SlideShare una empresa de Scribd logo
1 de 6
Descargar para leer sin conexión
Current Matching Control System for Multi-Terminal DC
           Transmission to Integrate Offshore Wind Farms
                                               J. Zhu, C. Booth, G.P. Adam
                                      Department of Electrical and Electronic Engineering,
                                       University of Strathclyde, Glasgow G1 1XW, UK.
                                              Email: zhu.jiebei@eee.strath.ac.uk

Keywords: HVDC, voltage source converter, multi-terminal            used for many HVDC installations [3], but is not well suited
DC, control.                                                        to MTDC, in comparison to VSC. A summary of the
                                                                    advantages of VSC over LCC is listed below:
Abstract                                                             VSC has a smaller footprint which facilitates offshore
                                                                         installations of reduced platform size [3];
The inherent features of Voltage Source Converters (VSCs)            LCC requires large filtering components;
are attractive for practical implementation of Multi-Terminal        VSC provides additional reactive power support and AC
HVDC transmission systems (MTDC). MTDC can be used                       voltage regulation for wind farms connected to weak AC
for large-scale integration of offshore wind power with                  systems, and possesses black-start capability;
onshore grids. However, many of the control strategies for           VSC improves wind farm AC fault ride-through
MTDC that have been proposed previously for offshore wind                capability and facilitates Grid Code compliance at
farm integration depend on local control of the wind turbine             reduced costs [4];
generators.                                                          Power reversal can be achieved in VSC without changing
                                                                         the DC voltage polarity, facilitating the realisation of a
This paper proposes a new control strategy, termed Current               flexible MTDC transmission system.
Matching Control (CMC), which can be used with any                  MTDC transmission systems have attracted much attention
number of converter terminals, and is independent of the            for wind farm integration [5][6][7]. Firstly, MTDC reduces
types of wind turbines used within each wind farm. The              converter numbers when compared to numerous point-to-
proposed CMC matches the current reference of the grid side         point HVDC solutions. Secondly, it is conceivable that, due to
converter to that of the wind farm side converters. In order to     limited correlations of weather systems in geographically
achieve such current matching, a telecommunication system           dispersed wind farm locations, the overall variability of wind
will be required to facilitate calculations of the grid side        power may be reduced by interconnecting many
current references to be carried out in real time. To validate      geographically-dispersed wind farm systems via a large-area
the performance of the proposed control strategy, a generic         MTDC system, thus increasing the overall availability of
four-terminal MTDC network, which integrates two offshore           energy. In future, energy storage devices may be integrated
wind farms with two mainland grids, is simulated and results        with MTDC system [1], which further supports energy
relating to several steady state and transient scenarios are        availability and quality of supply. MTDC is also being
presented.                                                          proposed as the means of interconnecting independent large-
                                                                    scale AC power systems, (e.g. European super-grid proposal
1 Introduction                                                      [5] to promote the interconnection of Norwegian hydro,
                                                                    French nuclear, Sahara solar and North sea wind power into a
There has been a tremendous pace of development of large-           common MTDC) to resolve local power shortages or
scale offshore wind farms in recent years. It is anticipated that   congestion, to enable international power sharing, and to
there will be an approximate increase of 26.6 GW in                 provide an excellent level of overall power system reliability.
aggregate generation capacity over the period from 2009/10          As discussed in [5], there are many challenging obstacles to
to 2016/17 in the UK, 11.7 GW of which will be contributed          the introduction of MTDC. The control system for an MTDC
by wind power [1]. More broadly, the European Wind Energy           must be robust, coordinated and reliable, as problems with
Association has, in its “high wind” scenario, a target of 180       one terminal have the potential to affect the entire MTDC
GW from wind energy sources in by 2020, of which 35 GW              network. A number of control strategies are proposed [6]
will be sourced from offshore wind installations. This              [8][9] which will be introduced later. These strategies remain
capacity target for offshore wind increases to 120 GW by            at the modelling and testing stages of development. Critical
2030 [2].                                                           concerns about these strategies are the controllability and
These targets, if they are achieved, will have great impact on      reliability of MTDC systems, as most of the proposed
power transmission design, planning, construction and               strategies manage an MTDC system without use of
operation. Many offshore wind farms will require long-              communications between terminals. The proposed current
distance power transmission systems. AC may not be suitable         matching control strategy employs minimal (in terms of
due to high power losses over longer distances. Classical line-     required traffic and bandwidth) telecommunications between
current-commutated (LCC) HVDC transmission has been                 terminals in an MTDC network. While there may be concerns
Fig.1 The test MTDC system configuration

over use of communications, modern telecommunication              paper focuses on the dynamics of AC and DC interaction,
technologies are increasingly highly developed, reliable and      which is dictated by the converter control. As the control
redundant [10]. Furthermore, risk can be mitigated by             system for VSC employs vector control in the synchronous
employing redundancy, through continuous monitoring of            rotating reference frame dq, the current references id_ref and
telecommunications channels, and ensuring operation can           iq_ref which are derived by the commanded active power Pcomm
continue, albeit in a less efficient fashion, if                  and reactive power Qcomm, are given in equation (1). In the
telecommunications is lost. Operation of the scheme is based      rotating reference frame, the d-axis voltage Vd, aligned with
on measurement (discretely, with a step of 1-2ms in this          one of three phases, is equal to the magnitude of AC voltage,
example) of the total DC current provided by wind farm side       and the q-axis voltage Vq is zero.
rectifiers (i.e. WFR1 and WFR2 in Fig.1) and allocation
(matching) of this current across the inverters, according to a                                  Pcomm          Q
pre-determined sharing factor. This is described in more                               idref          , iqref  comm           (1)
                                                                                                  Vd             Vd
detail in Section 4. The scheme also provides further
protection for the entire MTDC system by monitoring the DC
voltage. Finally, the system can operate if the                   Once the current references id_ref and iq_ref are generated, the
telecommunication system fails, but accurate sharing of the       inner current control loops adjust the actual id and iq values to
inverter currents may not be possible.                            be in accordance with the computed reference values. This
                                                                  process takes a short period to complete and is determined by
                                                                  the natural frequency of the converter control dynamic in
2 MTDC system configuration                                       Laplace equation (2), which contains the proportional gain
MTDC topology design may vary depending on specific               (kp) and the integral gain (ki) of the proportional-and-integral
situations (e.g. the locations of grid connection points and      (PI) controller, reactor inductance (L) and resistance (R):
offshore wind farms, available undersea cable routes). Fig.1
presents a four terminal MTDC system for wind farm                                      idq
                                                                                                            kp
                                                                                                               Li
                                                                                                                  k

integration, which utilises bi-polar cables R5 with nominal DC                                             L
                                                                                                            Rk p
                                                                                                                               (2)
                                                                                                     s2             s
                                                                                       idqref                             ki
voltage of 200 kV (± 100 kV). On the offshore side, two wind                                                     L        L

farms are connected via two voltage source neutral-point
clamped rectifiers (WFR1, WFR2). On the onshore side, two         From the DC side perspective of the VSC in Fig.2, the DC
grid-connected inverters (GCI3, GCI4) feed power to two           voltage udc across the converter or the output capacitors, the
independent 2000 MVA equivalent AC power systems. All             DC current idc injected by the converter, and the current ic
VSCs are rated at 200 MVA. Targets of converter control           conducted by the DC cables, are related as shown in equation
differ for WFR1 and WFR2, implementing frequency and AC           (3). The capacitors are charged (or discharged) to possess a
voltage control at the point of common connection (PCC)           certain DC voltage. The current idc injected to the MTDC
with wind farms, while GCI3 and GCI4 are equipped with a          network by the converter is calculated from AC side PCC
current controller and DC voltage regulator respectively, in      currents id and iq, pulse-width-modulation index M and
addition to AC voltage/or reactive power control.                 converter terminal voltage angle  with respect to the PCC
                                                                  voltage, using equation (4):
2.1 AC/DC interaction for a VSC                                                                     dudc
                                                                                                     C     idc  ic            (3)
Instead of presenting an in-depth study of the VSC control                                           dt
system formulae, such as those presented [9] and [7], this                                    idc  Mid cos   Miq sin        (4)
Fig.3 MTDC control strategies: (a) voltage margin (b) voltage droop
                                                                    namely voltage margin control [9] and voltage droop control
                                                                    [8] [6].

