian filter , average filter &
motion filter and various parameters such as processing time , MSE, brightness count and PSNR are used for
performance evaluation.
Keywords: Bi- Histogram Equalization , Tri- histogram equalization ,BHEGF , Contrast enhancement ,
Gaussian filter , brightness preserving , Spatial and frequency domain.
I. Introduction
The main purpose of image enhancement is to enhance or improve the quality of image with the
minimum amount of MSE. Various enhancement techniques are used for this purpose both in spatial domain
and frequency domain. This paper emphasizes mainly on spatial domain technique of image enhancement. The
histogram equalization is the most commonly used technique for contrast enhancement and brightness
preservation of the image. There are various techniques used to equalizes the given image’s histogram such as
BHE, DSHE, AHE, CHE, MHE, MMBEBHE, RMSHE. In all these technique the image have to first
decomposed and then the histogram of each part generated from the decomposition is equalized . That is also
known as the segmentation of an image into various sub-images.
Segmentation of the image can be done in various ways such as amplitude thresholding, component
labeling, boundary based approaches, region based approaches, template matching, texture based segmentation.
In this paper, the image is segmentized on the bases of its component levels. Then the resultant histograms of
the sub-images are equalized, while equalizing the histograms the impulse noises present in the images are also
get enhanced along with the enhancement of the image [4] . Hence to overcome this drawback due to noise in
the satellite imaging, this paper proposed the use of the Gaussian filter to filter out the noise from the enhanced
image . The use of Gaussian filter shell reduced the MSE to a larger extent from the enhanced image .
1.1 Image Enhancement
Image enhancement is a process of improving the quality of image by improving its features. The
techniques used for image enhancement can be used to improve the image’s contrast and brightness
characteristics and reduces its noise contents or sharpen its details they can be classified as subjective
enhancement and objective enhancement [9]. Subjective enhancement techniques may be repeatedly applied in
various forms until the observer feels that the image yields the details necessary for particular application.
On the other hand objective image enhancement corrects an image for known degradation. This enhancement is
not repeatedly applied but it is applied only once based on the measurement taken from the system.
Image enhancement can also be categorized into two main and broad categories. They are as follows:
1.1.1 Spatial Domain Technique
Spatial domain refers to the Image Plane itself and approaches in this categories are based on direct
manipulation of pixels in an image. Histogram equalization techniques are one of the spatial domain image
enhancement technique, which has form the basis in this paper. This technique refers to the aggregate of the
pixels composing an image. This process will be denoted by the expression given below :
A(x, y) = T(f ( x, y )) (1)
Where f(x , y) is input image , g(x, y) is processed image and T is an operator on f, given g(x ,y) = A(x,
y).
Performance Evaluation of Filters for Enhancement of Images in Different Application Areas
www.iosrjournals.org 76 | Page
1.1.2 Frequency Domain Technique :
frequency domain processing techniques are based on modifying the Fourier
transform of an image [4].
1.2 histogram equalization
Histogram equalization is a technique to obtain a uniform histogram for the output image. It flattens the
histogram and stretches the dynamic range of gray levels or in other words histogram equalization maps the
input image’s intensity values over the range (0 to 255) so that the histogram of the resulting image will have an
approximately uniform distribution. This technique is used for contrast stretching and certain modification in
this technique can make it useful for preserving the brightness of the image. Due to this reason, the histogram
equalization has been found to be a powerful technique for image enhancement.
We have to generate random variables for histograms to be equalized, Consider an image pixel value u >= 0
to be a random variable which has a continuous Probability Density Function and cumulative probability
distribution.
Consider an image I = { X ( i, j) } is an image with L discrete gray levels { X0 , X1 ,X2 , ……. , XL -1} . The
histogram of I [X] is denoted by H[ I ] = {n0 , n1 , n2 , ……., nk , ………, nL-1} where nk is the number of pixels whose
gray level is Xk. . The mean brightness of the image I [X] will be denoted as IMB. The middle gray level of the
image I [X] i.e. (X0 + XL-1) / 2 will be denoted as XG . Consider the input image as I [X]. The Probability Density
Function (PDF) of the image based on the histogram H[X] can be defined as
P(K) = K/N = K / (n0 + n1 + n2 +……..+ nL-1) for K= 0,1,2,3…………, L-1. (2)
Here N is the total number of pixels in the image . Now the Cumulative Distribution Function (CDF) is
calculated based on PDF is as follows :
C(K) = ∑ K
j=0 P ( j ) for K= 0,1,2,3,…….,L-1 (3)
Based on CDF , Histogram equalization now maps an input gray level XK into an output gray level f(K) , where
f(K) commonly called a level transformation function is defined as
C(K) = X0 + (XL-1 – X0) . C(K) [10] (4)
II. Previous Work
This section describes some previously done work based on the Histogram Equalization method with
the purpose of brightness preservation. Firstly we are going to describe the various ways used to equalized the
histogram of the images . The very first technique is Classical Histogram Equalization which forms the base of
other spatial domain techniques. For the much better results we have to segmentize the given image into sub-
images. So in later part of this section we have described the concept of segmentation also. The segmentation of
image is common in the various histogram equalization techniques but the difference lies in the way the
segmentation is done in various techniques , one technique simply divides the image into two sub-images using
mean gray level , other uses recursive segmentation , another uses the equal area value to segment the image .
The various ways to equalizes the Histogram of the image and maintains the contrast and brightness of the
image are as follows :
2.1 Classical Histogram Equalization (CHE): This technique emphasizes on the basic concept of Histogram
Equalization which uniformly distribute the histogram of image over the entire range of gray levels
increasing the contrast of the image . Despite of the advantages offered by the CHE it can introduce a
significant change in the image brightness i.e. its mean gray level [3]. It is because of the uniform
distribution specification of the output image to the middle gray level. This change in brightness is not
desirable when applying the CHE technique.
2.2 Adaptive Histogram Equalization (AHE):Since the simple histogram equalization changes the brightness of
the image significantly, and makes the images saturated wit bright or dark intensity values, therefore , the
adaptive histogram equalization technique divide the histogram into several sub sections and equalizes
them independently.
2.3 Brightness Preserving Histogram Equalization(BBHE):In this technique the histogram of image is first
decomposed into two sub-histogram by using the mean gray level. Then the classical histogram
equalization is applied to the histogram of the sub images independently.
2.4 Dualistic Sub-Image Histogram Equalization (DSIHE): Using the basic idea of BBHE of decomposing the
original image into two sub-images and then equalize the histogram of the sub-images separately, [ ]
proposed the so called equal area dualistic sub image histogram equalization. In this method
decomposition is done on the bases of maximization of the entropy of the output image[ ]. For this the
image is decomposed into two sub images one is dark and other is bright based on the property that the sub
images will have same amount of pixels.
2.5 Minimum Mean Brightness Error Bi-Histogram Equalization (MMBEBHE) : This method provides a
technique in which the decomposition can be done on the bases of the determination of a threshold level,
Performance Evaluation of Filters for Enhancement of Images in Different Application Areas
www.iosrjournals.org 77 | Page
let it be L1 on the bases of which the input image I can be decomposed into two sub images as I[0,L1] and
I[L1+1 , N] so that the minimum brightness difference b/w the input image and the output image is
achieved . Once the input image is decomposed by the threshold level L1, each of the two sub images
I[0,L1] and I[L1+1,N] has its histogram equalized by the CHE process generating the output image . Here
in this paper we have proposed a scheme which is a modification of MMBEBHE and multi histogram
equalization .We have introduce a technique uses various filters to reduce the noise and improve the
overall quality of the image.
2.6 Recursive Mean – Separate Histogram Equalization(RMSHE): This method is based on BBHE but the
difference in b/w both the methods is that in this method instead of decomposing the image only once here
to perform image decomposition recursively , up to a scale r , generating 2r
sub images. After it each of
these sub images Ir
[I1 ,I2] is independently enhanced using the CHE method.
III. Proposed Technique
In our proposed scheme the input image is decomposed into sub–images by using the threshold gray level
which is selected on the basis of image mean gray level . Then apply the histogram equalization method on each
of the sub – image’s histogram to map the values into the new dynamic range . now normalizes the brightness of
the image . There is an enhancement also in the noise of the image, so for the reduction of the noise and to
obtain the more accurate information extraction from the satellite images which is most important for
application based specific task done accurately such as in space research organization , weather forecasting
centre etc. are the application areas related to satellite image information extraction
In this paper, the comparative studies has done among the performance of the four most prominently used
filters along with contrast enhancement and brightness preservation . The filters used in this paper are Median
filter , Gaussian filter , Average filter and Motion filter along with the multi – histogram equalization technique .
3.1 Median Filter
A median filter finds the median of a number of elements at its input . The median of a group
containing an odd number of elements is defined as the middle element when all the elements of the group is
sorted . In the standard the median filtering applications a window of size W, where W is odd is moved along
the sampled values of the signal or image . The dimensions of the filter mask must be odd [4].
3.2 Gaussian Filter
In Gaussian filtering the weights are computed according to the Gaussian function i.e. g(i, j) = c.e(I² + j²)/
.
Gaussian filtering is very effective in removing Gaussian noise & the weight give higher significance to pixels
near the edges (removes egde blurring). They are linear low pass filters . Large filters can be implemented using
small 1D small filters also they are rotationally symmetric and computationally more efficient .
3.3 Average Filter
Average filtering is also a sort of low pass filtering in which average of pixel values are taken to reduce
the effect of noise in the image . suppose we have n measurements of pixel x. then the standard deviation of this
measured pixel x can be estimated as :
S = √(∑i
x
=1(Xi - X)2
)/(n-1) (5)
Where X is the mean or average of n measurements calculated as :
X = 1/n (∑x
i=1 Xi) (6)
The magnitude of S is clearly dependent on the measurements , Xi , which in practice is bounded , that is it has
lower and upper limits. However S is also dependent on the number of measurements made i.e. the number n ,
From such calculations it is deduced that the larger the n is , the smaller the S becomes . In other words , given a
noisy but bounded measurement sequence, we can take a large number of readings of pixel and use its average
