Solucionario 5to secundaria

11,858 views
11,647 views

Published on

solucionario primera parte practicas de quinto grado de educacion secundaria

Published in: Educación, Tecnología, Negocios
1 Comment
8 Me gusta
Estadísticas
Notas
  • tienes la parte que continua?
       Responder 
    ¿Está seguro?    No
    Tu mensaje aparecerá aquí
Sin descargas
reproducciones
reproducciones totales
11,858
On SlideShare
0
De insertados
0
Número de insertados
5
Acciones
Compartido
0
Descargas
556
Comentarios
1
Me gusta
8
Insertados 0
No embeds

No notes for slide

Solucionario 5to secundaria

  1. 1. Quinto Año de Secundaria Solucionarioquinto año de educación secundaria -1-
  2. 2. CAPÍTULO 2 ANÁLISIS COMBINATORIO Y POTENCIACIÓN (Pág. 34, 35, 36) Factorial de un número NIVEL I Resolución 7 1 (n + 3 )!Resolución 1 · = 10 3 (n + 1)!E = (n + 2)! – 2(n+1)! (n + 3)! = 30(n + 1)!E = (n + 2)(n + 1)! – 2(n + 1)! = (n +1)![n+2–2] (n + 3)(n + 2)(n + 1)! = 30(n + 1)! ∴ E = n(n + 1)! Rpta.: D (n + 3)(n + 2) = 30Resolución 2 ∴ n=3 Rpta.: B 7! − 2 × 5! 7 ·6 ·5! − 2·5! 7·6· 5 ! − 2· 5 !M= = = 6! − 10 × 4! 6·5! − 2·5·4! 6· 5 ! − 2· 5 ! Resolución 8 42 − 2 (x – 1)! + x! + (x + 1)! = 5880M= 6−2 (x – 1)! + x(x – 1)! + (x + 1)· x ·(x – 1)!= 5880 ∴ M = 10 Rpta.: E (x – 1)![1 + x + (x + 1)·x] = 5880Resolución 3 (x – 1)!(x2 + 2x + 1) = 5880 1 1 1 1 (x – 1)!(x + 1)2 =5! · 72 E= = = = 4!+ 3! 4· 3!+ 3! 3!(4 + 1) 3!· 5 x–1=5 4 4 E= = Rpta.: E ∴ x=6 Rpta.: B 3!· 4 · 5 5! Resolución 9Resolución 4 1 1 (n + 1) 1 (x − 1)! (x + 2 ) = 5E= − = − x! 3 n! (n + 1)! n!(n + 1) (n + 1)! n +1 1 n + 1− 1 3(x – 1)!(x + 2) = 5x · (x – 1)!E= − = (n + 1)! (n + 1)! (n + 1)! 3x + 6 = 5x E= n ∴ x=3 Rpta.: B ∴ (n + 1)! Rpta.: D Resolución 10Resolución 5 (n + 1)!− n! = (n + 1)n!− n! = n![n + 1− 1] m!(n + 1)! m!(n + 1) n! R= E= = (n − 1)! (n − 1)! (n − 1)! (m + 1)! n! (m + 1)m! n! n!n n!· n · n n! n2 n+1 R= = = ∴ E= Rpta.: B (n − 1)! n(n − 1)! n! m+1 ∴ R = n2 Rpta.: B Resolución 11Resolución 6 11!+10!+ 9! 11· 10· 9· 8!+10· 9· 8!+ 9· 8! R= = (n + 2)! = 6 (n + 2)(n + 1)n! = 6 121· 8! 121· 8! à n! n! 11 10· 9 + 10· 9 + 9 · R= (n + 1)(n + 2) = 6 121 Resolviendo: ∴ R=9 Rpta.: B ∴ n=1 Rpta.: A -2-
  3. 3. Quinto Año de SecundariaResolución 12 Resolución 3  (n + 1)!  (n + 3 )! (n + 2)! − n n + 3 + (n − 2)! 2 − =6 P= ( )  n!  (n + 2)! n! (n − 3)! (n + 2)(n + 1)n! − n n + 3 + (n − 2)(n − 3)! 2· (n + 1)n! (n + 3)(n + 2)! = 6 P= ( ) − n! (n − 3)! n! (n + 2)! P = n2 + n + 2n + 2 − n2 − 3n + n − 2 2n + 2 – n – 3 = 6 ∴ P=n Rpta.: C ∴ n=7 Rpta.: C Resolución 4Resolución 13 ( x − 5)! 2 ( x − 4 )!(x + 6 )! − (x + 2)! = 44 = ( x − 3)! ( x − 2)!( x + 4)! x! ( x − 5)! 2 ( x − 4 )!