                                                                    3.1 Voltage margin control (VMC)
Fig.2 DC equivalent circuit for the MTDC
                                                                    In VMC control, one node’s DC voltage is controlled by a DC
                                                                    voltage controller (DCVC). This effectively acts as a DC
2.2 Equivalent MTDC circuit
                                                                    voltage slack bus, with other VSCs operating in current
As demonstrated in Section 2.1, the DC property of individual       control mode as illustrated in equations (1) and (2).
VSCs in the MTDC can be represented as a “controlled”
current source, shown in the equivalent circuit in Fig.(2). The     VMC equips all converters with DCVCs, but the DCVC of
extremely small inductance and capacitance of the DC                only one converter station must be activated. Considering the
network with respect to direct current are neglected.               V-I characteristic of Fig.3(a), GCI4 has its DC node voltage
                                                                    controlled at udc4 ref by the activated DCVC, represented as the
As the focus of this section is on the analysis of DC network       solid line. This acts to balance the current flows from
behaviour, it is essential to analyse the effect of the variation   rectifiers WFR1 and WFR2 to inverter GCI3, by automatically
in DC current idc from one converter station, on either its DC      “sliding” its current output along the constant DC voltage
voltage and/or the DC voltage at other stations. Taking WFR1        udc4_ref. Inverter GCI4 has an inherent current limit. If this
as an example, a control action to increase WFR1 current idc1       limit is exceeded (e.g. strong wind pushing more current
will quickly charge its DC capacitors and boost its DC              though rectifiers into the MTDC), GCI4 will not be able to
voltage udc1 to a higher value, based on equation (3). The          maintain the DC voltage, and will operate at its maximum
higher udc1 with respect to other DC node voltages acts to          current output. According to the analysis in Section 2.2, the
supply the conducted current ic1 into the MTDC network. The         DC network voltage will continuously rise in line with current
increased current ic1 charges capacitors at other nodes, until      “surplus” in the MTDC network. The voltage will ultimately
the voltage levels at all the nodes reach a new higher              rise to a new level (udc3_ref) that activates the back-up DCVR
equilibrium value. The rectifier DC voltage is slightly higher      in the other inverter GCI3. In this case, GCI3 begins
than the inverter voltage so that current flows from rectifier      maintaining the MTDC voltage at udc3_ref, the dashed line in
node(s) to inverter node(s). The magnitude of individual            Fig.3(a). The term “voltage margin” refers to the difference
converter DC voltage depends on two elements: (a) the               between udc4 _ref and udc3_ref in Fig.3(a).
conducted current though the node; (b) the resistances
between the nodes.                                                  3.2 Voltage droop control (VDC)
                                                                    VDC basically has multiple activated DCVCs (in both of the
Thus, it can be concluded that a temporary current mismatch
                                                                    inverters in this example). The two DCVCs are controlled at
between rectifier and inverter in the MTDC results in an
                                                                    different levels for inverter current dispatch, as shown in
overall DC voltage variation. As the converter control
                                                                    Fig.3(b). The V-I droop characteristic is obeyed by GCI3 to
systems use DC voltage information to function, it is
                                                                    share the total current with GCI4. To demonstrate the droop
desirable to quickly address any DC current surplus (by
                                                                    operation, for example, in order to increase the current of
increasing exported current) or DC current shortage (by
                                                                    GCI3 and decrease GCI4 based on the droop characteristic, the
reducing exported current), so that a stable DC voltage
                                                                    DCVC in GCI3 converter control must lower the voltage
operating point for the MTDC system will be realised.
                                                                    reference udc3_ref and then its current output “slides” along the
Communications between rectifier and inverter nodes in the
                                                                    droop to the right hand side, to output more current.
system is therefore critical to the operation of this scheme.

3 Previously reported MTDC control                                  4 Proposed current matching control strategy
  strategies                                                        As discussed in Section 2.2, a stable DC network operating
                                                                    point can be achieved by quickly acting to reduce any
Historically, there have been two distinct control strategies       mismatch between rectifier and inverter DC currents. As both
used to facilitate power dispatch from DC to AC systems,            WFR1 and WFR2 inject all the power generated by wind farms
                                                                    into MTDC network, they will operate in current control
mode. GCI3 and GCI4 will operate using the proposed CMC
in order to address the shortcomings of the VMC and VDC
control, regarding DC current mismatch that may arise during
changes in wind power generation. The detailed operation of
the scheme is now presented.

4.1 Converter operating states
To facilitate the development of the proposed control
strategy, it is important to understand VSC operating states
with their control references in the MTDC system. The                              Fig.4 The Central CMC with communicated variables
following equations (5) and (6) are given, referring to Fig.2:
                  uS  udc1  R1ic1  udc 2  R2ic 2                         (5)
                 uS  udc3  R3ic3  udc 4  R4ic 4                          (6)
uS is the sending end voltage and uR is the voltage at the
receiving end of the DC link. ic1 to ic4 are the rectifier and
inverter currents as shown in Fig.2. R5 is given by:
                        uS  uR  R5ic5                     (7)
ic5 is the current through the DC link as shown in Fig.2.
Kirchhoff’s current law dictates that:                                             Fig.5 CMC and the additional protection loop
                    idc1  idc 2  idc3  idc 4  0   (8)
                                                                                                                idc3  (1  KS )(idc1  idc 2 )                              (11)
As demonstrated in VMC and VDC, GCI4 has its DCVC
activated to control DC voltage at udc4; the other converters                      DC current reference for idc3 is transmitted from the CMC to
WFR1, WFR2 and GCI3 control their currents at idc1 idc2 and                        the GCI3 converter control system, to produce a commanded
idc3 respectively. Therefore, by combining equation (5), (6),                      active power reference, given in equation (12):
(7) and (8), the following converter operating state matrix,                                               Pcomm3  idc3udc3               (12)
which incorporates DC network resistance, can be derived:                          In this way, GCI4 with activated DCVC maintains the current
           udc1   R1  R4  R5   R4  R5        R4       1   idc1           balance in the MTDC network, but GCI3 also acts to
          u                                                          
           dc 2    R4  R5      R4  R5        R4       1   idc 2 
                                                                                  effectively preserve the current matching by adjusting its
           udc3  
                                                                             (9)
                          R4          R4      ( R3  R4 )   1   idc3           output active power, using the data relating to the total
                                                                    
           ic 4  
                        1           1           1        0  udc 4 
                                                                                rectified current. By setting a proper sharing factor KS,
                                                                                   accurate current allocation between GCI3 and GCI4 is
4.2 Current matching control principle                                             achieved. For example, a setting of KS=0.4 will allocate 40%
                                                                                   of the total current to GCI4, with the remaining 60% allocated
Fig.4 shows the communicated variables of the proposed                             to GCI3.
CMC for an MTDC. The green blocks in Fig.1 and Fig.4 are
telecommunication feedback signals “idc1”and “idc2” from the                       Additionally in Fig.5, there is an over-voltage and under-
rectifiers WFR1 and WFR2, based on equation (4). Feedback                          voltage protection function placed within the main control
signal “udc4” from GCI4 is used for over- or under-voltage                         loop in Fig.5. It will detect MTDC over-voltage or under-
protection. The current reference for GCI3 converter is                            voltage by monitoring the feedback signal DC voltage “udc4”
continuously updated by the proposed CMC and transmitted                           at GCI4, and will trigger the back-up DCVR in GCI3 if udc4
to the GCI3 vector control, via the communicated control                           exceeds an upper or lower constraint value (set to 180 kV and
signal “idc3_ref”.                                                                 220 kV in this simulation).

Modern wireless communication system has been proposed in                          In the event of telecommunication failure, which could be
HVDC application to secure power reliability [12] and it is                        detected by the loss of data, or by use of a standard
here used here to favour the CMC strategy for the MTDC                             communications health monitoring signal, GCI3 also adopts a
system. Fig.5 illustrates the CMC inner control logic, where                       triggering voltage which is higher (230 kV) than the higher
the total rectifier current from WFR1 and WFR2 is the sum of                       DC voltage protection constraint of GCI4 (220 kV). If this
feedback signals “idc1”and “idc2”. Rectified current is divided                    voltage is exceeded, the converter control system in GCI3 will
between the inverters GCI3 and GCI4 by applying a sharing                          trigger its back-up DCVR in any case. With the CMC strategy,
factor KS. KS represents the portion of the expected power to                      the converter operating states can be ascertained with
be exported from the MTDC network through GCI4, given by                           reference to equation (13):
equation (10). Accordingly, the reference current idc3 for GCI3                        udc1   R1  R4  R5    R4  R5        R4       1            idc1            
                                                                                      u                                                                              
is given by equation (11):                                                             dc 2    R4  R5       R4  R5        R4       1 
                                                                                                                                                        idc 2           
                                                                                       udc3                                               (1  K S )(idc1  idc 2 ) 
                                                                                                                                                                             (13)
                        idc 4  KS (idc1  idc 2 )          (10)                             
                                                                                                      R4           R4      ( R3  R4 )   1
                                                                                                                                                                       
                                                                                       ic 4  
                                                                                                    1            1           1        0 
                                                                                                                                                      udc 4            
                                                                                                                                                                         
5 Performance Evaluation                                                        Table.1: Simulation event description and timescales
                                                                         Time (s)                             Events
For the performance evaluation of the proposed CMC
                                                                            1                Sharing factor KS changes from 0.6 to 0.4
strategy, a generic four-terminal MTDC network with each
converter station rated at 200MVA is simulated in Matlab                                         PWFR1 changes from 0.3 to 0.5 pu
                                                                            3
                                                                                                 PWFR2 changes from 0.4 to 0.7 pu
SimPowerSystems [14], as shown in Fig.1. The central CMC
                                                                            5                   3-ph-earth fault at GCI4 (100 ms)
unit is placed in an independent block from the converter
                                                                            7                         Permanent trip of GCI4
current control systems of each of the four converters. DC
cable resistances are obtained from typical HVDC cable
parameters [15] and copper resistivity at 0    in [16]. This
results in modelled resistance values of 1.61 for R2 and R4,
0.32 for R1 and R3, and 1.94 for R5. The performance of
the MTDC using the proposed CMC is examined, under
steady state and fault conditions. Several events have been
simulated, and details are listed in Table 1.

Fig.6 shows the direct current injected into the DC network
from the wind farm rectifiers WFR1 and WFR2, while Fig.7
illustrates the direct current flow from the DC network into
the grid connected inverters GCI3 and GCI4 (the red dashed           Fig.6 Direct current idc1 and idc2 from WFR1 and WFR2
line represents the reference current idc3ref for GCI3, calculated
by the CMC). Initially, GCI3 and GCI4 share the current flow
based on the specified sharing factor KS=0.6, that is 60% for
GCI4, and 40% for GCI3. At t=1s, when KS is changed from
0.6 to 0.4, a new current reference is assigned to GCI3 to
increase its DC current, and the current quickly tracks the
reference change. GCI4 is observed to decrease its current
from 60% to 40%.

At t=3s, due to the simulated increase in wind power
production (a gust simulated by a step change in wind speed),
the active power references for WFR1 and WFR2 change and,
as shown in Fig.7, their DC current input to the MTDC rises          Fig.7 Direct current idc3 and idc4 from GCI3 and GCI4
to 0.7 and 0.5 pu respectively. This increased input current is
exported and shared correctly by GCI3 and GCI4, based on KS.