to give a better estimate of its true value .
3.4 Motion Filter
As the result of motion between the camera and the object of interest , adjacent point in the image plane
are exposed to the same point in the object plane during the exposure time. This causes the blurriness in the
image and it is termed as motion blurred image. Thus motion filter is used to reduce such blurriness from the
image with the help of motion function PSF .[1].
Here the proposed method can be summarized as follows :
 Decomposing the image into sub images using its threshold value.
 Stretches the contrast and preserve the brightness of the image by using histogram equalization which
flattens and stretches dynamic range of histogram of the image .
 Filtering process can be done using median filter on the stretched image.
Performance Evaluation of Filters for Enhancement of Images in Different Application Areas
www.iosrjournals.org 78 | Page
 Now apply the Gaussian filter to reduce the Gaussian noise .
 Further apply average filter to the stretched image .
 Lastly apply motion filter to the stretched image .
 At the last step compare the results and brightness measurements come from the above filters and multi
histogram equalization technique on the basis of brightness count , MSE count and PSNR values .
IV. Results
Thus this paper conclude that the Gaussian filter gives much better results in comparison to all other
filters in the case of satellite images when applied with BBHE . In other words the MSE count is much lesser
with Gaussian filter compared to other one and it also gives a very good PSNR count . This will be very good
results with both gray scale and color images . This technique can be extended to 3D images also and other
application areas. Following are some results.
4.1 Lung-Vessel
Medical image (Lungs) Original Medical Image(Lungs)Equalized and Filtered
Image 1
Histograms for Medical image (Lungs)
Fig. 1(A) R-component of original image Fig. 1(B) R-component of equalized and
filtered image .
Performance Evaluation of Filters for Enhancement of Images in Different Application Areas
www.iosrjournals.org 79 | Page
Fig. 1(C) G-component of original image Fig. 1(D) G-component of equalized and
Filtered image .
Fig. 1(E) B-component of original image Fig. 1(E) B-component of equalized and
filtered image .
Fig. 1
Fig. 1 . Histograms of Lungs CT Images from medical imaging regarding R , G , B color components of original
and equalized and filtered by using Gaussian filter .
4.2 Oilpill
Oilpill Original Oilpill equalized and filtered
Image 2
Histograms of Colaba’s image :
Performance Evaluation of Filters for Enhancement of Images in Different Application Areas
www.iosrjournals.org 80 | Page
Fig. 2(A) R-component of original image . Fig. 2(B) R-component of equalized and
filtered image .
Fig. 2(C) G-component of original image . Fig. 2(D) G-component of equalized and
filtered image .
Fig. 2(E) B-component of original image . Fig. 2(F) B-component of equalized and filtered
image .
Fig. 2
Fig. 2 . Histograms of Oilpill image from Remote sensing imaging regarding R , G , B color components of
original and equalized and filtered by using Gaussian filter .
4.3 Underwater Image :
Underwater Image original image Equalized and filtered image of Underwater
Image
Image 3
Performance Evaluation of Filters for Enhancement of Images in Different Application Areas
www.iosrjournals.org 81 | Page
Histograms of Underwater image :
Fig. 3(A) R-component of original Underwater Fig. 3(B) R-component of equalized and
image . filtered Underwater image.
Fig. 3(C) G-component of original Underwater Fig. 3(D) G-component of equalized and
image . filtered Underwater image.
Fig. 3(E) B-component of original Underwater Fig. 3(F) B-component of equalized and
image . filtered Underwater image.
Fig. 3
Fig. 3 . Histograms of Great Barrier Reif’s image regarding R , G , B color components of original and
equalized and filtered by using Gaussian filter .
4.4 NASA Img
NASA original image Equalized and filtered NASA image.
Image 4
Performance Evaluation of Filters for Enhancement of Images in Different Application Areas
www.iosrjournals.org 82 | Page
Histograms of NASA image :
Fig. 4(A) R-component of original NASA Fig. 4(B) R-component of equalized and
image . filtered NASA image.
Fig. 4(C) G-component of original NASA Fig. 4(D) G-component of equalized and
image . filtered NASA image.
Fig. 4(E) B-component of original NASA Fig. 4(F) B-component of equalized and
image . filtered NASA image.
Fig. 4
Fig. 4 . Histograms of NASA’s image regarding R , G , B color components of original and equalized and
filtered by using Gaussian filter .
PERFORMANCE TABLE :
Table 1: Lungs-Vessel
S.No FilterUsed MSE PSNR Brightness count
1. Median filter 1003.9186 18.1138 116.5979
2. Gaussian Filter 903.4248 18.5719 116.7029
3. Average Filter 1044.4473 17.9419 116.7051
4. Motion Filter 1010.9364 18.0836 116.3886
Performance Evaluation of Filters for Enhancement of Images in Different Application Areas
www.iosrjournals.org 83 | Page
Table 2 : Oilpill (Remote Sensing Imaging)
S.No FilterUsed MSE PSNR Brightnes count
1. Median filter 530.8469 20.8811 109.8058
2. Gaussian Filter 398.4718 22.1268 109.7198
3. Average Filter 548.9415 20.7355 109.7187
4. Motion Filter 456.5353 21.5361 109.3989
Table 3 : Great Barrier Rief (Underwater Imaging)
S.No FilterUsed MSE PSNR Brightness count
1. Median filter 1535.861 16.2673 109.0864
2. Gaussian Filter 1363.7329 16.7835 109.6837
3. Average Filter 1423.5675 15.597 109.6842
4. Motion Filter 1415.212 16.6226 109.3551
Table 4 : NASA Image(Earth)
S.No FilterUsed MSE PSNR Brightness count
1. Median filter 564.1566 20.6168 87.5739
2. Gaussian Filter 397.5349 22.1371 87.9113
3. Average Filter 475.7044 21.3574 87.9094
4. Motion Filter 455.3548 21.5473 87.5898
Above are some results shown on the basis of proposed technique. Here in case of Image 1 , fig. 1(A), 1(C),
1(E). represents the histogram of red , green & blue components of Original Lungs Image 1 respectively and fig.
1(B), 1(D), 1(F) shows how the intensity of red , green , blue component get equalized after the processing
respectively. Similarly fig. 2(A), 2(C), 2(E) shows the histogram of Red, Green, Blue component of the original
Oilpill image before processing respectively and fig. 2(B), 2(D), 2(F) shows the equalized red, green, blue
component histogram of the processed image of Oilpill respectively. Similarly fig. 3(A), 3(C), 3(E) shows the
red, green and blue component of the original image of Great Barrier Reef and Great Barrier Reef equalized
image is shown by the fig. 3(B), 3(D), 3(F) respectively. Again from the fig. 4(A), 4(C), 4(E) we get to know
about the intensity of red, green, and blue component of original NASA Image respectively and the equalized
intensity of red, green, blue component of NASA image is shown by the fig. 4(B), 4(D), 4(F) respectively. From
the performance table of image 1(Lungs) we came to know that by using Gaussian filter the MSE will reduced
to 231.869 from 314.1955 in median filtering , 310.4368 in average filtering & 273.4146 in motion filtering .
The PSNR will be raised as 24.4784 in comparison to other filters & last is the brightness will be preserved by
the ratio 55.3679 which is also a good ratio of preserving the brightness among all the filters used here.
Similarly from the performance table of Image 2(Oilpill , Remote Sensing Image) in the case of Gaussian filter
MSE(1226.9706) is again reduced as compared to other filters , the value of PSNR will increased upto 17.2425
which is again greater in comparison to median , average & motion filters Last but not the least criteria is how
much brightness can be preserved so its ratio is 100.2367 which can also be acceptable as MSE and PSNR
values are very good in comparison to that comes by using other filters. Again from the performance table of
Image 3(Great Barrier Reef) in the case of Gaussian filter we get MSE(1042.4931) is again reduced as
compared to all the three filters used here in processing , the value of PSNR will increased upto 17.9501 which
is again greater in comparison to median , average & motion filters Last but not the least criteria is how much
brightness can be preserved so its ratio is 116.7488 which is also be a a good ratio in comparison to that comes
by using other filters. Here comes the case with the Image 4(NASA) from the performance table in the case of
Gaussian filter MSE(397.5349) is again reduced as compared to other filters , the value of PSNR will increased
upto 22.1371 which is again greater in comparison to median , average & motion filters Last but not the least
criteria is how much brightness can be preserved so its ratio is 87.9113 which is also a very good ratio in
comparison to that comes by using all the three filters .
V. Conclusion
Thus the conclusion derived from this paper is that the technique proposed here can be used to get
much better contrast enhancement along with the brightness preserving with the use of Gaussian filter as
Performance Evaluation of Filters for Enhancement of Images in Different Application Areas
www.iosrjournals.org 84 | Page
compared with median , average , and motion filters . It provides good results with both color and gray scale
images .In future this technique can be extended to be used for 3D images .
VI. Future Work and Scope
The proposed technique can also be used for the enhancement along with the preservation of brightness
and reduction of noise in 3D images and other application areas.
Acknowledgement
We would like to express our greatest gratitude to Dr. Y.K. Jain , HOD Computer Science and Engineering Dept. S.A.T.I.
Vidisha (M.P) for his great support .
References
[1] R.Gonzalez and R. Woods, Digital image processing using MATLAB 5th
ed. Pearson , 2009 .
[2] Y.-T. Kim, Contrast enhancement using brightness preserving bi histogram equalization, “IEEE Trans. On Consumer
Electronics,vol. 43, no. 1, pp. 1-8, Feb. 1997.
[3] David Menotti, Laurent Najman, Jacques Facon, “ Multi-histogram equalization methods for contrast enhancement and brightness
preserving”, “IEEE Trans. On Consumer Electronics, vol. 53, no. 3, Aug. 2007”.
[4] P. Jagatheeswari, S. Suresh Kumar and M. Rajaram, “ A novel approach for contrast enhancement based on histogram equalization
followed by median filter”, “ARPN Journal of Engineering and Applied Sciences, Vol. 4 , No. 7, Sep. 2009.
[5] M. Karaman, L. Onural, and A. Atalar, “ Design and implementation of a general purpose median filter unit in CMOS VLSI “, “
IEEE Trans.” April. 1990.
[6] H.S.M.M. Hanif, M.Y. Mashor, Z. Mohamed, “ Image enhancement and segmentation using dark stretching technique for
Plasmodium Falciparum for thick blood smear”, “ IEEE Trans. 7th
international colloquium on signal processing and its
application 2011”.
[7] Virendra P.Vishwakarma, Sujata Pandey,” Adaptive histogram equalization and logarithm transform with rescaled low frequency
DCT coefficients for illumination normalization”,” IJRTE Vol. 1, May 2009”.
[8] Balvant Singh, Ravi Shankar,” Analysis of Contrast Enhancement Techniques For Underwater Image”, “ IJCTEE Vol 1. Issue 2.”
[9] George Anastassopoulos, Ioannis Stephanakis, “ Evaluation Of Histogram Enhancement Techniques Used In Conjunction With
Wavelet Compression Methods For Improved Signal Processing Of Child Trauma Images” , “ Seventh Australlian and New
Zealand Intelligent Information System Conference , nov-2001”.
[10] Ashwini Sachin Zadbuke, “ Brightness Preserving Image Enhancement Using Modified Dualistic Sub Image Histogram
Equalization” , “ IJSER , Vol. 3, Issue 2. Feb-2012”.
[11] H. Roseline , Aimi Salihah , A.N , M. Y. Mashor “ Color Image Enhancement Technique for Acute Leukaemia Blood Cell
Morphological Features “, IEEE Trans. 2010 .
[12] Gao Qinqing , Chen Dexin , He Ketai ,” Image Enhancement Technique Based On Improved PSO Algorithm “ , IEEE Trans. 2011.
[13] Xiaodong Xie , Zaifeng Shi , Wei Guo , “ An Adaptive Image Enhancement Technique Based On Image Characteristic “ , IEEE
Trans. 2009.
[14] Zhi Yu Chen , Besma R. Abidi , David L. Page , Mongi A Abidi “ Gray- Level Grouping : An Automatic Method For Optimized
Image Contrast Enhancement , The Basic Method “ , IEEE Trans , 2006.

