SlideShare a Scribd company logo
1 of 292
Download to read offline
BEHAVIOR, DESIGN, AND ANALYSIS OF UNBONDED POST-TENSIONED
PRECAST CONCRETE COUPLING BEAMS
VOLUME I
A Dissertation

Submitted to the Graduate School
of the University of Notre Dame
in Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

by
Brad D. Weldon

Yahya C. Kurama, Director

Graduate Program in Civil Engineering and Geological Sciences
Notre Dame, Indiana
April 2010
© Copyright 2010
Brad D. Weldon
BEHAVIOR, DESIGN, AND ANALYSIS OF UNBONDED POST-TENSIONED
PRECAST CONCRETE COUPLING BEAMS
Abstract
by
Brad D. Weldon

This dissertation describes an experimental, analytical, and design investigation
on the nonlinear behavior of precast concrete coupling beams, where coupling of
reinforced concrete shear walls is achieved by post-tensioning the beams and the walls
together at the floor and roof levels. The new coupling system offers important
advantages over conventional systems with monolithic cast-in-place beams, such as
simpler detailing, reduced damage to the structure, and reduced residual lateral
displacements. Steel top and seat angles are used at the beam-to-wall joints to yield and
provide energy dissipation.
The results from eight half-scale experiments of unbonded post-tensioned precast
coupling beams under reversed-cyclic lateral loading are presented. Each test specimen
includes a coupling beam and the adjacent wall pier regions at a floor level. The test
parameters include the post-tensioning tendon area and initial stress, initial beam concrete
axial stress, angle strength, and beam depth. The results demonstrate excellent stiffness,
strength, and ductility of the specimens under cyclic loading, with considerable energy
dissipation concentrated in the angles. Compliance of the beams to established
Brad D. Weldon
acceptance criteria is demonstrated, validating the use of these structures in seismic
regions. The critical components of the structure that can limit the desired performance
include the post-tensioning anchors as well as the top and seat angles and their
connections.
The experimental results are also used to validate the analysis and design of the
new coupling system. Two different analytical models, one using fiber elements and the
other using finite elements, are investigated. In addition, an idealized coupling beam end
moment versus chord rotation relationship is developed as a design tool following basic
principles of equilibrium, compatibility, and constitutive relationships. The comparisons
demonstrate that the analytical and design models are able to capture the nonlinear
behavior of the structure, including global parameters such as the beam lateral force
versus chord rotation behavior as well as local parameters such as the neutral axis depth
at the beam ends. Using these models, the effects of several structural properties (such as
beam length) on the behavior of unbonded post-tensioned precast coupling beams is
analytically investigated to expand the results from the experiments.
CONTENTS

FIGURES ........................................................................................................................ xvii
TABLES .......................................................................................................................... lxii
ACKNOWLEDGMENTS ............................................................................................... lxv
NOTATION ................................................................................................................... lxvii

VOLUME I
CHAPTER 1:
INTRODUCTION ...............................................................................................................1
1.1

Problem Statement ...................................................................................................1

1.2

Research Objectives .................................................................................................7

1.3

Research Scope ........................................................................................................8

1.4

Research Significance ..............................................................................................9

1.5

Overview of Dissertation .......................................................................................10

CHAPTER 2:
BACKGROUND ...............................................................................................................12
2.1

Coupled Wall Structural Systems ..........................................................................12

2.2

Monotonic Cast-in-Place Concrete Coupled Wall Systems ..................................15
2.2.1 Behavior and Design of Cast-in-Place Concrete Coupling Beams ............16
2.2.2

Current Code Requirements for Cast-in-Place Concrete
Coupling Beams .........................................................................................17

ii
2.2.3

Analysis and Modeling of Cast-in-Place Concrete Coupled
Wall Systems .............................................................................................20

2.2.4

Coupling Beam Database ...........................................................................22

2.3

Unbonded Post-Tensioning ....................................................................................24

2.4

Unbonded Post-Tensioned Hybrid Coupled Wall Systems ...................................26

2.5

Unbonded Post-Tensioned Precast Moment Frames .............................................35
2.5.1

2.6

Frames with Supplemental Energy Dissipation .........................................39

Behavior of Top and Seat Angles ..........................................................................45
2.6.1

Kishi and Chen (1990) and Lorenz et al. (1993) .......................................49

2.6.1.1 Tension angle initial stiffness, Kaixt ......................................................50
2.6.1.2 Tension angle yield force capacity, Tayx...............................................53
2.7

Chapter Summary ..................................................................................................54

CHAPTER 3:
PRECAST COUPLING BEAM SUBASSEMBLY EXPERIMENTS .............................56
3.1

Experiment Setup ...................................................................................................57

3.2

Test Subassembly Components .............................................................................65
3.2.1

Coupling Beam Specimens ........................................................................66

3.2.1.1 Maximum Moment Capacity at Beam-to-Wall Interfaces...................75
3.2.1.2 Beam Transverse Reinforcement .........................................................78
3.2.1.3 Beam Longitudinal Mild Steel Reinforcement ....................................81
3.2.1.4 Confinement Reinforcement ................................................................86
3.2.1.5 Shear Slip at Beam-to-Wall Interfaces ................................................88
3.2.2
3.2.3
3.3

Reaction Block ...........................................................................................90
Load Block ...............................................................................................101

Testing Procedure ................................................................................................105
3.3.1

Wall Test Region Vertical Forces ............................................................106
iii
3.3.2

Beam Post-Tensioning Force ...................................................................109

3.3.3

Top and Seat Angle Connections .............................................................111

3.3.4

Test Day ...................................................................................................113

3.3.5

Summary of Test Procedure.....................................................................117

3.3.5.1 Virgin Beam Test Procedure ..............................................................117
3.3.5.2 Non-Virgin Beam Test Procedure .....................................................119
3.4

Chapter Summary ................................................................................................120

CHAPTER 4:
DESIGN AND MATERIAL PROPERTIES ...................................................................121
4.1

Design Material Properties ..................................................................................121

4.2

Measured Material Properties ..............................................................................122
4.2.1 Unconfined Concrete Strength .................................................................123
4.2.2
4.2.3

Post-tensioning Strand Properties ............................................................130

4.2.4

Mild Reinforcing Steel Properties ...........................................................136

4.2.5
4.3

Fiber-Reinforced Grout Properties ..........................................................124

Angle Steel Properties..............................................................................140

Chapter Summary ................................................................................................142

CHAPTER 5:
DATA INSTRUMENTATION AND SPECIMEN RESPONSE PARAMETERS ........144
5.1

Data Instrumentation ............................................................................................144
5.1.1

Instrumentation Overview .......................................................................145

5.1.2

Post-Tensioning Strand Load Cells .........................................................158

5.1.3

Wall Test Region Vertical Force Load Cells ...........................................166

iv
5.1.4

Load Block Global Displacement Transducers .......................................166

5.1.5

Reaction Block Global Displacement Transducers .................................169

5.1.6 Beam Global Displacement Transducers .................................................171
5.1.7

Gap Opening Displacement Transducers.................................................172

5.1.8

Wall Test Region Local Displacement Transducers ................................174

5.1.9

Beam Rotation Transducers .....................................................................176

5.1.10 Beam Looping Reinforcement Longitudinal Leg Strain Gauges ............177
5.1.11 Beam Transverse Reinforcement Strain Gauges .....................................179
5.1.12 Beam End Confinement Hoop Strain Gauges .........................................181
5.1.13 Beam Confined Concrete Strain Gauges .................................................184
5.1.14 Reaction Block Confinement Hoop Strain Gauges .................................186
5.1.15 Reaction Block Confined Concrete Strain Gauges ..................................189
5.2

Subassembly Response Parameters .....................................................................190
5.2.1 Coupling Beam Shear Force ....................................................................192
5.2.2

Coupling Beam End Moment ..................................................................194

5.2.3 Coupling Beam Post-Tensioning Force ...................................................194
5.2.4

Vertical Force on Wall Test Region ........................................................194

5.2.5

Angle Post-Tensioning Forces .................................................................195

5.2.6

Reaction Block Displacements ................................................................195

5.2.7

Load Block Displacements ......................................................................197

5.2.8

Beam Vertical Displacements ..................................................................201

5.2.9

Beam Chord Rotation ..............................................................................204

5.2.10 Gap Opening and Contact Depth at Beam-to-Wall Interface ..................205
5.3

Chapter Summary ................................................................................................210

v
VOLUME II
CHAPTER 6:
VIRGIN BEAM SUBASSEMBLY EXPERIMENTAL RESULTS ...............................211
6.1

Overall Test Specimen Response.........................................................................211

6.2

Test 1....................................................................................................................214
6.2.1

Test Photographs ......................................................................................216

6.2.2

Beam Shear Force versus Chord Rotation Behavior ...............................222

6.2.3

Beam End Moment Force versus Chord Rotation Behavior ...................224

6.2.4

Beam Post-Tensioning Forces .................................................................225

6.2.5

Angle-to-Wall Connection Post-Tensioning Forces ................................229

6.2.6

Vertical Forces on Wall Test Region .......................................................232

6.2.7

Beam Vertical Displacements ..................................................................233

6.2.8

Beam Chord Rotation ..............................................................................237

6.2.9

Local Beam Rotations ..............................................................................240

6.2.10 Load Block Displacements and Rotations ...............................................242
6.2.11 Reaction Block Displacements and Rotations .........................................250
6.2.12 Contact Depth and Gap Opening at Beam-to-Wall Interfaces.................256
6.2.13 Wall Test Region Local Concrete Deformations .....................................267
6.2.14 Beam Looping Reinforcement Longitudinal Leg Strains ........................269
6.2.15 Beam Transverse Reinforcement Strains .................................................276
6.2.16 Beam Confined Concrete Strains .............................................................279
6.2.17 Beam End Confinement Hoop Strains .....................................................284
6.2.18 Wall Test Region Confined Concrete Strains ..........................................291
6.2.19 Wall Test Region Confinement Hoop Strains .........................................297
6.2.20 Crack Patterns ..........................................................................................299

vi
6.3

Test 2....................................................................................................................301
6.3.1

Test Photographs ......................................................................................302

6.3.2

Beam Shear Force versus Chord Rotation Behavior ...............................307

6.3.3

Beam End Moment Force versus Chord Rotation Behavior ...................310

6.3.4

Beam Post-Tensioning Forces .................................................................311

6.3.5

Angle-to-Wall Connection Post-Tensioning Forces ................................316

6.3.6

Vertical Forces on Wall Test Region .......................................................320

6.3.7

Beam Vertical Displacements ..................................................................321

6.3.8

Beam Chord Rotation ..............................................................................324

6.3.9

Local Beam Rotations ..............................................................................327

6.3.10 Load Block Displacements and Rotations ...............................................328
6.3.11 Reaction Block Displacements and Rotations .........................................336
6.3.12 Contact Depth and Gap Opening at Beam-to-Wall Interfaces.................341
6.3.13 Wall Test Region Local Concrete Deformations .....................................352
6.3.14 Beam Looping Reinforcement Longitudinal Leg Strains ........................354
6.3.15 Beam Transverse Reinforcement Strains .................................................361
6.3.16 Beam Confined Concrete Strains .............................................................364
6.3.17 Beam End Confinement Hoop Strains .....................................................368
6.3.18 Wall Test Region Confined Concrete Strains ..........................................372
6.3.19 Wall Test Region Confinement Hoop Strains .........................................373
6.3.20 Crack Patterns ..........................................................................................373
6.4

Test 3....................................................................................................................375
6.4.1

Test Photographs ......................................................................................376

6.4.2

Beam Shear Force versus Chord Rotation Behavior ...............................381

6.4.3

Beam End Moment Force versus Chord Rotation Behavior ...................383

vii
6.4.4

Beam Post-Tensioning Forces .................................................................383

6.4.5

Angle-to-Wall Connection Post-Tensioning Forces ................................388

6.4.6

Vertical Forces on Wall Test Region .......................................................392

6.4.7

Beam Vertical Displacements ..................................................................393

6.4.8

Beam Chord Rotation ..............................................................................396

6.4.9

Local Beam Rotations ..............................................................................398

6.4.10 Load Block Displacements and Rotations ...............................................400
6.4.11 Reaction Block Displacements and Rotations .........................................408
6.4.12 Contact Depth and Gap Opening at Beam-to-Wall Interfaces.................413
6.4.13 Wall Test Region Local Concrete Deformations .....................................424
6.4.14 Beam Looping Reinforcement Longitudinal Leg Strains ........................426
6.4.15 Beam Transverse Reinforcement Strains .................................................433
6.4.16 Beam Confined Concrete Strains .............................................................436
6.4.17 Beam End Confinement Hoop Strains .....................................................440
6.4.18 Wall Test Region Confined Concrete Strains ..........................................444
6.4.19 Wall Test Region Confinement Hoops Strains ........................................444
6.4.20 Crack Patterns ..........................................................................................445
6.5

Test 4....................................................................................................................447
6.5.1

Test Photographs ......................................................................................448

6.5.2

Beam Shear Force versus Chord Rotation Behavior ...............................453

6.5.3

Beam End Moment Force versus Chord Rotation Behavior ...................456

6.5.4

Beam Post-Tensioning Forces .................................................................457

6.5.5

Angle-to-Wall Connection Post-Tensioning Forces ................................461

6.5.6

Vertical Forces on Wall Test Region .......................................................464

6.5.7

Beam Vertical Displacements ..................................................................465

viii
6.5.8

Beam Chord Rotation ..............................................................................469

6.5.9

Local Beam Rotations ..............................................................................471

6.5.10 Load Block Displacements and Rotations ...............................................473
6.5.11 Reaction Block Displacements and Rotations .........................................481
6.5.12 Contact Depth and Gap Opening at Beam-to-Wall Interfaces.................486
6.5.13 Wall Test Region Local Concrete Deformations .....................................497
6.5.14 Beam Looping Reinforcement Longitudinal Leg Strains ........................499
6.5.15 Beam Transverse Reinforcement Strains .................................................505
6.5.16 Beam Confined Concrete Strains .............................................................508
6.5.17 Beam End Confinement Hoop Strains .....................................................512
6.5.18 Wall Test Region Confined Concrete Strains ..........................................516
6.5.19 Wall Test Region Confinement Hoop Strains .........................................517
6.5.20 Crack Patterns ..........................................................................................517
VOLUME III
CHAPTER 7:
POST-VIRGIN BEAM SUBASSEMBLY EXPERIMENTAL RESULTS ....................519
7.1

Test 3A .................................................................................................................519
7.1.1

Test Photographs ......................................................................................522

7.1.2

Beam Shear Force versus Chord Rotation Behavior ...............................526

7.1.3

Beam End Moment Force versus Chord Rotation Behavior ...................529

7.1.4

Beam Post-Tensioning Forces .................................................................530

7.1.5

Angle-to-Wall Connection Post-Tensioning Forces ................................535

7.1.6

Vertical Forces on Wall Test Region .......................................................539

7.1.7

Beam Vertical Displacements ..................................................................540

7.1.8

Beam Chord Rotation ..............................................................................545
ix
7.1.9

Local Beam Rotations ..............................................................................547

7.1.10 Load Block Displacements and Rotations ...............................................549
7.1.11 Reaction Block Displacements and Rotations .........................................557
7.1.12 Contact Depth and Gap Opening at Beam-to-Wall Interfaces.................562
7.1.13 Wall Test Region Local Concrete Deformations .....................................573
7.1.14 Beam Looping Reinforcement Longitudinal Leg Strains ........................575
7.1.15 Beam Transverse Reinforcement Strains .................................................581
7.1.16 Beam Confined Concrete Strains .............................................................585
7.1.17 Beam End Confinement Hoop Strains .....................................................589
7.1.18 Wall Test Region Confined Concrete Strains ..........................................593
7.1.19 Wall Test Region Confinement Hoop Strains .........................................594
7.1.20 Crack Patterns ..........................................................................................594
7.2

Test 3B .................................................................................................................595
7.2.1

Test Photographs ......................................................................................596

7.2.2

Beam Shear Force versus Chord Rotation Behavior ...............................601

7.2.3

Beam End Moment Force versus Chord Rotation Behavior ...................604

7.2.4

Beam Post-Tensioning Forces .................................................................605

7.2.5

Angle-to-Wall Connection Post-Tensioning Forces ................................609

7.2.6

Vertical Forces on Wall Test Region .......................................................612

7.2.7

Beam Vertical Displacements ..................................................................613

7.2.8

Beam Chord Rotation ..............................................................................618

7.2.9

Local Beam Rotations ..............................................................................620

7.2.10 Load Block Displacements and Rotations ...............................................622
7.2.11 Reaction Block Displacements and Rotations .........................................630
7.2.12 Contact Depth and Gap Opening at Beam-to-Wall Interfaces.................635

x
7.2.13 Wall Test Region Local Concrete Deformations .....................................646
7.2.14 Beam Looping Reinforcement Longitudinal Leg Strains ........................648
7.2.15 Beam Transverse Reinforcement Strains .................................................655
7.2.16 Beam Confined Concrete Strains .............................................................658
7.2.17 Beam End Confinement Hoop Strains .....................................................662
7.2.18 Wall Test Region Confined Concrete Strains ..........................................666
7.2.19 Wall Test Region Confinement Hoop Strains .........................................667
7.2.20 Crack Patterns ..........................................................................................667
7.3

Test 4A .................................................................................................................668
7.3.1

Test Photographs ......................................................................................669

7.3.2

Beam Shear Force versus Chord Rotation Behavior ...............................673

7.3.3

Beam End Moment Force versus Chord Rotation Behavior ...................676

7.3.4

Beam Post-Tensioning Forces .................................................................677

7.3.5

Angle-to-Wall Connection Post-Tensioning Forces ................................681

7.3.6

Vertical Forces on Wall Test Region .......................................................681

7.3.7

Beam Vertical Displacements ..................................................................682

7.3.8

Beam Chord Rotation ..............................................................................687

7.3.9

Local Beam Rotations ..............................................................................689

7.3.10 Load Block Displacements and Rotations ...............................................691
7.3.11 Reaction Block Displacements and Rotations .........................................699
7.3.12 Gap Opening and Contact Depth at Beam-to-Wall Interfaces.................704
7.3.13 Wall Test Region Local Concrete Deformations .....................................715
7.3.14 Beam Looping Reinforcement Longitudinal Leg Strains ........................717
7.3.15 Beam Transverse Reinforcement Strains .................................................724
7.3.16 Beam Confined Concrete Strains .............................................................728

xi
7.3.17 Beam End Confinement Hoop Strains .....................................................732
7.3.18 Wall Test Region Confined Concrete Strains ..........................................736
7.3.19 Wall Test Region Confinement Hoops Strains ........................................737
7.3.20 Crack Patterns ..........................................................................................737
7.4

Test 4B .................................................................................................................738
7.4.1

Test Photographs ......................................................................................739

7.4.2

Beam Shear Force versus Chord Rotation Behavior ...............................743

7.4.3

Beam End Moment Force versus Chord Rotation Behavior ...................746

7.4.4

Beam Post-Tensioning Forces .................................................................747

7.4.5

Angle-to-Wall Connection Post-Tensioning Forces ................................752

7.4.6

Vertical Forces on Wall Test Region .......................................................755

7.4.7

Beam Vertical Displacements ..................................................................756

7.4.8

Beam Chord Rotation ..............................................................................760

7.4.9

Local Beam Rotations ..............................................................................762

7.4.10 Load Block Displacements and Rotations ...............................................765
7.4.11 Reaction Block Displacements and Rotations .........................................773
7.4.12 Contact Depth and Gap Opening at Beam-to-Wall Interfaces.................778
7.4.13 Wall Test Region Local Concrete Deformations .....................................789
7.4.14 Beam Looping Reinforcement Longitudinal Leg Strains ........................791
7.4.15 Beam Transverse Reinforcement Strains .................................................798
7.4.16 Beam Confined Concrete Strains .............................................................801
7.4.17 Beam End Confinement Hoop Strains .....................................................806
7.4.18 Wall Test Region Confined Concrete Strains ..........................................811
7.4.19 Wall Test Region Confinement Hoops Strains ........................................812
7.4.20 Crack Patterns ..........................................................................................812

xii
VOLUME IV
CHAPTER 8:
SUMMARY AND OVERVIEW OF RESULTS FROM COUPLED WALL
SUBASSEMBLY EXPERIMENTS ....................................................................813
8.1

Beam Shear Force versus Chord Rotation Behavior and
Progression of Damage ........................................................................................814

8.2

Beam Post-Tensioning Tendon Force versus Chord Rotation Behavior .............824

8.3

Effect of Beam Post-Tensioning Tendon Area and Initial Concrete Stress.........827

8.4

Effect of Top and Seat Angles and Angle Strength .............................................829

8.5

Effect of Beam Depth ..........................................................................................831

8.6

Longitudinal Mild Steel Strains ...........................................................................832

8.7

Transverse Mild Steel Strains at Beam Ends .......................................................836

8.8

Transverse Mild Steel Strains at Beam Midspan .................................................839

8.9

Angle Connections ...............................................................................................841

8.10

Beam-to-Wall Connection and Grout Behavior ..................................................842

8.11

Compliance with ACI ITG-5.1 ............................................................................843
8.11.1 Probable Lateral Strength ........................................................................843
8.11.2 Relative Energy Dissipation Ratio ...........................................................844
8.11.3 Stiffness Requirements ............................................................................848

8.12

Comparisons with Monolithic Cast-in-Place Concrete Beams ............................850

8.13

Chapter Summary ................................................................................................853

CHAPTER 9:
ANALYTICAL MODELING OF PRECAST COUPLED
WALL SUBASSEMBLIES .................................................................................854
9.1

Analytical Modeling Assumptions ......................................................................854

xiii
9.2

Fiber-Element Subassembly Model .....................................................................855
9.2.1

General Modeling of Concrete Members ................................................856

9.2.2

Modeling of Coupling Beam ...................................................................860

9.2.3 Modeling of Wall Regions .......................................................................865
9.2.4

Modeling of Gap Opening .......................................................................869

9.2.5

Modeling of Beam Post-Tensioning Tendons and Anchorages ..............872

9.2.6

Modeling of Top and Seat Angles ...........................................................876

9.2.6.1 Horizontal Angle Element Force-Deformation Model ......................879
9.2.6.2 Vertical Angle Element Force-Deformation Model ..........................881
9.3

Verification of Test Specimen Models ................................................................882
9.3.1

Beam Shear Force versus Chord Rotation Behavior ...............................886

9.3.2

Beam Post-tensioning Force ....................................................................888

9.3.3

Contact Depth at Beam-to-Reaction-Block Interface ..............................895

9.3.4

Gap Opening at Beam-to-Reaction-Block Interface ................................903

9.3.5

Concrete Compressive Strains at Beam End ...........................................910

9.3.6

Longitudinal Mild Steel Strains at Beam End .........................................911

9.3.7

Longitudinal Mild Steel Strains at Beam Midspan ..................................920

9.3.8

Angle Behavior ........................................................................................924

9.4

ABAQUS Finite-Element Subassembly Model ..................................................926

9.5

Comparison of Fiber-Element and Finite-Element Models .................................929
9.5.1

9.6

Wall Pier and Coupling Beam Stresses ...................................................930

Chapter Summary ................................................................................................935

xiv
CHAPTER 10:
PARAMETRIC INVESTIGATION AND CLOSED FORM ESTIMATION OF
THE BEHAVIOR OF UNBONDED POST-TENSIONED PRECAST
COUPLING BEAMS...........................................................................................936
10.1

Prototype Subassembly ........................................................................................936