Fig.8 presents the DC voltage of WFR1, WFR2, GCI3 and
GCI4. At t=5s, there is a severe AC voltage dip due to a
100ms duration three-phase-to-earth fault at PCC4. In this
case, GCI4 contributes limited current to the fault to support
the grid voltage at PCC4 until the fault is cleared. It can be
noticed that a transient DC over-current occurs not only at
GCI4 but also at WFR1, WFR2 and GCI3. This is due to the
temporary reduction in the power transfer capability of GCI4
as the voltage magnitude at PCC4 collapses. That is because
of DC voltage interactions across all converters. The DC             Fig.8 DC voltage udc of WFR1,WFR2,GCI3 and GCI4
over-current is effectively limited by the converter current         t=7.3s. Immediately, the CMC triggers the back-up DCVC in
control system to no greater than 1.8 pu; this current is            GCI3’s converter controller via communicating the control
exported by the CMC and returns to normal values as soon as          signal “Trigger_DCVC_3” (highlighted in orange in Fig.1
the fault is cleared.                                                and Fig.5), and GCI3 begins controlling the DC voltage to a
                                                                     higher target level using its DCVC (220 kV in this case). This
At t=7s, inverter GCI4 is tripped, and the total rectifier current   is to allow the DC capacitors to absorb the additional power
mismatches the inverter GCI3 current output (sharing only            that cannot be temporarily transferred to the AC side through
60% of total current based on KS=0.6) during a short period,         GCI3. The CMC therefore can continue to operate the MTDC
leading to significant over-voltage in the MTDC network as           after tripping of inverter GCI4.
shown in Fig.8. The protection control loop, depicted in the
lower part of Fig.5, detects the over-voltage when feedback
                                                                     It should be noted that inverter GCI3 is directly controlled by
signal udc4 reaches the upper constraint level (220 kV) at
                                                                     the CMC, so plays an important role in continuously adjusting
being conducted to analyse the performance of this system
                                                                 under other scenarios, with different control targets (e.g. to
                                                                 provide voltage support to connected grid AC systems) and to
                                                                 more extensively compare performance with other existing
                                                                 and emerging MTDC control strategies.

                                                                 Acknowledgement
                                                                 The authors gratefully acknowledge the kind support of the
                                                                 Engineering and Physical Sciences Research Council and
                                                                 Rolls-Royce plc.

Fig.9 AC current output at PCCs of WFR1,WFR2,GCI3 and GCI4       References
its DC current export to ensure the DC network current           [1]    GB      National     Grid,    Seven    Year    Statement.   Available:
balance, as shown by the red dashed line in Fig7. Inverter              http://www.nationalgrid.com/NR/rdonlyres/A2095E9F-A0B8-4FCB-
GCI4, with its DCVC activated, acts as the DC side “slack               8E66-6F698D429DC5/41470/NETSSYS2010allChapters.pdf.
                                                                 [2]    European Wind Energy Association (EWEA), Wind Enery Scenarios
bus” to maintain voltage stability in the MTDC system, and it           up to 2030. Available:
also contributes to power dispatch in conjunction with                  http://www.ewea.org/fileadmin/ewea_documents/documents/publicatio
inverter GCI3. There is minimal DC voltage variation                    ns/reports/purepower.pdf.
throughout the entire simulation process, with amplitudes of ±   [3]    W. Long, S. Nilsson. "HVDC transmission: yesterday and today," IEEE
                                                                        Power and Energy Magazine, vol.5, no.2, pp.22-31.
10 kV, until the activation of the DCVC at GCI3 at t=7.3s due
                                                                 [4]    Y. Jiang-Hä  fner, R. Ottersten. "HVDC with Voltage Source Converters
to the loss of GCI4. From this point forward, the DC current            – A Desirable Solution for Connecting Renewable Energies," Large-
through GCI3 is not controlled by the CMC, and it                       scale integration of wind power into power systems, Germany.
automatically acts to balance the MTDC network current, as       [5]    D. Van Hertem, M. Ghandhari. “Multi-terminal VSC HVDC for the
shown by the GCI3 DC current reference (red dashed line)                European supergrid: obstacles,” Renewable & Sustainable Energy
                                                                        Reviews (Elsevier).
and actual DC current in Fig.7.                                  [6]    L. Xu, L. Yao. "DC voltage control and power dispatch of a multi-
                                                                        terminal HVDC system for integrating large offshore wind farms," IET
From the AC side, the converters are controlled by their                Renewable Power Generation , vol.5, no.3, pp.223-233.
individual vector control systems, as introduced in Section      [7]    J. Zhu, C. Booth. "Future multi-terminal HVDC transmission systems
2.1. Fig.9 shows that the AC-side currents associated with the          using Voltage source converters," 2010 45th International Universities
                                                                        Power Engineering Conference (UPEC).
converter PCCs under the proposed CMC control are stables        [8]    G.P. Adam, O. Anaya-Lara, G. Burt. "Multi-terminal DC transmission
and coordinated. The output AC current/power of inverter                system based on modular multilevel converter," Proceedings of the 44th
GCI3, which is primarily dictated by the DC current reference           International Universities Power Engineering Conference (UPEC).
from the CMC in equation (12), is observed to be                 [9]    T. Nakajima, S. Irokawa. "A control system for HVDC transmission by
                                                                        voltage sourced converters," Power Engineering Society Summer
continuously varied to achieve the DC current matching                  Meeting, 1999. IEEE , vol.2, pp.1113-1119.
function.                                                        [10]   M. Chen, M. Huang, Y. Ting, H. Chen, T. Li. "High-Frequency
                                                                        Wireless Communications System: 2.45-GHz Front-End Circuit and
                                                                        System Integration," IEEE Transactions on Education, vol.53, no.4,
6 Conclusions                                                           pp.631-637.
                                                                 [11]   A. Abu-Siada, S. Islam. "Application of SMES Unit in Improving the
This paper has presented the theory and examples of                     Performance of an AC/DC Power System,", IEEE Transactions on
operation of a novel current matching control (CMC) scheme              Sustainable Energy, vol.2, no.2, pp.109-121.
for MTDC networks, where the total rectified (input) current     [12]   Jiuping Pan; Nuqui, R.; Srivastava, K.; Jonsson, T.; Holmberg, P.;
to the MTDC network is used as basis for actively controlling           Hafner, Y.-J.; , "AC Grid with Embedded VSC-HVDC for Secure and
                                                                        Efficient Power Delivery," Energy 2030 Conf., 2008. ENERGY 2008.
the inverted (output) current from the network to supplied AC           IEEE , vol., no., pp.1-6, 17-18 Nov. 2008.
grid systems. Power sharing and ability to protect against       [13]   S. Cole, J. Beerten, R. Belmans. "Generalized Dynamic VSC MTDC
voltage violations are also features of the scheme. The                 Model for Power System Stability Studies," IEEE Transactions on
scheme requires communications, but can still operate in the            Power Systems, vol.25, no.3, pp.1655-1662.
event of loss of communications facilities. The CMC scheme       [14]   MathWorks.         "VSC-Based        HVDC        Link,"     Available:
                                                                        http://www.mathworks.com/help/toolbox/physmod/powersys/ug/f8-
can be used with any number of converter terminals, and                 9059.html.
independent of the types of the wind turbines used within        [15]   ABB, HVDC Light Cables- Submarine and land power cables,
each wind farm.                                                         Available:
                                                                        http://www05.abb.com/global/scot/scot245.nsf/veritydisplay/1591f1390
                                                                        98f62e5c1257154002f9801/$file/hvdc%20light%20power%20cables.p
The theoretical study and simulation results prove that, with           df.
coordination between the CMC and local converter control         [16]   D. R. Lide. CRC Handbook of Chemistry and Physics 75th ed. Boca
systems, the passiveness of previous control strategies –               Raton, CRC Press.
voltage margin and voltage droop – is avoided. This enables a
stable and secure DC network operating environment, allows
flexibility of power allocation across inverters, and provides
an effective restriction of DC over-voltages. Future work is

Más contenido relacionado

La actualidad más candente

PERFORMANCE OF LFAC TRANSMISSSION SYSTEM FOR TRANSIENT STATE
PERFORMANCE OF LFAC TRANSMISSSION SYSTEM FOR TRANSIENT STATEPERFORMANCE OF LFAC TRANSMISSSION SYSTEM FOR TRANSIENT STATE
PERFORMANCE OF LFAC TRANSMISSSION SYSTEM FOR TRANSIENT STATEijiert bestjournal
 
The Operation of the GCCIA HVDC Project and Its Potential Impacts on the Elec...
The Operation of the GCCIA HVDC Project and Its Potential Impacts on the Elec...The Operation of the GCCIA HVDC Project and Its Potential Impacts on the Elec...
The Operation of the GCCIA HVDC Project and Its Potential Impacts on the Elec...Power System Operation
 
Control Method for Unified Power Quality Conditioner Using Fuzzy Based Nine-S...
Control Method for Unified Power Quality Conditioner Using Fuzzy Based Nine-S...Control Method for Unified Power Quality Conditioner Using Fuzzy Based Nine-S...
Control Method for Unified Power Quality Conditioner Using Fuzzy Based Nine-S...IJERA Editor
 
Major Project, HVDC Thesis - Saurabh Saxena
Major Project, HVDC Thesis - Saurabh SaxenaMajor Project, HVDC Thesis - Saurabh Saxena
Major Project, HVDC Thesis - Saurabh SaxenaSaurabh Saxena
 