Más contenido relacionado

La actualidad más candente

Medical image enhancement using histogram processing part2
Medical image enhancement using histogram processing part2Medical image enhancement using histogram processing part2
Medical image enhancement using histogram processing part2Prashant Sharma
 
Image pre processing - local processing
Image pre processing - local processingImage pre processing - local processing
Image pre processing - local processingAshish Kumar
 
Image pre processing
Image pre processingImage pre processing
Image pre processingAshish Kumar
 
Object Shape Representation by Kernel Density Feature Points Estimator
Object Shape Representation by Kernel Density Feature Points Estimator Object Shape Representation by Kernel Density Feature Points Estimator
Object Shape Representation by Kernel Density Feature Points Estimator cscpconf
 
Property based fusion for multifocus images
Property based fusion for multifocus imagesProperty based fusion for multifocus images
Property based fusion for multifocus imagesIAEME Publication
 
Comparison of image segmentation
Comparison of image segmentationComparison of image segmentation
Comparison of image segmentationHaitham Ahmed
 
IMAGE SEGMENTATION BY USING THRESHOLDING TECHNIQUES FOR MEDICAL IMAGES
IMAGE SEGMENTATION BY USING THRESHOLDING TECHNIQUES FOR MEDICAL IMAGESIMAGE SEGMENTATION BY USING THRESHOLDING TECHNIQUES FOR MEDICAL IMAGES
IMAGE SEGMENTATION BY USING THRESHOLDING TECHNIQUES FOR MEDICAL IMAGEScseij
 
A review on image enhancement techniques
A review on image enhancement techniquesA review on image enhancement techniques
A review on image enhancement techniquesIJEACS
 
Paper id 28201446
Paper id 28201446Paper id 28201446
Paper id 28201446IJRAT
 
Contrast enhancement using various statistical operations and neighborhood pr...
Contrast enhancement using various statistical operations and neighborhood pr...Contrast enhancement using various statistical operations and neighborhood pr...
Contrast enhancement using various statistical operations and neighborhood pr...sipij
 
An Efficient Approach of Segmentation and Blind Deconvolution in Image Restor...
An Efficient Approach of Segmentation and Blind Deconvolution in Image Restor...An Efficient Approach of Segmentation and Blind Deconvolution in Image Restor...
An Efficient Approach of Segmentation and Blind Deconvolution in Image Restor...iosrjce
 
Image segmentation ppt
Image segmentation pptImage segmentation ppt
Image segmentation pptGichelle Amon
 
Matlab Image Enhancement Techniques
Matlab Image Enhancement TechniquesMatlab Image Enhancement Techniques
Matlab Image Enhancement TechniquesDataminingTools Inc
 
Noise tolerant color image segmentation using support vector machine
Noise tolerant color image segmentation using support vector machineNoise tolerant color image segmentation using support vector machine
Noise tolerant color image segmentation using support vector machineeSAT Publishing House
 
SEMANTIC IMAGE RETRIEVAL USING MULTIPLE FEATURES
SEMANTIC IMAGE RETRIEVAL USING MULTIPLE FEATURESSEMANTIC IMAGE RETRIEVAL USING MULTIPLE FEATURES
SEMANTIC IMAGE RETRIEVAL USING MULTIPLE FEATUREScscpconf
 

La actualidad más candente (20)

Watershed
WatershedWatershed
Watershed
 
Medical image enhancement using histogram processing part2
Medical image enhancement using histogram processing part2Medical image enhancement using histogram processing part2
Medical image enhancement using histogram processing part2
 
Image pre processing - local processing
Image pre processing - local processingImage pre processing - local processing
Image pre processing - local processing
 
Image pre processing
Image pre processingImage pre processing
Image pre processing
 
Object Shape Representation by Kernel Density Feature Points Estimator
Object Shape Representation by Kernel Density Feature Points Estimator Object Shape Representation by Kernel Density Feature Points Estimator
Object Shape Representation by Kernel Density Feature Points Estimator
 
Property based fusion for multifocus images
Property based fusion for multifocus imagesProperty based fusion for multifocus images
Property based fusion for multifocus images
 
Comparison of image segmentation
Comparison of image segmentationComparison of image segmentation
Comparison of image segmentation
 
Image segmentation using wvlt trnsfrmtn and fuzzy logic. ppt
Image segmentation using wvlt trnsfrmtn and fuzzy logic. pptImage segmentation using wvlt trnsfrmtn and fuzzy logic. ppt
Image segmentation using wvlt trnsfrmtn and fuzzy logic. ppt
 
IMAGE SEGMENTATION BY USING THRESHOLDING TECHNIQUES FOR MEDICAL IMAGES
IMAGE SEGMENTATION BY USING THRESHOLDING TECHNIQUES FOR MEDICAL IMAGESIMAGE SEGMENTATION BY USING THRESHOLDING TECHNIQUES FOR MEDICAL IMAGES
IMAGE SEGMENTATION BY USING THRESHOLDING TECHNIQUES FOR MEDICAL IMAGES
 
A review on image enhancement techniques
A review on image enhancement techniquesA review on image enhancement techniques
A review on image enhancement techniques
 
Paper id 28201446
Paper id 28201446Paper id 28201446
Paper id 28201446
 
Contrast enhancement using various statistical operations and neighborhood pr...
Contrast enhancement using various statistical operations and neighborhood pr...Contrast enhancement using various statistical operations and neighborhood pr...
Contrast enhancement using various statistical operations and neighborhood pr...
 
An Efficient Approach of Segmentation and Blind Deconvolution in Image Restor...
An Efficient Approach of Segmentation and Blind Deconvolution in Image Restor...An Efficient Approach of Segmentation and Blind Deconvolution in Image Restor...
An Efficient Approach of Segmentation and Blind Deconvolution in Image Restor...
 
Im seg04
Im seg04Im seg04
Im seg04
 
Image segmentation ppt
Image segmentation pptImage segmentation ppt
Image segmentation ppt
 
Ijetcas14 372
Ijetcas14 372Ijetcas14 372
Ijetcas14 372
 
Matlab Image Enhancement Techniques
Matlab Image Enhancement TechniquesMatlab Image Enhancement Techniques
Matlab Image Enhancement Techniques
 
Noise tolerant color image segmentation using support vector machine
Noise tolerant color image segmentation using support vector machineNoise tolerant color image segmentation using support vector machine
Noise tolerant color image segmentation using support vector machine
 
IMAGE SEGMENTATION.
IMAGE SEGMENTATION.IMAGE SEGMENTATION.
IMAGE SEGMENTATION.
 
