SlideShare una empresa de Scribd logo
1 de 54
Descargar para leer sin conexión
Quantification
of short and medium chain chlorinated
paraffin residues in selected
environmental samples
Majlinda R. Lahaniatis
Ispra-Italy, 9 May 2003
TU MunichTU Munich
Weihenstephan Scientific Centre for Nutrition,Weihenstephan Scientific Centre for Nutrition,
Land Use and Environment,Land Use and Environment,
Chair of Ecological Chemistry and EnvironmentalChair of Ecological Chemistry and Environmental
Analysis, Weihenstephaner Steig 23Analysis, Weihenstephaner Steig 23
85350 Freising-Weihenstephan, Germany85350 Freising-Weihenstephan, Germany
(e-mail: lahaniatis@mesaep.org)(e-mail: lahaniatis@mesaep.org)
Short storyShort storyShort storyShort story
18401840
August-Wilhelm von Hofmann
(1818-†1892)
Founder and President of
DEUTSCHEN CHEMISCHEN
GESELLSCHAFT
(German Chemical Society)
TuilerienTuilerien
Jean Baptiste-Andre DUMAS
Chemist
(1800-†1884)
Alexandre BRONGNIART
director of the porcelain factory of Sèvres
(1770-†1847)
Short storyShort storyShort storyShort story
P. BOLLEY
Synthesis of long chain
chlorinated paraffins
"Chloraffin"
empirical formula CxHn-xClx
Short storyShort storyShort storyShort story
1. World War1. World War:: antiseptic solutions of Chlorcosans (first commer-first commer-
cial use of chlorinated paraffinscial use of chlorinated paraffins)
2. World War:2. World War: chlorinated paraffins are used as flame retardants
1993:1993: global consumption 300 kt
Nowadays:Nowadays: it is believed that the demand for PCAs will likely
continue to grow at about 1%/year
Industrial productionIndustrial productionIndustrial productionIndustrial production
CCnnHH2n+22n+2 +Cl+Cl22  CCnnHH2n+12n+1Cl + HClCl + HCl
nn-Alkane-Alkane
C10 C‑ 13, C14 C‑ 17, C>17
 , h
ClCl22 PCAPCA+
Chlorination:Chlorination:
radical substitutionradical substitution
reactionreaction
Propagation steps:Propagation steps:
CCnnHH2n+22n+2 + Cl+ Cl   CCnnHH2n+12n+1  + HCl+ HCl
CCnnHH2n+12n+1  + Cl+ Cl22  CCnnHH2n+12n+1Cl + ClCl + Cl 
CCnnHH2n+2-y2n+2-yClClyy + Cl+ Cl   CCnnHH2n+1-y2n+1-yClClyy  + HCl+ HCl
CCnnHH2n+1-y2n+1-yClClyy  + Cl+ Cl22  CCnnHH2n-y2n-yClCl y+1y+1 + Cl+ Cl 
Propagation steps:Propagation steps:
CCnnHH2n+22n+2 + Cl+ Cl   CCnnHH2n+12n+1  + HCl+ HCl
CCnnHH2n+12n+1  + Cl+ Cl22  CCnnHH2n+12n+1Cl + ClCl + Cl 
CCnnHH2n+2-y2n+2-yClClyy + Cl+ Cl   CCnnHH2n+1-y2n+1-yClClyy  + HCl+ HCl
CCnnHH2n+1-y2n+1-yClClyy  + Cl+ Cl22  CCnnHH2n-y2n-yClCl y+1y+1 + Cl+ Cl 
Chain termination steps:Chain termination steps:
ClCl  + Cl+ Cl   ClCl22
CCnnHH2n+1-x2n+1-xClClxx  + C+ CnnHH2n+1-y2n+1-yClClyy   CC2n2nHH4n4n+2-x-y+2-x-yClClx+yx+y
CCnnHH2n+1-y2n+1-yClClyy  + Cl+ Cl   CCnnHH2n+1-y2n+1-yClCly+1y+1
Chain termination steps:Chain termination steps:
ClCl  + Cl+ Cl   ClCl22
CCnnHH2n+1-x2n+1-xClClxx  + C+ CnnHH2n+1-y2n+1-yClClyy   CC2n2nHH4n4n+2-x-y+2-x-yClClx+yx+y
CCnnHH2n+1-y2n+1-yClClyy  + Cl+ Cl   CCnnHH2n+1-y2n+1-yClCly+1y+1
Initiation stepInitiation step::
ClCl22  2 Cl2 Cl 
Initiation stepInitiation step::
ClCl22  2 Cl2 Cl 
Long chainLong chain
(C(C>17>17) PCA) PCA
Medium chainMedium chain
(C(C1414 C‑C‑ 1717) PCA) PCA
Short chainShort chain
(C(C1010 C‑C‑ 1313) PCA) PCA
Chlorine content of theChlorine content of the
formulation (40-72 %, w/w)formulation (40-72 %, w/w)
and
Commercial PCA areCommercial PCA are
characterised by:characterised by:
Chain length ofChain length of
n-alkanen-alkane
PCAPCA consist ofconsist of mixtures of thousand componentsmixtures of thousand components
withwith different chain lengthdifferent chain length andand different chlorination degree.different chlorination degree.