DESIGN & ANALYSIS OF A CHARGE RE-CYCLE BASED NOVEL LPHS ADIABATIC LOGIC CIRCU...
DESIGN & ANALYSIS OF A CHARGE RE-CYCLE BASED NOVEL LPHS ADIABATIC LOGIC CIRCU...DESIGN & ANALYSIS OF A CHARGE RE-CYCLE BASED NOVEL LPHS ADIABATIC LOGIC CIRCU...
DESIGN & ANALYSIS OF A CHARGE RE-CYCLE BASED NOVEL LPHS ADIABATIC LOGIC CIRCU...VLSICS Design
 
PERFORMANCE OF LFAC SYSTEM FOR STEADY STATE
PERFORMANCE OF LFAC SYSTEM FOR STEADY STATEPERFORMANCE OF LFAC SYSTEM FOR STEADY STATE
PERFORMANCE OF LFAC SYSTEM FOR STEADY STATEijiert bestjournal
 
Performance Evaluation of Centralized Reconfigurable Transmitting Power Schem...
Performance Evaluation of Centralized Reconfigurable Transmitting Power Schem...Performance Evaluation of Centralized Reconfigurable Transmitting Power Schem...
Performance Evaluation of Centralized Reconfigurable Transmitting Power Schem...TELKOMNIKA JOURNAL
 
Simulation and analysis of HVDC on MATLAB and PSCAD
Simulation and analysis of HVDC on MATLAB and PSCADSimulation and analysis of HVDC on MATLAB and PSCAD
Simulation and analysis of HVDC on MATLAB and PSCADVishal Bhimani
 
Modelling and Operation of HVDC Based Power Transmission System
Modelling and Operation of HVDC Based Power Transmission SystemModelling and Operation of HVDC Based Power Transmission System
Modelling and Operation of HVDC Based Power Transmission Systemijtsrd
 
Palermo serial io_overview
Palermo serial io_overviewPalermo serial io_overview
Palermo serial io_overviewchenna_kesava
 
Power System with VSC-HVDC Interconnection
Power System with VSC-HVDC InterconnectionPower System with VSC-HVDC Interconnection
Power System with VSC-HVDC InterconnectionBérengère VIGNAUX
 
VSC BASED HVDC SYTEM DESIGN AND PROTECTION AGAINST OVER VOLTAGES
VSC BASED HVDC SYTEM DESIGN AND PROTECTION AGAINST OVER VOLTAGESVSC BASED HVDC SYTEM DESIGN AND PROTECTION AGAINST OVER VOLTAGES
VSC BASED HVDC SYTEM DESIGN AND PROTECTION AGAINST OVER VOLTAGESIJERD Editor
 

La actualidad más candente (17)

PERFORMANCE OF LFAC TRANSMISSSION SYSTEM FOR TRANSIENT STATE
PERFORMANCE OF LFAC TRANSMISSSION SYSTEM FOR TRANSIENT STATEPERFORMANCE OF LFAC TRANSMISSSION SYSTEM FOR TRANSIENT STATE
PERFORMANCE OF LFAC TRANSMISSSION SYSTEM FOR TRANSIENT STATE
 
The Operation of the GCCIA HVDC Project and Its Potential Impacts on the Elec...
The Operation of the GCCIA HVDC Project and Its Potential Impacts on the Elec...The Operation of the GCCIA HVDC Project and Its Potential Impacts on the Elec...
The Operation of the GCCIA HVDC Project and Its Potential Impacts on the Elec...
 
Control Method for Unified Power Quality Conditioner Using Fuzzy Based Nine-S...
Control Method for Unified Power Quality Conditioner Using Fuzzy Based Nine-S...Control Method for Unified Power Quality Conditioner Using Fuzzy Based Nine-S...
Control Method for Unified Power Quality Conditioner Using Fuzzy Based Nine-S...
 
Major Project, HVDC Thesis - Saurabh Saxena
Major Project, HVDC Thesis - Saurabh SaxenaMajor Project, HVDC Thesis - Saurabh Saxena
Major Project, HVDC Thesis - Saurabh Saxena
 
DESIGN & ANALYSIS OF A CHARGE RE-CYCLE BASED NOVEL LPHS ADIABATIC LOGIC CIRCU...
DESIGN & ANALYSIS OF A CHARGE RE-CYCLE BASED NOVEL LPHS ADIABATIC LOGIC CIRCU...DESIGN & ANALYSIS OF A CHARGE RE-CYCLE BASED NOVEL LPHS ADIABATIC LOGIC CIRCU...
DESIGN & ANALYSIS OF A CHARGE RE-CYCLE BASED NOVEL LPHS ADIABATIC LOGIC CIRCU...
 
PERFORMANCE OF LFAC SYSTEM FOR STEADY STATE
PERFORMANCE OF LFAC SYSTEM FOR STEADY STATEPERFORMANCE OF LFAC SYSTEM FOR STEADY STATE
PERFORMANCE OF LFAC SYSTEM FOR STEADY STATE
 
Performance Evaluation of Centralized Reconfigurable Transmitting Power Schem...
Performance Evaluation of Centralized Reconfigurable Transmitting Power Schem...Performance Evaluation of Centralized Reconfigurable Transmitting Power Schem...
Performance Evaluation of Centralized Reconfigurable Transmitting Power Schem...
 
Simulation and analysis of HVDC on MATLAB and PSCAD
Simulation and analysis of HVDC on MATLAB and PSCADSimulation and analysis of HVDC on MATLAB and PSCAD
Simulation and analysis of HVDC on MATLAB and PSCAD
 
Modelling and Operation of HVDC Based Power Transmission System
Modelling and Operation of HVDC Based Power Transmission SystemModelling and Operation of HVDC Based Power Transmission System
Modelling and Operation of HVDC Based Power Transmission System
 
Carrier aggregation
Carrier aggregationCarrier aggregation
Carrier aggregation
 
R026201070114
R026201070114R026201070114
R026201070114
 
Palermo serial io_overview
Palermo serial io_overviewPalermo serial io_overview
Palermo serial io_overview
 
Cz36611614
Cz36611614Cz36611614
Cz36611614
 
Power System with VSC-HVDC Interconnection
Power System with VSC-HVDC InterconnectionPower System with VSC-HVDC Interconnection
Power System with VSC-HVDC Interconnection
 
Kb2517721780
Kb2517721780Kb2517721780
Kb2517721780
 
VSC BASED HVDC SYTEM DESIGN AND PROTECTION AGAINST OVER VOLTAGES
VSC BASED HVDC SYTEM DESIGN AND PROTECTION AGAINST OVER VOLTAGESVSC BASED HVDC SYTEM DESIGN AND PROTECTION AGAINST OVER VOLTAGES
VSC BASED HVDC SYTEM DESIGN AND PROTECTION AGAINST OVER VOLTAGES
 
Performance Analysis of FC-TCR
Performance Analysis of FC-TCRPerformance Analysis of FC-TCR
Performance Analysis of FC-TCR
 

Similar a Current matching control system for multi-terminal dc transmission to integrate offshore wind farms

Implementation of DC voltage controllers on enhancing the stability of multi-...
Implementation of DC voltage controllers on enhancing the stability of multi-...Implementation of DC voltage controllers on enhancing the stability of multi-...
Implementation of DC voltage controllers on enhancing the stability of multi-...IJECEIAES
 
Impact of LCC–HVDC multiterminal on generator rotor angle stability
Impact of LCC–HVDC multiterminal on generator rotor  angle stability  Impact of LCC–HVDC multiterminal on generator rotor  angle stability
Impact of LCC–HVDC multiterminal on generator rotor angle stability IJECEIAES
 
Modeling and Control of Gate-Controlled Series Capacitor Interfaced With a DF...
Modeling and Control of Gate-Controlled Series Capacitor Interfaced With a DF...Modeling and Control of Gate-Controlled Series Capacitor Interfaced With a DF...
Modeling and Control of Gate-Controlled Series Capacitor Interfaced With a DF...University of South Carolina
 
Design And Simulation of Microgrid Control based Wind Power Generation Syst...
Design And Simulation of  Microgrid Control  based Wind Power Generation Syst...Design And Simulation of  Microgrid Control  based Wind Power Generation Syst...
Design And Simulation of Microgrid Control based Wind Power Generation Syst...IRJET Journal
 
IRJET- Comparative Study of Common Methods of Frequency Response using MTDC G...
IRJET- Comparative Study of Common Methods of Frequency Response using MTDC G...IRJET- Comparative Study of Common Methods of Frequency Response using MTDC G...
IRJET- Comparative Study of Common Methods of Frequency Response using MTDC G...IRJET Journal
 
High-efficiency 2.45 and 5.8 GHz dual-band rectifier design with modulated in...
High-efficiency 2.45 and 5.8 GHz dual-band rectifier design with modulated in...High-efficiency 2.45 and 5.8 GHz dual-band rectifier design with modulated in...
High-efficiency 2.45 and 5.8 GHz dual-band rectifier design with modulated in...IJECEIAES
 
HVDC System a Need for Future Power Transmission
HVDC System a Need for Future Power TransmissionHVDC System a Need for Future Power Transmission
HVDC System a Need for Future Power Transmissionijtsrd
 
TCSC AND SVC OPTIMAL LOCATION TO IMPROVE THE PERFORMANCE OF POWER SYSTEM WITH...
TCSC AND SVC OPTIMAL LOCATION TO IMPROVE THE PERFORMANCE OF POWER SYSTEM WITH...TCSC AND SVC OPTIMAL LOCATION TO IMPROVE THE PERFORMANCE OF POWER SYSTEM WITH...
TCSC AND SVC OPTIMAL LOCATION TO IMPROVE THE PERFORMANCE OF POWER SYSTEM WITH...eeiej_journal
 
Analysis of Six Active Power Control Strategies of Interconnected Grids with ...
Analysis of Six Active Power Control Strategies of Interconnected Grids with ...Analysis of Six Active Power Control Strategies of Interconnected Grids with ...
Analysis of Six Active Power Control Strategies of Interconnected Grids with ...Power System Operation
 