SEMANTIC IMAGE RETRIEVAL USING MULTIPLE FEATURES
SEMANTIC IMAGE RETRIEVAL USING MULTIPLE FEATURESSEMANTIC IMAGE RETRIEVAL USING MULTIPLE FEATURES
SEMANTIC IMAGE RETRIEVAL USING MULTIPLE FEATURES
 

Destacado

Intensity Non-uniformity Correction for Image Segmentation
Intensity Non-uniformity Correction for Image SegmentationIntensity Non-uniformity Correction for Image Segmentation
Intensity Non-uniformity Correction for Image SegmentationIOSR Journals
 
Usage and Research Challenges in the Area of Frequent Pattern in Data Mining
Usage and Research Challenges in the Area of Frequent Pattern in Data MiningUsage and Research Challenges in the Area of Frequent Pattern in Data Mining
Usage and Research Challenges in the Area of Frequent Pattern in Data MiningIOSR Journals
 
Lossless LZW Data Compression Algorithm on CUDA
Lossless LZW Data Compression Algorithm on CUDALossless LZW Data Compression Algorithm on CUDA
Lossless LZW Data Compression Algorithm on CUDAIOSR Journals
 
Study of SaaS and its Application in Cloud
Study of SaaS and its Application in CloudStudy of SaaS and its Application in Cloud
Study of SaaS and its Application in CloudIOSR Journals
 
Medical Image Processing in Nuclear Medicine and Bone Arthroplasty
Medical Image Processing in Nuclear Medicine and Bone ArthroplastyMedical Image Processing in Nuclear Medicine and Bone Arthroplasty
Medical Image Processing in Nuclear Medicine and Bone ArthroplastyIOSR Journals
 
Torque Profiles of Asymmetrically Wound Six-Phase Induction Motor (AWSP-IM) u...
Torque Profiles of Asymmetrically Wound Six-Phase Induction Motor (AWSP-IM) u...Torque Profiles of Asymmetrically Wound Six-Phase Induction Motor (AWSP-IM) u...
Torque Profiles of Asymmetrically Wound Six-Phase Induction Motor (AWSP-IM) u...IOSR Journals
 
Domestic Solar - Aero - Hydro Power Generation System
Domestic Solar - Aero - Hydro Power Generation SystemDomestic Solar - Aero - Hydro Power Generation System
Domestic Solar - Aero - Hydro Power Generation SystemIOSR Journals
 
The Comparative Study on Visual Cryptography and Random Grid Cryptography
The Comparative Study on Visual Cryptography and Random Grid CryptographyThe Comparative Study on Visual Cryptography and Random Grid Cryptography
The Comparative Study on Visual Cryptography and Random Grid CryptographyIOSR Journals
 
Service Based Content Sharing in the Environment of Mobile Ad-hoc Networks
Service Based Content Sharing in the Environment of Mobile Ad-hoc NetworksService Based Content Sharing in the Environment of Mobile Ad-hoc Networks
Service Based Content Sharing in the Environment of Mobile Ad-hoc NetworksIOSR Journals
 
Design and Implementation of Robot Arm Control Using LabVIEW and ARM Controller
Design and Implementation of Robot Arm Control Using LabVIEW and ARM ControllerDesign and Implementation of Robot Arm Control Using LabVIEW and ARM Controller
Design and Implementation of Robot Arm Control Using LabVIEW and ARM ControllerIOSR Journals
 
Fuzzy Control of Multicell Converter
Fuzzy Control of Multicell ConverterFuzzy Control of Multicell Converter
Fuzzy Control of Multicell ConverterIOSR Journals
 
Performance analysis of High Speed ADC using SR F/F
Performance analysis of High Speed ADC using SR F/FPerformance analysis of High Speed ADC using SR F/F
Performance analysis of High Speed ADC using SR F/FIOSR Journals
 
Paralyzing Bioinformatics Applications Using Conducive Hadoop Cluster
Paralyzing Bioinformatics Applications Using Conducive Hadoop ClusterParalyzing Bioinformatics Applications Using Conducive Hadoop Cluster
Paralyzing Bioinformatics Applications Using Conducive Hadoop ClusterIOSR Journals
 
Optimization of FCFS Based Resource Provisioning Algorithm for Cloud Computing
Optimization of FCFS Based Resource Provisioning Algorithm for Cloud ComputingOptimization of FCFS Based Resource Provisioning Algorithm for Cloud Computing
Optimization of FCFS Based Resource Provisioning Algorithm for Cloud ComputingIOSR Journals
 
An improved Item-based Maxcover Algorithm to protect Sensitive Patterns in La...
An improved Item-based Maxcover Algorithm to protect Sensitive Patterns in La...An improved Item-based Maxcover Algorithm to protect Sensitive Patterns in La...
An improved Item-based Maxcover Algorithm to protect Sensitive Patterns in La...IOSR Journals
 
Improvement of limited Storage Placement in Wireless Sensor Network
Improvement of limited Storage Placement in Wireless Sensor NetworkImprovement of limited Storage Placement in Wireless Sensor Network
Improvement of limited Storage Placement in Wireless Sensor NetworkIOSR Journals
 
Computer Based Human Gesture Recognition With Study Of Algorithms
Computer Based Human Gesture Recognition With Study Of AlgorithmsComputer Based Human Gesture Recognition With Study Of Algorithms
Computer Based Human Gesture Recognition With Study Of AlgorithmsIOSR Journals
 
Improvement of Image Deblurring Through Different Methods
Improvement of Image Deblurring Through Different MethodsImprovement of Image Deblurring Through Different Methods
Improvement of Image Deblurring Through Different MethodsIOSR Journals
 
Jamming Anticipation and Convolution through Immaculate Hiding Process of Pac...
Jamming Anticipation and Convolution through Immaculate Hiding Process of Pac...Jamming Anticipation and Convolution through Immaculate Hiding Process of Pac...
Jamming Anticipation and Convolution through Immaculate Hiding Process of Pac...IOSR Journals
 

Destacado (20)

Intensity Non-uniformity Correction for Image Segmentation
Intensity Non-uniformity Correction for Image SegmentationIntensity Non-uniformity Correction for Image Segmentation
Intensity Non-uniformity Correction for Image Segmentation
 
Usage and Research Challenges in the Area of Frequent Pattern in Data Mining
Usage and Research Challenges in the Area of Frequent Pattern in Data MiningUsage and Research Challenges in the Area of Frequent Pattern in Data Mining
Usage and Research Challenges in the Area of Frequent Pattern in Data Mining
 
Lossless LZW Data Compression Algorithm on CUDA
Lossless LZW Data Compression Algorithm on CUDALossless LZW Data Compression Algorithm on CUDA
Lossless LZW Data Compression Algorithm on CUDA
 
Study of SaaS and its Application in Cloud
Study of SaaS and its Application in CloudStudy of SaaS and its Application in Cloud
Study of SaaS and its Application in Cloud
 
Medical Image Processing in Nuclear Medicine and Bone Arthroplasty
Medical Image Processing in Nuclear Medicine and Bone ArthroplastyMedical Image Processing in Nuclear Medicine and Bone Arthroplasty
Medical Image Processing in Nuclear Medicine and Bone Arthroplasty
 
Torque Profiles of Asymmetrically Wound Six-Phase Induction Motor (AWSP-IM) u...
Torque Profiles of Asymmetrically Wound Six-Phase Induction Motor (AWSP-IM) u...Torque Profiles of Asymmetrically Wound Six-Phase Induction Motor (AWSP-IM) u...
Torque Profiles of Asymmetrically Wound Six-Phase Induction Motor (AWSP-IM) u...
 
Domestic Solar - Aero - Hydro Power Generation System
Domestic Solar - Aero - Hydro Power Generation SystemDomestic Solar - Aero - Hydro Power Generation System
Domestic Solar - Aero - Hydro Power Generation System
 
The Comparative Study on Visual Cryptography and Random Grid Cryptography
The Comparative Study on Visual Cryptography and Random Grid CryptographyThe Comparative Study on Visual Cryptography and Random Grid Cryptography
The Comparative Study on Visual Cryptography and Random Grid Cryptography
 
Service Based Content Sharing in the Environment of Mobile Ad-hoc Networks
Service Based Content Sharing in the Environment of Mobile Ad-hoc NetworksService Based Content Sharing in the Environment of Mobile Ad-hoc Networks
Service Based Content Sharing in the Environment of Mobile Ad-hoc Networks
 
Design and Implementation of Robot Arm Control Using LabVIEW and ARM Controller
Design and Implementation of Robot Arm Control Using LabVIEW and ARM ControllerDesign and Implementation of Robot Arm Control Using LabVIEW and ARM Controller
Design and Implementation of Robot Arm Control Using LabVIEW and ARM Controller
 
S180304116124
S180304116124S180304116124
S180304116124
 
Fuzzy Control of Multicell Converter
Fuzzy Control of Multicell ConverterFuzzy Control of Multicell Converter
Fuzzy Control of Multicell Converter
 
Performance analysis of High Speed ADC using SR F/F
Performance analysis of High Speed ADC using SR F/FPerformance analysis of High Speed ADC using SR F/F
Performance analysis of High Speed ADC using SR F/F
 
Paralyzing Bioinformatics Applications Using Conducive Hadoop Cluster
Paralyzing Bioinformatics Applications Using Conducive Hadoop ClusterParalyzing Bioinformatics Applications Using Conducive Hadoop Cluster
Paralyzing Bioinformatics Applications Using Conducive Hadoop Cluster
 
Optimization of FCFS Based Resource Provisioning Algorithm for Cloud Computing
Optimization of FCFS Based Resource Provisioning Algorithm for Cloud ComputingOptimization of FCFS Based Resource Provisioning Algorithm for Cloud Computing
Optimization of FCFS Based Resource Provisioning Algorithm for Cloud Computing
 
An improved Item-based Maxcover Algorithm to protect Sensitive Patterns in La...
An improved Item-based Maxcover Algorithm to protect Sensitive Patterns in La...An improved Item-based Maxcover Algorithm to protect Sensitive Patterns in La...
An improved Item-based Maxcover Algorithm to protect Sensitive Patterns in La...
 