Characterisation of technical productsCharacterisation of technical productsCharacterisation of technical productsCharacterisation of technical products
PCA
Carbon chain
C10
-C13
short
chain
C14
-C17
medium chain
C>17
long chain
liquid liquid liquid Solid
Chlorine
content (%)
48-71 40-59 26 59‑ 10 20 and 69-72‑
CAS Nr. 85535-84-8 85535-85-9 - 63449-39-8
EINECS Nr. 287-476-5 287-477-0 - 264-150-0
EINECS
Alkane C10
-C13
,
Chlor‑
Alkane
C14
-C17
, Chlor‑
Alkane C>17
,
Chlor‑
Paraffin wax and
hydrocarbon wax,‑
Chlor‑
IUPAC-Name Chloralkane
C10
-C13
Chloralkane
C14
-C17
Chloralkane
C>17
Chloroalkane C>17
(solid)
Other
Chloro-
paraffine
C10
C‑ 13
Chloro-
paraffine
C14
C‑ 17
Chloro-
paraffine
C>17
(liquid)
Chlorparaffine C>17
(solid)
Nomenclature of technical productsNomenclature of technical productsNomenclature of technical productsNomenclature of technical products
Overview of the numbers and designations used for PCA in different sources
 pH-neutral, chemically inertpH-neutral, chemically inert
 Low water solubility (WS).Low water solubility (WS).
 Chlorine substitution had significant effects on the waterChlorine substitution had significant effects on the water
solubility.solubility.
 Soluble in organic solvents, as well as in most of mineral,Soluble in organic solvents, as well as in most of mineral,
animal and vegetable oils.animal and vegetable oils.
 Among themselves miscible.Among themselves miscible.
 Prolonged heating at elevated temperatures results inProlonged heating at elevated temperatures results in
the release of HCl (>200 °C).the release of HCl (>200 °C).
Physical and Chemical Properties of PCAPhysical and Chemical Properties of PCAPhysical and Chemical Properties of PCAPhysical and Chemical Properties of PCA
Plasticiser for
PVC
Extreme
pressure
additive for
metal-working
fluids
Fire retardant
additive for
polymers
Plasticiser and
extender for
paint resins
Plasticiser for
sealants
and additives
Fat liquor for leather
processing
Use applicationsUse applicationsUse applicationsUse applications
Compared to the other
anthropogenic compounds, world wide
relatively little useful datarelatively little useful data are available
on PCA concentrations in
the ecosphere.
Analytic:Analytic: Determination of PCA in environmentalDetermination of PCA in environmental
samplessamples
Analytic:Analytic: Determination of PCA in environmentalDetermination of PCA in environmental
samplessamples
ProblemsProblems by the identification and quantification:
 no chromatographic methodno chromatographic method able to separate all PCA
components according to their chain length and chlorine content.
ProblemsProblems by the identification and quantification:
 no chromatographic methodno chromatographic method able to separate all PCA
components according to their chain length and chlorine content.
Analytic: Complex composition of PCA mixturesAnalytic: Complex composition of PCA mixturesAnalytic: Complex composition of PCA mixturesAnalytic: Complex composition of PCA mixtures
large number of homologueslarge number of homologues andand isomersisomers
high molecular weight,high molecular weight, low volatility,low volatility,
non polar characternon polar character of PCA componentsof PCA components
very difficult the measurementvery difficult the measurement
of PCA at low concentrationsof PCA at low concentrations
complex constitution of the components in the mixturescomplex constitution of the components in the mixtures
Analytic: Gas chromatographic separation of PCA mixturesAnalytic: Gas chromatographic separation of PCA mixturesAnalytic: Gas chromatographic separation of PCA mixturesAnalytic: Gas chromatographic separation of PCA mixtures
4035302520
Zeit (min)
45
Year 1972
Gas chromatogram of a commercialGas chromatogram of a commercial
CC1010 C‑C‑ 1616 PCA with 50 % Cl (w/w)PCA with 50 % Cl (w/w)
after separation with aafter separation with a
packedcolumnpackedcolumn
((glass column: length 280cm; 4 mm i.D.glass column: length 280cm; 4 mm i.D.
material: 1% Silicon OV 1in Chromosorb‑material: 1% Silicon OV 1in Chromosorb‑
6 AW, DMCS 70/80mesh6 AW, DMCS 70/80mesh))
5045403530252015
Zeit (min)
5045403530252015
Zeit (min)
Year 2000
ca. 30 yearsca. 30 years
latterlatter
? ?