Power Comparison of CMOS and Adiabatic Full Adder Circuits
Power Comparison of CMOS and Adiabatic Full Adder Circuits  Power Comparison of CMOS and Adiabatic Full Adder Circuits
Power Comparison of CMOS and Adiabatic Full Adder Circuits VLSICS Design
 
POWER COMPARISON OF CMOS AND ADIABATIC FULL ADDER CIRCUITS
POWER COMPARISON OF CMOS AND ADIABATIC FULL ADDER CIRCUITSPOWER COMPARISON OF CMOS AND ADIABATIC FULL ADDER CIRCUITS
POWER COMPARISON OF CMOS AND ADIABATIC FULL ADDER CIRCUITSVLSICS Design
 
A NOVEL CONTROL STRATEGY FOR POWER QUALITY IMPROVEMENT USING ANN TECHNIQUE FO...
A NOVEL CONTROL STRATEGY FOR POWER QUALITY IMPROVEMENT USING ANN TECHNIQUE FO...A NOVEL CONTROL STRATEGY FOR POWER QUALITY IMPROVEMENT USING ANN TECHNIQUE FO...
A NOVEL CONTROL STRATEGY FOR POWER QUALITY IMPROVEMENT USING ANN TECHNIQUE FO...IJERD Editor
 
Application of Multilevel Voltage-Source-Converter in FACTS Devices for Power...
Application of Multilevel Voltage-Source-Converter in FACTS Devices for Power...Application of Multilevel Voltage-Source-Converter in FACTS Devices for Power...
Application of Multilevel Voltage-Source-Converter in FACTS Devices for Power...IJMER
 
A Review of Analysis and Modeling of Grid Connected Three Phase Multilevel Un...
A Review of Analysis and Modeling of Grid Connected Three Phase Multilevel Un...A Review of Analysis and Modeling of Grid Connected Three Phase Multilevel Un...
A Review of Analysis and Modeling of Grid Connected Three Phase Multilevel Un...IRJET Journal
 
Boukhriss AECE.pdf
Boukhriss AECE.pdfBoukhriss AECE.pdf
Boukhriss AECE.pdfALIBOUKHRISS
 
Anlysis of a pmsg based offshore wind farm fed to a onshore grid through hybr...
Anlysis of a pmsg based offshore wind farm fed to a onshore grid through hybr...Anlysis of a pmsg based offshore wind farm fed to a onshore grid through hybr...
Anlysis of a pmsg based offshore wind farm fed to a onshore grid through hybr...eSAT Publishing House
 
International Journal of Computational Engineering Research(IJCER)
 International Journal of Computational Engineering Research(IJCER)  International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER) ijceronline
 
journalism journals
journalism journalsjournalism journals
journalism journalsakhila1001
 
Design of Low-Voltage Distributed Photovoltaic Systems Oriented to Improve ...
Design of Low-Voltage Distributed Photovoltaic Systems Oriented to   Improve ...Design of Low-Voltage Distributed Photovoltaic Systems Oriented to   Improve ...
Design of Low-Voltage Distributed Photovoltaic Systems Oriented to Improve ...IRJET Journal
 

Similar a Current matching control system for multi-terminal dc transmission to integrate offshore wind farms (20)

Implementation of DC voltage controllers on enhancing the stability of multi-...
Implementation of DC voltage controllers on enhancing the stability of multi-...Implementation of DC voltage controllers on enhancing the stability of multi-...
Implementation of DC voltage controllers on enhancing the stability of multi-...
 
Impact of LCC–HVDC multiterminal on generator rotor angle stability
Impact of LCC–HVDC multiterminal on generator rotor  angle stability  Impact of LCC–HVDC multiterminal on generator rotor  angle stability
Impact of LCC–HVDC multiterminal on generator rotor angle stability
 
Modeling and Control of Gate-Controlled Series Capacitor Interfaced With a DF...
Modeling and Control of Gate-Controlled Series Capacitor Interfaced With a DF...Modeling and Control of Gate-Controlled Series Capacitor Interfaced With a DF...
Modeling and Control of Gate-Controlled Series Capacitor Interfaced With a DF...
 
Design And Simulation of Microgrid Control based Wind Power Generation Syst...
Design And Simulation of  Microgrid Control  based Wind Power Generation Syst...Design And Simulation of  Microgrid Control  based Wind Power Generation Syst...
Design And Simulation of Microgrid Control based Wind Power Generation Syst...
 
IRJET- Comparative Study of Common Methods of Frequency Response using MTDC G...
IRJET- Comparative Study of Common Methods of Frequency Response using MTDC G...IRJET- Comparative Study of Common Methods of Frequency Response using MTDC G...
IRJET- Comparative Study of Common Methods of Frequency Response using MTDC G...
 
High-efficiency 2.45 and 5.8 GHz dual-band rectifier design with modulated in...
High-efficiency 2.45 and 5.8 GHz dual-band rectifier design with modulated in...High-efficiency 2.45 and 5.8 GHz dual-band rectifier design with modulated in...
High-efficiency 2.45 and 5.8 GHz dual-band rectifier design with modulated in...
 
HVDC System a Need for Future Power Transmission
HVDC System a Need for Future Power TransmissionHVDC System a Need for Future Power Transmission
HVDC System a Need for Future Power Transmission
 
TCSC AND SVC OPTIMAL LOCATION TO IMPROVE THE PERFORMANCE OF POWER SYSTEM WITH...
TCSC AND SVC OPTIMAL LOCATION TO IMPROVE THE PERFORMANCE OF POWER SYSTEM WITH...TCSC AND SVC OPTIMAL LOCATION TO IMPROVE THE PERFORMANCE OF POWER SYSTEM WITH...
TCSC AND SVC OPTIMAL LOCATION TO IMPROVE THE PERFORMANCE OF POWER SYSTEM WITH...
 
Analysis of Six Active Power Control Strategies of Interconnected Grids with ...
Analysis of Six Active Power Control Strategies of Interconnected Grids with ...Analysis of Six Active Power Control Strategies of Interconnected Grids with ...
Analysis of Six Active Power Control Strategies of Interconnected Grids with ...
 
Power Comparison of CMOS and Adiabatic Full Adder Circuits
Power Comparison of CMOS and Adiabatic Full Adder Circuits  Power Comparison of CMOS and Adiabatic Full Adder Circuits
Power Comparison of CMOS and Adiabatic Full Adder Circuits
 
Dcgris3
Dcgris3Dcgris3
Dcgris3
 
POWER COMPARISON OF CMOS AND ADIABATIC FULL ADDER CIRCUITS
POWER COMPARISON OF CMOS AND ADIABATIC FULL ADDER CIRCUITSPOWER COMPARISON OF CMOS AND ADIABATIC FULL ADDER CIRCUITS
POWER COMPARISON OF CMOS AND ADIABATIC FULL ADDER CIRCUITS
 
A NOVEL CONTROL STRATEGY FOR POWER QUALITY IMPROVEMENT USING ANN TECHNIQUE FO...
A NOVEL CONTROL STRATEGY FOR POWER QUALITY IMPROVEMENT USING ANN TECHNIQUE FO...A NOVEL CONTROL STRATEGY FOR POWER QUALITY IMPROVEMENT USING ANN TECHNIQUE FO...
A NOVEL CONTROL STRATEGY FOR POWER QUALITY IMPROVEMENT USING ANN TECHNIQUE FO...
 
Application of Multilevel Voltage-Source-Converter in FACTS Devices for Power...
Application of Multilevel Voltage-Source-Converter in FACTS Devices for Power...Application of Multilevel Voltage-Source-Converter in FACTS Devices for Power...
Application of Multilevel Voltage-Source-Converter in FACTS Devices for Power...
 
A Review of Analysis and Modeling of Grid Connected Three Phase Multilevel Un...
A Review of Analysis and Modeling of Grid Connected Three Phase Multilevel Un...A Review of Analysis and Modeling of Grid Connected Three Phase Multilevel Un...
A Review of Analysis and Modeling of Grid Connected Three Phase Multilevel Un...
 
Boukhriss AECE.pdf
Boukhriss AECE.pdfBoukhriss AECE.pdf
Boukhriss AECE.pdf
 
Anlysis of a pmsg based offshore wind farm fed to a onshore grid through hybr...
Anlysis of a pmsg based offshore wind farm fed to a onshore grid through hybr...Anlysis of a pmsg based offshore wind farm fed to a onshore grid through hybr...
Anlysis of a pmsg based offshore wind farm fed to a onshore grid through hybr...
 
International Journal of Computational Engineering Research(IJCER)
 International Journal of Computational Engineering Research(IJCER)  International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)
 
journalism journals
journalism journalsjournalism journals
journalism journals
 
Design of Low-Voltage Distributed Photovoltaic Systems Oriented to Improve ...
Design of Low-Voltage Distributed Photovoltaic Systems Oriented to   Improve ...Design of Low-Voltage Distributed Photovoltaic Systems Oriented to   Improve ...
Design of Low-Voltage Distributed Photovoltaic Systems Oriented to Improve ...
 