Improvement of limited Storage Placement in Wireless Sensor Network
Improvement of limited Storage Placement in Wireless Sensor NetworkImprovement of limited Storage Placement in Wireless Sensor Network
Improvement of limited Storage Placement in Wireless Sensor Network
 
Computer Based Human Gesture Recognition With Study Of Algorithms
Computer Based Human Gesture Recognition With Study Of AlgorithmsComputer Based Human Gesture Recognition With Study Of Algorithms
Computer Based Human Gesture Recognition With Study Of Algorithms
 
Improvement of Image Deblurring Through Different Methods
Improvement of Image Deblurring Through Different MethodsImprovement of Image Deblurring Through Different Methods
Improvement of Image Deblurring Through Different Methods
 
Jamming Anticipation and Convolution through Immaculate Hiding Process of Pac...
Jamming Anticipation and Convolution through Immaculate Hiding Process of Pac...Jamming Anticipation and Convolution through Immaculate Hiding Process of Pac...
Jamming Anticipation and Convolution through Immaculate Hiding Process of Pac...
 

Similar a Performance Evaluation of Filters for Enhancement of Images in Different Application Areas

International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
Comparison of Histogram Equalization Techniques for Image Enhancement of Gray...
Comparison of Histogram Equalization Techniques for Image Enhancement of Gray...Comparison of Histogram Equalization Techniques for Image Enhancement of Gray...
Comparison of Histogram Equalization Techniques for Image Enhancement of Gray...IJMER
 
Histogram equalization
Histogram equalizationHistogram equalization
Histogram equalizationtreasure17
 
ANALYSIS OF IMAGE ENHANCEMENT TECHNIQUES USING MATLAB
ANALYSIS OF IMAGE ENHANCEMENT TECHNIQUES USING MATLABANALYSIS OF IMAGE ENHANCEMENT TECHNIQUES USING MATLAB
ANALYSIS OF IMAGE ENHANCEMENT TECHNIQUES USING MATLABJim Jimenez
 
Modified Contrast Enhancement using Laplacian and Gaussians Fusion Technique
Modified Contrast Enhancement using Laplacian and Gaussians Fusion TechniqueModified Contrast Enhancement using Laplacian and Gaussians Fusion Technique
Modified Contrast Enhancement using Laplacian and Gaussians Fusion Techniqueiosrjce
 
Icdecs 2011
Icdecs 2011Icdecs 2011
Icdecs 2011garudht
 
COLOUR IMAGE ENHANCEMENT BASED ON HISTOGRAM EQUALIZATION
COLOUR IMAGE ENHANCEMENT BASED ON HISTOGRAM EQUALIZATIONCOLOUR IMAGE ENHANCEMENT BASED ON HISTOGRAM EQUALIZATION
COLOUR IMAGE ENHANCEMENT BASED ON HISTOGRAM EQUALIZATIONecij
 
COLOUR IMAGE ENHANCEMENT BASED ON HISTOGRAM EQUALIZATION
COLOUR IMAGE ENHANCEMENT BASED ON HISTOGRAM EQUALIZATIONCOLOUR IMAGE ENHANCEMENT BASED ON HISTOGRAM EQUALIZATION
COLOUR IMAGE ENHANCEMENT BASED ON HISTOGRAM EQUALIZATIONecij
 
IRJET- Histogram Specification: A Review
IRJET-  	  Histogram Specification: A ReviewIRJET-  	  Histogram Specification: A Review
IRJET- Histogram Specification: A ReviewIRJET Journal
 
HUMAN VISION THRESHOLDING WITH ENHANCEMENT FOR DARK BLURRED IMAGES FOR LOCAL ...
HUMAN VISION THRESHOLDING WITH ENHANCEMENT FOR DARK BLURRED IMAGES FOR LOCAL ...HUMAN VISION THRESHOLDING WITH ENHANCEMENT FOR DARK BLURRED IMAGES FOR LOCAL ...
HUMAN VISION THRESHOLDING WITH ENHANCEMENT FOR DARK BLURRED IMAGES FOR LOCAL ...cscpconf
 
7 ijaems sept-2015-8-design and implementation of fuzzy logic based image fus...
7 ijaems sept-2015-8-design and implementation of fuzzy logic based image fus...7 ijaems sept-2015-8-design and implementation of fuzzy logic based image fus...
7 ijaems sept-2015-8-design and implementation of fuzzy logic based image fus...INFOGAIN PUBLICATION
 
An image enhancement method based on gabor filtering in wavelet domain and ad...
An image enhancement method based on gabor filtering in wavelet domain and ad...An image enhancement method based on gabor filtering in wavelet domain and ad...
An image enhancement method based on gabor filtering in wavelet domain and ad...nooriasukmaningtyas
 
Feature Extraction of an Image by Using Adaptive Filtering and Morpological S...
Feature Extraction of an Image by Using Adaptive Filtering and Morpological S...Feature Extraction of an Image by Using Adaptive Filtering and Morpological S...
Feature Extraction of an Image by Using Adaptive Filtering and Morpological S...IOSR Journals
 
Fuzzy Logic based Contrast Enhancement
Fuzzy Logic based Contrast EnhancementFuzzy Logic based Contrast Enhancement
Fuzzy Logic based Contrast EnhancementSamrudh Keshava Kumar
 
An Efficient Approach for Image Enhancement Based on Image Fusion with Retine...
An Efficient Approach for Image Enhancement Based on Image Fusion with Retine...An Efficient Approach for Image Enhancement Based on Image Fusion with Retine...
An Efficient Approach for Image Enhancement Based on Image Fusion with Retine...ijsrd.com
 

Similar a Performance Evaluation of Filters for Enhancement of Images in Different Application Areas (20)

International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
Comparison of Histogram Equalization Techniques for Image Enhancement of Gray...
Comparison of Histogram Equalization Techniques for Image Enhancement of Gray...Comparison of Histogram Equalization Techniques for Image Enhancement of Gray...
Comparison of Histogram Equalization Techniques for Image Enhancement of Gray...
 
D046022629
D046022629D046022629
D046022629
 
Histogram equalization
Histogram equalizationHistogram equalization
Histogram equalization
 
F017614146
F017614146F017614146
F017614146
 
ANALYSIS OF IMAGE ENHANCEMENT TECHNIQUES USING MATLAB
ANALYSIS OF IMAGE ENHANCEMENT TECHNIQUES USING MATLABANALYSIS OF IMAGE ENHANCEMENT TECHNIQUES USING MATLAB
ANALYSIS OF IMAGE ENHANCEMENT TECHNIQUES USING MATLAB
 
Q01761119124
Q01761119124Q01761119124
Q01761119124
 
Modified Contrast Enhancement using Laplacian and Gaussians Fusion Technique
Modified Contrast Enhancement using Laplacian and Gaussians Fusion TechniqueModified Contrast Enhancement using Laplacian and Gaussians Fusion Technique
Modified Contrast Enhancement using Laplacian and Gaussians Fusion Technique
 
Icdecs 2011
Icdecs 2011Icdecs 2011
Icdecs 2011
 
COLOUR IMAGE ENHANCEMENT BASED ON HISTOGRAM EQUALIZATION
COLOUR IMAGE ENHANCEMENT BASED ON HISTOGRAM EQUALIZATIONCOLOUR IMAGE ENHANCEMENT BASED ON HISTOGRAM EQUALIZATION
COLOUR IMAGE ENHANCEMENT BASED ON HISTOGRAM EQUALIZATION
 
COLOUR IMAGE ENHANCEMENT BASED ON HISTOGRAM EQUALIZATION
COLOUR IMAGE ENHANCEMENT BASED ON HISTOGRAM EQUALIZATIONCOLOUR IMAGE ENHANCEMENT BASED ON HISTOGRAM EQUALIZATION
COLOUR IMAGE ENHANCEMENT BASED ON HISTOGRAM EQUALIZATION
 
IRJET- Histogram Specification: A Review
IRJET-  	  Histogram Specification: A ReviewIRJET-  	  Histogram Specification: A Review
IRJET- Histogram Specification: A Review
 
HUMAN VISION THRESHOLDING WITH ENHANCEMENT FOR DARK BLURRED IMAGES FOR LOCAL ...
HUMAN VISION THRESHOLDING WITH ENHANCEMENT FOR DARK BLURRED IMAGES FOR LOCAL ...HUMAN VISION THRESHOLDING WITH ENHANCEMENT FOR DARK BLURRED IMAGES FOR LOCAL ...
HUMAN VISION THRESHOLDING WITH ENHANCEMENT FOR DARK BLURRED IMAGES FOR LOCAL ...
 
h.pdf
h.pdfh.pdf
h.pdf
 
Ijcatr04051016
Ijcatr04051016Ijcatr04051016
Ijcatr04051016
 
7 ijaems sept-2015-8-design and implementation of fuzzy logic based image fus...
7 ijaems sept-2015-8-design and implementation of fuzzy logic based image fus...7 ijaems sept-2015-8-design and implementation of fuzzy logic based image fus...
7 ijaems sept-2015-8-design and implementation of fuzzy logic based image fus...
 