10.2

Analytical Modeling ............................................................................................939

10.3

Subassembly Behavior Under Monotonic Loading .............................................941

10.4

Subassembly Behavior Under Cyclic Loading ....................................................944

10.5

Parametric Investigation ......................................................................................945

10.6

Tri-linear Estimation of Subassembly Behavior ..................................................954
10.6.1 Tension Angle Yielding State ..................................................................955
10.6.2 Tension Angle Strength State ..................................................................960
10.6.3 Confined Concrete Crushing State...........................................................962

10.7

Analytical Verification of Tri-Linear Estimation ................................................965

10.8

Experimental Verification of Tri-linear Estimation .............................................965

10.9

Summary ..............................................................................................................969

CHAPTER 11:
SUMMARY, CONCLUSIONS, AND FUTURE WORK ..............................................971
11.1

Summary ..............................................................................................................971

11.2

Conclusions ..........................................................................................................972
11.2.1 Experimental Program .............................................................................972
11.2.2 Analytical Modeling and Parametric Investigation .................................974
11.2.3 Closed-form Estimations .........................................................................975

11.3

Future Work .........................................................................................................976

xv
REFERENCES ...............................................................................................................978
Appendix A .....................................................................................................................989
Appendix B .....................................................................................................................992
Appendix C .....................................................................................................................996
Appendix D ...................................................................................................................1011
Appendix E ...................................................................................................................1039
Appendix F ...................................................................................................................1064

xvi
FIGURES
VOLUME I
CHAPTER 1:
Figure 1.1: Multi story coupled wall system. ..................................................................... 3
Figure 1.2: Coupled wall system floor-level subassembly. ................................................ 4
Figure 1.3: Coupled wall system floor-level subassembly idealized, exaggerated
deformed configuration. .......................................................................................... 5
Figure 1.4: Coupling beam forces. ...................................................................................... 6

CHAPTER 2:
Figure 2.1: Coupled wall structures. ................................................................................. 13
Figure 2.2: Wall systems – (a) uncoupled wall; (b) coupled wall with strong beams;
(c) coupled wall with weak beams. ....................................................................... 15
Figure 2.3: Reinforced concrete coupling beams [Paulay and Priestley (1992)] –
(a) diagonal tension failure; (b) sliding shear failure; (c) diagonal reinforcement.
............................................................................................................................... 17
Figure 2.4: Diagonal reinforcement requirements for coupling beams [from ACI 318
(2008)] – (a) confinement of each group of diagonal bars; (b) confinement of
entire beam cross-section. ..................................................................................... 19
Figure 2.5: Diagonally reinforced coupling beam (from Magnusson Klemencic
Associates). ........................................................................................................... 20
Figure 2.6: Equivalent frame analytical models. .............................................................. 21
Figure 2.7: Measured ultimate sustained rotations for monolithic cast-in-place reinforced
concrete coupling beams. ...................................................................................... 23
Figure 2.8: Hybrid coupled wall subassembly [from Shen and Kurama (2002b)]. .......... 27

xvii
Figure 2.9: Hybrid coupled wall subassembly experiments [adapted from Kurama et al.
(2006)] – (a) measured coupling beam shear force versus chord rotation behavior;
(b) photograph of displaced shape at beam end; (c) measured total beam posttensioning force. .................................................................................................... 29
Figure 2.10: Low cycle fatigue fracture of top and seat angles. ....................................... 31
Figure 2.11: Hybrid coupled wall subassembly with no angles ....................................... 32
Figure 2.12: Hybrid coupled wall subassembly predicted behavior [from Shen et al.
(2006)] – (a) coupling beam shear force versus chord rotation behavior; (b) total
beam post-tensioning force. .................................................................................. 34
Figure 2.13: Unbonded post-tensioned precast moment frames – (a) structure;
(b) interior beam-column subassembly; (c) idealized, exaggerated subassembly
displaced shape. .................................................................................................... 37
Figure 2.14: Analytical investigation of unbonded post-tensioned precast beam-column
subassemblies [from El-Sheikh et al. (1999, 2000)] – (a) moment-rotation
relationship; (b) analytical model. ........................................................................ 39
Figure 2.15: Measured lateral force-displacement behavior [from Priestley and MacRae
(1996)] – (a) interior joint; (b) exterior joint. ....................................................... 40
Figure 2.16: “Hybrid” precast concrete frame beam-column joint [adapted from Kurama
(2002)]................................................................................................................... 41
Figure 2.17: Friction-damped post-tensioned precast moment frames [from Morgen and
Kurama (2004)] – (a) test set-up schematic; (b) photograph of test set-up. ......... 43
Figure 2.18: Measured beam end moment versus chord rotation behavior [from Morgen
and Kurama (2004)] – (a) without dampers; (b) with dampers. ........................... 44
Figure 2.19: Top and seat angle connection [adapted from Shen et al. (2006)] –
(a) deformed configuration; (b) angle parameters. ............................................... 45
Figure 2.20: Angle model [adapted from Kishi and Chen (1990) and Lorenz et al. (1993)]
– (a) cantilever model of tension angle; (b) assumed yield mechanism; (c) free
body of angle horizontal leg. ................................................................................ 52

CHAPTER 3:
Figure 3.1: Simulation of floor level coupled wall subassembly displacements –
(a) multi-story structure; (b) idealized displaced subassembly; (c) rotated
subassembly. ......................................................................................................... 57

xviii
Figure 3.2: Photograph of subassembly test setup. ........................................................... 60
Figure 3.3: Elevation view of test subassembly................................................................ 61
Figure 3.4: Plan view of test subassembly. ....................................................................... 62
Figure 3.5: East side view of loading frame. .................................................................... 63
Figure 3.6: North end view of loading and bracing frames. ............................................. 64
Figure 3.7: East side view of bracing frame and brace plate locations............................. 65
Figure 3.8: Photograph of beam formwork and details prior to casting (Beams 1 – 3).... 67
Figure 3.9: Photograph of beam end prior to casting (Beams 1 – 3). ............................... 67
Figure 3.10: Photograph of beam end prior to casting (Beam 4 – increased depth)......... 68
Figure 3.11: Duct locations for Beams 1 - 3. .................................................................... 70
Figure 3.12: Duct locations for Beam 4 (increased beam depth). .................................... 71
Figure 3.13: Mild steel reinforcement details for Beams 1 - 3. ........................................ 72
Figure 3.14: Mild steel reinforcement details for Beam 4. ............................................... 73
Figure 3.15: Photographs of mild steel reinforcement for Beams 1 – 3 – (a) No. 6 looping
reinforcement; (b) No. 3 full-depth transverse and partial-depth confining hoops.
............................................................................................................................... 74
Figure 3.16: Maximum moment capacity at beam end..................................................... 76
Figure 3.17: Beam maximum shear force demand. .......................................................... 78
Figure 3.18: High transverse tensile stresses in the vicinity of the gap tip. ...................... 80
Figure 3.19: Transverse (y-direction) stresses in element row 38 of full scale finite
element beam model. ............................................................................................ 81
Figure 3.20: Design of beam longitudinal mild steel reinforcement – (a) critical section;
(b) angle forces and beam moment at critical section; (c) beam moment diagram.
............................................................................................................................... 83
Figure 3.21: Equilibrium at critical section. ..................................................................... 84
Figure 3.22: Stress-strain model for confined concrete (Mander et al. 1988a). ............... 87
Figure 3.23: Reaction block duct details........................................................................... 92

xix
Figure 3.24: Dywidag Multiplane MA anchor components used with the beam posttensioning strands.................................................................................................. 93
Figure 3.25: Modified Dywidag Multiplane MA anchor details. ..................................... 93
Figure 3.26: Reaction block reinforcement details. .......................................................... 96
Figure 3.27: Reaction and load block reinforcement hoops. ............................................ 97
Figure 3.28: Photograph of reaction and load block reinforcement cage. ........................ 98
Figure 3.29: Photograph of reaction block duct and reinforcement placement. ............... 99
Figure 3.30: Photograph of wall test region duct and reinforcement details. ................. 100
Figure 3.31: Load block duct details............................................................................... 103
Figure 3.32: Load block reinforcement details. .............................................................. 104
Figure 3.33: Photograph of load block duct and reinforcement details. ......................... 105
Figure 3.34: Post-tensioning operation – (a) single-strand jack; (b) jack operation;
(c) anchor bearing plate. ..................................................................................... 110
Figure 3.35: Single use barrel/wedge type anchors with three-piece wedges and ring. . 111
Figure 3.36: Nominal lateral displacement loading history – (a) Test 1; (b) Tests 2 – 4B.
............................................................................................................................. 115

CHAPTER 4:
Figure 4.1: Concrete cylinder specimens. ....................................................................... 123
Figure 4.2: Grout samples – (a) mortar mix; (b) epoxy grout. ....................................... 127
Figure 4.3: Photographs from a grout test. ..................................................................... 127
Figure 4.4: Stress-strain relationships for subassembly grout samples. ......................... 130
Figure 4.5: Post-tensioning strand test set-up. ................................................................ 133
Figure 4.6: Photograph of post-tensioning strand test. ................................................... 134
Figure 4.7: Photograph of post-tensioning strand wire fracture inside anchor. .............. 134
Figure 4.8: Stress-strain relationships for post-tensioning strand specimens. ................ 135

xx
Figure 4.9: Limit of proportionality determination......................................................... 136
Figure 4.10: Photographs from a No. 3 reinforcing bar test. .......................................... 137
Figure 4.11: Stress-strain relationships for No. 3 bar specimens. .................................. 138
Figure 4.12: Stress-strain relationships for No. 6 bar specimens. .................................. 138
Figure 4.13: Photographs from an angle steel material test. ........................................... 140
Figure 4.14: Stress-strain relationships for angle steel material specimens. .................. 141

CHAPTER 5:
Figure 5.1: Photograph of beam-to-reaction-block interface and instrumentation
for Test 1. ............................................................................................................ 145
Figure 5.2: Load cell placement...................................................................................... 155
Figure 5.3: Displacement transducer placement. ............................................................ 156
Figure 5.4: Rotation transducer placement. .................................................................... 157
Figure 5.5: Strain gauge placement – reaction block. ..................................................... 157
Figure 5.6: Strain gauge placement – coupling beam. .................................................... 158
Figure 5.7: Photograph of load cells on beam post-tensioning strands. ......................... 159
Figure 5.8: Photograph of load cells on angle-to-reaction-block connection posttensioning strands................................................................................................ 159
Figure 5.9: Photograph of post-tensioning strand load cells........................................... 160
Figure 5.10: Placement of post-tensioning strand load cells. ......................................... 161
Figure 5.11: Post-tensioning strand load cell calibration setup. ..................................... 163
Figure 5.12: Calibration data for the post-tensioning strand load cells. ......................... 164
Figure 5.13: Loading and unloading calibration data for Load Cells UND2 and UND3.
............................................................................................................................. 165
Figure 5.14: Load block ferrule insert locations. ............................................................ 168
Figure 5.15: Reaction block ferrule insert locations. ...................................................... 170
Figure 5.16: Beam vertical displacement ferrule insert locations................................... 172
xxi
Figure 5.17: Beam gap opening ferrule insert locations. ................................................ 173
Figure 5.18: Reaction block wall test region ferrule insert locations – (a) inserts for
Beams 1-3; (b) inserts for Beam 4. ..................................................................... 175
Figure 5.19: Beam rotation ferrule insert locations. ....................................................... 176
Figure 5.20: Photograph of beam strain gauges.............................................................. 177
Figure 5.21: Beam looping reinforcement longitudinal leg strain gauge locations. ....... 178
Figure 5.22: Strain gauge designation system – longitudinal reinforcement.................. 179
Figure 5.23: Beam transverse reinforcement strain gauge locations. ............................. 180
Figure 5.24: Strain gauge designation system – transverse reinforcement. .................... 181
Figure 5.25: Photograph of strain gauged confinement hoop. ........................................ 182
Figure 5.26: Beam end confinement hoop strain gauge locations. ................................. 183
Figure 5.27: Strain gauge designation system – beam end confinement hoops. ............ 184
Figure 5.28: Beam confined concrete strain gauge locations. ........................................ 185
Figure 5.29: Strain gauge designation system – beam confined concrete. ..................... 186
Figure 5.30: Reaction block confinement hoop strain gauge locations. ......................... 187
Figure 5.31: Strain gauge designation system – reaction block...................................... 188
Figure 5.32: Reaction block confined concrete strain gauge locations. ......................... 189
Figure 5.33: Subassembly displaced in positive direction. ............................................. 191
Figure 5.34: Subassembly displaced in negative direction. ............................................ 192
Figure 5.35: Reaction block displacements. ................................................................... 196
Figure 5.36: Load block displacements. ......................................................................... 198
Figure 5.37: Idealized exaggerated displaced shape of load block. ................................ 198
Figure 5.38: Idealized exaggerated displaced shape of test beam. ................................. 202
Figure 5.39: Gap opening and contact depth. ................................................................. 206

xxii
VOLUME II
CHAPTER 6:
Figure 6.1: Displaced position of subassembly at θb = 3.33% –
(a) Test 2; (b) Test 4............................................................................................ 212
Figure 6.2: Vb-θb behavior – (a) Test 2; (b) Test 4.......................................................... 213
Figure 6.3: Test 1 beam and reaction block patched concrete regions. .......................... 216
Figure 6.4: Test 1 overall photographs – (a) pre-test undisplaced position; (b) θb = 3.0%;
(c) θb = –3.0%; (d) θb = 8.0%; (e) θb = –8.0%; (f) final post-test undisplaced
position................................................................................................................ 219
Figure 6.5: Test 1 beam south end photographs – (a) pre-test undisplaced position;
(b) θb = 3.0%; (c) θb = –3.0%; (d) θb = 8.0%; (e) θb = –8.0%; (f) final post-test
undisplaced position............................................................................................ 220
Figure 6.6: Test 1 beam south end damage propagation – positive and negative rotations.
............................................................................................................................. 221
Figure 6.7: Test 1 gap opening and grout behavior at 8.0% rotation – (a) south end;
(b) north end. ....................................................................................................... 221
Figure 6.8: Test 1 coupling beam shear force versus chord rotation behavior – (a) using
beam displacements; (b) using load block displacements. ................................. 223
Figure 6.9: Test 1 photograph of north seat angle – (a) angle deformed shape;
(b) low cycle fatigue fracture. ............................................................................. 224
Figure 6.10: Test 1 Mb-θb,lb behavior. ............................................................................. 225
Figure 6.11: Test 1 beam post-tensioning strand forces – (a) strand 1; (b) strand 2. ..... 227
Figure 6.12: Test 1 FLC-θb,lb behavior – (a) strand 1; (b) strand 2................................... 227
Figure 6.13: Test 1 beam post-tensioning force versus chord rotation behavior – (a) using
beam displacements; (b) using load block displacements. ................................. 228
Figure 6.14: Test 1 south end top angle-to-wall connection strand forces – (a) east strand;
(b) west strand. .................................................................................................... 230
Figure 6.15: Test 1 south end top angle-to-wall connection strand forces versus load
block beam chord rotation – (a) FLC3-θb,lb; (b) FLC4-θb,lb. ................................... 230
Figure 6.16: Test 1 south end seat angle-to-wall connection strand forces – (a) east
strand; (b) west strand. ........................................................................................ 231

xxiii
Figure 6.17: Test 1 south end seat angle-to-wall connection strand forces versus load
block beam chord rotation – (a) FLC5-θb,lb; (b) FLC6-θb,lb. ................................... 231
Figure 6.18: Test 1 south end total angle-to-wall connection strand forces versus load
block beam chord rotation – (a) top connection; (b) seat connection. ................ 232
Figure 6.19: Test 1 vertical force on wall test region, Fwt – (a) Fwt-test duration;
(b) Fwt-θb,lb........................................................................................................... 233
Figure 6.20: Test 1 south end beam vertical displacements – (a) measured, ∆DT9;
(b) adjusted, ∆DT9,y; (c) difference, ∆DT9,y-∆DT9. ........................................ 235
Figure 6.21: Test 1 north end beam vertical displacements – (a) measured, ∆DT10;
(b) adjusted, ∆DT10,y; (c) difference, ∆DT10,y-∆DT10. .............................................. 236
Figure 6.22: Test 1 percent difference between measured and adjusted displacements –
(a) south end, DT9; (b) north end, DT10. ........................................................... 236
Figure 6.23: Test 1 beam vertical displacements versus load block beam chord rotation –
(a) ∆DT9-θb,lb; (b) ∆DT10-θb,lb. ................................................................................ 237
Figure 6.24: Test 1 beam chord rotation – (a) θb from ∆DT9 and ∆DT10; (b) θb,lb from ∆LB,y.
............................................................................................................................. 238
Figure 6.25: Test 1 percent difference between θb and θb,lb. ........................................... 239
Figure 6.26: Test 1 difference between θb and θb,lb......................................................... 239
Figure 6.27: Test 1 beam inclinometer rotations – (a) near beam south end, θRT1; (b) near
beam midspan, θRT2. ............................................................................................ 241
Figure 6.28: Test 1 percent difference between beam inclinometer rotations and beam
chord rotations – (a) RT1; (b) RT2; (c) beam deflected shape. .......................... 242
Figure 6.29: Test 1 load block horizontal displacements – (a) measured, ∆DT3;
(b) adjusted, ∆DT3,x; (c) percent difference. ......................................................... 245
Figure 6.30: Test 1 load block north end vertical displacements – (a) measured, ∆DT4;
(b) adjusted, ∆DT4,y; (c) percent difference. ......................................................... 246
Figure 6.31: Test 1 load block south end vertical displacements – (a) measured, ∆DT5;
(b) adjusted, ∆DT5,y; (c) percent difference. ......................................................... 247
Figure 6.32: Test 1 percent difference between measured and adjusted displacements
versus load block beam chord rotation – (a) DT4; (b) DT5. .............................. 247
Figure 6.33: Test 1 load block displacements versus load block beam chord rotation –
(a) ∆DT4-θb,lb; (b) ∆DT5-θb,lb; (c) ∆DT3,x-θb,lb. ......................................................... 248

xxiv
Figure 6.34: Test 1 load block centroid displacements – (a) x-y displacements;
(b) rotation; (c) x-displacement; (d) y-displacement. .......................................... 249
Figure 6.35: Test 1 load block centroid displacements versus load block beam chord
rotation – (a) x-displacement-θb,lb; (b) y-displacement-θb,lb; (c) rotation-θb,lb..... 250
Figure 6.36: Test 1 reaction block displacements – (a) ∆DT6; (b) ∆DT7; (c) ∆DT8. ........... 252
Figure 6.37: Test 1 reaction block displacements versus load block beam chord rotation –
(a) ∆DT7-θb,lb; (b) ∆DT8-θb,lb; (c) ∆DT6-θb,lb. ........................................................... 253
Figure 6.38: Test 1 reaction block centroid displacements – (a) x-y displacements;
(b) rotation; (c) x-displacement; (d) y-displacement. .......................................... 254
Figure 6.39: Test 1 reaction block centroid displacements versus load block beam chord
rotation – (a) x-displacements; (b) y-displacements; (c) rotation. ...................... 255
Figure 6.40: Test 1 beam-to-reaction-block interface top LVDT displacements –
(a) measured, ∆DT11; (b) adjusted, ∆DT11,x; (c) percent difference. ...................... 257
Figure 6.41: Test 1 beam-to-reaction-block interface middle LVDT displacements –
(a) measured, ∆DT12; (b) adjusted, ∆DT12,x; (c) percent difference. ...................... 258
Figure 6.42: Test 1 beam-to-reaction-block interface bottom LVDT displacements –
(a) measured, ∆DT13; (b) adjusted, ∆DT13,x; (c) percent difference. ...................... 259
Figure 6.43: Test 1 beam-to-reaction-block interface LVDT displacements versus load
block beam chord rotation – (a) ∆DT11-θb,lb; (b) ∆DT13-θb,lb; (c) ∆DT12-θb,lb. ......... 260
Figure 6.44: Test 1 contact depth at beam-to-reaction-block interface – (a) method 1
using DT11, DT12, and DT13; (b) method 2 using RT2, DT11, and DT13; (c)
method 3 using RT2 and DT12; (d) method 4 using θb,lb and DT12; (e) method 5
using θb,lb, DT11, and DT13. .............................................................................. 264
Figure 6.45: Test 1 gap opening at beam-to-reaction-block interface – (a) method 1 using
DT11, DT12, and DT13; (b) method 2 using RT2, DT11, and DT13; (c) method 3
using RT2 and DT12; (d) method 4 using θb,lb and DT12; (e) method 5 using θb,lb,
DT11, and DT13. ................................................................................................ 265
Figure 6.46: Test 1 gap opening at beam-to-reaction-block interface using method 4. . 266
Figure 6.47: Test 1 contact depth at beam-to-reaction-block interface using method 4 –
(a) entire data; (b) 2.0% beam chord rotation cycle; (c) 5.0% beam chord rotation
cycle. ................................................................................................................... 266
Figure 6.48: Test 1 wall test region concrete deformations – (a) ∆DT14; (b) ∆DT15.......... 268

xxv
Figure 6.49: Test 1 wall test region concrete deformations versus load block beam chord
rotation – (a) ∆DT14-θb,lb; (b) ∆DT15-θb,lb. .............................................................. 269
Figure 6.50: Test 1 beam looping reinforcement top longitudinal leg strains –
(a) ε6(1)T-E; (b) ε6(1)T-W; (c) ε6(2)T-E; (d) ε6(2)T-W; (e) ε6(3)T-E; (f) ε6(3)T-W; (g) ε6MT-E;
(h) ε6MT-W. ............................................................................................................ 270
Fig 6.51: Test 1 beam looping reinforcement bottom longitudinal leg strains –
(a) ε6(1)B-E; (b) ε6(1)B-W; (c) ε6(2)B-E; (d) ε6(2)B-W; (e) ε6(3)B-E; (f) ε6(3)B-W; (g) ε6MB-E;
(h) ε6MB-W. ............................................................................................................ 272
Figure 6.52: Test 1 beam looping reinforcement top longitudinal leg strains versus load
block beam chord rotation – (a) ε6(1)T-E-θb,lb; (b) ε6(1)T-W-θb,lb; (c) ε6(2)T-E-θb,lb;
(d) ε6(2)T-W-θb,lb; (e) ε6(3)T-E-θb,lb; (f) ε6(3)T-W-θb,lb; (g) ε6MT-E-θb,lb;
(h) ε6MT-W-θb,lb. ..................................................................................................... 273
Figure 6.53: Test 1 beam looping reinforcement bottom longitudinal leg strains versus
load block beam chord rotation – (a) ε6(1)B-E-θb,lb; (b) ε6(1)B-W-θb,lb; (c) ε6(2)B-E-θb,lb;
(d) ε6(2)B-W-θb,lb; (e) ε6(3)B-E-θb,lb; (f) ε6(3)B-W-θb,lb; (g) ε6MB-E-θb,lb;
(h) ε6MB-W-θb,lb...................................................................................................... 275
Figure 6.54: Test 1 beam looping reinforcement vertical leg strains – (a) ε6SE(E)-E;
(b) ε6SE(E)-W; (c) ε6SE(I)-E; (d) ε6SE(I)-W. ................................................................... 277
Figure 6.55: Test 1 beam looping reinforcement vertical leg strains versus load block
beam chord rotation – (a) ε6SE(E)-E-θb,lb; (b) ε6SE(E)-W-θb,lb; (c) ε6SE(I)-E-θb,lb;
(d) ε6SE(I)-W-θb,lb. ................................................................................................... 278
Figure 6.56: Test 1 beam midspan transverse hoop reinforcement strains – (a) εMH-E;
(b) εMH-W. ............................................................................................................. 278
Figure 6.57: Test 1 beam midspan transverse hoop reinforcement strains versus load
block beam chord rotation – (a) εMH-E-θb,lb; (b) εMH-W-θb,lb. ................................ 279
Figure 6.58: Test 1 No. 3 top hoop support bar strains – (a) ε3THT-(1); (b) ε3THB-(1);
(c) ε3THT-(2); (d) ε3THB-(2). ...................................................................................... 281
Figure 6.59: Test 1 No. 3 bottom hoop support bar strains – (a) ε3BHB-(1); (b) ε3BHT-(1);
(c) ε3BHB-(2); (d) ε3BHT-(2). ...................................................................................... 282
Figure 6.60: Test 1 No. 3 top hoop support bar strains versus load block beam chord
rotation – (a) ε3THT-(1)-θb,lb; (b) ε3THB-(1)-θb,lb; (c) ε3THT-(2)-θb,lb;
(d) ε3THB-(2)-θb,lb. .................................................................................................. 283
Figure 6.61: Test 1 No. 3 bottom hoop support bar strains versus load block beam chord
rotation – (a) ε3BHB-(1)-θb,lb; (b) ε3BHT-(1)-θb,lb; (c) ε3BHB-(2)-θb,lb;
(d) ε3BHT-(2)-θb,lb. .................................................................................................. 284