( x + 6 )(x + 5)( x + 4)! − (x + 2)( x + 1) x! = 44 = ( x − 3 ) ( x − 4 ) ( x − 5)! (x − 2) ( x − 3 ) (x − 4 )! (x + 4 )! x! 1 2(x + 6)(x + 5) – (x + 2)(x + 1) = 44 = x–2 = 2x – 8 x−4 x−28x + 28 = 44 ∴ x=6 Rpta.: D ∴ x=2 Rpta.: D Resolución 5Resolución 14 ( x − 2)!+ (x − 1)! = 720 (n + 1)! (n – 1)! = 36n + (n!)2 x (n + 1)n(n–1)!(n–1)! = 36n+[n(n–1)!]2 (x–2)! + (x–1)(x–2)! = 720x (n + 1)n[(n–1)!]2 = 36n + n2[(n–1)!]2 (x–2)!(1+x–1) = 720 x [(n–1)!]2 [n2 + n – n2] = 36n (x–2)! = 6! x–2= 6 [(n–1)!]2[n] = 36n ∴ x=8 Rpta.: B (n–1)! = 6 (n–1)! = 3! Resolución 6 (n – 1) = 3 (n + 4)! − (n + 3)! = 25 ∴ n=4 Rpta.: C (n + 2)! (n + 2)! (n + 4 )(n + 3 )(n + 2 )! − (n + 3 )(n + 2 )! = 25 NIVEL II (n + 2 ) (n + 2 )! n2 + 3n + 4n + 12 – n – 3 = 25Resolución 1 n2 + 6n + 9 = 25 n! R= − n2 ∴ n=2 Rpta.: C (n − 2)! n (n − 1)(n − 2)! Resolución 7 R= − n2 = n2 − n − n2 (n − 2)!  A= (n + 1)!+ n!   (2n + 3)!    ∴ R = –n Rpta.: D   (2n + 1)!+ (2n + 2)!   (n + 2)!   Resolución 2  A= (n + 1)n!+ n!  (2n + 3)(2n + 2)(2n + 1)! · (2n + 1)!+ (2n + 2)(2n + 1)!   (n + 2)(n + 1· n! ) n (n + 1)!− n! n (n + 1) n!− n! n· n!(n + 1− 1)M=  =  = (n − 1)! (n − 1)! (n − 1)! = n!  n + 2    · ( 2n + 3 )(2n + 2) (2n + 1)! (2n + 1)!  2n + 3    ( n + 2 )(n + 1)n! n· n· n! n· n· n (n − 1)!M= = (n − 1)! (n − 1)! 2 (n + 1) = n +1 ∴ M = n3 Rpta.: C ∴ A=2 Rpta.: B -3-
  4. 4. Resolución 8 (13· 12)2 (11!)2 13· 12· 11 10! · − (n + 7 )! ⋅ (n + 5 )! = 10! 2 (12 + 1) (11!) 2 10! (1+ 11) (n + 6 )!+ (n + 5 )! (13· 12)2 − 13· 12· 11 (n + 7)!(n + 5)! = 10! (13 )2 12 (n + 6) · (n + 5)!+ (n + 5)! (12)2 – 13· 11 (n + 7 )! (n + 5)! = 10! (n + 5)! [n + 6 + 1] ∴ 1 Rpta.: A Resolución 12 (n + 7)(n + 6)! = 10! (n + 6)! = 10! (119!)x!! (5!)x!! = (5!!23!)24 (n + 7 ) (119! 5!)x!! = (5!!)23!· 24 n + 6 = 10 (119! 120)x!! =(5!!)24! ∴ n=4 Rpta.: E (120!)x!! = (5!!)24!Resolución 9 (5!!)x!! = (5!!)24!R= (a!!+ 2)!− 2(a!!+ 1)! = (a!!+ 2)(a!!+1)!− 2(a!!+ 1)! x!! = 24! x!! = 4!! (a!!+ 1)! (a!!+ 1)! ∴ x=4 Rpta.: BR= (a!!+ 1)! (a!!+ 2 − 2) Resolución 13 (a!!+ 1)! 5 5 5 ∴ R = a!! Rpta.: B = = 5!+ 4!+ 3! 5· 4· 3!+ 4· 3!+ 3! 3!(20 + 4 + 1)Resolución 10 5 1 4 4 = = = Rpta.: D E = (n!! – 1)!(n!–1)!(n–1)!n–n!!! 3!· 25 3· 2· 1 5 5· 4· 3· 2· 1 5! · E = (n!!–1)!(n!–1)!n! – n!!! E = (n!!–1)! n!! – n!!! Resolución 14 E = n!!! – n!!! (n + 2)! = 5+ (n + 12)! ∴ E=0 Rpta.: C n! (11+ n)!Resolución 11 (n + 2)(n + 1)n! = 5 + (n + 12)(n + 11)! (13!)2 13! n! (n + 11)! 2 − 2 10!+ 11! (12!) + 2 (12!11!) + (11!) (n+2)(n+1) = 5+n+12 (13!)2 − 13! n2 + 3n+2 = 5+n+ 12 (12!+ 11!)2 10!+ 11! n2 + 2n = 15 ∴ n=3 (13· 12· 11!)2 − 13· 12· 11· 10! (12· 11!+ 11!)2 10!+ 11· 10! ∴ Suma valores = 3 Rpta.: C ANÁLISIS COMBINATORIO (Pág. 45, 46) NIVEL I Resolución 2Resolución 1 5 pantalones 3 blusas N° maneras = 5 × 3 N° maneras = 6 × 4 ∴ N° maneras = 15 Rpta.: C ∴ N° maneras = 24 Rpta.: D -4-