An image enhancement method based on gabor filtering in wavelet domain and ad...
An image enhancement method based on gabor filtering in wavelet domain and ad...An image enhancement method based on gabor filtering in wavelet domain and ad...
An image enhancement method based on gabor filtering in wavelet domain and ad...
 
Feature Extraction of an Image by Using Adaptive Filtering and Morpological S...
Feature Extraction of an Image by Using Adaptive Filtering and Morpological S...Feature Extraction of an Image by Using Adaptive Filtering and Morpological S...
Feature Extraction of an Image by Using Adaptive Filtering and Morpological S...
 
Fuzzy Logic based Contrast Enhancement
Fuzzy Logic based Contrast EnhancementFuzzy Logic based Contrast Enhancement
Fuzzy Logic based Contrast Enhancement
 
An Efficient Approach for Image Enhancement Based on Image Fusion with Retine...
An Efficient Approach for Image Enhancement Based on Image Fusion with Retine...An Efficient Approach for Image Enhancement Based on Image Fusion with Retine...
An Efficient Approach for Image Enhancement Based on Image Fusion with Retine...
 

Más de IOSR Journals (20)

A011140104
A011140104A011140104
A011140104
 
M0111397100
M0111397100M0111397100
M0111397100
 
L011138596
L011138596L011138596
L011138596
 
K011138084
K011138084K011138084
K011138084
 
J011137479
J011137479J011137479
J011137479
 
I011136673
I011136673I011136673
I011136673
 
G011134454
G011134454G011134454
G011134454
 
H011135565
H011135565H011135565
H011135565
 
F011134043
F011134043F011134043
F011134043
 
E011133639
E011133639E011133639
E011133639
 
D011132635
D011132635D011132635
D011132635
 
C011131925
C011131925C011131925
C011131925
 
B011130918
B011130918B011130918
B011130918
 
A011130108
A011130108A011130108
A011130108
 
I011125160
I011125160I011125160
I011125160
 
H011124050
H011124050H011124050
H011124050
 
G011123539
G011123539G011123539
G011123539
 
F011123134
F011123134F011123134
F011123134
 
E011122530
E011122530E011122530
E011122530
 
D011121524
D011121524D011121524
D011121524
 

Último

Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTIONTHE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTIONjhunlian
 
home automation using Arduino by Aditya Prasad
home automation using Arduino by Aditya Prasadhome automation using Arduino by Aditya Prasad
home automation using Arduino by Aditya Prasadaditya806802
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvLewisJB
 
System Simulation and Modelling with types and Event Scheduling
System Simulation and Modelling with types and Event SchedulingSystem Simulation and Modelling with types and Event Scheduling
System Simulation and Modelling with types and Event SchedulingBootNeck1
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)Dr SOUNDIRARAJ N
 
Solving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.pptSolving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.pptJasonTagapanGulla
 
National Level Hackathon Participation Certificate.pdf
National Level Hackathon Participation Certificate.pdfNational Level Hackathon Participation Certificate.pdf
National Level Hackathon Participation Certificate.pdfRajuKanojiya4
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catcherssdickerson1
 
Earthing details of Electrical Substation
Earthing details of Electrical SubstationEarthing details of Electrical Substation
Earthing details of Electrical Substationstephanwindworld
 
Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleAlluxio, Inc.
 
Vishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documentsVishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documentsSachinPawar510423
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfAsst.prof M.Gokilavani
 
welding defects observed during the welding
welding defects observed during the weldingwelding defects observed during the welding
welding defects observed during the weldingMuhammadUzairLiaqat
 
Transport layer issues and challenges - Guide
Transport layer issues and challenges - GuideTransport layer issues and challenges - Guide
Transport layer issues and challenges - GuideGOPINATHS437943
 

Último (20)

Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
young call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Serviceyoung call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Service
 
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTIONTHE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
 
home automation using Arduino by Aditya Prasad
home automation using Arduino by Aditya Prasadhome automation using Arduino by Aditya Prasad
home automation using Arduino by Aditya Prasad
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvv
 
System Simulation and Modelling with types and Event Scheduling
System Simulation and Modelling with types and Event SchedulingSystem Simulation and Modelling with types and Event Scheduling
System Simulation and Modelling with types and Event Scheduling
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
 
Solving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.pptSolving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.ppt
 
National Level Hackathon Participation Certificate.pdf
National Level Hackathon Participation Certificate.pdfNational Level Hackathon Participation Certificate.pdf
National Level Hackathon Participation Certificate.pdf
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
 
Earthing details of Electrical Substation
Earthing details of Electrical SubstationEarthing details of Electrical Substation
Earthing details of Electrical Substation
 
Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at Scale
 
POWER SYSTEMS-1 Complete notes examples
POWER SYSTEMS-1 Complete notes  examplesPOWER SYSTEMS-1 Complete notes  examples
POWER SYSTEMS-1 Complete notes examples
 
Vishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documentsVishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documents
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
 
welding defects observed during the welding
welding defects observed during the weldingwelding defects observed during the welding
welding defects observed during the welding
 
Transport layer issues and challenges - Guide
Transport layer issues and challenges - GuideTransport layer issues and challenges - Guide
Transport layer issues and challenges - Guide
 

Performance Evaluation of Filters for Enhancement of Images in Different Application Areas