xxvi
Figure 6.62: Test 1 beam end confinement hoop east leg strains – (a) ε1HB-E; (b) ε2HB-E;
(c) ε3HB-E; (d) ε4HB-E. ............................................................................................ 286
Figure 6.63: Test 1 beam end confinement hoop west leg strains – (a) ε1HB-W; (b) ε2HB-W;
(c) ε3HB-W; (d) ε4HB-W. ........................................................................................... 287
Figure 6.64: Test 1 beam end confinement hoop east leg strains versus load block beam
chord rotation – (a) ε1HB-E-θb,lb; (b) ε2HB-E-θb,lb; (c) ε3HB-E-θb,lb;
(d) ε4HB-E-θb,lb. ..................................................................................................... 288
Figure 6.65: Test 1 beam end confinement hoop west leg strains versus load block beam
chord rotation – (a) ε1HB-W-θb,lb; (b) ε2HB-W-θb,lb; (c) ε3HB-W-θb,lb;
(d) ε4HB-W-θb,lb. ..................................................................................................... 289
Figure 6.66: Photograph of damage on south end of beam – (a) east side; (b) west side.
............................................................................................................................. 290
Figure 6.67: Confinement hoop strains – (a) photograph of strain gauged hoop;
(b) outward bending of the vertical leg. .............................................................. 291
Figure 6.68: Test 1 reaction block corner bar strains – (a) εCBB1E; (b) εCBB1W; (c) εCBB2E;
(d) εCBB2W; (e) εCBB3E; (f) εCBB3W. ......................................................................... 293
Figure 6.69: Test 1 reaction block corner bar strains – (a) εCBM1E; (b) εCBM1W; (c) εCBM3E;
(d) εCBM3W. ........................................................................................................... 294
Figure 6.70: Test 1 reaction block corner bar strains versus load block beam chord
rotation – (a) εCBB1E-θb,lb; (b) εCBB1W-θb,lb; (c) εCBB2E-θb,lb; (d) εCBB2W-θb,lb; (e)
εCBB3E-θb,lb; (f) εCBB3W-θb,lb. .................................................................................. 295
Figure 6.71: Test 1 reaction block corner bar strains versus load block beam chord
rotation – (a) εCBM1E-θb,lb; (b) εCBM1W-θb,lb; (c) εCBM3E-θb,lb; (d) εCBM3W-θb,lb. ....... 296
Figure 6.72: Test 1 reaction block corner bar average strains – (a) test duration; (b) versus
load block beam chord rotation........................................................................... 296
Figure 6.73: Test 1 reaction block hoop strains – (a) ε1THM; (b) ε1MHM; (c) ε1BHE. .......... 298
Figure 6.74: Test 1 reaction block hoop strains versus load block beam chord rotation –
(a) ε1THM-θb,lb; (b) ε1MHM-θb,lb; (c) ε1BHE-θb,lb........................................................ 299
Figure 6.75: Test 1 crack patterns – (a) θb = 0.35%; (b) θb = 0.5%; (c) θb = 0.75%;
(d) θb = 1.0%; (e) θb = 1.5%; (f) θb = 2.0%; (g) θb = 3.0%. ................................ 300
Figure 6.76: Test 2 overall photographs – (a) pre-test undisplaced position;
(b) θb = 3.33%; (c) θb = –3.33%; (d) θb = 6.4%; (e) θb = –6.4%; (f) final post-test
undisplaced position............................................................................................ 304

xxvii
Figure 6.77: Test 2 beam south end photographs – (a) pre-test undisplaced position;
(b) θb = 3.33%; (c) θb = –3.33%; (d) θb = 6.4%; (c) θb = –6.4%; (f) final post-test
undisplaced position............................................................................................ 305
Figure 6.78: Test 2 beam south end damage propagation – positive and negative
rotations............................................................................................................... 306
Figure 6.79: Test 2 grout and gap opening behavior at south end – (a) θb = -0.5%;
(b) θb = -5.0%. ..................................................................................................... 306
Figure 6.80: Test 2 coupling beam shear force versus chord rotation behavior – (a) using
beam displacements; (b) using load block displacements. ................................. 309
Figure 6.81: Test 2 damage to beam ends (upon angle removal after completion of test) –
(a) south end; (b) north end. ................................................................................ 310
Figure 6.82: Test 2 Mb-θb,lb behavior. ............................................................................. 311
Figure 6.83: Test 2 beam post-tensioning strand forces – (a) strand 1; (b) strand 2;
(c) strand 3; (d) strand 4. ..................................................................................... 313
Figure 6.84: Test 2 FLC-θb,lb behavior – (a) strand 1; (b) strand 2; (c) strand 3;
(d) strand 4. ......................................................................................................... 314
Figure 6.85: Test 2 beam post-tensioning force versus chord rotation behavior – (a) using
beam displacements; (b) using load block displacements. ................................. 315
Figure 6.86: Use of additional anchor barrel to prevent strand wire fracture. ................ 316
Figure 6.87: Test 2 south end top angle-to-wall connection strand forces – (a) east strand;
(b) west strand. .................................................................................................... 318
Figure 6.88: Test 2 south end top angle-to-wall connection strand forces versus load
block beam chord rotation – (a) FLC3-θb,lb; (b) FLC4-θb,lb. ................................... 318
Figure 6.89: Test 2 south end seat angle-to-wall connection strand forces – (a) east
strand; (b) west strand. ........................................................................................ 319
Figure 6.90: Test 2 south end seat angle-to-wall connection strand forces versus load
block beam chord rotation – (a) FLC5-θb,lb; (b) FLC6-θb,lb. ................................... 319
Figure 6.91: Test 2 south end total angle-to-wall connection strand forces versus load
block beam chord rotation – (a) top connection; (b) seat connection. ................ 320
Figure 6.92: Test 2 vertical force on wall test region, Fwt – (a) Fwt-test duration;
(b) Fwt-θb,lb........................................................................................................... 321
Figure 6.93: Test 2 south end beam vertical displacement. ............................................ 322

xxviii
Figure 6.94: Test 2 north end beam vertical displacements – (a) measured, ∆DT10;
(b) adjusted, ∆DT10,y; (c) difference, ∆DT10,y-∆DT10. .............................................. 323
Figure 6.95: Test 2 percent difference between measured and adjusted displacements –
(a) south end, DT9; (b) north end, DT10. ........................................................... 323
Figure 6.96: Test 2 beam vertical displacements versus load block beam chord rotation –
(a) ∆DT9-θb,lb; (b) ∆DT10-θb,lb. ................................................................................ 324
Figure 6.97: Test 2 beam chord rotation – (a) θb from ∆DT10 with ∆DT9 taken as zero;
(b) θb,lb from ∆LB,y. ............................................................................................... 325
Figure 6.98: Test 2 percent difference between θb and θb,lb. ........................................... 326
Figure 6.99: Test 2 difference between θb and θb,lb......................................................... 326
Figure 6.100: Test 2 beam inclinometer rotations – (a) near beam south end, θRT1; (b) near
beam midspan, θRT2. ............................................................................................ 327
Figure 6.101: Test 2 difference between beam inclinometer rotations and beam chord
rotations – (a) RT1; (b) RT2; (c) beam deflected shape. .................................... 328
Figure 6.102: Test 2 load block horizontal displacements – (a) measured, ∆DT3;
(b) adjusted, ∆DT3,x; (c) percent difference. ......................................................... 331
Figure 6.103: Test 2 load block north end vertical displacements – (a) measured, ∆DT4;
(b) adjusted, ∆DT4,y; (c) percent difference. ......................................................... 332
Figure 6.104: Test 2 load block south end vertical displacements – (a) measured, ∆DT5;
(b) adjusted, ∆DT5,y; (c) percent difference. ......................................................... 333
Figure 6.105: Test 2 percent difference between measured and adjusted displacements –
(a) DT4; (b) DT5. ................................................................................................ 334
Figure 6.106: Test 2 load block displacements versus load block beam chord rotation –
(a) ∆DT4-θb,lb; (b) ∆DT5-θb,lb; (c) ∆DT3,x-θb,lb. ......................................................... 334
Figure 6.107: Test 2 load block centroid displacements – (a) x-y displacements;
(b) rotation; (c) x-displacements; (d) y-displacements........................................ 335
Figure 6.108: Test 2 load block centroid displacements versus load block beam chord
rotation – (a) x-displacement-θb,lb; (b) y-displacement-θb,lb; (c) rotation-θb,lb..... 336
Figure 6.109: Test 2 reaction block displacements – (a) ΔDT6; (b) ΔDT7; (c) ΔDT8. ......... 338
Figure 6.110: Test 2 reaction block displacements versus load block beam chord rotation
– (a) ∆DT7-θb,lb; (b) ∆DT8-θb,lb; (c) ∆DT6-θb,lb. ........................................................ 339

xxix
Figure 6.111: Test 2 reaction block centroid displacements – (a) x-y displacements;
(b) rotation; (c) x-displacements; (d) y-displacements....................................... 340
Figure 6.112: Test 2 reaction block centroid displacements versus load block beam chord
rotation – (a) x-displacements; (b) y-displacements; (c) rotation. ...................... 341
Figure 6.113: Test 2 beam-to-reaction-block interface top LVDT displacements –
(a) measured, ∆DT11; (b) adjusted, ∆DT11,x; (c) percent difference. ...................... 343
Figure 6.114: Test 2 beam-to-reaction-block interface middle LVDT displacements –
(a) measured, ∆DT12; (b) adjusted, ∆DT12,x; (c) percent difference. ...................... 344
Figure 6.115: Test 2 beam-to-reaction-block interface bottom LVDT displacements –
(a) measured, ∆DT13; (b) adjusted, ∆DT13,x; (c) percent difference. ...................... 345
Figure 6.116: Test 2 beam-to-reaction-block interface LVDT displacements versus load
block beam chord rotation – (a) ∆DT11-θb,lb; (b) ∆DT13-θb,lb; (c) ∆DT12-θb,lb. ......... 346
Figure 6.117: Test 2 contact depth at beam-to-reaction-block interface – (a) method 1
using DT11, DT12, and DT13; (b) method 2 using RT2, DT11, and DT13; (c)
method 3 using RT2 and DT12; (d) method 4 using θb,lb and DT12; (e) method 5
using θb,lb, DT11, and DT13. .............................................................................. 349
Figure 6.118: Test 2 gap opening at beam-to-reaction-block interface – (a) method 1
using DT11, DT12, and DT13; (b) method 2 using RT2, DT11, and DT13; (c)
method 3 using RT2 and DT12; (d) method 4 using θb,lb and DT12; (e) method 5
using θb,lb, DT11, and DT13. .............................................................................. 350
Figure 6.119: Test 2 gap opening at beam-to-reaction-block interface
using method 4. ................................................................................................... 351
Figure 6.120: Test 2 contact depth at beam-to-reaction-block interface using method 4 –
(a) entire data; (b) 2.25% beam chord rotation cycle; (c) 5.0% beam chord
rotation cycle. ...................................................................................................... 351
Figure 6.121: Test 2 wall test region concrete deformations – (a) DT14; (b) DT15. ..... 353
Figure 6.122: Test 2 wall test region concrete deformations versus load block beam chord
rotation – (a) ∆DT14-θb,lb; (b) ∆DT15-θb,lb. .............................................................. 354
Figure 6.123: Test 2 beam looping reinforcement top longitudinal leg strains –
(a) ε6(1)T-E; (b) ε6(1)T-W; (c) ε6(2)T-E; (d) ε6(2)T-W; (e) ε6(3)T-E; (f) ε6(3)T-W; (g) ε6MT-E;
(h) ε6MT-W. ............................................................................................................ 356
Figure 6.124: Test 2 beam looping reinforcement bottom longitudinal leg strains –
(a) ε6(1)B-E; (b) ε6(1)B-W; (c) ε6(2)B-E; (d) ε6(2)B-W; (e) ε6(3)B-E; (f) ε6(3)B-W; (g) ε6MB-E;
(h) ε6MB-W. ............................................................................................................ 357

xxx
Figure 6.125: Test 2 beam looping reinforcement top longitudinal leg strains versus load
block beam chord rotation – (a) ε6(1)T-E-θb,lb; (b) ε6(1)T-W-θb,lb; (c) ε6(2)T-E-θb,lb;
(d) ε6(2)T-W-θb,lb; (e) ε6(3)T-E-θb,lb; (f) ε6(3)T-W-θb,lb; (g) ε6MT-E-θb,lb; (h) ε6MT-W-θb,lb.
............................................................................................................................. 358
Figure 6.126: Test 2 beam looping reinforcement bottom longitudinal leg strains versus
load block beam chord rotation – (a) ε6(1)B-E-θb,lb; (b) ε6(1)B-W-θb,lb; (c) ε6(2)B-E-θb,lb;
(d) ε6(2)B-W-θb,lb; (e) ε6(3)B-E-θb,lb; (f) ε6(3)B-W-θb,lb; (g) ε6MB-E-θb,lb; (h) ε6MB-W-θb,lb.
............................................................................................................................. 360
Figure 6.127: Test 2 beam looping reinforcement vertical leg strains – (a) ε6SE(E)-E;
(b) ε6SE(E)-W; (c) ε6SE(I)-E; (d) ε6SE(I)-W. ................................................................... 362
Figure 6.128: Test 2 beam looping reinforcement vertical leg strains versus load block
beam chord rotation – (a) ε6SE(E)-E-θb,lb; (b) ε6SE(E)-W-θb,lb; (c) ε6SE(I)-E-θb,lb;
(d) ε6SE(I)-W-θb,lb. ................................................................................................... 363
Figure 6.129: Test 2 beam midspan transverse hoop reinforcement strains – (a) εMH-E;
(b) εMH-W. ............................................................................................................. 363
Figure 6.130: Test 2 beam midspan transverse hoop reinforcement strains versus load
block beam chord rotation – (a) εMH-E-θb,lb; (b) εMH-W-θb,lb. ................................ 364
Figure 6.131: Test 2 No. 3 top hoop support bar strains– (a) ε3THT-(1); (b) ε3THB-(1);
(c) ε3THT-(2); (d) ε3THB-(2). ...................................................................................... 365
Figure 6.132: Test 2 No. 3 bottom hoop support bar strains – (a) ε3BHB-(1); (b) ε3BHT-(1);
(c) ε3BHB-(2); (d) ε3BHT-(2). ...................................................................................... 366
Figure 6.133: Test 2 No. 3 top hoop support bar strains versus load block beam chord
rotation – (a) ε3THT-(1)-θb,lb; (b) ε3THB-(1)-θb,lb; (c) ε3THT-(2)-θb,lb; (d) ε3THB-(2)-θb,lb. . 367
Figure 6.134: Test 2 No. 3 bottom hoop support bar strains versus load block beam chord
rotation – (a) ε3BHB-(1)-θb,lb; (b) ε3BHT-(1)-θb,lb; (c) ε3BHB-(2)-θb,lb; (d) ε3BHT-(2)-θb,lb. . 368
Figure 6.135: Test 2 beam end confinement hoop east leg strains – (a) ε1HB-E; (b) ε2HB-E;
(c) ε3HB-E; (d) ε4HB-E. ............................................................................................ 369
Figure 6.136: Test 2 beam end confinement hoop west leg strains – (a) ε1HB-W; (b) ε2HB-W;
(c) ε3HB-W; (d) ε4HB-W. ........................................................................................... 370
Figure 6.137: Test 2 beam end confinement hoop east leg strains versus load block beam
chord rotation – (a) ε1HBE-θb,lb; (b) ε2HBE-θb,lb; (c) ε3HBE-θb,lb; (d) ε4HBE-θb,lb. ...... 371
Figure 6.138: Test 2 beam end hoop west leg confinement strains versus load block beam
chord rotation – (a) ε1HBW-θb,lb; (b) ε2HBW-θb,lb; (c) ε3HBW-θb,lb; (d) ε4HBW-θb,lb. .... 372

xxxi
Figure 6.139: Test 2 crack patterns – (a) θb = 0.5%; (b) θb = 0.75%; (c) θb = 1.0%;
(d) θb = 1.5%; (e) θb = 2.25%; (f) θb = 3.33%; (g) θb = 5.0%; (h) θb = 6.4%. .... 373
Figure 6.140: Test 3 overall photographs – (a) pre-test undisplaced position;
(b) θb = 3.33%; (c) θb = 3.33%; (d) θb = 5.0%; (e) θb = –5.0%; (f) final post-test
undisplaced position............................................................................................ 378
Figure 6.141: Test 3 beam south end photographs – (a) pre-test undisplaced position;
(b) θb = 3.33%; (c) θb = –3.33%; (d) θb = 5.0%; (c) θb = –5.0%; (f) final post-test
undisplaced position............................................................................................ 379
Figure 6.142: Test 3 beam south end damage propagation – positive and negative
rotations............................................................................................................... 380
Figure 6.143: Test 3 angle strips at south top connection............................................... 380
Figure 6.144: Test 3 coupling beam shear force versus chord rotation behavior –
(a) using beam displacements; (b) using load block displacements. .................. 382
Figure 6.145: Test 3 Mb-θb behavior. .............................................................................. 383
Figure 6.146: Test 3 beam post-tensioning strand forces – (a) strand 1; (b) strand 2;
(c) strand 3. ......................................................................................................... 385
Figure 6.147: Test 3 FLC-θb behavior – (a) strand 1; (b) strand 2; strand 3. ................... 386
Figure 6.148: Test 3 beam post-tensioning force versus chord rotation behavior –
(a) using beam displacements; (b) using load block displacements. .................. 387
Figure 6.149: Test 3 south end top angle-to-wall connection strand forces – (a) east
strand; (b) west strand. ........................................................................................ 389
Figure 6.150: Test 3 south end top angle-to-wall connection strand forces versus beam
chord rotation – (a) FLC3-θb; (b) FLC4-θb.............................................................. 390
Figure 6.151: Test 3 south end seat angle-to-wall connection strand forces – (a) east
strand; (b) west strand. ........................................................................................ 390
Figure 6.152: Test 3 south end seat angle-to-wall connection strand forces versus beam
chord rotation – (a) FLC5-θb; (b) FLC6-θb.............................................................. 391
Figure 6.153: Test 3 south end total angle-to-wall connection strand forces versus beam
chord rotation– (a) top connection; (b) seat connection. .................................... 391
Figure 6.154: Test 3 vertical force on wall test region, Fwt – (a) Fwt-test duration;
(b) Fwt-θb ............................................................................................................. 392
Figure 6.155: Test 3 south end beam vertical displacements – (a) measured, ∆DT9;
(b) adjusted, ∆DT9,y; (c) difference, ∆DT9,y-∆DT9. .................................................. 394
xxxii
Figure 6.156: Test 3 north end beam vertical displacements – (a) measured, ∆DT10;
(b) adjusted, ∆DT10,y; (c) difference, ∆DT10,y-∆DT10. .............................................. 395
Figure 6.157: Test 3 percent difference between measured and adjusted displacements
versus beam chord rotation – (a) south end, DT9; (b) north end, DT10............. 395
Figure 6.158: Test 3 beam vertical displacements versus beam chord rotation –
(a) ∆DT9-θb; (b) ∆DT10-θb. ..................................................................................... 396
Figure 6.159: Test 3 beam chord rotation – (a) θb from ∆DT9 and ∆DT10; (b) θb,lb from ∆LB,y.
............................................................................................................................. 397
Figure 6.160: Test 3 percent difference between θb and θb,lb. ......................................... 397
Figure 6.161: Test 3 difference between θb and θb,lb....................................................... 398
Figure 6.162: Test 3 beam inclinometer rotations – (a) near beam south end, θRT1;
(b) near beam midspan, θRT2. .............................................................................. 399
Figure 6.163: Test 3 difference between beam inclinometer rotations and beam chord
rotations – (a) RT1; (b) RT2; (c) beam deflected shape. .................................... 400
Figure 6.164: Test 3 load block horizontal displacements – (a) measured, ∆DT3;
(b) adjusted, ∆DT3,x; (c) percent difference. ......................................................... 403
Figure 6.165: Test 3 load block north end vertical displacements – (a) measured, ∆DT4;
(b) adjusted, ∆DT4,y; (c) percent difference. ......................................................... 404
Figure 6.166: Test 3 load block south end vertical displacements – (a) measured, ∆DT5;
(b) adjusted, ∆DT5,y; (c) percent difference. ......................................................... 405
Figure 6.167: Test 3 percent difference between measured and adjusted displacements –
(a) DT4; (b) DT5. ................................................................................................ 405
Figure 6.168: Test 3 load block displacements versus beam chord rotation – (a) ∆DT4-θb;
(b) ∆DT5-θb; (c) ∆DT3,x-θb. ..................................................................................... 406
Figure 6.169: Test 3 load block centroid displacements – (a) x-y displacements;
(b) rotation; (c) x-displacements; (d) y-displacements........................................ 407
Figure 6.170: Test 3 load block centroid displacements versus beam chord rotation –
(a) x-displacement-θb; (b) y-displacement-θb; (c) rotation-θb. ............................ 408
Figure 6.171: Test 3 reaction block displacements – (a) ΔDT6; (b) ΔDT7; (c) ΔDT8. ......... 410
Figure 6.172: Test 3 reaction block displacements versus beam chord rotation –
(a) ∆DT7-θb; (b) ∆DT8-θb; (c) ∆DT6-θb. ................................................................... 411