  5. 5. Quinto Año de SecundariaResolución 3 Resolución 9 m 5 ...................← Personas V2 = 20 5 --------------- ← asientos m! m (m − 1) (m − 2 )! N° maneras = 5· 4· 3· 2· 1 = 20 = 20 ( m − 2 )! (m − 2)! ∴ N° maneras = 120 Rpta.: C m(m–1) = 4 × 5 ∴ m=5 Rpta.: C Resolución 10Resolución 4 A B C D ← asientos N° maneras = 6 · 5 · 4 · 3 Una persona debe estar fija y las otras 4 las permuta- ∴ N° maneras = 360 Rpta.: B mos. N° maneras = 4!Resolución 5 ∴ N° maneras = 24 Rpta.: B 3 : anillos: 4 : dedos N° maneras = 4· 3· 2 Resolución 11 ∴ N° maneras = 24 Rpta.: C N = a b c d > 6000 6523Resolución 6 N° maneras = 1· 3· 2· 1 10 : amigas ∴ N° maneras = 6 Rpta.: D 6 : invitadas Resolución 12 10· 9· 8· 7 N° maneras = C10 6 = 8· 7· 6· 5 1 2· 3· 4 · C8 = 4 1 2· 3· 4 · ∴ N° maneras = 210 Rpta.: B ∴ N° cuadriláteros = 70 Rpta.: BResolución 7 Resolución 13 n N = abc   = 15  4 números: {1; 2; 3; 4; 5} n (n − 1)(n − 2 )(n − 3 ) N° maneras = 5· 4· 3 = 15 ∴ N° maneras = 60 Rpta.: D 1 2· 3· 4 · n(n–1)(n–2)(n–3) = 6· 5· 4· 3 Resolución 14 ∴ n=6 Rpta.: B  n + 1  n   :  ... (1)  n   n − 1Resolución 8 Entonces: x x C5 + C6 = 28  n + 1  n + 1   n + 1  = =  = n+1 C5 + C6 = C6 +1 = 28 x x x  n   n + 1− n   1  ( x + 1) x (x − 1)( x − 2)( x − 3)( x − 4) = 28  n   n  n 1 2· 3· 4· 5· 6 ·  = = =n  n − 1  n − (n − 1)   1  (x+1)x(x–1)(x–2)(x–3)(x–4) = 8·7·6·5·4·3 En (1): ∴ x=7 Rpta.: C n+1 ∴ Rpta.: D n -5-
  6. 6. Resolución 15 Resolución 7 x C5 = 21  p + q (p + q)! = (p + q)!  =  p  p! (p + q) − p  !   p! q! x (x − 1)(x − 2)(x − 3 )(x − 4 ) = 21 1 2·3· 4· 5 · Además: x(x–1)(x–2)(x–3)(x–4) = 7· 6· 5· 4· 3  p + q  p + q   p + q  = =  ∴ x=7 Rpta.: E  q   (p + q) − q   p  ∴ Son equivalentes I y II Rpta.: B NIVEL IIResolución 1 Resolución 8 4 : biólogos → se escogen 2 3 : químicos → se escogen 2 De ida: 2 + 2·3 + 1= 9 caminos 5 : matemáticos → se escogen 3 De venida: 2 + 2· 3 + 1 = 9 caminos N° maneras = 9· 9 = 81 N° maneras = C4 · C3 · C5 2 2 3 Quitamos los 9 caminos de ida. N° maneras = 81 – 9  4·3  3·2  5·4·3  ∴ N° maneras = 72 Rpta.: B N° maneras =  1· 2  ·  1· 2  ·  1· 2 · 3       Resolución 2 ∴ N° maneras = 180 Rpta.: C N° maneras = 7· 6 · 5 ∴ N° maneras = 210 Rpta.: D Resolución 9 xResolución 3   = 0 ..... (1)  10  Números = {1; 2; 3; 4; 5; 6; 7; 8; 9} Se sabe que: N = a bc d e  m ↓ ↓↓ ↓ ↓  =0 ⇔ m<n ∧ m>0 98765 n N° formas = 9· 8·7· 6· 5 En (1): x < 10 x = {1; 2; 3; 4; 5; 6; 7; 8; 9} ∴ N° formas = 15120 Rpta.: C Producto = 1· 2· 3· 4· 5· 6· 7· 8· 9Resolución 4 ∴ Producto: 9! Rpta.: D L I B R O → 5 letras N° palabras = 5! Resolución 10 ∴ N° palabras = 120 Rpta.: B  n + 1  n   n   n + 1 − Q= + + + Resolución 5  2   1  n − 1  n − 1 25· 24 Se sabe que: C25 = 2 12 ·  m  m   =  ∴ N° partidos = 300 Rpta.: D  n   m − n  n + 1  m + 1 n  n   nResolución 6  =  y  =   n − 1  2   n − 1  1  N° diagonales = C8 − N° lados Luego: 2  n + 1  n    (n + 1)n  8 ·7 Q = 2   +   = 2  + n N° diagonales = 1· 2 − 8   2   1   12 ·  ∴ N° diagonales = 20 Rpta.: B ∴ Q = n2 + 3n Rpta.: B -6-