  • 1. IOSR Journal of Computer Engineering (IOSR-JCE) e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 10, Issue 5 (Mar. - Apr. 2013), PP 75-84 www.iosrjournals.org www.iosrjournals.org 75 | Page Performance Evaluation of Filters for Enhancement of Images in Different Application Areas Yogendra Kumar Jain1 ,GARIMA SILAKARI2 1 H.O.D. ,Department of Computer Science and Engineering , S.A.T.I Vidisha , India, 2 M.Tech Scholar , Department of Computer Science and Engineering , S.A.T.I Vidisha , India, Abstract: Contrast stretching is a method to enhance the image details. Histogram equalization is one of the most common spatial domain technique used for contrast enhancement. While stretching the contrast of an image , it results in the degradation of brightness of the image. To overcome this hurdle a method known as Bi- Histogram equalization was introduced to preserve the brightness level of the output image. As the contrast enhancement enhances the image , it also enhances the noise in the signal that causes the blurrness in the output image. The proposed BHEGF method reduces this drawback and provides more accurate and realistic results. In this paper we use four different types of filters i.e. median filter , gaussian filter , average filter & motion filter and various parameters such as processing time , MSE, brightness count and PSNR are used for performance evaluation. Keywords: Bi- Histogram Equalization , Tri- histogram equalization ,BHEGF , Contrast enhancement , Gaussian filter , brightness preserving , Spatial and frequency domain. I. Introduction The main purpose of image enhancement is to enhance or improve the quality of image with the minimum amount of MSE. Various enhancement techniques are used for this purpose both in spatial domain and frequency domain. This paper emphasizes mainly on spatial domain technique of image enhancement. The histogram equalization is the most commonly used technique for contrast enhancement and brightness preservation of the image. There are various techniques used to equalizes the given image’s histogram such as BHE, DSHE, AHE, CHE, MHE, MMBEBHE, RMSHE. In all these technique the image have to first decomposed and then the histogram of each part generated from the decomposition is equalized . That is also known as the segmentation of an image into various sub-images. Segmentation of the image can be done in various ways such as amplitude thresholding, component labeling, boundary based approaches, region based approaches, template matching, texture based segmentation. In this paper, the image is segmentized on the bases of its component levels. Then the resultant histograms of the sub-images are equalized, while equalizing the histograms the impulse noises present in the images are also get enhanced along with the enhancement of the image [4] . Hence to overcome this drawback due to noise in the satellite imaging, this paper proposed the use of the Gaussian filter to filter out the noise from the enhanced image . The use of Gaussian filter shell reduced the MSE to a larger extent from the enhanced image . 1.1 Image Enhancement Image enhancement is a process of improving the quality of image by improving its features. The techniques used for image enhancement can be used to improve the image’s contrast and brightness characteristics and reduces its noise contents or sharpen its details they can be classified as subjective enhancement and objective enhancement [9]. Subjective enhancement techniques may be repeatedly applied in various forms until the observer feels that the image yields the details necessary for particular application. On the other hand objective image enhancement corrects an image for known degradation. This enhancement is not repeatedly applied but it is applied only once based on the measurement taken from the system. Image enhancement can also be categorized into two main and broad categories. They are as follows: 1.1.1 Spatial Domain Technique Spatial domain refers to the Image Plane itself and approaches in this categories are based on direct manipulation of pixels in an image. Histogram equalization techniques are one of the spatial domain image enhancement technique, which has form the basis in this paper. This technique refers to the aggregate of the pixels composing an image. This process will be denoted by the expression given below : A(x, y) = T(f ( x, y )) (1) Where f(x , y) is input image , g(x, y) is processed image and T is an operator on f, given g(x ,y) = A(x, y).
  • 2. Performance Evaluation of Filters for Enhancement of Images in Different Application Areas www.iosrjournals.org 76 | Page 1.1.2 Frequency Domain Technique : frequency domain processing techniques are based on modifying the Fourier transform of an image [4]. 1.2 histogram equalization Histogram equalization is a technique to obtain a uniform histogram for the output image. It flattens the histogram and stretches the dynamic range of gray levels or in other words histogram equalization maps the input image’s intensity values over the range (0 to 255) so that the histogram of the resulting image will have an approximately uniform distribution. This technique is used for contrast stretching and certain modification in this technique can make it useful for preserving the brightness of the image. Due to this reason, the histogram equalization has been found to be a powerful technique for image enhancement. We have to generate random variables for histograms to be equalized, Consider an image pixel value u >= 0 to be a random variable which has a continuous Probability Density Function and cumulative probability distribution. Consider an image I = { X ( i, j) } is an image with L discrete gray levels { X0 , X1 ,X2 , ……. , XL -1} . The histogram of I [X] is denoted by H[ I ] = {n0 , n1 , n2 , ……., nk , ………, nL-1} where nk is the number of pixels whose gray level is Xk. . The mean brightness of the image I [X] will be denoted as IMB. The middle gray level of the image I [X] i.e. (X0 + XL-1) / 2 will be denoted as XG . Consider the input image as I [X]. The Probability Density Function (PDF) of the image based on the histogram H[X] can be defined as P(K) = K/N = K / (n0 + n1 + n2 +……..+ nL-1) for K= 0,1,2,3…………, L-1. (2) Here N is the total number of pixels in the image . Now the Cumulative Distribution Function (CDF) is calculated based on PDF is as follows : C(K) = ∑ K j=0 P ( j ) for K= 0,1,2,3,…….,L-1 (3) Based on CDF , Histogram equalization now maps an input gray level XK into an output gray level f(K) , where f(K) commonly called a level transformation function is defined as C(K) = X0 + (XL-1 – X0) . C(K) [10] (4) II. Previous Work This section describes some previously done work based on the Histogram Equalization method with the purpose of brightness preservation. Firstly we are going to describe the various ways used to equalized the histogram of the images . The very first technique is Classical Histogram Equalization which forms the base of other spatial domain techniques. For the much better results we have to segmentize the given image into sub- images. So in later part of this section we have described the concept of segmentation also. The segmentation of image is common in the various histogram equalization techniques but the difference lies in the way the segmentation is done in various techniques , one technique simply divides the image into two sub-images using mean gray level , other uses recursive segmentation , another uses the equal area value to segment the image . The various ways to equalizes the Histogram of the image and maintains the contrast and brightness of the image are as follows : 2.1 Classical Histogram Equalization (CHE): This technique emphasizes on the basic concept of Histogram Equalization which uniformly distribute the histogram of image over the entire range of gray levels increasing the contrast of the image . Despite of the advantages offered by the CHE it can introduce a significant change in the image brightness i.e. its mean gray level [3]. It is because of the uniform distribution specification of the output image to the middle gray level. This change in brightness is not desirable when applying the CHE technique. 2.2 Adaptive Histogram Equalization (AHE):Since the simple histogram equalization changes the brightness of the image significantly, and makes the images saturated wit bright or dark intensity values, therefore , the adaptive histogram equalization technique divide the histogram into several sub sections and equalizes them independently. 2.3 Brightness Preserving Histogram Equalization(BBHE):In this technique the histogram of image is first decomposed into two sub-histogram by using the mean gray level. Then the classical histogram equalization is applied to the histogram of the sub images independently. 2.4 Dualistic Sub-Image Histogram Equalization (DSIHE): Using the basic idea of BBHE of decomposing the original image into two sub-images and then equalize the histogram of the sub-images separately, [ ] proposed the so called equal area dualistic sub image histogram equalization. In this method decomposition is done on the bases of maximization of the entropy of the output image[ ]. For this the image is decomposed into two sub images one is dark and other is bright based on the property that the sub images will have same amount of pixels. 2.5 Minimum Mean Brightness Error Bi-Histogram Equalization (MMBEBHE) : This method provides a technique in which the decomposition can be done on the bases of the determination of a threshold level,
  • 3. Performance Evaluation of Filters for Enhancement of Images in Different Application Areas www.iosrjournals.org 77 | Page let it be L1 on the bases of which the input image I can be decomposed into two sub images as I[0,L1] and I[L1+1 , N] so that the minimum brightness difference b/w the input image and the output image is achieved . Once the input image is decomposed by the threshold level L1, each of the two sub images I[0,L1] and I[L1+1,N] has its histogram equalized by the CHE process generating the output image . Here in this paper we have proposed a scheme which is a modification of MMBEBHE and multi histogram equalization .We have introduce a technique uses various filters to reduce the noise and improve the overall quality of the image. 2.6 Recursive Mean – Separate Histogram Equalization(RMSHE): This method is based on BBHE but the difference in b/w both the methods is that in this method instead of decomposing the image only once here to perform image decomposition recursively , up to a scale r , generating 2r sub images. After it each of these sub images Ir [I1 ,I2] is independently enhanced using the CHE method. III. Proposed Technique In our proposed scheme the input image is decomposed into sub–images by using the threshold gray level which is selected on the basis of image mean gray level . Then apply the histogram equalization method on each of the sub – image’s histogram to map the values into the new dynamic range . now normalizes the brightness of the image . There is an enhancement also in the noise of the image, so for the reduction of the noise and to obtain the more accurate information extraction from the satellite images which is most important for application based specific task done accurately such as in space research organization , weather forecasting centre etc. are the application areas related to satellite image information extraction In this paper, the comparative studies has done among the performance of the four most prominently used filters along with contrast enhancement and brightness preservation . The filters used in this paper are Median filter , Gaussian filter , Average filter and Motion filter along with the multi – histogram equalization technique . 3.1 Median Filter A median filter finds the median of a number of elements at its input . The median of a group containing an odd number of elements is defined as the middle element when all the elements of the group is sorted . In the standard the median filtering applications a window of size W, where W is odd is moved along the sampled values of the signal or image . The dimensions of the filter mask must be odd [4]. 3.2 Gaussian Filter In Gaussian filtering the weights are computed according to the Gaussian function i.e. g(i, j) = c.e(I² + j²)/ . Gaussian filtering is very effective in removing Gaussian noise & the weight give higher significance to pixels near the edges (removes egde blurring). They are linear low pass filters . Large filters can be implemented using small 1D small filters also they are rotationally symmetric and computationally more efficient . 3.3 Average Filter Average filtering is also a sort of low pass filtering in which average of pixel values are taken to reduce the effect of noise in the image . suppose we have n measurements of pixel x. then the standard deviation of this measured pixel x can be estimated as : S = √(∑i x =1(Xi - X)2 )/(n-1) (5) Where X is the mean or average of n measurements calculated as : X = 1/n (∑x i=1 Xi) (6) The magnitude of S is clearly dependent on the measurements , Xi , which in practice is bounded , that is it has lower and upper limits. However S is also dependent on the number of measurements made i.e. the number n , From such calculations it is deduced that the larger the n is , the smaller the S becomes . In other words , given a noisy but bounded measurement sequence, we can take a large number of readings of pixel and use its average to give a better estimate of its true value . 3.4 Motion Filter As the result of motion between the camera and the object of interest , adjacent point in the image plane are exposed to the same point in the object plane during the exposure time. This causes the blurriness in the image and it is termed as motion blurred image. Thus motion filter is used to reduce such blurriness from the image with the help of motion function PSF .[1]. Here the proposed method can be summarized as follows :  Decomposing the image into sub images using its threshold value.  Stretches the contrast and preserve the brightness of the image by using histogram equalization which flattens and stretches dynamic range of histogram of the image .  Filtering process can be done using median filter on the stretched image.