xxxiii
Figure 6.173: Test 3 reaction block centroid displacements – (a) x-y displacements;
(b) rotation; (c) x-displacements; (d) y-displacements........................................ 412
Figure 6.174: Test 3 reaction block centroid displacements versus beam chord rotation –
(a) x-displacements; (b) y-displacements; (c) rotation. ....................................... 413
Figure 6.175: Test 3 beam-to-reaction-block interface top LVDT displacements –
(a) measured, ∆DT11; (b) adjusted, ∆DT11,x; (c) percent difference. ...................... 415
Figure 6.176: Test 3 beam-to-reaction-block interface middle LVDT displacements –
(a) measured, ∆DT12; (b) adjusted, ∆DT12,x; (c) percent difference. ...................... 416
Figure 6.177: Test 3 beam-to-reaction-block interface bottom LVDT displacements –
(a) measured, ∆DT13; (b) adjusted, ∆DT13,x; (c) percent difference. ...................... 417
Figure 6.178: Test 3 beam-to-reaction-block interface LVDT displacements versus beam
chord rotation – (a) ∆DT11-θb; (b) ∆DT13-θb; (c) ∆DT12-θb. ..................................... 418
Figure 6.179: Test 3 contact depth at beam-to-reaction-block interface – (a) method 1
using DT11, DT12, and DT13; (b) method 2 using RT1, DT11, and DT13; (c)
method 3 using RT1 and DT12; (d) method 4 using θb and DT12; (e) method 5
using θb, DT11, and DT13. ................................................................................. 421
Figure 6.180: Test 3 gap opening at beam-to-reaction-block interface – (a) method 1
using DT11, DT12, and DT13; (b) method 2 using RT1, DT11, and DT13; (c)
method 3 using RT1 and DT12; (d) method 4 using θb and DT12; (e) method 5
using θb, DT11, and DT13. ................................................................................. 422
Figure 6.181: Test 3 gap opening at beam-to-reaction-block interface
using method 4. ................................................................................................... 423
Figure 6.182: Test 3 contact depth at beam-to-reaction-block interface using method 4 –
(a) entire data; (b) 2.25% beam chord rotation cycle; (c) 5.0% beam chord
rotation cycle. ...................................................................................................... 423
Figure 6.183: Test 3 wall test region concrete deformations – (a) DT14; (b) DT15. ..... 425
Figure 6.184: Test 3 wall test region concrete deformations versus beam chord rotation –
(a) ∆DT14-θb; (b) ∆DT15-θb. .................................................................................... 425
Figure 6.185: Test 3 beam looping reinforcement top longitudinal leg strains –
(a) ε6(1)T-E; (b) ε6(1)T-W; (c) ε6(2)T-E; (d) ε6(2)T-W; (e) ε6(3)T-E; (f) ε6(3)T-W; (g) ε6MT-E;
(h) ε6MT-W. ............................................................................................................ 427
Figure 6.186: Test 3 beam looping reinforcement bottom longitudinal leg strains –
(a) ε6(1)B-E; (b) ε6(1)B-W; (c) ε6(2)B-E; (d) ε6(2)B-W; (e) ε6(3)B-E; (f) ε6(3)B-W; (g) ε6MB-E;
(h) ε6MB-W. ............................................................................................................ 428

xxxiv
Figure 6.187: Test 3 beam looping reinforcement top longitudinal leg strains versus beam
chord rotation – (a) ε6(1)T-E-θb; (b) ε6(1)T-W-θb; (c) ε6(2)T-E-θb; (d) ε6(2)T-W-θb;
(e) ε6(3)T-E-θb; (f) ε6(3)T-W-θb; (g) ε6MT-E-θb; (h) ε6MT-W-θb. ..................................... 430
Figure 6.188: Test 3 beam looping reinforcement bottom longitudinal leg strains versus
beam chord rotation – (a) ε6(1)B-E-θb; (b) ε6(1)B-W-θb; (c) ε6(2)B-E-θb; (d) ε6(2)B-W-θb;
(e) ε6(3)B-E-θb; (f) ε6(3)B-W-θb; (g) ε6MB-E-θb; (h) ε6MB-W-θb. ..................................... 432
Figure 6.189: Test 3 beam looping reinforcement vertical leg strains – (a) ε6SE(E)-E;
(b) ε6SE(E)-W; (c) ε6SE(I)-E; (d) ε6SE(I)-W. ................................................................... 434
Figure 6.190: Test 3 beam looping reinforcement vertical leg strains versus beam chord
rotation – (a) ε6SE(E)-E-θb; (b) ε6SE(E)-W-θb; (c) ε6SE(I)-E-θb; (d) ε6SE(I)-W-θb. ............. 435
Figure 6.191: Test 3 beam midspan transverse hoop reinforcement strains – (a) εMH-E;
(b) εMH-W. ............................................................................................................. 435
Figure 6.192: Test 3 beam midspan transverse hoop reinforcement strains versus beam
chord rotation – (a) εMH-E-θb; (b) εMH-W-θb. ......................................................... 436
Figure 6.193: Test 3 No. 3 top hoop support bar strains – (a) ε3THT-(1); (b) ε3THB-(1);
(c) ε3THT-(2); (d) ε3THB-(2). ...................................................................................... 437
Figure 6.194: Test 3 No. 3 bottom hoop support bar strains – (a) ε3BHB-(1); (b) ε3BHT-(1);
(c) ε3BHB-(2); (d) ε3BHT-(2). ...................................................................................... 438
Figure 6.195: Test 3 No. 3 top hoop support bar strains versus beam chord rotation –
(a) ε3THT-(1)-θb; (b) ε3THB-(1)-θb; (c) ε3THT-(2)-θb; (d) ε3THB-(2)-θb. ............................. 439
Figure 6.196: Test 3 No. 3 bottom hoop support bar strains versus beam chord rotation –
(a) ε3BHB-(1)-θb; (b) ε3BHT-(1)-θb; (c) ε3BHB-(2)-θb; (d) ε3BHT-(2)-θb. ............................ 440
Figure 6.197: Test 3 beam end confinement hoop east leg strains – (a) ε1HBE; (b) ε2HBE;
(c) ε3HBE; (d) ε4HBE. .............................................................................................. 441
Figure 6.198: Test 3 beam end confinement hoop west leg strains – (a) ε1HBW; (b) ε2HBW;
(c) ε3HBW; (d) ε4HBW. ............................................................................................. 442
Figure 6.199: Test 3 beam end confinement hoop east leg strains versus beam chord
rotation – (a) ε1HBE-θb; (b) ε2HBE-θb; (c) ε3HBE-θb; (d) ε4HBE-θb. ........................... 443
Figure 6.200: Test 3 beam end confinement hoop west leg strains versus beam chord
rotation – (a) ε1HBW-θb; (b) ε2HBW-θb; (c) ε3HBW-θb; (d) ε4HBW-θb. ......................... 444
Figure 6.201: Test 3 crack patterns – (a) θb = 0.125%; (b) θb = 0.175%; (c) θb = 0.25%;
(d) θb = 0.35%; (e) θb = 0.5%; (f) θb = 0.75%; (g) θb = 1.0%; (h) θb = 1.5%;
(i) θb = 2.25%; (j) θb = 3.33%; (k) θb = 5.0%...................................................... 445

xxxv
Figure 6.202: Test 4 overall photographs – (a) pre-test undisplaced position;
(b) θb = 3.33%; (c) θb = –3.33%; (d) final post-test undisplaced position. ......... 450
Figure 6.203: Test 4 beam south end photographs – (a) pre-test undisplaced position;
(b) θb = 3.33%; (c) θb = –3.33%; (d) final post-test undisplaced position. ......... 451
Figure 6.204: Test 4 beam south end damage propagation – positive and negative
rotations............................................................................................................... 452
Figure 6.205: Test 4 angle-to-wall connection plates. .................................................... 452
Figure 6.206: Test 4 wall test region patch. .................................................................... 453
Figure 6.207: Test 4 coupling beam shear force versus chord rotation behavior – (a) using
beam displacements; (b) using load block displacements. ................................. 455
Figure 6.208: Test 4 Mb-θb behavior. .............................................................................. 456
Figure 6.209: Test 4 beam post-tensioning strand forces – (a) strand 1; (b) strand 2;
(c) strand 3. ......................................................................................................... 458
Figure 6.210: Test 4 FLC-θb behavior – (a) strand 1; (b) strand 2; (c) strand 3. .............. 459
Figure 6.211: Test 4 beam post-tensioning force versus chord rotation behavior –
(a) using beam displacements; (b) using load block displacements. .................. 460
Figure 6.212: Test 4 south end top angle-to-wall connection strand forces – (a) east
strand; (b) west strand. ........................................................................................ 462
Figure 6.213: Test 4 south end top angle-to-wall connection strand forces versus beam
chord rotation – (a) FLC3-θb; (b) FLC4-θb.............................................................. 462
Figure 6.214: Test 4 south end seat angle-to-wall connection strand forces – (a) east
strand; (b) west strand. ........................................................................................ 463
Figure 6.215: Test 4 south end seat angle-to-wall connection strand forces versus beam
chord rotation – (a) FLC5-θb; (b) FLC6-θb.............................................................. 463
Figure 6.216: Test 4 south end total angle-to-wall connection strand forces versus beam
chord rotation – (a) top connection; (b) seat connection. ................................... 464
Figure 6.217: Test 4 vertical force on the wall test region, Fwt – (a) Fwt-test duration;
(b) Fwt-θb ............................................................................................................. 465
Figure 6.218: Test 4 south end beam vertical displacements – (a) measured, ∆DT9;
(b) adjusted, ∆DT9,y; (c) difference, ∆DT9,y-∆DT9. .................................................. 467
Figure 6.219: Test 4 north end beam vertical displacements – (a) measured, ∆DT10;
(b) adjusted, ∆DT10,y; (c) difference, ∆DT10,y-∆DT10. .............................................. 468
xxxvi
Figure 6.220: Test 4 percent difference between measured and adjusted displacements –
(a) south end, DT9; (b) north end, DT10. ........................................................... 468
Figure 6.221: Test 4 beam vertical displacements versus beam chord rotation –
(a) ∆DT9-θb; (b) ∆DT10-θb. ..................................................................................... 469
Figure 6.222: Test 4 beam chord rotation – (a) θb from ∆DT9 and ∆DT10;
(b) θb,lb from ∆LB,y. ............................................................................................... 470
Figure 6.223: Test 4 percent difference between θb and θb,lb. ......................................... 470
Figure 6.224: Test 4 difference between θb and θb,lb....................................................... 471
Figure 6.225: Test 4 beam inclinometer rotations – (a) near beam south end, θRT1; (b) near
beam midspan, θRT2. ............................................................................................ 472
Figure 6.226: Test 4 difference between beam inclinometer rotations and beam chord
rotations – (a) RT1; (b) RT2; (c) beam deflected shape. .................................... 473
Figure 6.227: Test 4 load block horizontal displacements – (a) measured, ∆DT3;
(b) adjusted, ∆DT3,x; (c) percent difference. ......................................................... 476
Figure 6.228: Test 4 load block north end vertical displacements – (a) measured, ∆DT4;
(b) adjusted, ∆DT4,y; (c) percent difference. ......................................................... 477
Figure 6.229: Test 4 load block south end vertical displacements – (a) measured, ∆DT5;
(b) adjusted, ∆DT5,y; (c) percent difference. ......................................................... 478
Figure 6.230: Test 4 percent difference between measured and adjusted displacements –
(a) DT4; (b) DT5. ................................................................................................ 478
Figure 6.231: Test 4 load block displacements versus beam chord rotation – (a) ∆DT4-θb;
(b) ∆DT5-θb; (c) ∆DT3,x-θb. ..................................................................................... 479
Figure 6.232: Test 4 load block centroid displacements – (a) x-y displacements;
(b) rotation; (c) x-displacements; (d) y-displacements........................................ 480
Figure 6.233: Test 4 load block centroid displacements versus beam chord rotation –
(a) x-displacement-θb; (b) y-displacement-θb; (c) rotation-θb. ............................ 481
Figure 6.234: Test 4 reaction block displacements – (a) ΔDT6; (b) ΔDT7; (c) ΔDT8. ......... 483
Figure 6.235: Test 4 reaction block displacements versus beam chord rotation –
(a) ∆DT7-θb; (b) ∆DT8-θb; (c) ∆DT6-θb. ................................................................... 484
Figure 6.236: Test 4 reaction block centroid displacements – (a) x-y displacements;
(b) rotation; (c) x-displacements; (d) y-displacements........................................ 485

xxxvii
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1
Weldon bd042010d vol1

More Related Content

What's hot

05 ec2 ws_arrieta_detailing
05 ec2 ws_arrieta_detailing05 ec2 ws_arrieta_detailing
05 ec2 ws_arrieta_detailingluantvconst
 
Guide to the design and construction of reinforced concrete flat slabs (1)
Guide to the design and construction of reinforced concrete flat slabs (1)Guide to the design and construction of reinforced concrete flat slabs (1)
Guide to the design and construction of reinforced concrete flat slabs (1)abbdou001
 
Hollow block and ribbed slabs
Hollow block and ribbed slabsHollow block and ribbed slabs
Hollow block and ribbed slabsMohamed Mohsen
 
Rcc design and detailing based on revised seismic codes
Rcc design and detailing based on revised seismic codesRcc design and detailing based on revised seismic codes
Rcc design and detailing based on revised seismic codesWij Sangeeta
 
Eurocode 2 design of composite concrete
Eurocode 2 design of composite concreteEurocode 2 design of composite concrete
Eurocode 2 design of composite concreteJo Gijbels
 
Design of concrete structure 2 project-Loay Qabaha &Basel Salame
Design of concrete structure 2 project-Loay Qabaha &Basel SalameDesign of concrete structure 2 project-Loay Qabaha &Basel Salame
Design of concrete structure 2 project-Loay Qabaha &Basel SalameLoay Qabaha
 
Design of flat plate slab and its Punching Shear Reinf.
Design of flat plate slab and its Punching Shear Reinf.Design of flat plate slab and its Punching Shear Reinf.
Design of flat plate slab and its Punching Shear Reinf.MD.MAHBUB UL ALAM
 
Design of two way slabs(d.d.m.)
Design of two way slabs(d.d.m.)Design of two way slabs(d.d.m.)
Design of two way slabs(d.d.m.)Malika khalil
 
Bar bending schedule(by akhil)
Bar bending schedule(by akhil)Bar bending schedule(by akhil)
Bar bending schedule(by akhil)Lamdade Akhil
 
Mathcad 17-slab design
Mathcad   17-slab designMathcad   17-slab design
Mathcad 17-slab designmichael mutitu
 
Rcs1-chapter3-constitutive-law
Rcs1-chapter3-constitutive-lawRcs1-chapter3-constitutive-law
Rcs1-chapter3-constitutive-lawMarwan Sadek
 
Ahsanullah university ppt 1
Ahsanullah university  ppt 1Ahsanullah university  ppt 1
Ahsanullah university ppt 1Saranireza
 

What's hot (20)

Design and analasys of a g+2 residential building
Design and analasys of a g+2 residential building Design and analasys of a g+2 residential building
Design and analasys of a g+2 residential building
 
05 ec2 ws_arrieta_detailing
05 ec2 ws_arrieta_detailing05 ec2 ws_arrieta_detailing
05 ec2 ws_arrieta_detailing
 
Guide to the design and construction of reinforced concrete flat slabs (1)
Guide to the design and construction of reinforced concrete flat slabs (1)Guide to the design and construction of reinforced concrete flat slabs (1)
Guide to the design and construction of reinforced concrete flat slabs (1)
 
Hollow block and ribbed slabs
Hollow block and ribbed slabsHollow block and ribbed slabs
Hollow block and ribbed slabs
 
Rcc design and detailing based on revised seismic codes
Rcc design and detailing based on revised seismic codesRcc design and detailing based on revised seismic codes
Rcc design and detailing based on revised seismic codes
 
Eurocode 2 design of composite concrete
Eurocode 2 design of composite concreteEurocode 2 design of composite concrete
Eurocode 2 design of composite concrete
 
Design of concrete structure 2 project-Loay Qabaha &Basel Salame
Design of concrete structure 2 project-Loay Qabaha &Basel SalameDesign of concrete structure 2 project-Loay Qabaha &Basel Salame
Design of concrete structure 2 project-Loay Qabaha &Basel Salame
 
Two way slab
Two way slabTwo way slab
Two way slab
 
Design of flat plate slab and its Punching Shear Reinf.
Design of flat plate slab and its Punching Shear Reinf.Design of flat plate slab and its Punching Shear Reinf.
Design of flat plate slab and its Punching Shear Reinf.
 
Design of two way slabs(d.d.m.)
Design of two way slabs(d.d.m.)Design of two way slabs(d.d.m.)
Design of two way slabs(d.d.m.)
 
H slabs
H slabsH slabs
H slabs
 
5525
55255525
5525
 
Rcc Beams
Rcc BeamsRcc Beams
Rcc Beams
 
Bar bending schedule(by akhil)
Bar bending schedule(by akhil)Bar bending schedule(by akhil)
Bar bending schedule(by akhil)
 
Rc design ii
Rc design iiRc design ii
Rc design ii
 
Mathcad 17-slab design
Mathcad   17-slab designMathcad   17-slab design
Mathcad 17-slab design
 
Design of One-Way Slab
Design of One-Way SlabDesign of One-Way Slab
Design of One-Way Slab
 
ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8
ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8 ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8
ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8
 
Rcs1-chapter3-constitutive-law
Rcs1-chapter3-constitutive-lawRcs1-chapter3-constitutive-law
Rcs1-chapter3-constitutive-law
 
Ahsanullah university ppt 1
Ahsanullah university  ppt 1Ahsanullah university  ppt 1
Ahsanullah university ppt 1
 

Viewers also liked

Bs 8110 97 tieu chuan anh quoc kc btct - ts ng trung hoa
Bs 8110   97 tieu chuan anh quoc kc btct - ts ng trung hoaBs 8110   97 tieu chuan anh quoc kc btct - ts ng trung hoa
Bs 8110 97 tieu chuan anh quoc kc btct - ts ng trung hoaLuan Truong Van
 
Chronological construction sequence effects on reinforced concrete and steel ...
Chronological construction sequence effects on reinforced concrete and steel ...Chronological construction sequence effects on reinforced concrete and steel ...
Chronological construction sequence effects on reinforced concrete and steel ...Yousuf Dinar
 
Worked example extract_flat_slabs
Worked example extract_flat_slabsWorked example extract_flat_slabs
Worked example extract_flat_slabsLuan Truong Van
 
Variation of deflection of steel high rise structure due to p- delta effect c...
Variation of deflection of steel high rise structure due to p- delta effect c...Variation of deflection of steel high rise structure due to p- delta effect c...
Variation of deflection of steel high rise structure due to p- delta effect c...Yousuf Dinar
 
P delta effect in reinforced concrete structures of rigid joint
P  delta effect in reinforced concrete structures of rigid jointP  delta effect in reinforced concrete structures of rigid joint
P delta effect in reinforced concrete structures of rigid jointYousuf Dinar
 
Performance based analysis of rc building consisting shear wall and varying i...
Performance based analysis of rc building consisting shear wall and varying i...Performance based analysis of rc building consisting shear wall and varying i...
Performance based analysis of rc building consisting shear wall and varying i...Yousuf Dinar
 
Studio max object tutorial 01 making of sofa
Studio max object tutorial 01 making of sofaStudio max object tutorial 01 making of sofa
Studio max object tutorial 01 making of sofaYousuf Dinar
 
Design.guide.post tensioned.concrete.floors-cps
Design.guide.post tensioned.concrete.floors-cpsDesign.guide.post tensioned.concrete.floors-cps
Design.guide.post tensioned.concrete.floors-cpsLuan Truong Van
 
Investigation on performance based non linear pushover analysis of flat plate...
Investigation on performance based non linear pushover analysis of flat plate...Investigation on performance based non linear pushover analysis of flat plate...
Investigation on performance based non linear pushover analysis of flat plate...Yousuf Dinar
 
Analysis and design of 15 storey office and
Analysis and design of 15 storey office andAnalysis and design of 15 storey office and
Analysis and design of 15 storey office andMasroor Alam
 

Viewers also liked (20)

SEISMIC ASSESSMENT OF WATER TOWER - MODEL
SEISMIC ASSESSMENT OF WATER TOWER - MODELSEISMIC ASSESSMENT OF WATER TOWER - MODEL
SEISMIC ASSESSMENT OF WATER TOWER - MODEL
 
Bs 8110 97 tieu chuan anh quoc kc btct - ts ng trung hoa
Bs 8110   97 tieu chuan anh quoc kc btct - ts ng trung hoaBs 8110   97 tieu chuan anh quoc kc btct - ts ng trung hoa
Bs 8110 97 tieu chuan anh quoc kc btct - ts ng trung hoa
 
Chronological construction sequence effects on reinforced concrete and steel ...
Chronological construction sequence effects on reinforced concrete and steel ...Chronological construction sequence effects on reinforced concrete and steel ...
Chronological construction sequence effects on reinforced concrete and steel ...
 
Worked example extract_flat_slabs
Worked example extract_flat_slabsWorked example extract_flat_slabs
Worked example extract_flat_slabs
 
Variation of deflection of steel high rise structure due to p- delta effect c...
Variation of deflection of steel high rise structure due to p- delta effect c...Variation of deflection of steel high rise structure due to p- delta effect c...
Variation of deflection of steel high rise structure due to p- delta effect c...
 
Bs882
Bs882Bs882
Bs882
 
Bsen 934 p2
Bsen 934 p2Bsen 934 p2
Bsen 934 p2
 
P delta effect in reinforced concrete structures of rigid joint
P  delta effect in reinforced concrete structures of rigid jointP  delta effect in reinforced concrete structures of rigid joint
P delta effect in reinforced concrete structures of rigid joint
 
Bsen 934 p6
Bsen 934 p6Bsen 934 p6
Bsen 934 p6
 
Performance based analysis of rc building consisting shear wall and varying i...
Performance based analysis of rc building consisting shear wall and varying i...Performance based analysis of rc building consisting shear wall and varying i...
Performance based analysis of rc building consisting shear wall and varying i...
 
Etabs modelling parameters
Etabs modelling parametersEtabs modelling parameters
Etabs modelling parameters
 
Studio max object tutorial 01 making of sofa
Studio max object tutorial 01 making of sofaStudio max object tutorial 01 making of sofa
Studio max object tutorial 01 making of sofa
 
Design.guide.post tensioned.concrete.floors-cps
Design.guide.post tensioned.concrete.floors-cpsDesign.guide.post tensioned.concrete.floors-cps
Design.guide.post tensioned.concrete.floors-cps
 
Loadings snow - wind
Loadings   snow - windLoadings   snow - wind
Loadings snow - wind
 
Investigation on performance based non linear pushover analysis of flat plate...
Investigation on performance based non linear pushover analysis of flat plate...Investigation on performance based non linear pushover analysis of flat plate...
Investigation on performance based non linear pushover analysis of flat plate...
 