Último

Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxLoriGlavin3
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.Curtis Poe
 
Microsoft 365 Copilot: How to boost your productivity with AI – Part one: Ado...
Microsoft 365 Copilot: How to boost your productivity with AI – Part one: Ado...Microsoft 365 Copilot: How to boost your productivity with AI – Part one: Ado...
Microsoft 365 Copilot: How to boost your productivity with AI – Part one: Ado...Nikki Chapple
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity PlanDatabarracks
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24Mark Goldstein
 
Modern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better StrongerModern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better Strongerpanagenda
 
UiPath Community: Communication Mining from Zero to Hero
UiPath Community: Communication Mining from Zero to HeroUiPath Community: Communication Mining from Zero to Hero
UiPath Community: Communication Mining from Zero to HeroUiPathCommunity
 
Unleashing Real-time Insights with ClickHouse_ Navigating the Landscape in 20...
Unleashing Real-time Insights with ClickHouse_ Navigating the Landscape in 20...Unleashing Real-time Insights with ClickHouse_ Navigating the Landscape in 20...
Unleashing Real-time Insights with ClickHouse_ Navigating the Landscape in 20...Alkin Tezuysal
 
Glenn Lazarus- Why Your Observability Strategy Needs Security Observability
Glenn Lazarus- Why Your Observability Strategy Needs Security ObservabilityGlenn Lazarus- Why Your Observability Strategy Needs Security Observability
Glenn Lazarus- Why Your Observability Strategy Needs Security Observabilityitnewsafrica
 
MuleSoft Online Meetup Group - B2B Crash Course: Release SparkNotes
MuleSoft Online Meetup Group - B2B Crash Course: Release SparkNotesMuleSoft Online Meetup Group - B2B Crash Course: Release SparkNotes
MuleSoft Online Meetup Group - B2B Crash Course: Release SparkNotesManik S Magar
 
2024 April Patch Tuesday
2024 April Patch Tuesday2024 April Patch Tuesday
2024 April Patch TuesdayIvanti
 
Potential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and InsightsPotential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and InsightsRavi Sanghani
 
The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxLoriGlavin3
 
A Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersA Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersNicole Novielli
 
Varsha Sewlal- Cyber Attacks on Critical Critical Infrastructure
Varsha Sewlal- Cyber Attacks on Critical Critical InfrastructureVarsha Sewlal- Cyber Attacks on Critical Critical Infrastructure
Varsha Sewlal- Cyber Attacks on Critical Critical Infrastructureitnewsafrica
 
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyesHow to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyesThousandEyes
 
Generative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdfGenerative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdfIngrid Airi González
 
Decarbonising Buildings: Making a net-zero built environment a reality
Decarbonising Buildings: Making a net-zero built environment a realityDecarbonising Buildings: Making a net-zero built environment a reality
Decarbonising Buildings: Making a net-zero built environment a realityIES VE
 

Último (20)

Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.
 
Microsoft 365 Copilot: How to boost your productivity with AI – Part one: Ado...
Microsoft 365 Copilot: How to boost your productivity with AI – Part one: Ado...Microsoft 365 Copilot: How to boost your productivity with AI – Part one: Ado...
Microsoft 365 Copilot: How to boost your productivity with AI – Part one: Ado...
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity Plan
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
 
Modern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better StrongerModern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
 
UiPath Community: Communication Mining from Zero to Hero
UiPath Community: Communication Mining from Zero to HeroUiPath Community: Communication Mining from Zero to Hero
UiPath Community: Communication Mining from Zero to Hero
 
Unleashing Real-time Insights with ClickHouse_ Navigating the Landscape in 20...
Unleashing Real-time Insights with ClickHouse_ Navigating the Landscape in 20...Unleashing Real-time Insights with ClickHouse_ Navigating the Landscape in 20...
Unleashing Real-time Insights with ClickHouse_ Navigating the Landscape in 20...
 
Glenn Lazarus- Why Your Observability Strategy Needs Security Observability
Glenn Lazarus- Why Your Observability Strategy Needs Security ObservabilityGlenn Lazarus- Why Your Observability Strategy Needs Security Observability
Glenn Lazarus- Why Your Observability Strategy Needs Security Observability
 
MuleSoft Online Meetup Group - B2B Crash Course: Release SparkNotes
MuleSoft Online Meetup Group - B2B Crash Course: Release SparkNotesMuleSoft Online Meetup Group - B2B Crash Course: Release SparkNotes
MuleSoft Online Meetup Group - B2B Crash Course: Release SparkNotes
 
2024 April Patch Tuesday
2024 April Patch Tuesday2024 April Patch Tuesday
2024 April Patch Tuesday
 
Potential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and InsightsPotential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and Insights
 
The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptx
 
A Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersA Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software Developers
 
Varsha Sewlal- Cyber Attacks on Critical Critical Infrastructure
Varsha Sewlal- Cyber Attacks on Critical Critical InfrastructureVarsha Sewlal- Cyber Attacks on Critical Critical Infrastructure
Varsha Sewlal- Cyber Attacks on Critical Critical Infrastructure
 
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyesHow to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
 
Generative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdfGenerative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdf
 
Decarbonising Buildings: Making a net-zero built environment a reality
Decarbonising Buildings: Making a net-zero built environment a realityDecarbonising Buildings: Making a net-zero built environment a reality
Decarbonising Buildings: Making a net-zero built environment a reality
 

Current matching control system for multi-terminal dc transmission to integrate offshore wind farms