  • 4. Performance Evaluation of Filters for Enhancement of Images in Different Application Areas www.iosrjournals.org 78 | Page  Now apply the Gaussian filter to reduce the Gaussian noise .  Further apply average filter to the stretched image .  Lastly apply motion filter to the stretched image .  At the last step compare the results and brightness measurements come from the above filters and multi histogram equalization technique on the basis of brightness count , MSE count and PSNR values . IV. Results Thus this paper conclude that the Gaussian filter gives much better results in comparison to all other filters in the case of satellite images when applied with BBHE . In other words the MSE count is much lesser with Gaussian filter compared to other one and it also gives a very good PSNR count . This will be very good results with both gray scale and color images . This technique can be extended to 3D images also and other application areas. Following are some results. 4.1 Lung-Vessel Medical image (Lungs) Original Medical Image(Lungs)Equalized and Filtered Image 1 Histograms for Medical image (Lungs) Fig. 1(A) R-component of original image Fig. 1(B) R-component of equalized and filtered image .
  • 5. Performance Evaluation of Filters for Enhancement of Images in Different Application Areas www.iosrjournals.org 79 | Page Fig. 1(C) G-component of original image Fig. 1(D) G-component of equalized and Filtered image . Fig. 1(E) B-component of original image Fig. 1(E) B-component of equalized and filtered image . Fig. 1 Fig. 1 . Histograms of Lungs CT Images from medical imaging regarding R , G , B color components of original and equalized and filtered by using Gaussian filter . 4.2 Oilpill Oilpill Original Oilpill equalized and filtered Image 2 Histograms of Colaba’s image :
  • 6. Performance Evaluation of Filters for Enhancement of Images in Different Application Areas www.iosrjournals.org 80 | Page Fig. 2(A) R-component of original image . Fig. 2(B) R-component of equalized and filtered image . Fig. 2(C) G-component of original image . Fig. 2(D) G-component of equalized and filtered image . Fig. 2(E) B-component of original image . Fig. 2(F) B-component of equalized and filtered image . Fig. 2 Fig. 2 . Histograms of Oilpill image from Remote sensing imaging regarding R , G , B color components of original and equalized and filtered by using Gaussian filter . 4.3 Underwater Image : Underwater Image original image Equalized and filtered image of Underwater Image Image 3
  • 7. Performance Evaluation of Filters for Enhancement of Images in Different Application Areas www.iosrjournals.org 81 | Page Histograms of Underwater image : Fig. 3(A) R-component of original Underwater Fig. 3(B) R-component of equalized and image . filtered Underwater image. Fig. 3(C) G-component of original Underwater Fig. 3(D) G-component of equalized and image . filtered Underwater image. Fig. 3(E) B-component of original Underwater Fig. 3(F) B-component of equalized and image . filtered Underwater image. Fig. 3 Fig. 3 . Histograms of Great Barrier Reif’s image regarding R , G , B color components of original and equalized and filtered by using Gaussian filter . 4.4 NASA Img NASA original image Equalized and filtered NASA image. Image 4
  • 8. Performance Evaluation of Filters for Enhancement of Images in Different Application Areas www.iosrjournals.org 82 | Page Histograms of NASA image : Fig. 4(A) R-component of original NASA Fig. 4(B) R-component of equalized and image . filtered NASA image. Fig. 4(C) G-component of original NASA Fig. 4(D) G-component of equalized and image . filtered NASA image. Fig. 4(E) B-component of original NASA Fig. 4(F) B-component of equalized and image . filtered NASA image. Fig. 4 Fig. 4 . Histograms of NASA’s image regarding R , G , B color components of original and equalized and filtered by using Gaussian filter . PERFORMANCE TABLE : Table 1: Lungs-Vessel S.No FilterUsed MSE PSNR Brightness count 1. Median filter 1003.9186 18.1138 116.5979 2. Gaussian Filter 903.4248 18.5719 116.7029 3. Average Filter 1044.4473 17.9419 116.7051 4. Motion Filter 1010.9364 18.0836 116.3886
  • 9. Performance Evaluation of Filters for Enhancement of Images in Different Application Areas www.iosrjournals.org 83 | Page Table 2 : Oilpill (Remote Sensing Imaging) S.No FilterUsed MSE PSNR Brightnes count 1. Median filter 530.8469 20.8811 109.8058 2. Gaussian Filter 398.4718 22.1268 109.7198 3. Average Filter 548.9415 20.7355 109.7187 4. Motion Filter 456.5353 21.5361 109.3989 Table 3 : Great Barrier Rief (Underwater Imaging) S.No FilterUsed MSE PSNR Brightness count 1. Median filter 1535.861 16.2673 109.0864 2. Gaussian Filter 1363.7329 16.7835 109.6837 3. Average Filter 1423.5675 15.597 109.6842 4. Motion Filter 1415.212 16.6226 109.3551 Table 4 : NASA Image(Earth) S.No FilterUsed MSE PSNR Brightness count 1. Median filter 564.1566 20.6168 87.5739 2. Gaussian Filter 397.5349 22.1371 87.9113 3. Average Filter 475.7044 21.3574 87.9094 4. Motion Filter 455.3548 21.5473 87.5898 Above are some results shown on the basis of proposed technique. Here in case of Image 1 , fig. 1(A), 1(C), 1(E). represents the histogram of red , green & blue components of Original Lungs Image 1 respectively and fig. 1(B), 1(D), 1(F) shows how the intensity of red , green , blue component get equalized after the processing respectively. Similarly fig. 2(A), 2(C), 2(E) shows the histogram of Red, Green, Blue component of the original Oilpill image before processing respectively and fig. 2(B), 2(D), 2(F) shows the equalized red, green, blue component histogram of the processed image of Oilpill respectively. Similarly fig. 3(A), 3(C), 3(E) shows the red, green and blue component of the original image of Great Barrier Reef and Great Barrier Reef equalized image is shown by the fig. 3(B), 3(D), 3(F) respectively. Again from the fig. 4(A), 4(C), 4(E) we get to know about the intensity of red, green, and blue component of original NASA Image respectively and the equalized intensity of red, green, blue component of NASA image is shown by the fig. 4(B), 4(D), 4(F) respectively. From the performance table of image 1(Lungs) we came to know that by using Gaussian filter the MSE will reduced to 231.869 from 314.1955 in median filtering , 310.4368 in average filtering & 273.4146 in motion filtering . The PSNR will be raised as 24.4784 in comparison to other filters & last is the brightness will be preserved by the ratio 55.3679 which is also a good ratio of preserving the brightness among all the filters used here. Similarly from the performance table of Image 2(Oilpill , Remote Sensing Image) in the case of Gaussian filter MSE(1226.9706) is again reduced as compared to other filters , the value of PSNR will increased upto 17.2425 which is again greater in comparison to median , average & motion filters Last but not the least criteria is how much brightness can be preserved so its ratio is 100.2367 which can also be acceptable as MSE and PSNR values are very good in comparison to that comes by using other filters. Again from the performance table of Image 3(Great Barrier Reef) in the case of Gaussian filter we get MSE(1042.4931) is again reduced as compared to all the three filters used here in processing , the value of PSNR will increased upto 17.9501 which is again greater in comparison to median , average & motion filters Last but not the least criteria is how much brightness can be preserved so its ratio is 116.7488 which is also be a a good ratio in comparison to that comes by using other filters. Here comes the case with the Image 4(NASA) from the performance table in the case of Gaussian filter MSE(397.5349) is again reduced as compared to other filters , the value of PSNR will increased upto 22.1371 which is again greater in comparison to median , average & motion filters Last but not the least criteria is how much brightness can be preserved so its ratio is 87.9113 which is also a very good ratio in comparison to that comes by using all the three filters . V. Conclusion Thus the conclusion derived from this paper is that the technique proposed here can be used to get much better contrast enhancement along with the brightness preserving with the use of Gaussian filter as
  • 10. Performance Evaluation of Filters for Enhancement of Images in Different Application Areas www.iosrjournals.org 84 | Page compared with median , average , and motion filters . It provides good results with both color and gray scale images .In future this technique can be extended to be used for 3D images . VI. Future Work and Scope The proposed technique can also be used for the enhancement along with the preservation of brightness and reduction of noise in 3D images and other application areas. Acknowledgement We would like to express our greatest gratitude to Dr. Y.K. Jain , HOD Computer Science and Engineering Dept. S.A.T.I. Vidisha (M.P) for his great support . References [1] R.Gonzalez and R. Woods, Digital image processing using MATLAB 5th ed. Pearson , 2009 . [2] Y.-T. Kim, Contrast enhancement using brightness preserving bi histogram equalization, “IEEE Trans. On Consumer Electronics,vol. 43, no. 1, pp. 1-8, Feb. 1997. [3] David Menotti, Laurent Najman, Jacques Facon, “ Multi-histogram equalization methods for contrast enhancement and brightness preserving”, “IEEE Trans. On Consumer Electronics, vol. 53, no. 3, Aug. 2007”. [4] P. Jagatheeswari, S. Suresh Kumar and M. Rajaram, “ A novel approach for contrast enhancement based on histogram equalization followed by median filter”, “ARPN Journal of Engineering and Applied Sciences, Vol. 4 , No. 7, Sep. 2009. [5] M. Karaman, L. Onural, and A. Atalar, “ Design and implementation of a general purpose median filter unit in CMOS VLSI “, “ IEEE Trans.” April. 1990. [6] H.S.M.M. Hanif, M.Y. Mashor, Z. Mohamed, “ Image enhancement and segmentation using dark stretching technique for Plasmodium Falciparum for thick blood smear”, “ IEEE Trans. 7th international colloquium on signal processing and its application 2011”. [7] Virendra P.Vishwakarma, Sujata Pandey,” Adaptive histogram equalization and logarithm transform with rescaled low frequency DCT coefficients for illumination normalization”,” IJRTE Vol. 1, May 2009”. [8] Balvant Singh, Ravi Shankar,” Analysis of Contrast Enhancement Techniques For Underwater Image”, “ IJCTEE Vol 1. Issue 2.” [9] George Anastassopoulos, Ioannis Stephanakis, “ Evaluation Of Histogram Enhancement Techniques Used In Conjunction With Wavelet Compression Methods For Improved Signal Processing Of Child Trauma Images” , “ Seventh Australlian and New Zealand Intelligent Information System Conference , nov-2001”. [10] Ashwini Sachin Zadbuke, “ Brightness Preserving Image Enhancement Using Modified Dualistic Sub Image Histogram Equalization” , “ IJSER , Vol. 3, Issue 2. Feb-2012”. [11] H. Roseline , Aimi Salihah , A.N , M. Y. Mashor “ Color Image Enhancement Technique for Acute Leukaemia Blood Cell Morphological Features “, IEEE Trans. 2010 . [12] Gao Qinqing , Chen Dexin , He Ketai ,” Image Enhancement Technique Based On Improved PSO Algorithm “ , IEEE Trans. 2011. [13] Xiaodong Xie , Zaifeng Shi , Wei Guo , “ An Adaptive Image Enhancement Technique Based On Image Characteristic “ , IEEE Trans. 2009. [14] Zhi Yu Chen , Besma R. Abidi , David L. Page , Mongi A Abidi “ Gray- Level Grouping : An Automatic Method For Optimized Image Contrast Enhancement , The Basic Method “ , IEEE Trans , 2006.