SAMPLE OF MY PROJECTS
SAMPLE OF MY PROJECTSSAMPLE OF MY PROJECTS
SAMPLE OF MY PROJECTS
 
2nd presentation
2nd presentation2nd presentation
2nd presentation
 
Wind load on pv system
Wind load on pv systemWind load on pv system
Wind load on pv system
 
Analysis and design of 15 storey office and
Analysis and design of 15 storey office andAnalysis and design of 15 storey office and
Analysis and design of 15 storey office and
 
Ground water
Ground waterGround water
Ground water
 

Similar to Weldon bd042010d vol1

Structural performance of prefabricated cage reinforced concrete composite st...
Structural performance of prefabricated cage reinforced concrete composite st...Structural performance of prefabricated cage reinforced concrete composite st...
Structural performance of prefabricated cage reinforced concrete composite st...IRJET Journal
 
IRJET- A Review on Finite Element Modelling and Numerical Study of Precast St...
IRJET- A Review on Finite Element Modelling and Numerical Study of Precast St...IRJET- A Review on Finite Element Modelling and Numerical Study of Precast St...
IRJET- A Review on Finite Element Modelling and Numerical Study of Precast St...IRJET Journal
 
Finite Element Simulation of Steel Plate Concrete Beams subjected to Shear
Finite Element Simulation of Steel Plate Concrete Beams subjected to ShearFinite Element Simulation of Steel Plate Concrete Beams subjected to Shear
Finite Element Simulation of Steel Plate Concrete Beams subjected to ShearIJERA Editor
 
Finite Element Simulation of Steel Plate Concrete Beams subjected to Shear
Finite Element Simulation of Steel Plate Concrete Beams subjected to ShearFinite Element Simulation of Steel Plate Concrete Beams subjected to Shear
Finite Element Simulation of Steel Plate Concrete Beams subjected to ShearIJERA Editor
 
IRJET- Comparative Study on the Seismic Behaviour of RCC and Steel-Concrete C...
IRJET- Comparative Study on the Seismic Behaviour of RCC and Steel-Concrete C...IRJET- Comparative Study on the Seismic Behaviour of RCC and Steel-Concrete C...
IRJET- Comparative Study on the Seismic Behaviour of RCC and Steel-Concrete C...IRJET Journal
 
FINITE ELEMENT ANALYSIS OF STEEL BEAM-CFST COLUMN JOINTS CONFINED WITH CFRP B...
FINITE ELEMENT ANALYSIS OF STEEL BEAM-CFST COLUMN JOINTS CONFINED WITH CFRP B...FINITE ELEMENT ANALYSIS OF STEEL BEAM-CFST COLUMN JOINTS CONFINED WITH CFRP B...
FINITE ELEMENT ANALYSIS OF STEEL BEAM-CFST COLUMN JOINTS CONFINED WITH CFRP B...IRJET Journal
 
IRJET- Behaviour of Castellated Beam with Coupled Stiffener
IRJET-  	  Behaviour of Castellated Beam with Coupled StiffenerIRJET-  	  Behaviour of Castellated Beam with Coupled Stiffener
IRJET- Behaviour of Castellated Beam with Coupled StiffenerIRJET Journal
 
Analysis and Design of Composite Beams with Composite Deck Slab.docx
Analysis and Design of Composite Beams with Composite Deck Slab.docxAnalysis and Design of Composite Beams with Composite Deck Slab.docx
Analysis and Design of Composite Beams with Composite Deck Slab.docxAdnan Lazem
 
IRJET- Comparative Analysis of RCC Structure and Tube-in-Tube Structure
IRJET-  	  Comparative Analysis of RCC Structure and Tube-in-Tube StructureIRJET-  	  Comparative Analysis of RCC Structure and Tube-in-Tube Structure
IRJET- Comparative Analysis of RCC Structure and Tube-in-Tube StructureIRJET Journal
 
COMPARATIVE STUDY ON ANALYSIS OF STEEL-CONCRETE COMPOSITE STRUCTURE WITH DIFF...
COMPARATIVE STUDY ON ANALYSIS OF STEEL-CONCRETE COMPOSITE STRUCTURE WITH DIFF...COMPARATIVE STUDY ON ANALYSIS OF STEEL-CONCRETE COMPOSITE STRUCTURE WITH DIFF...
COMPARATIVE STUDY ON ANALYSIS OF STEEL-CONCRETE COMPOSITE STRUCTURE WITH DIFF...IRJET Journal
 
Finite element analysis of innovative solutions of precast concrete beamcolum...
Finite element analysis of innovative solutions of precast concrete beamcolum...Finite element analysis of innovative solutions of precast concrete beamcolum...
Finite element analysis of innovative solutions of precast concrete beamcolum...Franco Bontempi
 
A Parametric Finite Element Study on Concentrated Load Distribution in Corrug...
A Parametric Finite Element Study on Concentrated Load Distribution in Corrug...A Parametric Finite Element Study on Concentrated Load Distribution in Corrug...
A Parametric Finite Element Study on Concentrated Load Distribution in Corrug...IRJET Journal
 
Stiffening and Strengthening of Deteriorated Cellular Beams by Local Post- Te...
Stiffening and Strengthening of Deteriorated Cellular Beams by Local Post- Te...Stiffening and Strengthening of Deteriorated Cellular Beams by Local Post- Te...
Stiffening and Strengthening of Deteriorated Cellular Beams by Local Post- Te...IRJET Journal
 
ANALYSIS AND EXPERIMENTAL STUDY ON STRENGTH AND BEHAVIOUR OF EXTERIOR BEAM-CO...
ANALYSIS AND EXPERIMENTAL STUDY ON STRENGTH AND BEHAVIOUR OF EXTERIOR BEAM-CO...ANALYSIS AND EXPERIMENTAL STUDY ON STRENGTH AND BEHAVIOUR OF EXTERIOR BEAM-CO...
ANALYSIS AND EXPERIMENTAL STUDY ON STRENGTH AND BEHAVIOUR OF EXTERIOR BEAM-CO...IAEME Publication
 
IJET-Waste Water Treatment Unit using Activated Charcoal
IJET-Waste Water Treatment Unit using Activated CharcoalIJET-Waste Water Treatment Unit using Activated Charcoal
IJET-Waste Water Treatment Unit using Activated CharcoalIRJET Journal
 
Study on Steel Beam Column Joint using Different Connections – State of Art
Study on Steel Beam Column Joint using Different Connections – State of ArtStudy on Steel Beam Column Joint using Different Connections – State of Art
Study on Steel Beam Column Joint using Different Connections – State of ArtIRJET Journal
 
Seismic and progressive collapse mitigation of shear energy dissipation beam ...
Seismic and progressive collapse mitigation of shear energy dissipation beam ...Seismic and progressive collapse mitigation of shear energy dissipation beam ...
Seismic and progressive collapse mitigation of shear energy dissipation beam ...IRJET Journal
 
The Study of Flexural and Ultimate Behavior of Ferrocement Lightweight Beam b...
The Study of Flexural and Ultimate Behavior of Ferrocement Lightweight Beam b...The Study of Flexural and Ultimate Behavior of Ferrocement Lightweight Beam b...
The Study of Flexural and Ultimate Behavior of Ferrocement Lightweight Beam b...IRJET Journal
 

Similar to Weldon bd042010d vol1 (20)

Structural performance of prefabricated cage reinforced concrete composite st...
Structural performance of prefabricated cage reinforced concrete composite st...Structural performance of prefabricated cage reinforced concrete composite st...
Structural performance of prefabricated cage reinforced concrete composite st...
 
IRJET- A Review on Finite Element Modelling and Numerical Study of Precast St...
IRJET- A Review on Finite Element Modelling and Numerical Study of Precast St...IRJET- A Review on Finite Element Modelling and Numerical Study of Precast St...
IRJET- A Review on Finite Element Modelling and Numerical Study of Precast St...
 
Finite Element Simulation of Steel Plate Concrete Beams subjected to Shear
Finite Element Simulation of Steel Plate Concrete Beams subjected to ShearFinite Element Simulation of Steel Plate Concrete Beams subjected to Shear
Finite Element Simulation of Steel Plate Concrete Beams subjected to Shear
 
Finite Element Simulation of Steel Plate Concrete Beams subjected to Shear
Finite Element Simulation of Steel Plate Concrete Beams subjected to ShearFinite Element Simulation of Steel Plate Concrete Beams subjected to Shear
Finite Element Simulation of Steel Plate Concrete Beams subjected to Shear
 
IRJET- Comparative Study on the Seismic Behaviour of RCC and Steel-Concrete C...
IRJET- Comparative Study on the Seismic Behaviour of RCC and Steel-Concrete C...IRJET- Comparative Study on the Seismic Behaviour of RCC and Steel-Concrete C...
IRJET- Comparative Study on the Seismic Behaviour of RCC and Steel-Concrete C...
 
FINITE ELEMENT ANALYSIS OF STEEL BEAM-CFST COLUMN JOINTS CONFINED WITH CFRP B...
FINITE ELEMENT ANALYSIS OF STEEL BEAM-CFST COLUMN JOINTS CONFINED WITH CFRP B...FINITE ELEMENT ANALYSIS OF STEEL BEAM-CFST COLUMN JOINTS CONFINED WITH CFRP B...
FINITE ELEMENT ANALYSIS OF STEEL BEAM-CFST COLUMN JOINTS CONFINED WITH CFRP B...
 
IRJET- Behaviour of Castellated Beam with Coupled Stiffener
IRJET-  	  Behaviour of Castellated Beam with Coupled StiffenerIRJET-  	  Behaviour of Castellated Beam with Coupled Stiffener
IRJET- Behaviour of Castellated Beam with Coupled Stiffener
 
Analysis and Design of Composite Beams with Composite Deck Slab.docx
Analysis and Design of Composite Beams with Composite Deck Slab.docxAnalysis and Design of Composite Beams with Composite Deck Slab.docx
Analysis and Design of Composite Beams with Composite Deck Slab.docx
 
IRJET- Comparative Analysis of RCC Structure and Tube-in-Tube Structure
IRJET-  	  Comparative Analysis of RCC Structure and Tube-in-Tube StructureIRJET-  	  Comparative Analysis of RCC Structure and Tube-in-Tube Structure
IRJET- Comparative Analysis of RCC Structure and Tube-in-Tube Structure
 
COMPARATIVE STUDY ON ANALYSIS OF STEEL-CONCRETE COMPOSITE STRUCTURE WITH DIFF...
COMPARATIVE STUDY ON ANALYSIS OF STEEL-CONCRETE COMPOSITE STRUCTURE WITH DIFF...COMPARATIVE STUDY ON ANALYSIS OF STEEL-CONCRETE COMPOSITE STRUCTURE WITH DIFF...
COMPARATIVE STUDY ON ANALYSIS OF STEEL-CONCRETE COMPOSITE STRUCTURE WITH DIFF...
 
Finite element analysis of innovative solutions of precast concrete beamcolum...
Finite element analysis of innovative solutions of precast concrete beamcolum...Finite element analysis of innovative solutions of precast concrete beamcolum...
Finite element analysis of innovative solutions of precast concrete beamcolum...
 
A Parametric Finite Element Study on Concentrated Load Distribution in Corrug...
A Parametric Finite Element Study on Concentrated Load Distribution in Corrug...A Parametric Finite Element Study on Concentrated Load Distribution in Corrug...
A Parametric Finite Element Study on Concentrated Load Distribution in Corrug...
 
G0391049056
G0391049056G0391049056
G0391049056
 
Stiffening and Strengthening of Deteriorated Cellular Beams by Local Post- Te...
Stiffening and Strengthening of Deteriorated Cellular Beams by Local Post- Te...Stiffening and Strengthening of Deteriorated Cellular Beams by Local Post- Te...
Stiffening and Strengthening of Deteriorated Cellular Beams by Local Post- Te...
 
ANALYSIS AND EXPERIMENTAL STUDY ON STRENGTH AND BEHAVIOUR OF EXTERIOR BEAM-CO...
ANALYSIS AND EXPERIMENTAL STUDY ON STRENGTH AND BEHAVIOUR OF EXTERIOR BEAM-CO...ANALYSIS AND EXPERIMENTAL STUDY ON STRENGTH AND BEHAVIOUR OF EXTERIOR BEAM-CO...
ANALYSIS AND EXPERIMENTAL STUDY ON STRENGTH AND BEHAVIOUR OF EXTERIOR BEAM-CO...
 
IJET-Waste Water Treatment Unit using Activated Charcoal
IJET-Waste Water Treatment Unit using Activated CharcoalIJET-Waste Water Treatment Unit using Activated Charcoal
IJET-Waste Water Treatment Unit using Activated Charcoal
 
Study on Steel Beam Column Joint using Different Connections – State of Art
Study on Steel Beam Column Joint using Different Connections – State of ArtStudy on Steel Beam Column Joint using Different Connections – State of Art
Study on Steel Beam Column Joint using Different Connections – State of Art
 
Ijciet 10 01_009
Ijciet 10 01_009Ijciet 10 01_009
Ijciet 10 01_009
 
Seismic and progressive collapse mitigation of shear energy dissipation beam ...
Seismic and progressive collapse mitigation of shear energy dissipation beam ...Seismic and progressive collapse mitigation of shear energy dissipation beam ...
Seismic and progressive collapse mitigation of shear energy dissipation beam ...
 
The Study of Flexural and Ultimate Behavior of Ferrocement Lightweight Beam b...
The Study of Flexural and Ultimate Behavior of Ferrocement Lightweight Beam b...The Study of Flexural and Ultimate Behavior of Ferrocement Lightweight Beam b...
The Study of Flexural and Ultimate Behavior of Ferrocement Lightweight Beam b...
 