  • 1. Current Matching Control System for Multi-Terminal DC Transmission to Integrate Offshore Wind Farms J. Zhu, C. Booth, G.P. Adam Department of Electrical and Electronic Engineering, University of Strathclyde, Glasgow G1 1XW, UK. Email: zhu.jiebei@eee.strath.ac.uk Keywords: HVDC, voltage source converter, multi-terminal used for many HVDC installations [3], but is not well suited DC, control. to MTDC, in comparison to VSC. A summary of the advantages of VSC over LCC is listed below: Abstract  VSC has a smaller footprint which facilitates offshore installations of reduced platform size [3]; The inherent features of Voltage Source Converters (VSCs)  LCC requires large filtering components; are attractive for practical implementation of Multi-Terminal  VSC provides additional reactive power support and AC HVDC transmission systems (MTDC). MTDC can be used voltage regulation for wind farms connected to weak AC for large-scale integration of offshore wind power with systems, and possesses black-start capability; onshore grids. However, many of the control strategies for  VSC improves wind farm AC fault ride-through MTDC that have been proposed previously for offshore wind capability and facilitates Grid Code compliance at farm integration depend on local control of the wind turbine reduced costs [4]; generators.  Power reversal can be achieved in VSC without changing the DC voltage polarity, facilitating the realisation of a This paper proposes a new control strategy, termed Current flexible MTDC transmission system. Matching Control (CMC), which can be used with any MTDC transmission systems have attracted much attention number of converter terminals, and is independent of the for wind farm integration [5][6][7]. Firstly, MTDC reduces types of wind turbines used within each wind farm. The converter numbers when compared to numerous point-to- proposed CMC matches the current reference of the grid side point HVDC solutions. Secondly, it is conceivable that, due to converter to that of the wind farm side converters. In order to limited correlations of weather systems in geographically achieve such current matching, a telecommunication system dispersed wind farm locations, the overall variability of wind will be required to facilitate calculations of the grid side power may be reduced by interconnecting many current references to be carried out in real time. To validate geographically-dispersed wind farm systems via a large-area the performance of the proposed control strategy, a generic MTDC system, thus increasing the overall availability of four-terminal MTDC network, which integrates two offshore energy. In future, energy storage devices may be integrated wind farms with two mainland grids, is simulated and results with MTDC system [1], which further supports energy relating to several steady state and transient scenarios are availability and quality of supply. MTDC is also being presented. proposed as the means of interconnecting independent large- scale AC power systems, (e.g. European super-grid proposal 1 Introduction [5] to promote the interconnection of Norwegian hydro, French nuclear, Sahara solar and North sea wind power into a There has been a tremendous pace of development of large- common MTDC) to resolve local power shortages or scale offshore wind farms in recent years. It is anticipated that congestion, to enable international power sharing, and to there will be an approximate increase of 26.6 GW in provide an excellent level of overall power system reliability. aggregate generation capacity over the period from 2009/10 As discussed in [5], there are many challenging obstacles to to 2016/17 in the UK, 11.7 GW of which will be contributed the introduction of MTDC. The control system for an MTDC by wind power [1]. More broadly, the European Wind Energy must be robust, coordinated and reliable, as problems with Association has, in its “high wind” scenario, a target of 180 one terminal have the potential to affect the entire MTDC GW from wind energy sources in by 2020, of which 35 GW network. A number of control strategies are proposed [6] will be sourced from offshore wind installations. This [8][9] which will be introduced later. These strategies remain capacity target for offshore wind increases to 120 GW by at the modelling and testing stages of development. Critical 2030 [2]. concerns about these strategies are the controllability and These targets, if they are achieved, will have great impact on reliability of MTDC systems, as most of the proposed power transmission design, planning, construction and strategies manage an MTDC system without use of operation. Many offshore wind farms will require long- communications between terminals. The proposed current distance power transmission systems. AC may not be suitable matching control strategy employs minimal (in terms of due to high power losses over longer distances. Classical line- required traffic and bandwidth) telecommunications between current-commutated (LCC) HVDC transmission has been terminals in an MTDC network. While there may be concerns
  • 2. Fig.1 The test MTDC system configuration over use of communications, modern telecommunication paper focuses on the dynamics of AC and DC interaction, technologies are increasingly highly developed, reliable and which is dictated by the converter control. As the control redundant [10]. Furthermore, risk can be mitigated by system for VSC employs vector control in the synchronous employing redundancy, through continuous monitoring of rotating reference frame dq, the current references id_ref and telecommunications channels, and ensuring operation can iq_ref which are derived by the commanded active power Pcomm continue, albeit in a less efficient fashion, if and reactive power Qcomm, are given in equation (1). In the telecommunications is lost. Operation of the scheme is based rotating reference frame, the d-axis voltage Vd, aligned with on measurement (discretely, with a step of 1-2ms in this one of three phases, is equal to the magnitude of AC voltage, example) of the total DC current provided by wind farm side and the q-axis voltage Vq is zero. rectifiers (i.e. WFR1 and WFR2 in Fig.1) and allocation (matching) of this current across the inverters, according to a Pcomm Q pre-determined sharing factor. This is described in more idref  , iqref  comm (1) Vd Vd detail in Section 4. The scheme also provides further protection for the entire MTDC system by monitoring the DC voltage. Finally, the system can operate if the Once the current references id_ref and iq_ref are generated, the telecommunication system fails, but accurate sharing of the inner current control loops adjust the actual id and iq values to inverter currents may not be possible. be in accordance with the computed reference values. This process takes a short period to complete and is determined by the natural frequency of the converter control dynamic in 2 MTDC system configuration Laplace equation (2), which contains the proportional gain MTDC topology design may vary depending on specific (kp) and the integral gain (ki) of the proportional-and-integral situations (e.g. the locations of grid connection points and (PI) controller, reactor inductance (L) and resistance (R): offshore wind farms, available undersea cable routes). Fig.1 presents a four terminal MTDC system for wind farm idq kp  Li k integration, which utilises bi-polar cables R5 with nominal DC  L Rk p (2) s2  s idqref ki voltage of 200 kV (± 100 kV). On the offshore side, two wind L L farms are connected via two voltage source neutral-point clamped rectifiers (WFR1, WFR2). On the onshore side, two From the DC side perspective of the VSC in Fig.2, the DC grid-connected inverters (GCI3, GCI4) feed power to two voltage udc across the converter or the output capacitors, the independent 2000 MVA equivalent AC power systems. All DC current idc injected by the converter, and the current ic VSCs are rated at 200 MVA. Targets of converter control conducted by the DC cables, are related as shown in equation differ for WFR1 and WFR2, implementing frequency and AC (3). The capacitors are charged (or discharged) to possess a voltage control at the point of common connection (PCC) certain DC voltage. The current idc injected to the MTDC with wind farms, while GCI3 and GCI4 are equipped with a network by the converter is calculated from AC side PCC current controller and DC voltage regulator respectively, in currents id and iq, pulse-width-modulation index M and addition to AC voltage/or reactive power control. converter terminal voltage angle  with respect to the PCC voltage, using equation (4): 2.1 AC/DC interaction for a VSC dudc C  idc  ic (3) Instead of presenting an in-depth study of the VSC control dt system formulae, such as those presented [9] and [7], this idc  Mid cos   Miq sin  (4)
  • 3. Fig.3 MTDC control strategies: (a) voltage margin (b) voltage droop namely voltage margin control [9] and voltage droop control [8] [6]. 3.1 Voltage margin control (VMC) Fig.2 DC equivalent circuit for the MTDC In VMC control, one node’s DC voltage is controlled by a DC voltage controller (DCVC). This effectively acts as a DC 2.2 Equivalent MTDC circuit voltage slack bus, with other VSCs operating in current As demonstrated in Section 2.1, the DC property of individual control mode as illustrated in equations (1) and (2). VSCs in the MTDC can be represented as a “controlled” current source, shown in the equivalent circuit in Fig.(2). The VMC equips all converters with DCVCs, but the DCVC of extremely small inductance and capacitance of the DC only one converter station must be activated. Considering the network with respect to direct current are neglected. V-I characteristic of Fig.3(a), GCI4 has its DC node voltage controlled at udc4 ref by the activated DCVC, represented as the As the focus of this section is on the analysis of DC network solid line. This acts to balance the current flows from behaviour, it is essential to analyse the effect of the variation rectifiers WFR1 and WFR2 to inverter GCI3, by automatically in DC current idc from one converter station, on either its DC “sliding” its current output along the constant DC voltage voltage and/or the DC voltage at other stations. Taking WFR1 udc4_ref. Inverter GCI4 has an inherent current limit. If this as an example, a control action to increase WFR1 current idc1 limit is exceeded (e.g. strong wind pushing more current will quickly charge its DC capacitors and boost its DC though rectifiers into the MTDC), GCI4 will not be able to voltage udc1 to a higher value, based on equation (3). The maintain the DC voltage, and will operate at its maximum higher udc1 with respect to other DC node voltages acts to current output. According to the analysis in Section 2.2, the supply the conducted current ic1 into the MTDC network. The DC network voltage will continuously rise in line with current increased current ic1 charges capacitors at other nodes, until “surplus” in the MTDC network. The voltage will ultimately the voltage levels at all the nodes reach a new higher rise to a new level (udc3_ref) that activates the back-up DCVR equilibrium value. The rectifier DC voltage is slightly higher in the other inverter GCI3. In this case, GCI3 begins than the inverter voltage so that current flows from rectifier maintaining the MTDC voltage at udc3_ref, the dashed line in node(s) to inverter node(s). The magnitude of individual Fig.3(a). The term “voltage margin” refers to the difference converter DC voltage depends on two elements: (a) the between udc4 _ref and udc3_ref in Fig.3(a). conducted current though the node; (b) the resistances between the nodes. 3.2 Voltage droop control (VDC) VDC basically has multiple activated DCVCs (in both of the Thus, it can be concluded that a temporary current mismatch inverters in this example). The two DCVCs are controlled at between rectifier and inverter in the MTDC results in an different levels for inverter current dispatch, as shown in overall DC voltage variation. As the converter control Fig.3(b). The V-I droop characteristic is obeyed by GCI3 to systems use DC voltage information to function, it is share the total current with GCI4. To demonstrate the droop desirable to quickly address any DC current surplus (by operation, for example, in order to increase the current of increasing exported current) or DC current shortage (by GCI3 and decrease GCI4 based on the droop characteristic, the reducing exported current), so that a stable DC voltage DCVC in GCI3 converter control must lower the voltage operating point for the MTDC system will be realised. reference udc3_ref and then its current output “slides” along the Communications between rectifier and inverter nodes in the droop to the right hand side, to output more current. system is therefore critical to the operation of this scheme. 3 Previously reported MTDC control 4 Proposed current matching control strategy strategies As discussed in Section 2.2, a stable DC network operating point can be achieved by quickly acting to reduce any Historically, there have been two distinct control strategies mismatch between rectifier and inverter DC currents. As both used to facilitate power dispatch from DC to AC systems, WFR1 and WFR2 inject all the power generated by wind farms into MTDC network, they will operate in current control