  7. 7. Quinto Año de SecundariaResolución 11 Resolución 12  n  n −1   +  = 99  n + 1  n − 2  Se sabe que:  m  =0 ⇔ m < k N° maneras = 1· 5· 4· 3· 2· 1 k  ∴ N° maneras = 120 Rpta.: E  n   =0  n + 1 Resolución 13Luego: 3 : entradas → se toma 1 n −1  n −1  3 : de fondo → se toma 1 0+  = 99   = 99  n − 2  (n − 1) − (n − 2)  5 : postres → se toma 1 3 3 5 N° maneras = C1 · C1 · C1  n − 1   = 99 n – 1 = 99  1  N° maneras = 3· 3· 5 ∴ n = 100 Rpta.: D ∴ N° maneras = 45 Rpta.: A BINOMIO DE NEWTON (Pág. 51, 52, 53) NIVEL IResolución 1A) (x–2y)5 = x5 – 5x4 · 2y + 10x3· (2y)2 – 10x2 · (2y)3 + 5x(2y)4 – (2y)5 = x5 – 10x4y + 40x3y2 – 80x2y3 + 80xy4 – 32y5B) (1 + 3a)7 = 17 + 7(1)6(3a) + 21(1)5(3a)2 + 35(1)4(3a)3 + 35(1)3(3a)4 +21(1)2(3a)5 + 7(1)(3a)6 + (3a)7 =1 + 21a + 189a2 + 945a3 + 2835a4 + 5103a5 + 5103a6 + 2187a7C) (1–b)11 = 111 – 11(1)10(b)1 + 55(1)9b2 – 165(1)8b3 + 330(1)7b 4 – 462(1)6b5 + 462(1)5b6 – 330(1)4b7 + 165(1)3· b8 – 55(1)2·b9 + 11(1)b10 – b11 = 1 – 11b + 55b2 – 165b3 + 330b4 – 462b5 + 462b6 – 330b7 + 165b8 – 55b9 + 11b10 – b11 6  1 6 5 -1 4 -1 2 3 -1 3 2 -1 4 -1 5 -1 6D)  x − x  = x – 6(x) ·(x ) + 15(x) (x ) –20(x) (x ) + 15(x) (x ) – 6(x)(x ) + (x )   = x6 – 6x4 + 15x2 – 20 + 15x-2 – 6x-4 + x-6 4  2 1E)  z + 2  = (z2)4 + 4(z2)3(z-2) + 6(z2)2(z-2)2 + 4(z2)(z-2)3 + (z-2)4  z  =z8 + 4z4 + 6 + 4z-4 + z-8 6  3 x3 F)  4−  = (3x-4)6 – 6(3x-4)5(4-1x3) + 15(3x-4)4(4-1x3)2 – 20(3x-4)3(4-1x3)3 + x 4    15(3x-4)2(4-1x3)4 – 6(3x-4)(4-1x3)5 + (4-1x3)6 −24 729 −17 1215 −10 135 −3 135 4 9 11 1 18 = 729x − x + x − x + x − x + x 2 16 16 256 512 4096 -7-
  8. 8. Resolución 2 Resolución 3  11 A) (2x – y)4A) (x – y)11 ; t7 = t6+1 =   x11−6 y6 6  4 1 coef(t2) = coef(t1+1) =  1  2 (−1) 3 ∴ t7 = 462x5y6   ∴ coef(t2) = – 32  21B) (a + b)21 ; t5 = t4+1 =   a21− 4b4 B) (3a + b)6 4 ∴ t5 = 5985 a17 b4  6 4 2 coef(t3) =   (3 ) (4 ) = 19440 10 10 −9 9  2  1 1  10   1   −1C) a − b ; t10 = t9+1 =    b    9  a     x 2 y2  10 C)  −   y x  ∴ t10 = – 10a-1 b-9   10  10−8 8  2 2  7  7  2 7 − 7  −2  7 coef(t9) = coef(t8+1)=  10  (1) ( −1)8 = 45D) x y − 2    xy   ; t8 = t7+1 =  7  x y   ( ) 2  xy    8   D) (–a + 12)5 ∴ t8 = –128x-7y-14  5 5−4 coef(t5) = coef(t4+1) =  4( −1) (12)4 = −5·124  10    10−10E) (2a – b)10 ; t11 = t10+1 =  10  (2a ) ( −b )10   E) (p 2 v 2 –1)14 ∴ t11 = b10  14  coef(t8) = coef(t7+1) =  7  (1)14-7(–1)7 = –3432 4 1    1   4  4 −1  −1 F)  1−  ; t2 = t1+1 =   (1)    xyz  1   xyz  F) (2x2y + xy3)8 8 ∴ t2 = –4x-1y-1z-1 coef(t5) =   (2)8-4 (1)4 = 1120  4Resolución 4 5 2 1 ( ) 5 2 −1 3x − x  = 3x − x  5 2 1 2 5 2 4 -1 2 3 -1 2 2 2 -1 3 2 -1 4 -1 5 3x − x  = (3x ) – 5(3x ) (x ) + 10(3x ) (x ) – 10(3x ) (x ) + 5(3x )(x ) – (x )  5 2 1 10 7 4 -2 -5 3x − x  = 243x – 405x + 270x – 90x + 15x – x  A) coef(t4) = –90 B) t3 C) No existe el término independiente de x:Resolución 5 Nos piden: 2 12 (x)3k-24 = x-3 3k – 24 = –3 k=7 3 2 − 3xy x y   ( = 2x y −2 −1 − 3xy ) 3 12 Luego: tk+1 = t7+1 = t8 12−k  12   2  (−3xy3 ) kA) tk+1 =  k   2   12    x y    B) tk+1 =  k  (2)12-k (–3)k (x)3k-24 (y)4k-12    12  (y)4k-12 = y12 4k – 12 = 12 k=6 tk+1 =  k  (2)12-k (–3)k (x)3k-24 (y)4k-12   ∴ tk+1 = t6+1 = t7 -8-
  9. 9. Quinto Año de Secundaria  12   3 3 −kC) tk+1 =  k  (2)12-k (–3)k (x)3k-24 (y)4k-12 =  k  (3 ) (−1)k (q)15−6k     (x)3k-24 = x0 3k – 24 = 0 k=8 (q)15-6k = q9 15 – 6k = 9 k=1 ∴ tk+1 = t8+1 = t9  3  3 −1 1 15−6·1 t1+1 =   (3 ) ( −1) (q)  12  1 D) tk+1 =  k  (2)12-k (–3)k (x)3k-24 (y)4k-12   ∴ t2 = –27q9 y4k-12 = y0 4k – 12 = 0 k=3 Resolución 7 ∴ tk+1 = t3+1 = t4 ( ) 10 2x+ 3Resolución 6 10  (2p + q)11 ( ) ( ) ( ) ( 3)A) 10 10 9 2 x+ 3 = 2x +  2x  11  1 tk+1 =  k  (2p)11-k(q)k    10  ( ) ( 3) 8 2 +  2x qk = q9 k=9 2  11 ( ) 10 tk+1 = t9+1 = t10 =  9  (2p)11-9(q)9 ∴ 2 x+ 3 = 32x10 + 160 6 x9 + 2160x8 + ...   ∴ t10 = 220 p2q9 Resolución 8 10  1B) q−  (1 + 3x2)6  pq  6 (3x2 )  6 k 6 −k k 2k  10   −1  k tk+1 =  k  (1) =   (3 ) ( x ) tk+1 =   q10−k     k  k  pq  6 0 2·0  10  k −k 10− 2k t0+1 =  0  (3 ) (x ) t1 = 1 =   (−1) (p ) (q)   k  (q)10-2k = q9 10 – 2k = 9  6 6 2·6 t6+1 =  6  (3) ( x ) t7 = 729x12   1 k= 2 Luego: t1 · t7 = 1· 729x12 Como k ∈ ∴ Producto de los coeficientes = 729 ∴ No existe el términoC) (p2 – q3)7 NIVEL II  7 2 ( ) ( ) 7 −k k tk+1 =  k  p −q3   Resolución 1  7 k 14 −2k (x – 3y)5 =   ( −1) (p ) (q)3k k   5 5− 5 (q)3k = q9 3k = 9 k=3 t6 = t5+1 =  5  (x ) (−3y )5  Luego: ∴ t6 = – 243y5 Rpta.: D  7 3 14− 2·3 t3+1 =  3  (−1) (p) (q)3·3   ∴ t4 = –35p8 q9 Resolución 2 3 (2 – x)11  5 1D)  3q −   11 11− 7  q t8 = t7+1 =  7  (2) ( −x )7   k  3 ( ) 3 −k  −1 tk+1 =   3q 5 t8 = –5280x7   k   q ∴ Coeficiente = – 5280 Rpta.: D -9-
  10. 10. Resolución 3 Resolución 8 n (2a + b)5 2 x  +   x 2  5 5−1 1 t2 = t1+1 =   (2a ) (b ) = 80 a b 4 n−k K  n  2  x  n  n− 2k  1 tk+1 =      2  =  k  ( 2) ( x )2k −n k x      ∴ Coeficiente = 80 Rpta.: C Para el término independiente: (x)2k-n = x0 2k – n = 0 n = 2kResolución 4 Pero: k + 1 = 4 k=3 7 Entonces: n = 2· 3 n=6  y  3x −  Luego: tk+2 = t3+2 = t5  2 La expresión tiene 7 + 1 = 8 términos  6  6−8 8−6 15 2 t5 =   ( 2 ) (x ) = x ∴ No hay término central Rpta.: E  4 4 15Resolución 5 ∴ coef(t5) = Rpta.: C 4 (2x – y)6 6 6− 3 Resolución 9 t4 = t3+1 =   (2x ) ( −y )3  3 13  3 x2 1  ∴ t4 = –160x3 y3 Rpta.: D  +5   2  x Resolución 6 ( ) (x ) 13 − k k tk + 1 = ( 13 ) 2 −1 x 3 4 2 1 −  1 5 x − 2  k  x  26 13k k  13  k −13 −  4  4 −k  −1   4  k 4 −3k tk+1 =   ( 2) ( x ) 3 15 tk+1 =   ( x )  2  =   ( −1) ( x ) k   x  k  kDel dato: El término indenpendiente: 26 13k 4 − 0 26 13k x4-3k = x0 4 – 3k = 0 k= 3 (x ) 3 15 =x − =0 k = 10 3 15 Como k ∈ tk+1 = t10+1 = t11 ∴ No hay término independiente Nos piden el t10 k=9 26 13·9 Rpta.: E  13  9−13 − t10 =   ( 2) (x ) 3 15Resolución 7 9  (2x – 1)5 13 715 15  5 5 −k k  5 5 −k k 5 −k ∴ t10 = x Rpta.: Atk+1 =   (2x ) ( −1) =   (2 ) ( −1) ( x ) 16 k  k  Resolución 10  5  5− 2 2 5− 2t3 = t2+1 =   (2 ) ( −1) ( x ) = 80x 3 120 2  1  x +   x  5  5−4t5 = t4 + 1 =   (2 ) ( −1)4 (x )5−4 = 10x  120  120−k  1   120  120−2k k  4 tk+1 =   (x )  x  =  k x  k      t3 = 72 80x 3Luego: = 72 t5 10x Como es de grado 100 ∴ Rpta.: C 120 – 2k = 100 k = 10 x = ±3 ∴ tk+1 = t10+1 = t11 Rpta.: E - 10 -
  11. 11. Quinto Año de SecundariaResolución 11 Resolución 12  9 (1 + x)3n 2 0,5   0,4x + x     3n  3n−k k  3n  k tk+1 =   (1) (x ) =   x 9 −k  0,5 k k k 9 (tk+1=   0,4x k  2 )  x     3n  k +1 tk+2 =  x  9  9− 2k k − 9 18− 3k  k + 1 =   (2 ) (5 ) ( x ) k   3n  2k −4 t2k-3 =  x Término independiente:  2k − 4  (x)18-3k = x0 18 – 3k = 0 k=6 Como los coeficientes son iguales se tiene:  9  9 −2·6 6 −9 18 −3·6  3n   3n Luego: t6+1 =   ( 2) ( 5) ( x )  =  (k + 1) + (2k – 4) = 3n  6  k + 1  2k − 4  3k – 3 = 3n t7 = 0,084 Rpta.: C ∴ k = n+1 Rpta.: A BINOMIO DE NEWTON CON EXPONENTE NEGATIVO Y/O FRACCIONARIO Pág. 58Resolución 5  1   1   1    2   2 − 1  2 − 2   1 t4 =       32x =  1  ⋅ 32x (1− 2x ) 5  1· 2· 3   16       1 1  t5  1 = T4 +1 =  5  (1)5 −4 ( −2x )4 = 5  4 4    4  16x ∴ t4 = 2x   1  1  1  1  Resolución 7   5  5 − 1 5 − 2  5 − 3          · 16x 4  1 2· 3· 4 ·   −3    E=     33   −21  4 E= ( −3)( −3 − 1)( −3 − 2)( −3 − 3).....( −3 − 32) = 16x 1 2· 3· 4· 5· ..... ·33 ·  625  E= (−3 )( −4 )( −5 )(−6 ) · ..... · ( −35 ) = (−1)31 ( −34 )( −35 ) −336 4 1 2· 3· 4· 5 · ..... · 33 · 12 · ∴ t5 = x 625 ∴ E = –595Resolución 6 Resolución 8 1  −15   −15   −15   1 2 E= + +   1 + x3   3   4   5  4     −15 + 1  −15  E= +   4   5  1 3  1 −3  1   1  2   1 2  3  2  −14   −15    E= + t4 = t3+1 =    4  3   x  =   32x 3   4   5        E= (−14 )(−15)(−16 )(−17 ) 1 2· 3· 4 · - 11 -