Weldon bd042010d vol1

  • 1. BEHAVIOR, DESIGN, AND ANALYSIS OF UNBONDED POST-TENSIONED PRECAST CONCRETE COUPLING BEAMS VOLUME I A Dissertation Submitted to the Graduate School of the University of Notre Dame in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Brad D. Weldon Yahya C. Kurama, Director Graduate Program in Civil Engineering and Geological Sciences Notre Dame, Indiana April 2010
  • 3. BEHAVIOR, DESIGN, AND ANALYSIS OF UNBONDED POST-TENSIONED PRECAST CONCRETE COUPLING BEAMS Abstract by Brad D. Weldon This dissertation describes an experimental, analytical, and design investigation on the nonlinear behavior of precast concrete coupling beams, where coupling of reinforced concrete shear walls is achieved by post-tensioning the beams and the walls together at the floor and roof levels. The new coupling system offers important advantages over conventional systems with monolithic cast-in-place beams, such as simpler detailing, reduced damage to the structure, and reduced residual lateral displacements. Steel top and seat angles are used at the beam-to-wall joints to yield and provide energy dissipation. The results from eight half-scale experiments of unbonded post-tensioned precast coupling beams under reversed-cyclic lateral loading are presented. Each test specimen includes a coupling beam and the adjacent wall pier regions at a floor level. The test parameters include the post-tensioning tendon area and initial stress, initial beam concrete axial stress, angle strength, and beam depth. The results demonstrate excellent stiffness, strength, and ductility of the specimens under cyclic loading, with considerable energy dissipation concentrated in the angles. Compliance of the beams to established
  • 4. Brad D. Weldon acceptance criteria is demonstrated, validating the use of these structures in seismic regions. The critical components of the structure that can limit the desired performance include the post-tensioning anchors as well as the top and seat angles and their connections. The experimental results are also used to validate the analysis and design of the new coupling system. Two different analytical models, one using fiber elements and the other using finite elements, are investigated. In addition, an idealized coupling beam end moment versus chord rotation relationship is developed as a design tool following basic principles of equilibrium, compatibility, and constitutive relationships. The comparisons demonstrate that the analytical and design models are able to capture the nonlinear behavior of the structure, including global parameters such as the beam lateral force versus chord rotation behavior as well as local parameters such as the neutral axis depth at the beam ends. Using these models, the effects of several structural properties (such as beam length) on the behavior of unbonded post-tensioned precast coupling beams is analytically investigated to expand the results from the experiments.
  • 5. CONTENTS FIGURES ........................................................................................................................ xvii TABLES .......................................................................................................................... lxii ACKNOWLEDGMENTS ............................................................................................... lxv NOTATION ................................................................................................................... lxvii VOLUME I CHAPTER 1: INTRODUCTION ...............................................................................................................1 1.1 Problem Statement ...................................................................................................1 1.2 Research Objectives .................................................................................................7 1.3 Research Scope ........................................................................................................8 1.4 Research Significance ..............................................................................................9 1.5 Overview of Dissertation .......................................................................................10 CHAPTER 2: BACKGROUND ...............................................................................................................12 2.1 Coupled Wall Structural Systems ..........................................................................12 2.2 Monotonic Cast-in-Place Concrete Coupled Wall Systems ..................................15 2.2.1 Behavior and Design of Cast-in-Place Concrete Coupling Beams ............16 2.2.2 Current Code Requirements for Cast-in-Place Concrete Coupling Beams .........................................................................................17 ii
  • 6. 2.2.3 Analysis and Modeling of Cast-in-Place Concrete Coupled Wall Systems .............................................................................................20 2.2.4 Coupling Beam Database ...........................................................................22 2.3 Unbonded Post-Tensioning ....................................................................................24 2.4 Unbonded Post-Tensioned Hybrid Coupled Wall Systems ...................................26 2.5 Unbonded Post-Tensioned Precast Moment Frames .............................................35 2.5.1 2.6 Frames with Supplemental Energy Dissipation .........................................39 Behavior of Top and Seat Angles ..........................................................................45 2.6.1 Kishi and Chen (1990) and Lorenz et al. (1993) .......................................49 2.6.1.1 Tension angle initial stiffness, Kaixt ......................................................50 2.6.1.2 Tension angle yield force capacity, Tayx...............................................53 2.7 Chapter Summary ..................................................................................................54 CHAPTER 3: PRECAST COUPLING BEAM SUBASSEMBLY EXPERIMENTS .............................56 3.1 Experiment Setup ...................................................................................................57 3.2 Test Subassembly Components .............................................................................65 3.2.1 Coupling Beam Specimens ........................................................................66 3.2.1.1 Maximum Moment Capacity at Beam-to-Wall Interfaces...................75 3.2.1.2 Beam Transverse Reinforcement .........................................................78 3.2.1.3 Beam Longitudinal Mild Steel Reinforcement ....................................81 3.2.1.4 Confinement Reinforcement ................................................................86 3.2.1.5 Shear Slip at Beam-to-Wall Interfaces ................................................88 3.2.2 3.2.3 3.3 Reaction Block ...........................................................................................90 Load Block ...............................................................................................101 Testing Procedure ................................................................................................105 3.3.1 Wall Test Region Vertical Forces ............................................................106 iii
  • 7. 3.3.2 Beam Post-Tensioning Force ...................................................................109 3.3.3 Top and Seat Angle Connections .............................................................111 3.3.4 Test Day ...................................................................................................113 3.3.5 Summary of Test Procedure.....................................................................117 3.3.5.1 Virgin Beam Test Procedure ..............................................................117 3.3.5.2 Non-Virgin Beam Test Procedure .....................................................119 3.4 Chapter Summary ................................................................................................120 CHAPTER 4: DESIGN AND MATERIAL PROPERTIES ...................................................................121 4.1 Design Material Properties ..................................................................................121 4.2 Measured Material Properties ..............................................................................122 4.2.1 Unconfined Concrete Strength .................................................................123 4.2.2 4.2.3 Post-tensioning Strand Properties ............................................................130 4.2.4 Mild Reinforcing Steel Properties ...........................................................136 4.2.5 4.3 Fiber-Reinforced Grout Properties ..........................................................124 Angle Steel Properties..............................................................................140 Chapter Summary ................................................................................................142 CHAPTER 5: DATA INSTRUMENTATION AND SPECIMEN RESPONSE PARAMETERS ........144 5.1 Data Instrumentation ............................................................................................144 5.1.1 Instrumentation Overview .......................................................................145 5.1.2 Post-Tensioning Strand Load Cells .........................................................158 5.1.3 Wall Test Region Vertical Force Load Cells ...........................................166 iv
  • 8. 5.1.4 Load Block Global Displacement Transducers .......................................166 5.1.5 Reaction Block Global Displacement Transducers .................................169 5.1.6 Beam Global Displacement Transducers .................................................171 5.1.7 Gap Opening Displacement Transducers.................................................172 5.1.8 Wall Test Region Local Displacement Transducers ................................174 5.1.9 Beam Rotation Transducers .....................................................................176 5.1.10 Beam Looping Reinforcement Longitudinal Leg Strain Gauges ............177 5.1.11 Beam Transverse Reinforcement Strain Gauges .....................................179 5.1.12 Beam End Confinement Hoop Strain Gauges .........................................181 5.1.13 Beam Confined Concrete Strain Gauges .................................................184 5.1.14 Reaction Block Confinement Hoop Strain Gauges .................................186 5.1.15 Reaction Block Confined Concrete Strain Gauges ..................................189 5.2 Subassembly Response Parameters .....................................................................190 5.2.1 Coupling Beam Shear Force ....................................................................192 5.2.2 Coupling Beam End Moment ..................................................................194 5.2.3 Coupling Beam Post-Tensioning Force ...................................................194 5.2.4 Vertical Force on Wall Test Region ........................................................194 5.2.5 Angle Post-Tensioning Forces .................................................................195 5.2.6 Reaction Block Displacements ................................................................195 5.2.7 Load Block Displacements ......................................................................197 5.2.8 Beam Vertical Displacements ..................................................................201 5.2.9 Beam Chord Rotation ..............................................................................204 5.2.10 Gap Opening and Contact Depth at Beam-to-Wall Interface ..................205 5.3 Chapter Summary ................................................................................................210 v
  • 9. VOLUME II CHAPTER 6: VIRGIN BEAM SUBASSEMBLY EXPERIMENTAL RESULTS ...............................211 6.1 Overall Test Specimen Response.........................................................................211 6.2 Test 1....................................................................................................................214 6.2.1 Test Photographs ......................................................................................216 6.2.2 Beam Shear Force versus Chord Rotation Behavior ...............................222 6.2.3 Beam End Moment Force versus Chord Rotation Behavior ...................224 6.2.4 Beam Post-Tensioning Forces .................................................................225 6.2.5 Angle-to-Wall Connection Post-Tensioning Forces ................................229 6.2.6 Vertical Forces on Wall Test Region .......................................................232 6.2.7 Beam Vertical Displacements ..................................................................233 6.2.8 Beam Chord Rotation ..............................................................................237 6.2.9 Local Beam Rotations ..............................................................................240 6.2.10 Load Block Displacements and Rotations ...............................................242 6.2.11 Reaction Block Displacements and Rotations .........................................250 6.2.12 Contact Depth and Gap Opening at Beam-to-Wall Interfaces.................256 6.2.13 Wall Test Region Local Concrete Deformations .....................................267 6.2.14 Beam Looping Reinforcement Longitudinal Leg Strains ........................269 6.2.15 Beam Transverse Reinforcement Strains .................................................276 6.2.16 Beam Confined Concrete Strains .............................................................279 6.2.17 Beam End Confinement Hoop Strains .....................................................284 6.2.18 Wall Test Region Confined Concrete Strains ..........................................291 6.2.19 Wall Test Region Confinement Hoop Strains .........................................297 6.2.20 Crack Patterns ..........................................................................................299 vi
  • 10. 6.3 Test 2....................................................................................................................301 6.3.1 Test Photographs ......................................................................................302 6.3.2 Beam Shear Force versus Chord Rotation Behavior ...............................307 6.3.3 Beam End Moment Force versus Chord Rotation Behavior ...................310 6.3.4 Beam Post-Tensioning Forces .................................................................311 6.3.5 Angle-to-Wall Connection Post-Tensioning Forces ................................316 6.3.6 Vertical Forces on Wall Test Region .......................................................320 6.3.7 Beam Vertical Displacements ..................................................................321 6.3.8 Beam Chord Rotation ..............................................................................324 6.3.9 Local Beam Rotations ..............................................................................327 6.3.10 Load Block Displacements and Rotations ...............................................328 6.3.11 Reaction Block Displacements and Rotations .........................................336 6.3.12 Contact Depth and Gap Opening at Beam-to-Wall Interfaces.................341 6.3.13 Wall Test Region Local Concrete Deformations .....................................352 6.3.14 Beam Looping Reinforcement Longitudinal Leg Strains ........................354 6.3.15 Beam Transverse Reinforcement Strains .................................................361 6.3.16 Beam Confined Concrete Strains .............................................................364 6.3.17 Beam End Confinement Hoop Strains .....................................................368 6.3.18 Wall Test Region Confined Concrete Strains ..........................................372 6.3.19 Wall Test Region Confinement Hoop Strains .........................................373 6.3.20 Crack Patterns ..........................................................................................373 6.4 Test 3....................................................................................................................375 6.4.1 Test Photographs ......................................................................................376 6.4.2 Beam Shear Force versus Chord Rotation Behavior ...............................381 6.4.3 Beam End Moment Force versus Chord Rotation Behavior ...................383 vii
  • 11. 6.4.4 Beam Post-Tensioning Forces .................................................................383 6.4.5 Angle-to-Wall Connection Post-Tensioning Forces ................................388 6.4.6 Vertical Forces on Wall Test Region .......................................................392 6.4.7 Beam Vertical Displacements ..................................................................393 6.4.8 Beam Chord Rotation ..............................................................................396 6.4.9 Local Beam Rotations ..............................................................................398 6.4.10 Load Block Displacements and Rotations ...............................................400 6.4.11 Reaction Block Displacements and Rotations .........................................408 6.4.12 Contact Depth and Gap Opening at Beam-to-Wall Interfaces.................413 6.4.13 Wall Test Region Local Concrete Deformations .....................................424 6.4.14 Beam Looping Reinforcement Longitudinal Leg Strains ........................426 6.4.15 Beam Transverse Reinforcement Strains .................................................433 6.4.16 Beam Confined Concrete Strains .............................................................436 6.4.17 Beam End Confinement Hoop Strains .....................................................440 6.4.18 Wall Test Region Confined Concrete Strains ..........................................444 6.4.19 Wall Test Region Confinement Hoops Strains ........................................444 6.4.20 Crack Patterns ..........................................................................................445 6.5 Test 4....................................................................................................................447 6.5.1 Test Photographs ......................................................................................448 6.5.2 Beam Shear Force versus Chord Rotation Behavior ...............................453 6.5.3 Beam End Moment Force versus Chord Rotation Behavior ...................456 6.5.4 Beam Post-Tensioning Forces .................................................................457 6.5.5 Angle-to-Wall Connection Post-Tensioning Forces ................................461 6.5.6 Vertical Forces on Wall Test Region .......................................................464 6.5.7 Beam Vertical Displacements ..................................................................465 viii
  • 12. 6.5.8 Beam Chord Rotation ..............................................................................469 6.5.9 Local Beam Rotations ..............................................................................471 6.5.10 Load Block Displacements and Rotations ...............................................473 6.5.11 Reaction Block Displacements and Rotations .........................................481 6.5.12 Contact Depth and Gap Opening at Beam-to-Wall Interfaces.................486 6.5.13 Wall Test Region Local Concrete Deformations .....................................497 6.5.14 Beam Looping Reinforcement Longitudinal Leg Strains ........................499 6.5.15 Beam Transverse Reinforcement Strains .................................................505 6.5.16 Beam Confined Concrete Strains .............................................................508 6.5.17 Beam End Confinement Hoop Strains .....................................................512 6.5.18 Wall Test Region Confined Concrete Strains ..........................................516 6.5.19 Wall Test Region Confinement Hoop Strains .........................................517 6.5.20 Crack Patterns ..........................................................................................517 VOLUME III CHAPTER 7: POST-VIRGIN BEAM SUBASSEMBLY EXPERIMENTAL RESULTS ....................519 7.1 Test 3A .................................................................................................................519 7.1.1 Test Photographs ......................................................................................522 7.1.2 Beam Shear Force versus Chord Rotation Behavior ...............................526 7.1.3 Beam End Moment Force versus Chord Rotation Behavior ...................529 7.1.4 Beam Post-Tensioning Forces .................................................................530 7.1.5 Angle-to-Wall Connection Post-Tensioning Forces ................................535 7.1.6 Vertical Forces on Wall Test Region .......................................................539 7.1.7 Beam Vertical Displacements ..................................................................540 7.1.8 Beam Chord Rotation ..............................................................................545 ix
  • 13. 7.1.9 Local Beam Rotations ..............................................................................547 7.1.10 Load Block Displacements and Rotations ...............................................549 7.1.11 Reaction Block Displacements and Rotations .........................................557 7.1.12 Contact Depth and Gap Opening at Beam-to-Wall Interfaces.................562 7.1.13 Wall Test Region Local Concrete Deformations .....................................573 7.1.14 Beam Looping Reinforcement Longitudinal Leg Strains ........................575 7.1.15 Beam Transverse Reinforcement Strains .................................................581 7.1.16 Beam Confined Concrete Strains .............................................................585 7.1.17 Beam End Confinement Hoop Strains .....................................................589 7.1.18 Wall Test Region Confined Concrete Strains ..........................................593 7.1.19 Wall Test Region Confinement Hoop Strains .........................................594 7.1.20 Crack Patterns ..........................................................................................594 7.2 Test 3B .................................................................................................................595 7.2.1 Test Photographs ......................................................................................596 7.2.2 Beam Shear Force versus Chord Rotation Behavior ...............................601 7.2.3 Beam End Moment Force versus Chord Rotation Behavior ...................604 7.2.4 Beam Post-Tensioning Forces .................................................................605 7.2.5 Angle-to-Wall Connection Post-Tensioning Forces ................................609 7.2.6 Vertical Forces on Wall Test Region .......................................................612 7.2.7 Beam Vertical Displacements ..................................................................613 7.2.8 Beam Chord Rotation ..............................................................................618 7.2.9 Local Beam Rotations ..............................................................................620 7.2.10 Load Block Displacements and Rotations ...............................................622 7.2.11 Reaction Block Displacements and Rotations .........................................630 7.2.12 Contact Depth and Gap Opening at Beam-to-Wall Interfaces.................635 x
  • 14. 7.2.13 Wall Test Region Local Concrete Deformations .....................................646 7.2.14 Beam Looping Reinforcement Longitudinal Leg Strains ........................648 7.2.15 Beam Transverse Reinforcement Strains .................................................655 7.2.16 Beam Confined Concrete Strains .............................................................658 7.2.17 Beam End Confinement Hoop Strains .....................................................662 7.2.18 Wall Test Region Confined Concrete Strains ..........................................666 7.2.19 Wall Test Region Confinement Hoop Strains .........................................667 7.2.20 Crack Patterns ..........................................................................................667 7.3 Test 4A .................................................................................................................668 7.3.1 Test Photographs ......................................................................................669 7.3.2 Beam Shear Force versus Chord Rotation Behavior ...............................673 7.3.3 Beam End Moment Force versus Chord Rotation Behavior ...................676 7.3.4 Beam Post-Tensioning Forces .................................................................677 7.3.5 Angle-to-Wall Connection Post-Tensioning Forces ................................681 7.3.6 Vertical Forces on Wall Test Region .......................................................681 7.3.7 Beam Vertical Displacements ..................................................................682 7.3.8 Beam Chord Rotation ..............................................................................687 7.3.9 Local Beam Rotations ..............................................................................689 7.3.10 Load Block Displacements and Rotations ...............................................691 7.3.11 Reaction Block Displacements and Rotations .........................................699 7.3.12 Gap Opening and Contact Depth at Beam-to-Wall Interfaces.................704 7.3.13 Wall Test Region Local Concrete Deformations .....................................715 7.3.14 Beam Looping Reinforcement Longitudinal Leg Strains ........................717 7.3.15 Beam Transverse Reinforcement Strains .................................................724 7.3.16 Beam Confined Concrete Strains .............................................................728 xi
  • 15. 7.3.17 Beam End Confinement Hoop Strains .....................................................732 7.3.18 Wall Test Region Confined Concrete Strains ..........................................736 7.3.19 Wall Test Region Confinement Hoops Strains ........................................737 7.3.20 Crack Patterns ..........................................................................................737 7.4 Test 4B .................................................................................................................738 7.4.1 Test Photographs ......................................................................................739 7.4.2 Beam Shear Force versus Chord Rotation Behavior ...............................743 7.4.3 Beam End Moment Force versus Chord Rotation Behavior ...................746 7.4.4 Beam Post-Tensioning Forces .................................................................747 7.4.5 Angle-to-Wall Connection Post-Tensioning Forces ................................752 7.4.6 Vertical Forces on Wall Test Region .......................................................755 7.4.7 Beam Vertical Displacements ..................................................................756 7.4.8 Beam Chord Rotation ..............................................................................760 7.4.9 Local Beam Rotations ..............................................................................762 7.4.10 Load Block Displacements and Rotations ...............................................765 7.4.11 Reaction Block Displacements and Rotations .........................................773 7.4.12 Contact Depth and Gap Opening at Beam-to-Wall Interfaces.................778 7.4.13 Wall Test Region Local Concrete Deformations .....................................789 7.4.14 Beam Looping Reinforcement Longitudinal Leg Strains ........................791 7.4.15 Beam Transverse Reinforcement Strains .................................................798 7.4.16 Beam Confined Concrete Strains .............................................................801 7.4.17 Beam End Confinement Hoop Strains .....................................................806 7.4.18 Wall Test Region Confined Concrete Strains ..........................................811 7.4.19 Wall Test Region Confinement Hoops Strains ........................................812 7.4.20 Crack Patterns ..........................................................................................812 xii
  • 16. VOLUME IV CHAPTER 8: SUMMARY AND OVERVIEW OF RESULTS FROM COUPLED WALL SUBASSEMBLY EXPERIMENTS ....................................................................813 8.1 Beam Shear Force versus Chord Rotation Behavior and Progression of Damage ........................................................................................814 8.2 Beam Post-Tensioning Tendon Force versus Chord Rotation Behavior .............824 8.3 Effect of Beam Post-Tensioning Tendon Area and Initial Concrete Stress.........827 8.4 Effect of Top and Seat Angles and Angle Strength .............................................829 8.5 Effect of Beam Depth ..........................................................................................831 8.6 Longitudinal Mild Steel Strains ...........................................................................832 8.7 Transverse Mild Steel Strains at Beam Ends .......................................................836 8.8 Transverse Mild Steel Strains at Beam Midspan .................................................839 8.9 Angle Connections ...............................................................................................841 8.10 Beam-to-Wall Connection and Grout Behavior ..................................................842 8.11 Compliance with ACI ITG-5.1 ............................................................................843 8.11.1 Probable Lateral Strength ........................................................................843 8.11.2 Relative Energy Dissipation Ratio ...........................................................844 8.11.3 Stiffness Requirements ............................................................................848 8.12 Comparisons with Monolithic Cast-in-Place Concrete Beams ............................850 8.13 Chapter Summary ................................................................................................853 CHAPTER 9: ANALYTICAL MODELING OF PRECAST COUPLED WALL SUBASSEMBLIES .................................................................................854 9.1 Analytical Modeling Assumptions ......................................................................854 xiii
  • 17. 9.2 Fiber-Element Subassembly Model .....................................................................855 9.2.1 General Modeling of Concrete Members ................................................856 9.2.2 Modeling of Coupling Beam ...................................................................860 9.2.3 Modeling of Wall Regions .......................................................................865 9.2.4 Modeling of Gap Opening .......................................................................869 9.2.5 Modeling of Beam Post-Tensioning Tendons and Anchorages ..............872 9.2.6 Modeling of Top and Seat Angles ...........................................................876 9.2.6.1 Horizontal Angle Element Force-Deformation Model ......................879 9.2.6.2 Vertical Angle Element Force-Deformation Model ..........................881 9.3 Verification of Test Specimen Models ................................................................882 9.3.1 Beam Shear Force versus Chord Rotation Behavior ...............................886 9.3.2 Beam Post-tensioning Force ....................................................................888 9.3.3 Contact Depth at Beam-to-Reaction-Block Interface ..............................895 9.3.4 Gap Opening at Beam-to-Reaction-Block Interface ................................903 9.3.5 Concrete Compressive Strains at Beam End ...........................................910 9.3.6 Longitudinal Mild Steel Strains at Beam End .........................................911 9.3.7 Longitudinal Mild Steel Strains at Beam Midspan ..................................920 9.3.8 Angle Behavior ........................................................................................924 9.4 ABAQUS Finite-Element Subassembly Model ..................................................926 9.5 Comparison of Fiber-Element and Finite-Element Models .................................929 9.5.1 9.6 Wall Pier and Coupling Beam Stresses ...................................................930 Chapter Summary ................................................................................................935 xiv