  • 4. mode. GCI3 and GCI4 will operate using the proposed CMC in order to address the shortcomings of the VMC and VDC control, regarding DC current mismatch that may arise during changes in wind power generation. The detailed operation of the scheme is now presented. 4.1 Converter operating states To facilitate the development of the proposed control strategy, it is important to understand VSC operating states with their control references in the MTDC system. The Fig.4 The Central CMC with communicated variables following equations (5) and (6) are given, referring to Fig.2: uS  udc1  R1ic1  udc 2  R2ic 2 (5) uS  udc3  R3ic3  udc 4  R4ic 4 (6) uS is the sending end voltage and uR is the voltage at the receiving end of the DC link. ic1 to ic4 are the rectifier and inverter currents as shown in Fig.2. R5 is given by: uS  uR  R5ic5 (7) ic5 is the current through the DC link as shown in Fig.2. Kirchhoff’s current law dictates that: Fig.5 CMC and the additional protection loop idc1  idc 2  idc3  idc 4  0 (8) idc3  (1  KS )(idc1  idc 2 ) (11) As demonstrated in VMC and VDC, GCI4 has its DCVC activated to control DC voltage at udc4; the other converters DC current reference for idc3 is transmitted from the CMC to WFR1, WFR2 and GCI3 control their currents at idc1 idc2 and the GCI3 converter control system, to produce a commanded idc3 respectively. Therefore, by combining equation (5), (6), active power reference, given in equation (12): (7) and (8), the following converter operating state matrix, Pcomm3  idc3udc3 (12) which incorporates DC network resistance, can be derived: In this way, GCI4 with activated DCVC maintains the current  udc1   R1  R4  R5 R4  R5  R4 1   idc1  balance in the MTDC network, but GCI3 also acts to u      dc 2    R4  R5 R4  R5  R4 1   idc 2   effectively preserve the current matching by adjusting its  udc3   (9) R4 R4 ( R3  R4 ) 1   idc3  output active power, using the data relating to the total       ic 4      1 1 1 0  udc 4    rectified current. By setting a proper sharing factor KS, accurate current allocation between GCI3 and GCI4 is 4.2 Current matching control principle achieved. For example, a setting of KS=0.4 will allocate 40% of the total current to GCI4, with the remaining 60% allocated Fig.4 shows the communicated variables of the proposed to GCI3. CMC for an MTDC. The green blocks in Fig.1 and Fig.4 are telecommunication feedback signals “idc1”and “idc2” from the Additionally in Fig.5, there is an over-voltage and under- rectifiers WFR1 and WFR2, based on equation (4). Feedback voltage protection function placed within the main control signal “udc4” from GCI4 is used for over- or under-voltage loop in Fig.5. It will detect MTDC over-voltage or under- protection. The current reference for GCI3 converter is voltage by monitoring the feedback signal DC voltage “udc4” continuously updated by the proposed CMC and transmitted at GCI4, and will trigger the back-up DCVR in GCI3 if udc4 to the GCI3 vector control, via the communicated control exceeds an upper or lower constraint value (set to 180 kV and signal “idc3_ref”. 220 kV in this simulation). Modern wireless communication system has been proposed in In the event of telecommunication failure, which could be HVDC application to secure power reliability [12] and it is detected by the loss of data, or by use of a standard here used here to favour the CMC strategy for the MTDC communications health monitoring signal, GCI3 also adopts a system. Fig.5 illustrates the CMC inner control logic, where triggering voltage which is higher (230 kV) than the higher the total rectifier current from WFR1 and WFR2 is the sum of DC voltage protection constraint of GCI4 (220 kV). If this feedback signals “idc1”and “idc2”. Rectified current is divided voltage is exceeded, the converter control system in GCI3 will between the inverters GCI3 and GCI4 by applying a sharing trigger its back-up DCVR in any case. With the CMC strategy, factor KS. KS represents the portion of the expected power to the converter operating states can be ascertained with be exported from the MTDC network through GCI4, given by reference to equation (13): equation (10). Accordingly, the reference current idc3 for GCI3  udc1   R1  R4  R5 R4  R5  R4 1  idc1  u     is given by equation (11):  dc 2    R4  R5 R4  R5  R4 1   idc 2   udc3    (1  K S )(idc1  idc 2 )  (13) idc 4  KS (idc1  idc 2 ) (10)    R4 R4 ( R3  R4 ) 1    ic 4      1 1 1 0   udc 4  
  • 5. 5 Performance Evaluation Table.1: Simulation event description and timescales Time (s) Events For the performance evaluation of the proposed CMC 1 Sharing factor KS changes from 0.6 to 0.4 strategy, a generic four-terminal MTDC network with each converter station rated at 200MVA is simulated in Matlab PWFR1 changes from 0.3 to 0.5 pu 3 PWFR2 changes from 0.4 to 0.7 pu SimPowerSystems [14], as shown in Fig.1. The central CMC 5 3-ph-earth fault at GCI4 (100 ms) unit is placed in an independent block from the converter 7 Permanent trip of GCI4 current control systems of each of the four converters. DC cable resistances are obtained from typical HVDC cable parameters [15] and copper resistivity at 0 in [16]. This results in modelled resistance values of 1.61 for R2 and R4, 0.32 for R1 and R3, and 1.94 for R5. The performance of the MTDC using the proposed CMC is examined, under steady state and fault conditions. Several events have been simulated, and details are listed in Table 1. Fig.6 shows the direct current injected into the DC network from the wind farm rectifiers WFR1 and WFR2, while Fig.7 illustrates the direct current flow from the DC network into the grid connected inverters GCI3 and GCI4 (the red dashed Fig.6 Direct current idc1 and idc2 from WFR1 and WFR2 line represents the reference current idc3ref for GCI3, calculated by the CMC). Initially, GCI3 and GCI4 share the current flow based on the specified sharing factor KS=0.6, that is 60% for GCI4, and 40% for GCI3. At t=1s, when KS is changed from 0.6 to 0.4, a new current reference is assigned to GCI3 to increase its DC current, and the current quickly tracks the reference change. GCI4 is observed to decrease its current from 60% to 40%. At t=3s, due to the simulated increase in wind power production (a gust simulated by a step change in wind speed), the active power references for WFR1 and WFR2 change and, as shown in Fig.7, their DC current input to the MTDC rises Fig.7 Direct current idc3 and idc4 from GCI3 and GCI4 to 0.7 and 0.5 pu respectively. This increased input current is exported and shared correctly by GCI3 and GCI4, based on KS. Fig.8 presents the DC voltage of WFR1, WFR2, GCI3 and GCI4. At t=5s, there is a severe AC voltage dip due to a 100ms duration three-phase-to-earth fault at PCC4. In this case, GCI4 contributes limited current to the fault to support the grid voltage at PCC4 until the fault is cleared. It can be noticed that a transient DC over-current occurs not only at GCI4 but also at WFR1, WFR2 and GCI3. This is due to the temporary reduction in the power transfer capability of GCI4 as the voltage magnitude at PCC4 collapses. That is because of DC voltage interactions across all converters. The DC Fig.8 DC voltage udc of WFR1,WFR2,GCI3 and GCI4 over-current is effectively limited by the converter current t=7.3s. Immediately, the CMC triggers the back-up DCVC in control system to no greater than 1.8 pu; this current is GCI3’s converter controller via communicating the control exported by the CMC and returns to normal values as soon as signal “Trigger_DCVC_3” (highlighted in orange in Fig.1 the fault is cleared. and Fig.5), and GCI3 begins controlling the DC voltage to a higher target level using its DCVC (220 kV in this case). This At t=7s, inverter GCI4 is tripped, and the total rectifier current is to allow the DC capacitors to absorb the additional power mismatches the inverter GCI3 current output (sharing only that cannot be temporarily transferred to the AC side through 60% of total current based on KS=0.6) during a short period, GCI3. The CMC therefore can continue to operate the MTDC leading to significant over-voltage in the MTDC network as after tripping of inverter GCI4. shown in Fig.8. The protection control loop, depicted in the lower part of Fig.5, detects the over-voltage when feedback It should be noted that inverter GCI3 is directly controlled by signal udc4 reaches the upper constraint level (220 kV) at the CMC, so plays an important role in continuously adjusting
  • 6. being conducted to analyse the performance of this system under other scenarios, with different control targets (e.g. to provide voltage support to connected grid AC systems) and to more extensively compare performance with other existing and emerging MTDC control strategies. Acknowledgement The authors gratefully acknowledge the kind support of the Engineering and Physical Sciences Research Council and Rolls-Royce plc. Fig.9 AC current output at PCCs of WFR1,WFR2,GCI3 and GCI4 References its DC current export to ensure the DC network current [1] GB National Grid, Seven Year Statement. Available: balance, as shown by the red dashed line in Fig7. Inverter http://www.nationalgrid.com/NR/rdonlyres/A2095E9F-A0B8-4FCB- GCI4, with its DCVC activated, acts as the DC side “slack 8E66-6F698D429DC5/41470/NETSSYS2010allChapters.pdf. [2] European Wind Energy Association (EWEA), Wind Enery Scenarios bus” to maintain voltage stability in the MTDC system, and it up to 2030. Available: also contributes to power dispatch in conjunction with http://www.ewea.org/fileadmin/ewea_documents/documents/publicatio inverter GCI3. There is minimal DC voltage variation ns/reports/purepower.pdf. throughout the entire simulation process, with amplitudes of ± [3] W. Long, S. Nilsson. "HVDC transmission: yesterday and today," IEEE Power and Energy Magazine, vol.5, no.2, pp.22-31. 10 kV, until the activation of the DCVC at GCI3 at t=7.3s due [4] Y. Jiang-Hä fner, R. Ottersten. "HVDC with Voltage Source Converters to the loss of GCI4. From this point forward, the DC current – A Desirable Solution for Connecting Renewable Energies," Large- through GCI3 is not controlled by the CMC, and it scale integration of wind power into power systems, Germany. automatically acts to balance the MTDC network current, as [5] D. Van Hertem, M. Ghandhari. “Multi-terminal VSC HVDC for the shown by the GCI3 DC current reference (red dashed line) European supergrid: obstacles,” Renewable & Sustainable Energy Reviews (Elsevier). and actual DC current in Fig.7. [6] L. Xu, L. Yao. "DC voltage control and power dispatch of a multi- terminal HVDC system for integrating large offshore wind farms," IET From the AC side, the converters are controlled by their Renewable Power Generation , vol.5, no.3, pp.223-233. individual vector control systems, as introduced in Section [7] J. Zhu, C. Booth. "Future multi-terminal HVDC transmission systems 2.1. Fig.9 shows that the AC-side currents associated with the using Voltage source converters," 2010 45th International Universities Power Engineering Conference (UPEC). converter PCCs under the proposed CMC control are stables [8] G.P. Adam, O. Anaya-Lara, G. Burt. "Multi-terminal DC transmission and coordinated. The output AC current/power of inverter system based on modular multilevel converter," Proceedings of the 44th GCI3, which is primarily dictated by the DC current reference International Universities Power Engineering Conference (UPEC). from the CMC in equation (12), is observed to be [9] T. Nakajima, S. Irokawa. "A control system for HVDC transmission by voltage sourced converters," Power Engineering Society Summer continuously varied to achieve the DC current matching Meeting, 1999. IEEE , vol.2, pp.1113-1119. function. [10] M. Chen, M. Huang, Y. Ting, H. Chen, T. Li. "High-Frequency Wireless Communications System: 2.45-GHz Front-End Circuit and System Integration," IEEE Transactions on Education, vol.53, no.4, 6 Conclusions pp.631-637. [11] A. Abu-Siada, S. Islam. "Application of SMES Unit in Improving the This paper has presented the theory and examples of Performance of an AC/DC Power System,", IEEE Transactions on operation of a novel current matching control (CMC) scheme Sustainable Energy, vol.2, no.2, pp.109-121. for MTDC networks, where the total rectified (input) current [12] Jiuping Pan; Nuqui, R.; Srivastava, K.; Jonsson, T.; Holmberg, P.; to the MTDC network is used as basis for actively controlling Hafner, Y.-J.; , "AC Grid with Embedded VSC-HVDC for Secure and Efficient Power Delivery," Energy 2030 Conf., 2008. ENERGY 2008. the inverted (output) current from the network to supplied AC IEEE , vol., no., pp.1-6, 17-18 Nov. 2008. grid systems. Power sharing and ability to protect against [13] S. Cole, J. Beerten, R. Belmans. "Generalized Dynamic VSC MTDC voltage violations are also features of the scheme. The Model for Power System Stability Studies," IEEE Transactions on scheme requires communications, but can still operate in the Power Systems, vol.25, no.3, pp.1655-1662. event of loss of communications facilities. The CMC scheme [14] MathWorks. "VSC-Based HVDC Link," Available: http://www.mathworks.com/help/toolbox/physmod/powersys/ug/f8- can be used with any number of converter terminals, and 9059.html. independent of the types of the wind turbines used within [15] ABB, HVDC Light Cables- Submarine and land power cables, each wind farm. Available: http://www05.abb.com/global/scot/scot245.nsf/veritydisplay/1591f1390 98f62e5c1257154002f9801/$file/hvdc%20light%20power%20cables.p The theoretical study and simulation results prove that, with df. coordination between the CMC and local converter control [16] D. R. Lide. CRC Handbook of Chemistry and Physics 75th ed. Boca systems, the passiveness of previous control strategies – Raton, CRC Press. voltage margin and voltage droop – is avoided. This enables a stable and secure DC network operating environment, allows flexibility of power allocation across inverters, and provides an effective restriction of DC over-voltages. Future work is