  12. 12. + ( −15)( −16 )( −17 )( −18 )( −19 ) Resolución 10 1 2· 3· 4· 5 · −2  1 −3 −9  ∴ E = – 9248 2x − x   Resolución 9 k −2 −k  9 (  −2  )  −2  k + 2 6 − 3k  −  (2 ) ( x ) 2 tk +1 =   2−1x −3 1 x 2  =  k (x 2 −3 ) 2  k Término indenpendiente:      1 1  1 3k  2  2 −2t3 = t2+1 =   x 2  ( )   −3 2 ( −3 )2 = 2 x ( 9 )   2  6− 2 =0 k=4      1  1  Entonces:   − 1 ( ) 2 2  −9 3·4t3 =   9x −3 = 3  −2  4 +2 6− 1· 2 8x t4+1 = t5 =   (2 ) (x ) 2  4 −9 ( −2)( −3 )( −4 )( −5)Si: x=3 t3 = (2)6 8· 33 t5 = 1 2· 3· 4 · ∴ t3 = (–24)-1 ∴ t5 = 320 CAPÍTULO 3 LOGARITMACIÓN (Pág. 93, 94, 95, 96) NIVEL I Resolución 5 5Resolución 1 log x 2 = 0,4 2 log a = x 5 2 2 2 log x = logx = log 10a = log10 + loga = 1 + loga 5 5 5 ∴ log10a = 1 + x Rpta.: E ∴ logx = 1 Rpta.: BResolución 2 Resolución 6 log p = x log p = q 1 p log 3 p = logp log   = log p − log r 3 r x p ∴ log 3 p = Rpta.: D ∴ log   = q − log r Rpta.: B 3 rResolución 3 Resolución 7 loga = m ; logb = n  1 logx + log   = logx + logx-2 = logx – 2logx  x2  a 1 a 1 log = log   = (loga − logb ) b 2 b 2  1 ∴ logx + log   = –logx Rpta.: C  x2  a m−n ∴ log = Rpta.: B b 2 Resolución 8 2Resolución 4 2 2 log5 3 25 = log5 5 3 = log5 5 = · 1 3 3 log 103 = 3log10 = 3· 1 2 ∴ log 103 = 3 Rpta.: D ∴ log5 3 25 = Rpta.: D 3 - 12 -
  13. 13. Quinto Año de SecundariaResolución 9 7 4 log 102 + log2 2 − log 5 5 logx–3 = logx – 3log10 = logx– log103 = logx–log1000 2log 10 + 7log 2 − 4log 5 2 5  x  2+7–4 ∴ logx–3 = log   Rpta.: E 5 Rpta.: B  1000 Resolución 10 Resolución 18 log2 a = x log0,01+ log 0,0081= log10-2 + log (0,3)4 0,3 0.3 x + 1 = log2 a + log2 2 = –2log10 + 4 log (0,3) ∴ x + 1 = log2 2a Rpta.: D (0,3) =–2+4= 2 Rpta.: CResolución 11 Resolución 19 log(a3–b3)= log(a–b)(a2+ab+b2) log 0,25 + log 0,125 − log 0,0625 2 2 2 log(a3–b3) = log(a–b) + log(a2+ab+b2) log (0,25)(0,125) = log (0,03125) Rpta.: D 2 0,0625 2 (0,0625 )Resolución 12 log (0,5) = log 2−1 = −1log 2 log(x2–x) = logx(x–1) 2 2 2 ∴ log(x2–x) = logx + log(x–1) =–1 Rpta.: E Rpta.: A Resolución 20Resolución 13  1  1  1  log   − log   + log  5  125  11 3 2 11 12 2  16  3  81 log 216 6 = log 63 = : log6 6 12 3 5 36 5 36 65 log 2−4 − log 3−4 + log 5−3 2 3 5 55 = Rpta.: C −4log 2 + 4log 3 − 3log 5 36 2 3 5 –4+4–3Resolución 14 ∴ –3 Rpta.: D log 0,064 = x log (0,4)3 = x 0,4 0,4 Resolución 21 3log 0,4 = x 0,4 log3 = 0,47 , log5 = 0,70 ∴ x=3 Rpta.: D log75 – log125 + log45 = 75 · 45 log = log27 = log33 = 3log3Resolución 15 125 −2 = 3(0,47) 2 9 log x = −2 x=  x= 2 3 4 =1,41 Rpta.: B 3 Rpta.: E Resolución 22Resolución 16 log2 = 0,30 ∧ log5 = 0,70 2 log (a2 − 2ab + b2 ) = log (a − b) 35 (a −b) (a −b) log35 – log14 = log 14 = 2 log (a − b) = 2 Rpta.: E (a −b) 5 = log = log5 − log2 2Resolución 17 log 35 – log14 = 0,70 – 0,30 log 100 + log 128 − log 625 2 5 ∴ log35 – log14 = 0,40 Rpta.: B - 13 -