  • 18. CHAPTER 10: PARAMETRIC INVESTIGATION AND CLOSED FORM ESTIMATION OF THE BEHAVIOR OF UNBONDED POST-TENSIONED PRECAST COUPLING BEAMS...........................................................................................936 10.1 Prototype Subassembly ........................................................................................936 10.2 Analytical Modeling ............................................................................................939 10.3 Subassembly Behavior Under Monotonic Loading .............................................941 10.4 Subassembly Behavior Under Cyclic Loading ....................................................944 10.5 Parametric Investigation ......................................................................................945 10.6 Tri-linear Estimation of Subassembly Behavior ..................................................954 10.6.1 Tension Angle Yielding State ..................................................................955 10.6.2 Tension Angle Strength State ..................................................................960 10.6.3 Confined Concrete Crushing State...........................................................962 10.7 Analytical Verification of Tri-Linear Estimation ................................................965 10.8 Experimental Verification of Tri-linear Estimation .............................................965 10.9 Summary ..............................................................................................................969 CHAPTER 11: SUMMARY, CONCLUSIONS, AND FUTURE WORK ..............................................971 11.1 Summary ..............................................................................................................971 11.2 Conclusions ..........................................................................................................972 11.2.1 Experimental Program .............................................................................972 11.2.2 Analytical Modeling and Parametric Investigation .................................974 11.2.3 Closed-form Estimations .........................................................................975 11.3 Future Work .........................................................................................................976 xv
  • 19. REFERENCES ...............................................................................................................978 Appendix A .....................................................................................................................989 Appendix B .....................................................................................................................992 Appendix C .....................................................................................................................996 Appendix D ...................................................................................................................1011 Appendix E ...................................................................................................................1039 Appendix F ...................................................................................................................1064 xvi
  • 20. FIGURES VOLUME I CHAPTER 1: Figure 1.1: Multi story coupled wall system. ..................................................................... 3 Figure 1.2: Coupled wall system floor-level subassembly. ................................................ 4 Figure 1.3: Coupled wall system floor-level subassembly idealized, exaggerated deformed configuration. .......................................................................................... 5 Figure 1.4: Coupling beam forces. ...................................................................................... 6 CHAPTER 2: Figure 2.1: Coupled wall structures. ................................................................................. 13 Figure 2.2: Wall systems – (a) uncoupled wall; (b) coupled wall with strong beams; (c) coupled wall with weak beams. ....................................................................... 15 Figure 2.3: Reinforced concrete coupling beams [Paulay and Priestley (1992)] – (a) diagonal tension failure; (b) sliding shear failure; (c) diagonal reinforcement. ............................................................................................................................... 17 Figure 2.4: Diagonal reinforcement requirements for coupling beams [from ACI 318 (2008)] – (a) confinement of each group of diagonal bars; (b) confinement of entire beam cross-section. ..................................................................................... 19 Figure 2.5: Diagonally reinforced coupling beam (from Magnusson Klemencic Associates). ........................................................................................................... 20 Figure 2.6: Equivalent frame analytical models. .............................................................. 21 Figure 2.7: Measured ultimate sustained rotations for monolithic cast-in-place reinforced concrete coupling beams. ...................................................................................... 23 Figure 2.8: Hybrid coupled wall subassembly [from Shen and Kurama (2002b)]. .......... 27 xvii
  • 21. Figure 2.9: Hybrid coupled wall subassembly experiments [adapted from Kurama et al. (2006)] – (a) measured coupling beam shear force versus chord rotation behavior; (b) photograph of displaced shape at beam end; (c) measured total beam posttensioning force. .................................................................................................... 29 Figure 2.10: Low cycle fatigue fracture of top and seat angles. ....................................... 31 Figure 2.11: Hybrid coupled wall subassembly with no angles ....................................... 32 Figure 2.12: Hybrid coupled wall subassembly predicted behavior [from Shen et al. (2006)] – (a) coupling beam shear force versus chord rotation behavior; (b) total beam post-tensioning force. .................................................................................. 34 Figure 2.13: Unbonded post-tensioned precast moment frames – (a) structure; (b) interior beam-column subassembly; (c) idealized, exaggerated subassembly displaced shape. .................................................................................................... 37 Figure 2.14: Analytical investigation of unbonded post-tensioned precast beam-column subassemblies [from El-Sheikh et al. (1999, 2000)] – (a) moment-rotation relationship; (b) analytical model. ........................................................................ 39 Figure 2.15: Measured lateral force-displacement behavior [from Priestley and MacRae (1996)] – (a) interior joint; (b) exterior joint. ....................................................... 40 Figure 2.16: “Hybrid” precast concrete frame beam-column joint [adapted from Kurama (2002)]................................................................................................................... 41 Figure 2.17: Friction-damped post-tensioned precast moment frames [from Morgen and Kurama (2004)] – (a) test set-up schematic; (b) photograph of test set-up. ......... 43 Figure 2.18: Measured beam end moment versus chord rotation behavior [from Morgen and Kurama (2004)] – (a) without dampers; (b) with dampers. ........................... 44 Figure 2.19: Top and seat angle connection [adapted from Shen et al. (2006)] – (a) deformed configuration; (b) angle parameters. ............................................... 45 Figure 2.20: Angle model [adapted from Kishi and Chen (1990) and Lorenz et al. (1993)] – (a) cantilever model of tension angle; (b) assumed yield mechanism; (c) free body of angle horizontal leg. ................................................................................ 52 CHAPTER 3: Figure 3.1: Simulation of floor level coupled wall subassembly displacements – (a) multi-story structure; (b) idealized displaced subassembly; (c) rotated subassembly. ......................................................................................................... 57 xviii
  • 22. Figure 3.2: Photograph of subassembly test setup. ........................................................... 60 Figure 3.3: Elevation view of test subassembly................................................................ 61 Figure 3.4: Plan view of test subassembly. ....................................................................... 62 Figure 3.5: East side view of loading frame. .................................................................... 63 Figure 3.6: North end view of loading and bracing frames. ............................................. 64 Figure 3.7: East side view of bracing frame and brace plate locations............................. 65 Figure 3.8: Photograph of beam formwork and details prior to casting (Beams 1 – 3).... 67 Figure 3.9: Photograph of beam end prior to casting (Beams 1 – 3). ............................... 67 Figure 3.10: Photograph of beam end prior to casting (Beam 4 – increased depth)......... 68 Figure 3.11: Duct locations for Beams 1 - 3. .................................................................... 70 Figure 3.12: Duct locations for Beam 4 (increased beam depth). .................................... 71 Figure 3.13: Mild steel reinforcement details for Beams 1 - 3. ........................................ 72 Figure 3.14: Mild steel reinforcement details for Beam 4. ............................................... 73 Figure 3.15: Photographs of mild steel reinforcement for Beams 1 – 3 – (a) No. 6 looping reinforcement; (b) No. 3 full-depth transverse and partial-depth confining hoops. ............................................................................................................................... 74 Figure 3.16: Maximum moment capacity at beam end..................................................... 76 Figure 3.17: Beam maximum shear force demand. .......................................................... 78 Figure 3.18: High transverse tensile stresses in the vicinity of the gap tip. ...................... 80 Figure 3.19: Transverse (y-direction) stresses in element row 38 of full scale finite element beam model. ............................................................................................ 81 Figure 3.20: Design of beam longitudinal mild steel reinforcement – (a) critical section; (b) angle forces and beam moment at critical section; (c) beam moment diagram. ............................................................................................................................... 83 Figure 3.21: Equilibrium at critical section. ..................................................................... 84 Figure 3.22: Stress-strain model for confined concrete (Mander et al. 1988a). ............... 87 Figure 3.23: Reaction block duct details........................................................................... 92 xix
  • 23. Figure 3.24: Dywidag Multiplane MA anchor components used with the beam posttensioning strands.................................................................................................. 93 Figure 3.25: Modified Dywidag Multiplane MA anchor details. ..................................... 93 Figure 3.26: Reaction block reinforcement details. .......................................................... 96 Figure 3.27: Reaction and load block reinforcement hoops. ............................................ 97 Figure 3.28: Photograph of reaction and load block reinforcement cage. ........................ 98 Figure 3.29: Photograph of reaction block duct and reinforcement placement. ............... 99 Figure 3.30: Photograph of wall test region duct and reinforcement details. ................. 100 Figure 3.31: Load block duct details............................................................................... 103 Figure 3.32: Load block reinforcement details. .............................................................. 104 Figure 3.33: Photograph of load block duct and reinforcement details. ......................... 105 Figure 3.34: Post-tensioning operation – (a) single-strand jack; (b) jack operation; (c) anchor bearing plate. ..................................................................................... 110 Figure 3.35: Single use barrel/wedge type anchors with three-piece wedges and ring. . 111 Figure 3.36: Nominal lateral displacement loading history – (a) Test 1; (b) Tests 2 – 4B. ............................................................................................................................. 115 CHAPTER 4: Figure 4.1: Concrete cylinder specimens. ....................................................................... 123 Figure 4.2: Grout samples – (a) mortar mix; (b) epoxy grout. ....................................... 127 Figure 4.3: Photographs from a grout test. ..................................................................... 127 Figure 4.4: Stress-strain relationships for subassembly grout samples. ......................... 130 Figure 4.5: Post-tensioning strand test set-up. ................................................................ 133 Figure 4.6: Photograph of post-tensioning strand test. ................................................... 134 Figure 4.7: Photograph of post-tensioning strand wire fracture inside anchor. .............. 134 Figure 4.8: Stress-strain relationships for post-tensioning strand specimens. ................ 135 xx
  • 24. Figure 4.9: Limit of proportionality determination......................................................... 136 Figure 4.10: Photographs from a No. 3 reinforcing bar test. .......................................... 137 Figure 4.11: Stress-strain relationships for No. 3 bar specimens. .................................. 138 Figure 4.12: Stress-strain relationships for No. 6 bar specimens. .................................. 138 Figure 4.13: Photographs from an angle steel material test. ........................................... 140 Figure 4.14: Stress-strain relationships for angle steel material specimens. .................. 141 CHAPTER 5: Figure 5.1: Photograph of beam-to-reaction-block interface and instrumentation for Test 1. ............................................................................................................ 145 Figure 5.2: Load cell placement...................................................................................... 155 Figure 5.3: Displacement transducer placement. ............................................................ 156 Figure 5.4: Rotation transducer placement. .................................................................... 157 Figure 5.5: Strain gauge placement – reaction block. ..................................................... 157 Figure 5.6: Strain gauge placement – coupling beam. .................................................... 158 Figure 5.7: Photograph of load cells on beam post-tensioning strands. ......................... 159 Figure 5.8: Photograph of load cells on angle-to-reaction-block connection posttensioning strands................................................................................................ 159 Figure 5.9: Photograph of post-tensioning strand load cells........................................... 160 Figure 5.10: Placement of post-tensioning strand load cells. ......................................... 161 Figure 5.11: Post-tensioning strand load cell calibration setup. ..................................... 163 Figure 5.12: Calibration data for the post-tensioning strand load cells. ......................... 164 Figure 5.13: Loading and unloading calibration data for Load Cells UND2 and UND3. ............................................................................................................................. 165 Figure 5.14: Load block ferrule insert locations. ............................................................ 168 Figure 5.15: Reaction block ferrule insert locations. ...................................................... 170 Figure 5.16: Beam vertical displacement ferrule insert locations................................... 172 xxi
  • 25. Figure 5.17: Beam gap opening ferrule insert locations. ................................................ 173 Figure 5.18: Reaction block wall test region ferrule insert locations – (a) inserts for Beams 1-3; (b) inserts for Beam 4. ..................................................................... 175 Figure 5.19: Beam rotation ferrule insert locations. ....................................................... 176 Figure 5.20: Photograph of beam strain gauges.............................................................. 177 Figure 5.21: Beam looping reinforcement longitudinal leg strain gauge locations. ....... 178 Figure 5.22: Strain gauge designation system – longitudinal reinforcement.................. 179 Figure 5.23: Beam transverse reinforcement strain gauge locations. ............................. 180 Figure 5.24: Strain gauge designation system – transverse reinforcement. .................... 181 Figure 5.25: Photograph of strain gauged confinement hoop. ........................................ 182 Figure 5.26: Beam end confinement hoop strain gauge locations. ................................. 183 Figure 5.27: Strain gauge designation system – beam end confinement hoops. ............ 184 Figure 5.28: Beam confined concrete strain gauge locations. ........................................ 185 Figure 5.29: Strain gauge designation system – beam confined concrete. ..................... 186 Figure 5.30: Reaction block confinement hoop strain gauge locations. ......................... 187 Figure 5.31: Strain gauge designation system – reaction block...................................... 188 Figure 5.32: Reaction block confined concrete strain gauge locations. ......................... 189 Figure 5.33: Subassembly displaced in positive direction. ............................................. 191 Figure 5.34: Subassembly displaced in negative direction. ............................................ 192 Figure 5.35: Reaction block displacements. ................................................................... 196 Figure 5.36: Load block displacements. ......................................................................... 198 Figure 5.37: Idealized exaggerated displaced shape of load block. ................................ 198 Figure 5.38: Idealized exaggerated displaced shape of test beam. ................................. 202 Figure 5.39: Gap opening and contact depth. ................................................................. 206 xxii
  • 26. VOLUME II CHAPTER 6: Figure 6.1: Displaced position of subassembly at θb = 3.33% – (a) Test 2; (b) Test 4............................................................................................ 212 Figure 6.2: Vb-θb behavior – (a) Test 2; (b) Test 4.......................................................... 213 Figure 6.3: Test 1 beam and reaction block patched concrete regions. .......................... 216 Figure 6.4: Test 1 overall photographs – (a) pre-test undisplaced position; (b) θb = 3.0%; (c) θb = –3.0%; (d) θb = 8.0%; (e) θb = –8.0%; (f) final post-test undisplaced position................................................................................................................ 219 Figure 6.5: Test 1 beam south end photographs – (a) pre-test undisplaced position; (b) θb = 3.0%; (c) θb = –3.0%; (d) θb = 8.0%; (e) θb = –8.0%; (f) final post-test undisplaced position............................................................................................ 220 Figure 6.6: Test 1 beam south end damage propagation – positive and negative rotations. ............................................................................................................................. 221 Figure 6.7: Test 1 gap opening and grout behavior at 8.0% rotation – (a) south end; (b) north end. ....................................................................................................... 221 Figure 6.8: Test 1 coupling beam shear force versus chord rotation behavior – (a) using beam displacements; (b) using load block displacements. ................................. 223 Figure 6.9: Test 1 photograph of north seat angle – (a) angle deformed shape; (b) low cycle fatigue fracture. ............................................................................. 224 Figure 6.10: Test 1 Mb-θb,lb behavior. ............................................................................. 225 Figure 6.11: Test 1 beam post-tensioning strand forces – (a) strand 1; (b) strand 2. ..... 227 Figure 6.12: Test 1 FLC-θb,lb behavior – (a) strand 1; (b) strand 2................................... 227 Figure 6.13: Test 1 beam post-tensioning force versus chord rotation behavior – (a) using beam displacements; (b) using load block displacements. ................................. 228 Figure 6.14: Test 1 south end top angle-to-wall connection strand forces – (a) east strand; (b) west strand. .................................................................................................... 230 Figure 6.15: Test 1 south end top angle-to-wall connection strand forces versus load block beam chord rotation – (a) FLC3-θb,lb; (b) FLC4-θb,lb. ................................... 230 Figure 6.16: Test 1 south end seat angle-to-wall connection strand forces – (a) east strand; (b) west strand. ........................................................................................ 231 xxiii
  • 27. Figure 6.17: Test 1 south end seat angle-to-wall connection strand forces versus load block beam chord rotation – (a) FLC5-θb,lb; (b) FLC6-θb,lb. ................................... 231 Figure 6.18: Test 1 south end total angle-to-wall connection strand forces versus load block beam chord rotation – (a) top connection; (b) seat connection. ................ 232 Figure 6.19: Test 1 vertical force on wall test region, Fwt – (a) Fwt-test duration; (b) Fwt-θb,lb........................................................................................................... 233 Figure 6.20: Test 1 south end beam vertical displacements – (a) measured, ∆DT9; (b) adjusted, ∆DT9,y; (c) difference, ∆DT9,y-∆DT9. ........................................ 235 Figure 6.21: Test 1 north end beam vertical displacements – (a) measured, ∆DT10; (b) adjusted, ∆DT10,y; (c) difference, ∆DT10,y-∆DT10. .............................................. 236 Figure 6.22: Test 1 percent difference between measured and adjusted displacements – (a) south end, DT9; (b) north end, DT10. ........................................................... 236 Figure 6.23: Test 1 beam vertical displacements versus load block beam chord rotation – (a) ∆DT9-θb,lb; (b) ∆DT10-θb,lb. ................................................................................ 237 Figure 6.24: Test 1 beam chord rotation – (a) θb from ∆DT9 and ∆DT10; (b) θb,lb from ∆LB,y. ............................................................................................................................. 238 Figure 6.25: Test 1 percent difference between θb and θb,lb. ........................................... 239 Figure 6.26: Test 1 difference between θb and θb,lb......................................................... 239 Figure 6.27: Test 1 beam inclinometer rotations – (a) near beam south end, θRT1; (b) near beam midspan, θRT2. ............................................................................................ 241 Figure 6.28: Test 1 percent difference between beam inclinometer rotations and beam chord rotations – (a) RT1; (b) RT2; (c) beam deflected shape. .......................... 242 Figure 6.29: Test 1 load block horizontal displacements – (a) measured, ∆DT3; (b) adjusted, ∆DT3,x; (c) percent difference. ......................................................... 245 Figure 6.30: Test 1 load block north end vertical displacements – (a) measured, ∆DT4; (b) adjusted, ∆DT4,y; (c) percent difference. ......................................................... 246 Figure 6.31: Test 1 load block south end vertical displacements – (a) measured, ∆DT5; (b) adjusted, ∆DT5,y; (c) percent difference. ......................................................... 247 Figure 6.32: Test 1 percent difference between measured and adjusted displacements versus load block beam chord rotation – (a) DT4; (b) DT5. .............................. 247 Figure 6.33: Test 1 load block displacements versus load block beam chord rotation – (a) ∆DT4-θb,lb; (b) ∆DT5-θb,lb; (c) ∆DT3,x-θb,lb. ......................................................... 248 xxiv
  • 28. Figure 6.34: Test 1 load block centroid displacements – (a) x-y displacements; (b) rotation; (c) x-displacement; (d) y-displacement. .......................................... 249 Figure 6.35: Test 1 load block centroid displacements versus load block beam chord rotation – (a) x-displacement-θb,lb; (b) y-displacement-θb,lb; (c) rotation-θb,lb..... 250 Figure 6.36: Test 1 reaction block displacements – (a) ∆DT6; (b) ∆DT7; (c) ∆DT8. ........... 252 Figure 6.37: Test 1 reaction block displacements versus load block beam chord rotation – (a) ∆DT7-θb,lb; (b) ∆DT8-θb,lb; (c) ∆DT6-θb,lb. ........................................................... 253 Figure 6.38: Test 1 reaction block centroid displacements – (a) x-y displacements; (b) rotation; (c) x-displacement; (d) y-displacement. .......................................... 254 Figure 6.39: Test 1 reaction block centroid displacements versus load block beam chord rotation – (a) x-displacements; (b) y-displacements; (c) rotation. ...................... 255 Figure 6.40: Test 1 beam-to-reaction-block interface top LVDT displacements – (a) measured, ∆DT11; (b) adjusted, ∆DT11,x; (c) percent difference. ...................... 257 Figure 6.41: Test 1 beam-to-reaction-block interface middle LVDT displacements – (a) measured, ∆DT12; (b) adjusted, ∆DT12,x; (c) percent difference. ...................... 258 Figure 6.42: Test 1 beam-to-reaction-block interface bottom LVDT displacements – (a) measured, ∆DT13; (b) adjusted, ∆DT13,x; (c) percent difference. ...................... 259 Figure 6.43: Test 1 beam-to-reaction-block interface LVDT displacements versus load block beam chord rotation – (a) ∆DT11-θb,lb; (b) ∆DT13-θb,lb; (c) ∆DT12-θb,lb. ......... 260 Figure 6.44: Test 1 contact depth at beam-to-reaction-block interface – (a) method 1 using DT11, DT12, and DT13; (b) method 2 using RT2, DT11, and DT13; (c) method 3 using RT2 and DT12; (d) method 4 using θb,lb and DT12; (e) method 5 using θb,lb, DT11, and DT13. .............................................................................. 264 Figure 6.45: Test 1 gap opening at beam-to-reaction-block interface – (a) method 1 using DT11, DT12, and DT13; (b) method 2 using RT2, DT11, and DT13; (c) method 3 using RT2 and DT12; (d) method 4 using θb,lb and DT12; (e) method 5 using θb,lb, DT11, and DT13. ................................................................................................ 265 Figure 6.46: Test 1 gap opening at beam-to-reaction-block interface using method 4. . 266 Figure 6.47: Test 1 contact depth at beam-to-reaction-block interface using method 4 – (a) entire data; (b) 2.0% beam chord rotation cycle; (c) 5.0% beam chord rotation cycle. ................................................................................................................... 266 Figure 6.48: Test 1 wall test region concrete deformations – (a) ∆DT14; (b) ∆DT15.......... 268 xxv
  • 29. Figure 6.49: Test 1 wall test region concrete deformations versus load block beam chord rotation – (a) ∆DT14-θb,lb; (b) ∆DT15-θb,lb. .............................................................. 269 Figure 6.50: Test 1 beam looping reinforcement top longitudinal leg strains – (a) ε6(1)T-E; (b) ε6(1)T-W; (c) ε6(2)T-E; (d) ε6(2)T-W; (e) ε6(3)T-E; (f) ε6(3)T-W; (g) ε6MT-E; (h) ε6MT-W. ............................................................................................................ 270 Fig 6.51: Test 1 beam looping reinforcement bottom longitudinal leg strains – (a) ε6(1)B-E; (b) ε6(1)B-W; (c) ε6(2)B-E; (d) ε6(2)B-W; (e) ε6(3)B-E; (f) ε6(3)B-W; (g) ε6MB-E; (h) ε6MB-W. ............................................................................................................ 272 Figure 6.52: Test 1 beam looping reinforcement top longitudinal leg strains versus load block beam chord rotation – (a) ε6(1)T-E-θb,lb; (b) ε6(1)T-W-θb,lb; (c) ε6(2)T-E-θb,lb; (d) ε6(2)T-W-θb,lb; (e) ε6(3)T-E-θb,lb; (f) ε6(3)T-W-θb,lb; (g) ε6MT-E-θb,lb; (h) ε6MT-W-θb,lb. ..................................................................................................... 273 Figure 6.53: Test 1 beam looping reinforcement bottom longitudinal leg strains versus load block beam chord rotation – (a) ε6(1)B-E-θb,lb; (b) ε6(1)B-W-θb,lb; (c) ε6(2)B-E-θb,lb; (d) ε6(2)B-W-θb,lb; (e) ε6(3)B-E-θb,lb; (f) ε6(3)B-W-θb,lb; (g) ε6MB-E-θb,lb; (h) ε6MB-W-θb,lb...................................................................................................... 275 Figure 6.54: Test 1 beam looping reinforcement vertical leg strains – (a) ε6SE(E)-E; (b) ε6SE(E)-W; (c) ε6SE(I)-E; (d) ε6SE(I)-W. ................................................................... 277 Figure 6.55: Test 1 beam looping reinforcement vertical leg strains versus load block beam chord rotation – (a) ε6SE(E)-E-θb,lb; (b) ε6SE(E)-W-θb,lb; (c) ε6SE(I)-E-θb,lb; (d) ε6SE(I)-W-θb,lb. ................................................................................................... 278 Figure 6.56: Test 1 beam midspan transverse hoop reinforcement strains – (a) εMH-E; (b) εMH-W. ............................................................................................................. 278 Figure 6.57: Test 1 beam midspan transverse hoop reinforcement strains versus load block beam chord rotation – (a) εMH-E-θb,lb; (b) εMH-W-θb,lb. ................................ 279 Figure 6.58: Test 1 No. 3 top hoop support bar strains – (a) ε3THT-(1); (b) ε3THB-(1); (c) ε3THT-(2); (d) ε3THB-(2). ...................................................................................... 281 Figure 6.59: Test 1 No. 3 bottom hoop support bar strains – (a) ε3BHB-(1); (b) ε3BHT-(1); (c) ε3BHB-(2); (d) ε3BHT-(2). ...................................................................................... 282 Figure 6.60: Test 1 No. 3 top hoop support bar strains versus load block beam chord rotation – (a) ε3THT-(1)-θb,lb; (b) ε3THB-(1)-θb,lb; (c) ε3THT-(2)-θb,lb; (d) ε3THB-(2)-θb,lb. .................................................................................................. 283 Figure 6.61: Test 1 No. 3 bottom hoop support bar strains versus load block beam chord rotation – (a) ε3BHB-(1)-θb,lb; (b) ε3BHT-(1)-θb,lb; (c) ε3BHB-(2)-θb,lb; (d) ε3BHT-(2)-θb,lb. .................................................................................................. 284 xxvi