  14. 14. Resolución 23 Resolución 28 log 2 log 2 1 + 1 log 36 log 36 = log (2) + log (3) 36 36 243 3 = 35 ( ) 3 2 3 log 2 5·log 2 log 25 3 3 3 = log (2· 3) = log 6 243 = (3) = (3) = 25 36 36 log 2 1 ∴ 243 3 Rpta.: E = 32 1 2 = log (36) = log 36 36 2 36 Resolución 29 1 = Rpta.: C logx + log(x–3) = 1 2 logx (x–3) = log10Resolución 24 x(x–3) = 10 log 3 = x ∴ x=5 Rpta.: C 2 log 64 = log 26 = 6log 2 24 24 24 Resolución 30  1   1  log x log3 = 6  = 6  10 − 10 = 2x − 5 log 24   2 log (8· 3)   2 x – 3 = 2x – 5  1   1  ∴ x=2 Rpta.: B = 6  = 6  log 8 + log 3   2  3log 2 + x  2 2 NIVEL II 6 = Rpta.: B Resolución 1 3+x 3x  1 1 ( ) x −4 2 log  =x = 2 2 2 =2Resolución 25 2 2  16  16 3 log (5x − 3) − log x = 1 −4 = x 2 2 2 (5x − 3) 8 log = log 2 ∴ x=− Rpta.: A 2 x 2 3 5x − 3 Resolución 2 =2 5x – 3 = 2x x ∴ x=1 Rpta.: B (I) log 32 = 5 32 = 25 ... (V) 2Resolución 26 (II) log 1= 0 1=(2000)0 .... (V) 2000 log (2x + 21) − log x = 2  1 1 3 3 (III) log   = −4 = 2−4 ... (V) 2  16  16  2x + 21 2 2x + 21 2 log   = log3 3 =3 ∴ VVV Rpta.: D 3 x  x 2x + 21 = 9x Resolución 3 ∴ x=3 Rpta.: A log 27 = a 12Resolución 27 log2 24 4log2 2log a + logb = log(a + b) log 16 = = 6 log2 2 + log2 3 log2 2 + log2 3log a · b = log(a+b) a·b = a + b a(b–1) = b 4 ........................... (1) b log 16 = ∴ a= Rpta.: D 6 1 + log2 3 b −1 - 14 -
  15. 15. Quinto Año de Secundaria 3log2 3Pero: log 27 = a =a 52  5 12 2log2 2 + log2 3 = log = 2log   2 22 2 2 3log2 3 2a =a log2 3 =   10   2 + log2 3 3−a = 2 log  2   = 2[log 10 − 2log 2] 2  2  2  2Reemplazando en (1) 1  = 2 log 10 − 2 = 2  − 2    4  10x   x  log 16 = 6 2a 2 − 4x 1+ = 3−a Rpta.: D x 12 − 4a ∴ log 16 = Rpta.: E Resolución 8 6 3+a log yResolución 4 (log5 x ) 5 =ylog 3 · log 4 · log 5 · log 6 ..... log 1024 log y log (log x ) 2 3 4 5 1023 5  = logy   5  log3 log4 log5 log1024 log6 · · · ..... log y log (log x ) = logylog2 log3 log4 log5 log1023 5  5  log (log x ) = log5 log x = 5 log1024 log210 5 5 = = 10 Rpta.: B log2 log2 x= 55 = 3125 ∴ ∑ cifras = 11 Rpta.: CResolución 5 log2 = a ∧ log3 = b Resolución 9 log 4 + log 1 4 3 log 752 = 2 3 2 log75 = log 52 · 3 3 ( ) E= 2 2 = log2 22 + log −1 22 2 = 2 2 log52 + log3 = [2log5 + log3] log 243 + log 1 81 log 35 + log −1 34 3 3 3 3 ( ) 3  3 2  10   2−2 = E=  2log   + log3 5−4 3  2  2 ∴ E=0 Rpta.: E =  2 (log10 − log2) + log3 3  Resolución 10 2 =  2 (1− a ) + b 3  log 2 = a ∧ log 3 = 2b 5 5 2 ∴ log 3 752 = 3 [b − 2a + 2] Rpta.: D log 5 1 2 5 1 300 = log 300 = log 102·3  2 5    ( ) 1 1Resolución 6 = log 10 + log 3 = [2log 10 + log 3] 2 2 5 5  2 5 5 2 4 6 logx = + − 1 7+ 5 11 + 7 11 + 5 =  2 (log 5 + log 2 ) + log 3  2 5 5 5  0 = ( 7+ 5 )( 11 + 7 )( 11 + 5 ) = 1 2  2 (1 + a ) + 2b   logx = 0 x = 100 ∴ x=1 Rpta.: B ∴ log 300 = a + b + 1 Rpta.: E 5Resolución 7 Resolución 11 log2 = x 2 = 10x log(2–x) + log(3–x) = log2 + 1  2,5  log 2,5 − log (0,4) = log  log(2–x) + log(3–x) – log2 = log10 2 2 2  0,4   - 15 -

×