  • 30. Figure 6.62: Test 1 beam end confinement hoop east leg strains – (a) ε1HB-E; (b) ε2HB-E; (c) ε3HB-E; (d) ε4HB-E. ............................................................................................ 286 Figure 6.63: Test 1 beam end confinement hoop west leg strains – (a) ε1HB-W; (b) ε2HB-W; (c) ε3HB-W; (d) ε4HB-W. ........................................................................................... 287 Figure 6.64: Test 1 beam end confinement hoop east leg strains versus load block beam chord rotation – (a) ε1HB-E-θb,lb; (b) ε2HB-E-θb,lb; (c) ε3HB-E-θb,lb; (d) ε4HB-E-θb,lb. ..................................................................................................... 288 Figure 6.65: Test 1 beam end confinement hoop west leg strains versus load block beam chord rotation – (a) ε1HB-W-θb,lb; (b) ε2HB-W-θb,lb; (c) ε3HB-W-θb,lb; (d) ε4HB-W-θb,lb. ..................................................................................................... 289 Figure 6.66: Photograph of damage on south end of beam – (a) east side; (b) west side. ............................................................................................................................. 290 Figure 6.67: Confinement hoop strains – (a) photograph of strain gauged hoop; (b) outward bending of the vertical leg. .............................................................. 291 Figure 6.68: Test 1 reaction block corner bar strains – (a) εCBB1E; (b) εCBB1W; (c) εCBB2E; (d) εCBB2W; (e) εCBB3E; (f) εCBB3W. ......................................................................... 293 Figure 6.69: Test 1 reaction block corner bar strains – (a) εCBM1E; (b) εCBM1W; (c) εCBM3E; (d) εCBM3W. ........................................................................................................... 294 Figure 6.70: Test 1 reaction block corner bar strains versus load block beam chord rotation – (a) εCBB1E-θb,lb; (b) εCBB1W-θb,lb; (c) εCBB2E-θb,lb; (d) εCBB2W-θb,lb; (e) εCBB3E-θb,lb; (f) εCBB3W-θb,lb. .................................................................................. 295 Figure 6.71: Test 1 reaction block corner bar strains versus load block beam chord rotation – (a) εCBM1E-θb,lb; (b) εCBM1W-θb,lb; (c) εCBM3E-θb,lb; (d) εCBM3W-θb,lb. ....... 296 Figure 6.72: Test 1 reaction block corner bar average strains – (a) test duration; (b) versus load block beam chord rotation........................................................................... 296 Figure 6.73: Test 1 reaction block hoop strains – (a) ε1THM; (b) ε1MHM; (c) ε1BHE. .......... 298 Figure 6.74: Test 1 reaction block hoop strains versus load block beam chord rotation – (a) ε1THM-θb,lb; (b) ε1MHM-θb,lb; (c) ε1BHE-θb,lb........................................................ 299 Figure 6.75: Test 1 crack patterns – (a) θb = 0.35%; (b) θb = 0.5%; (c) θb = 0.75%; (d) θb = 1.0%; (e) θb = 1.5%; (f) θb = 2.0%; (g) θb = 3.0%. ................................ 300 Figure 6.76: Test 2 overall photographs – (a) pre-test undisplaced position; (b) θb = 3.33%; (c) θb = –3.33%; (d) θb = 6.4%; (e) θb = –6.4%; (f) final post-test undisplaced position............................................................................................ 304 xxvii
  • 31. Figure 6.77: Test 2 beam south end photographs – (a) pre-test undisplaced position; (b) θb = 3.33%; (c) θb = –3.33%; (d) θb = 6.4%; (c) θb = –6.4%; (f) final post-test undisplaced position............................................................................................ 305 Figure 6.78: Test 2 beam south end damage propagation – positive and negative rotations............................................................................................................... 306 Figure 6.79: Test 2 grout and gap opening behavior at south end – (a) θb = -0.5%; (b) θb = -5.0%. ..................................................................................................... 306 Figure 6.80: Test 2 coupling beam shear force versus chord rotation behavior – (a) using beam displacements; (b) using load block displacements. ................................. 309 Figure 6.81: Test 2 damage to beam ends (upon angle removal after completion of test) – (a) south end; (b) north end. ................................................................................ 310 Figure 6.82: Test 2 Mb-θb,lb behavior. ............................................................................. 311 Figure 6.83: Test 2 beam post-tensioning strand forces – (a) strand 1; (b) strand 2; (c) strand 3; (d) strand 4. ..................................................................................... 313 Figure 6.84: Test 2 FLC-θb,lb behavior – (a) strand 1; (b) strand 2; (c) strand 3; (d) strand 4. ......................................................................................................... 314 Figure 6.85: Test 2 beam post-tensioning force versus chord rotation behavior – (a) using beam displacements; (b) using load block displacements. ................................. 315 Figure 6.86: Use of additional anchor barrel to prevent strand wire fracture. ................ 316 Figure 6.87: Test 2 south end top angle-to-wall connection strand forces – (a) east strand; (b) west strand. .................................................................................................... 318 Figure 6.88: Test 2 south end top angle-to-wall connection strand forces versus load block beam chord rotation – (a) FLC3-θb,lb; (b) FLC4-θb,lb. ................................... 318 Figure 6.89: Test 2 south end seat angle-to-wall connection strand forces – (a) east strand; (b) west strand. ........................................................................................ 319 Figure 6.90: Test 2 south end seat angle-to-wall connection strand forces versus load block beam chord rotation – (a) FLC5-θb,lb; (b) FLC6-θb,lb. ................................... 319 Figure 6.91: Test 2 south end total angle-to-wall connection strand forces versus load block beam chord rotation – (a) top connection; (b) seat connection. ................ 320 Figure 6.92: Test 2 vertical force on wall test region, Fwt – (a) Fwt-test duration; (b) Fwt-θb,lb........................................................................................................... 321 Figure 6.93: Test 2 south end beam vertical displacement. ............................................ 322 xxviii
  • 32. Figure 6.94: Test 2 north end beam vertical displacements – (a) measured, ∆DT10; (b) adjusted, ∆DT10,y; (c) difference, ∆DT10,y-∆DT10. .............................................. 323 Figure 6.95: Test 2 percent difference between measured and adjusted displacements – (a) south end, DT9; (b) north end, DT10. ........................................................... 323 Figure 6.96: Test 2 beam vertical displacements versus load block beam chord rotation – (a) ∆DT9-θb,lb; (b) ∆DT10-θb,lb. ................................................................................ 324 Figure 6.97: Test 2 beam chord rotation – (a) θb from ∆DT10 with ∆DT9 taken as zero; (b) θb,lb from ∆LB,y. ............................................................................................... 325 Figure 6.98: Test 2 percent difference between θb and θb,lb. ........................................... 326 Figure 6.99: Test 2 difference between θb and θb,lb......................................................... 326 Figure 6.100: Test 2 beam inclinometer rotations – (a) near beam south end, θRT1; (b) near beam midspan, θRT2. ............................................................................................ 327 Figure 6.101: Test 2 difference between beam inclinometer rotations and beam chord rotations – (a) RT1; (b) RT2; (c) beam deflected shape. .................................... 328 Figure 6.102: Test 2 load block horizontal displacements – (a) measured, ∆DT3; (b) adjusted, ∆DT3,x; (c) percent difference. ......................................................... 331 Figure 6.103: Test 2 load block north end vertical displacements – (a) measured, ∆DT4; (b) adjusted, ∆DT4,y; (c) percent difference. ......................................................... 332 Figure 6.104: Test 2 load block south end vertical displacements – (a) measured, ∆DT5; (b) adjusted, ∆DT5,y; (c) percent difference. ......................................................... 333 Figure 6.105: Test 2 percent difference between measured and adjusted displacements – (a) DT4; (b) DT5. ................................................................................................ 334 Figure 6.106: Test 2 load block displacements versus load block beam chord rotation – (a) ∆DT4-θb,lb; (b) ∆DT5-θb,lb; (c) ∆DT3,x-θb,lb. ......................................................... 334 Figure 6.107: Test 2 load block centroid displacements – (a) x-y displacements; (b) rotation; (c) x-displacements; (d) y-displacements........................................ 335 Figure 6.108: Test 2 load block centroid displacements versus load block beam chord rotation – (a) x-displacement-θb,lb; (b) y-displacement-θb,lb; (c) rotation-θb,lb..... 336 Figure 6.109: Test 2 reaction block displacements – (a) ΔDT6; (b) ΔDT7; (c) ΔDT8. ......... 338 Figure 6.110: Test 2 reaction block displacements versus load block beam chord rotation – (a) ∆DT7-θb,lb; (b) ∆DT8-θb,lb; (c) ∆DT6-θb,lb. ........................................................ 339 xxix
  • 33. Figure 6.111: Test 2 reaction block centroid displacements – (a) x-y displacements; (b) rotation; (c) x-displacements; (d) y-displacements....................................... 340 Figure 6.112: Test 2 reaction block centroid displacements versus load block beam chord rotation – (a) x-displacements; (b) y-displacements; (c) rotation. ...................... 341 Figure 6.113: Test 2 beam-to-reaction-block interface top LVDT displacements – (a) measured, ∆DT11; (b) adjusted, ∆DT11,x; (c) percent difference. ...................... 343 Figure 6.114: Test 2 beam-to-reaction-block interface middle LVDT displacements – (a) measured, ∆DT12; (b) adjusted, ∆DT12,x; (c) percent difference. ...................... 344 Figure 6.115: Test 2 beam-to-reaction-block interface bottom LVDT displacements – (a) measured, ∆DT13; (b) adjusted, ∆DT13,x; (c) percent difference. ...................... 345 Figure 6.116: Test 2 beam-to-reaction-block interface LVDT displacements versus load block beam chord rotation – (a) ∆DT11-θb,lb; (b) ∆DT13-θb,lb; (c) ∆DT12-θb,lb. ......... 346 Figure 6.117: Test 2 contact depth at beam-to-reaction-block interface – (a) method 1 using DT11, DT12, and DT13; (b) method 2 using RT2, DT11, and DT13; (c) method 3 using RT2 and DT12; (d) method 4 using θb,lb and DT12; (e) method 5 using θb,lb, DT11, and DT13. .............................................................................. 349 Figure 6.118: Test 2 gap opening at beam-to-reaction-block interface – (a) method 1 using DT11, DT12, and DT13; (b) method 2 using RT2, DT11, and DT13; (c) method 3 using RT2 and DT12; (d) method 4 using θb,lb and DT12; (e) method 5 using θb,lb, DT11, and DT13. .............................................................................. 350 Figure 6.119: Test 2 gap opening at beam-to-reaction-block interface using method 4. ................................................................................................... 351 Figure 6.120: Test 2 contact depth at beam-to-reaction-block interface using method 4 – (a) entire data; (b) 2.25% beam chord rotation cycle; (c) 5.0% beam chord rotation cycle. ...................................................................................................... 351 Figure 6.121: Test 2 wall test region concrete deformations – (a) DT14; (b) DT15. ..... 353 Figure 6.122: Test 2 wall test region concrete deformations versus load block beam chord rotation – (a) ∆DT14-θb,lb; (b) ∆DT15-θb,lb. .............................................................. 354 Figure 6.123: Test 2 beam looping reinforcement top longitudinal leg strains – (a) ε6(1)T-E; (b) ε6(1)T-W; (c) ε6(2)T-E; (d) ε6(2)T-W; (e) ε6(3)T-E; (f) ε6(3)T-W; (g) ε6MT-E; (h) ε6MT-W. ............................................................................................................ 356 Figure 6.124: Test 2 beam looping reinforcement bottom longitudinal leg strains – (a) ε6(1)B-E; (b) ε6(1)B-W; (c) ε6(2)B-E; (d) ε6(2)B-W; (e) ε6(3)B-E; (f) ε6(3)B-W; (g) ε6MB-E; (h) ε6MB-W. ............................................................................................................ 357 xxx
  • 34. Figure 6.125: Test 2 beam looping reinforcement top longitudinal leg strains versus load block beam chord rotation – (a) ε6(1)T-E-θb,lb; (b) ε6(1)T-W-θb,lb; (c) ε6(2)T-E-θb,lb; (d) ε6(2)T-W-θb,lb; (e) ε6(3)T-E-θb,lb; (f) ε6(3)T-W-θb,lb; (g) ε6MT-E-θb,lb; (h) ε6MT-W-θb,lb. ............................................................................................................................. 358 Figure 6.126: Test 2 beam looping reinforcement bottom longitudinal leg strains versus load block beam chord rotation – (a) ε6(1)B-E-θb,lb; (b) ε6(1)B-W-θb,lb; (c) ε6(2)B-E-θb,lb; (d) ε6(2)B-W-θb,lb; (e) ε6(3)B-E-θb,lb; (f) ε6(3)B-W-θb,lb; (g) ε6MB-E-θb,lb; (h) ε6MB-W-θb,lb. ............................................................................................................................. 360 Figure 6.127: Test 2 beam looping reinforcement vertical leg strains – (a) ε6SE(E)-E; (b) ε6SE(E)-W; (c) ε6SE(I)-E; (d) ε6SE(I)-W. ................................................................... 362 Figure 6.128: Test 2 beam looping reinforcement vertical leg strains versus load block beam chord rotation – (a) ε6SE(E)-E-θb,lb; (b) ε6SE(E)-W-θb,lb; (c) ε6SE(I)-E-θb,lb; (d) ε6SE(I)-W-θb,lb. ................................................................................................... 363 Figure 6.129: Test 2 beam midspan transverse hoop reinforcement strains – (a) εMH-E; (b) εMH-W. ............................................................................................................. 363 Figure 6.130: Test 2 beam midspan transverse hoop reinforcement strains versus load block beam chord rotation – (a) εMH-E-θb,lb; (b) εMH-W-θb,lb. ................................ 364 Figure 6.131: Test 2 No. 3 top hoop support bar strains– (a) ε3THT-(1); (b) ε3THB-(1); (c) ε3THT-(2); (d) ε3THB-(2). ...................................................................................... 365 Figure 6.132: Test 2 No. 3 bottom hoop support bar strains – (a) ε3BHB-(1); (b) ε3BHT-(1); (c) ε3BHB-(2); (d) ε3BHT-(2). ...................................................................................... 366 Figure 6.133: Test 2 No. 3 top hoop support bar strains versus load block beam chord rotation – (a) ε3THT-(1)-θb,lb; (b) ε3THB-(1)-θb,lb; (c) ε3THT-(2)-θb,lb; (d) ε3THB-(2)-θb,lb. . 367 Figure 6.134: Test 2 No. 3 bottom hoop support bar strains versus load block beam chord rotation – (a) ε3BHB-(1)-θb,lb; (b) ε3BHT-(1)-θb,lb; (c) ε3BHB-(2)-θb,lb; (d) ε3BHT-(2)-θb,lb. . 368 Figure 6.135: Test 2 beam end confinement hoop east leg strains – (a) ε1HB-E; (b) ε2HB-E; (c) ε3HB-E; (d) ε4HB-E. ............................................................................................ 369 Figure 6.136: Test 2 beam end confinement hoop west leg strains – (a) ε1HB-W; (b) ε2HB-W; (c) ε3HB-W; (d) ε4HB-W. ........................................................................................... 370 Figure 6.137: Test 2 beam end confinement hoop east leg strains versus load block beam chord rotation – (a) ε1HBE-θb,lb; (b) ε2HBE-θb,lb; (c) ε3HBE-θb,lb; (d) ε4HBE-θb,lb. ...... 371 Figure 6.138: Test 2 beam end hoop west leg confinement strains versus load block beam chord rotation – (a) ε1HBW-θb,lb; (b) ε2HBW-θb,lb; (c) ε3HBW-θb,lb; (d) ε4HBW-θb,lb. .... 372 xxxi
  • 35. Figure 6.139: Test 2 crack patterns – (a) θb = 0.5%; (b) θb = 0.75%; (c) θb = 1.0%; (d) θb = 1.5%; (e) θb = 2.25%; (f) θb = 3.33%; (g) θb = 5.0%; (h) θb = 6.4%. .... 373 Figure 6.140: Test 3 overall photographs – (a) pre-test undisplaced position; (b) θb = 3.33%; (c) θb = 3.33%; (d) θb = 5.0%; (e) θb = –5.0%; (f) final post-test undisplaced position............................................................................................ 378 Figure 6.141: Test 3 beam south end photographs – (a) pre-test undisplaced position; (b) θb = 3.33%; (c) θb = –3.33%; (d) θb = 5.0%; (c) θb = –5.0%; (f) final post-test undisplaced position............................................................................................ 379 Figure 6.142: Test 3 beam south end damage propagation – positive and negative rotations............................................................................................................... 380 Figure 6.143: Test 3 angle strips at south top connection............................................... 380 Figure 6.144: Test 3 coupling beam shear force versus chord rotation behavior – (a) using beam displacements; (b) using load block displacements. .................. 382 Figure 6.145: Test 3 Mb-θb behavior. .............................................................................. 383 Figure 6.146: Test 3 beam post-tensioning strand forces – (a) strand 1; (b) strand 2; (c) strand 3. ......................................................................................................... 385 Figure 6.147: Test 3 FLC-θb behavior – (a) strand 1; (b) strand 2; strand 3. ................... 386 Figure 6.148: Test 3 beam post-tensioning force versus chord rotation behavior – (a) using beam displacements; (b) using load block displacements. .................. 387 Figure 6.149: Test 3 south end top angle-to-wall connection strand forces – (a) east strand; (b) west strand. ........................................................................................ 389 Figure 6.150: Test 3 south end top angle-to-wall connection strand forces versus beam chord rotation – (a) FLC3-θb; (b) FLC4-θb.............................................................. 390 Figure 6.151: Test 3 south end seat angle-to-wall connection strand forces – (a) east strand; (b) west strand. ........................................................................................ 390 Figure 6.152: Test 3 south end seat angle-to-wall connection strand forces versus beam chord rotation – (a) FLC5-θb; (b) FLC6-θb.............................................................. 391 Figure 6.153: Test 3 south end total angle-to-wall connection strand forces versus beam chord rotation– (a) top connection; (b) seat connection. .................................... 391 Figure 6.154: Test 3 vertical force on wall test region, Fwt – (a) Fwt-test duration; (b) Fwt-θb ............................................................................................................. 392 Figure 6.155: Test 3 south end beam vertical displacements – (a) measured, ∆DT9; (b) adjusted, ∆DT9,y; (c) difference, ∆DT9,y-∆DT9. .................................................. 394 xxxii
  • 36. Figure 6.156: Test 3 north end beam vertical displacements – (a) measured, ∆DT10; (b) adjusted, ∆DT10,y; (c) difference, ∆DT10,y-∆DT10. .............................................. 395 Figure 6.157: Test 3 percent difference between measured and adjusted displacements versus beam chord rotation – (a) south end, DT9; (b) north end, DT10............. 395 Figure 6.158: Test 3 beam vertical displacements versus beam chord rotation – (a) ∆DT9-θb; (b) ∆DT10-θb. ..................................................................................... 396 Figure 6.159: Test 3 beam chord rotation – (a) θb from ∆DT9 and ∆DT10; (b) θb,lb from ∆LB,y. ............................................................................................................................. 397 Figure 6.160: Test 3 percent difference between θb and θb,lb. ......................................... 397 Figure 6.161: Test 3 difference between θb and θb,lb....................................................... 398 Figure 6.162: Test 3 beam inclinometer rotations – (a) near beam south end, θRT1; (b) near beam midspan, θRT2. .............................................................................. 399 Figure 6.163: Test 3 difference between beam inclinometer rotations and beam chord rotations – (a) RT1; (b) RT2; (c) beam deflected shape. .................................... 400 Figure 6.164: Test 3 load block horizontal displacements – (a) measured, ∆DT3; (b) adjusted, ∆DT3,x; (c) percent difference. ......................................................... 403 Figure 6.165: Test 3 load block north end vertical displacements – (a) measured, ∆DT4; (b) adjusted, ∆DT4,y; (c) percent difference. ......................................................... 404 Figure 6.166: Test 3 load block south end vertical displacements – (a) measured, ∆DT5; (b) adjusted, ∆DT5,y; (c) percent difference. ......................................................... 405 Figure 6.167: Test 3 percent difference between measured and adjusted displacements – (a) DT4; (b) DT5. ................................................................................................ 405 Figure 6.168: Test 3 load block displacements versus beam chord rotation – (a) ∆DT4-θb; (b) ∆DT5-θb; (c) ∆DT3,x-θb. ..................................................................................... 406 Figure 6.169: Test 3 load block centroid displacements – (a) x-y displacements; (b) rotation; (c) x-displacements; (d) y-displacements........................................ 407 Figure 6.170: Test 3 load block centroid displacements versus beam chord rotation – (a) x-displacement-θb; (b) y-displacement-θb; (c) rotation-θb. ............................ 408 Figure 6.171: Test 3 reaction block displacements – (a) ΔDT6; (b) ΔDT7; (c) ΔDT8. ......... 410 Figure 6.172: Test 3 reaction block displacements versus beam chord rotation – (a) ∆DT7-θb; (b) ∆DT8-θb; (c) ∆DT6-θb. ................................................................... 411 xxxiii
  • 37. Figure 6.173: Test 3 reaction block centroid displacements – (a) x-y displacements; (b) rotation; (c) x-displacements; (d) y-displacements........................................ 412 Figure 6.174: Test 3 reaction block centroid displacements versus beam chord rotation – (a) x-displacements; (b) y-displacements; (c) rotation. ....................................... 413 Figure 6.175: Test 3 beam-to-reaction-block interface top LVDT displacements – (a) measured, ∆DT11; (b) adjusted, ∆DT11,x; (c) percent difference. ...................... 415 Figure 6.176: Test 3 beam-to-reaction-block interface middle LVDT displacements – (a) measured, ∆DT12; (b) adjusted, ∆DT12,x; (c) percent difference. ...................... 416 Figure 6.177: Test 3 beam-to-reaction-block interface bottom LVDT displacements – (a) measured, ∆DT13; (b) adjusted, ∆DT13,x; (c) percent difference. ...................... 417 Figure 6.178: Test 3 beam-to-reaction-block interface LVDT displacements versus beam chord rotation – (a) ∆DT11-θb; (b) ∆DT13-θb; (c) ∆DT12-θb. ..................................... 418 Figure 6.179: Test 3 contact depth at beam-to-reaction-block interface – (a) method 1 using DT11, DT12, and DT13; (b) method 2 using RT1, DT11, and DT13; (c) method 3 using RT1 and DT12; (d) method 4 using θb and DT12; (e) method 5 using θb, DT11, and DT13. ................................................................................. 421 Figure 6.180: Test 3 gap opening at beam-to-reaction-block interface – (a) method 1 using DT11, DT12, and DT13; (b) method 2 using RT1, DT11, and DT13; (c) method 3 using RT1 and DT12; (d) method 4 using θb and DT12; (e) method 5 using θb, DT11, and DT13. ................................................................................. 422 Figure 6.181: Test 3 gap opening at beam-to-reaction-block interface using method 4. ................................................................................................... 423 Figure 6.182: Test 3 contact depth at beam-to-reaction-block interface using method 4 – (a) entire data; (b) 2.25% beam chord rotation cycle; (c) 5.0% beam chord rotation cycle. ...................................................................................................... 423 Figure 6.183: Test 3 wall test region concrete deformations – (a) DT14; (b) DT15. ..... 425 Figure 6.184: Test 3 wall test region concrete deformations versus beam chord rotation – (a) ∆DT14-θb; (b) ∆DT15-θb. .................................................................................... 425 Figure 6.185: Test 3 beam looping reinforcement top longitudinal leg strains – (a) ε6(1)T-E; (b) ε6(1)T-W; (c) ε6(2)T-E; (d) ε6(2)T-W; (e) ε6(3)T-E; (f) ε6(3)T-W; (g) ε6MT-E; (h) ε6MT-W. ............................................................................................................ 427 Figure 6.186: Test 3 beam looping reinforcement bottom longitudinal leg strains – (a) ε6(1)B-E; (b) ε6(1)B-W; (c) ε6(2)B-E; (d) ε6(2)B-W; (e) ε6(3)B-E; (f) ε6(3)B-W; (g) ε6MB-E; (h) ε6MB-W. ............................................................................................................ 428 xxxiv
  • 38. Figure 6.187: Test 3 beam looping reinforcement top longitudinal leg strains versus beam chord rotation – (a) ε6(1)T-E-θb; (b) ε6(1)T-W-θb; (c) ε6(2)T-E-θb; (d) ε6(2)T-W-θb; (e) ε6(3)T-E-θb; (f) ε6(3)T-W-θb; (g) ε6MT-E-θb; (h) ε6MT-W-θb. ..................................... 430 Figure 6.188: Test 3 beam looping reinforcement bottom longitudinal leg strains versus beam chord rotation – (a) ε6(1)B-E-θb; (b) ε6(1)B-W-θb; (c) ε6(2)B-E-θb; (d) ε6(2)B-W-θb; (e) ε6(3)B-E-θb; (f) ε6(3)B-W-θb; (g) ε6MB-E-θb; (h) ε6MB-W-θb. ..................................... 432 Figure 6.189: Test 3 beam looping reinforcement vertical leg strains – (a) ε6SE(E)-E; (b) ε6SE(E)-W; (c) ε6SE(I)-E; (d) ε6SE(I)-W. ................................................................... 434 Figure 6.190: Test 3 beam looping reinforcement vertical leg strains versus beam chord rotation – (a) ε6SE(E)-E-θb; (b) ε6SE(E)-W-θb; (c) ε6SE(I)-E-θb; (d) ε6SE(I)-W-θb. ............. 435 Figure 6.191: Test 3 beam midspan transverse hoop reinforcement strains – (a) εMH-E; (b) εMH-W. ............................................................................................................. 435 Figure 6.192: Test 3 beam midspan transverse hoop reinforcement strains versus beam chord rotation – (a) εMH-E-θb; (b) εMH-W-θb. ......................................................... 436 Figure 6.193: Test 3 No. 3 top hoop support bar strains – (a) ε3THT-(1); (b) ε3THB-(1); (c) ε3THT-(2); (d) ε3THB-(2). ...................................................................................... 437 Figure 6.194: Test 3 No. 3 bottom hoop support bar strains – (a) ε3BHB-(1); (b) ε3BHT-(1); (c) ε3BHB-(2); (d) ε3BHT-(2). ...................................................................................... 438 Figure 6.195: Test 3 No. 3 top hoop support bar strains versus beam chord rotation – (a) ε3THT-(1)-θb; (b) ε3THB-(1)-θb; (c) ε3THT-(2)-θb; (d) ε3THB-(2)-θb. ............................. 439 Figure 6.196: Test 3 No. 3 bottom hoop support bar strains versus beam chord rotation – (a) ε3BHB-(1)-θb; (b) ε3BHT-(1)-θb; (c) ε3BHB-(2)-θb; (d) ε3BHT-(2)-θb. ............................ 440 Figure 6.197: Test 3 beam end confinement hoop east leg strains – (a) ε1HBE; (b) ε2HBE; (c) ε3HBE; (d) ε4HBE. .............................................................................................. 441 Figure 6.198: Test 3 beam end confinement hoop west leg strains – (a) ε1HBW; (b) ε2HBW; (c) ε3HBW; (d) ε4HBW. ............................................................................................. 442 Figure 6.199: Test 3 beam end confinement hoop east leg strains versus beam chord rotation – (a) ε1HBE-θb; (b) ε2HBE-θb; (c) ε3HBE-θb; (d) ε4HBE-θb. ........................... 443 Figure 6.200: Test 3 beam end confinement hoop west leg strains versus beam chord rotation – (a) ε1HBW-θb; (b) ε2HBW-θb; (c) ε3HBW-θb; (d) ε4HBW-θb. ......................... 444 Figure 6.201: Test 3 crack patterns – (a) θb = 0.125%; (b) θb = 0.175%; (c) θb = 0.25%; (d) θb = 0.35%; (e) θb = 0.5%; (f) θb = 0.75%; (g) θb = 1.0%; (h) θb = 1.5%; (i) θb = 2.25%; (j) θb = 3.33%; (k) θb = 5.0%...................................................... 445 xxxv
  • 39. Figure 6.202: Test 4 overall photographs – (a) pre-test undisplaced position; (b) θb = 3.33%; (c) θb = –3.33%; (d) final post-test undisplaced position. ......... 450 Figure 6.203: Test 4 beam south end photographs – (a) pre-test undisplaced position; (b) θb = 3.33%; (c) θb = –3.33%; (d) final post-test undisplaced position. ......... 451 Figure 6.204: Test 4 beam south end damage propagation – positive and negative rotations............................................................................................................... 452 Figure 6.205: Test 4 angle-to-wall connection plates. .................................................... 452 Figure 6.206: Test 4 wall test region patch. .................................................................... 453 Figure 6.207: Test 4 coupling beam shear force versus chord rotation behavior – (a) using beam displacements; (b) using load block displacements. ................................. 455 Figure 6.208: Test 4 Mb-θb behavior. .............................................................................. 456 Figure 6.209: Test 4 beam post-tensioning strand forces – (a) strand 1; (b) strand 2; (c) strand 3. ......................................................................................................... 458 Figure 6.210: Test 4 FLC-θb behavior – (a) strand 1; (b) strand 2; (c) strand 3. .............. 459 Figure 6.211: Test 4 beam post-tensioning force versus chord rotation behavior – (a) using beam displacements; (b) using load block displacements. .................. 460 Figure 6.212: Test 4 south end top angle-to-wall connection strand forces – (a) east strand; (b) west strand. ........................................................................................ 462 Figure 6.213: Test 4 south end top angle-to-wall connection strand forces versus beam chord rotation – (a) FLC3-θb; (b) FLC4-θb.............................................................. 462 Figure 6.214: Test 4 south end seat angle-to-wall connection strand forces – (a) east strand; (b) west strand. ........................................................................................ 463 Figure 6.215: Test 4 south end seat angle-to-wall connection strand forces versus beam chord rotation – (a) FLC5-θb; (b) FLC6-θb.............................................................. 463 Figure 6.216: Test 4 south end total angle-to-wall connection strand forces versus beam chord rotation – (a) top connection; (b) seat connection. ................................... 464 Figure 6.217: Test 4 vertical force on the wall test region, Fwt – (a) Fwt-test duration; (b) Fwt-θb ............................................................................................................. 465 Figure 6.218: Test 4 south end beam vertical displacements – (a) measured, ∆DT9; (b) adjusted, ∆DT9,y; (c) difference, ∆DT9,y-∆DT9. .................................................. 467 Figure 6.219: Test 4 north end beam vertical displacements – (a) measured, ∆DT10; (b) adjusted, ∆DT10,y; (c) difference, ∆DT10,y-∆DT10. .............................................. 468 xxxvi
  • 40. Figure 6.220: Test 4 percent difference between measured and adjusted displacements – (a) south end, DT9; (b) north end, DT10. ........................................................... 468 Figure 6.221: Test 4 beam vertical displacements versus beam chord rotation – (a) ∆DT9-θb; (b) ∆DT10-θb. ..................................................................................... 469 Figure 6.222: Test 4 beam chord rotation – (a) θb from ∆DT9 and ∆DT10; (b) θb,lb from ∆LB,y. ............................................................................................... 470 Figure 6.223: Test 4 percent difference between θb and θb,lb. ......................................... 470 Figure 6.224: Test 4 difference between θb and θb,lb....................................................... 471 Figure 6.225: Test 4 beam inclinometer rotations – (a) near beam south end, θRT1; (b) near beam midspan, θRT2. ............................................................................................ 472 Figure 6.226: Test 4 difference between beam inclinometer rotations and beam chord rotations – (a) RT1; (b) RT2; (c) beam deflected shape. .................................... 473 Figure 6.227: Test 4 load block horizontal displacements – (a) measured, ∆DT3; (b) adjusted, ∆DT3,x; (c) percent difference. ......................................................... 476 Figure 6.228: Test 4 load block north end vertical displacements – (a) measured, ∆DT4; (b) adjusted, ∆DT4,y; (c) percent difference. ......................................................... 477 Figure 6.229: Test 4 load block south end vertical displacements – (a) measured, ∆DT5; (b) adjusted, ∆DT5,y; (c) percent difference. ......................................................... 478 Figure 6.230: Test 4 percent difference between measured and adjusted displacements – (a) DT4; (b) DT5. ................................................................................................ 478 Figure 6.231: Test 4 load block displacements versus beam chord rotation – (a) ∆DT4-θb; (b) ∆DT5-θb; (c) ∆DT3,x-θb. ..................................................................................... 479 Figure 6.232: Test 4 load block centroid displacements – (a) x-y displacements; (b) rotation; (c) x-displacements; (d) y-displacements........................................ 480 Figure 6.233: Test 4 load block centroid displacements versus beam chord rotation – (a) x-displacement-θb; (b) y-displacement-θb; (c) rotation-θb. ............................ 481 Figure 6.234: Test 4 reaction block displacements – (a) ΔDT6; (b) ΔDT7; (c) ΔDT8. ......... 483 Figure 6.235: Test 4 reaction block displacements versus beam chord rotation – (a) ∆DT7-θb; (b) ∆DT8-θb; (c) ∆DT6-θb. ................................................................... 484 Figure 6.236: Test 4 reaction block centroid displacements – (a) x-y displacements; (b) rotation; (c) x-displacements; (d) y-displacements........................................ 485 xxxvii