Gas chromatogram (ECD) of aGas chromatogram (ECD) of a
commercial Ccommercial C1010 C‑C‑ 1313 PCA mix,‑PCA mix,‑
63 % Cl (w/w) after the sepa-63 % Cl (w/w) after the sepa-
ration with a 30 m long fusedration with a 30 m long fused
silicacapillarysilicacapillary
columncolumn
(DB 5).‑(DB 5).‑
0
20
40
60
80
%age
300 350 400 550450 500 600
347
366
386
403
405
439
451
473
485
499
0
20
40
60
80
300 350 400 550450 500 600
368
380
403 405
421
439
453 473
487
C - C - PCA
52 % chlorine content (w/w)
14 17
327
341
359
397
431
445
459 477 483
361 375
0
20
40
60
80
%age
300 350 400 550450 500 600
411
C - C - PCA
60 % chlorine content (w/w)
10 13
333 360
368
389
403
405
439
453
473
487
507
0
20
40
60
80
%age
300 350 400 550450 500 600
Fish feed
Cod liver oil
%age
Cod liver oilCod liver oil
CC1010-C-C1313 PCA, 60% Cl (w/w)PCA, 60% Cl (w/w)
Different constitutionDifferent constitution ofof
PCA components inPCA components in
technical productstechnical products
as compared to theas compared to the
environmental samples.environmental samples.
Analytic: Determination of PCA in environmental samplesAnalytic: Determination of PCA in environmental samplesAnalytic: Determination of PCA in environmental samplesAnalytic: Determination of PCA in environmental samples
ProblemProblem
by theby the sample preparationsample preparation
recommended clean-up
procedures are generally
unspecificunspecific
The concentrations published up to
now are determined with differentdifferent
analytic proceduresanalytic procedures and because of their
missing comparability are hardly usableare hardly usable
for the estimation of the PCA
contamination in the environment.HRGC-ECD chromatograms of several
commercial PCA
identificationidentification and quantificationquantification
normally incorrectincorrect
Commercial PCA as external standardsCommercial PCA as external standards
co-elution of many homologues and
isomers
30,683
32,747
Zeit (min)
10 15 20 25 30 35 40 45 50
33,430
A
B
C
C10-C13 PCA,
63 % Cl (w/w)
C10-C13 PCA,
63 % Cl (w/w)
C10-C13 PCA,
70 % Cl (w/w)
C10-C13 PCA,
70 % Cl (w/w)
C14-C17 PCA,
52 % Cl (w/w)
C14-C17 PCA,
52 % Cl (w/w)
Time (min)
Analytic: Determination of PCA in environmental samplesAnalytic: Determination of PCA in environmental samplesAnalytic: Determination of PCA in environmental samplesAnalytic: Determination of PCA in environmental samples
QuantificationQuantification of PCA residues in cleaned-up sample
extracts with independent detection methodsindependent detection methodsand
different external standards.different external standards.
22
A newselectiveclean-up procedurenewselectiveclean-up procedurefor the separation
of C10-C13 PCA and C14-C17 PCA from lipids and interfering
chlorinated organic compounds, especially from toxaphene,
in selected fatty foods (altogether 56 samples).
11
Here we present:Here we present:Here we present:Here we present:
TheresultsTheresultsthus obtained with the different methods are
comparedcomparedwith each other and their environmental relevance
is assessedassessed.
33
Clean-up: 1. StepClean-up: 1. StepClean-up: 1. StepClean-up: 1. Step
Eluent: n-Hexane:DCM (1:1)
Eluent [ml] : Probe [g] = 10 : 1
Eluent: n-Hexane:DCM (1:1)
Eluent [ml] : Probe [g] = 10 : 1
Na2SO4 [g] =0.1 x Sample [g]Na2SO4 [g] =0.1 x Sample [g]
Sample [g] : Na2SO4 [g] : sea sand =1 : 4 : 2Sample [g] : Na2SO4 [g] : sea sand =1 : 4 : 2
Na2SO4 [g] =0.4 x Sample [g]Na2SO4 [g] =0.4 x Sample [g]
SiO2 [g] = 0.2 x Sample [g]SiO2 [g] = 0.2 x Sample [g]
SiO2 [g] = 0.3 x Sample [g]SiO2 [g] = 0.3 x Sample [g]
Sea sandSea sand
Glas woolGlas wool
SiO2
/H2
SO4
(44 % H2
SO4(c)
, w/w) and sea sand
SiO2
/H2
SO4
(44 % H2
SO4(c)
, w/w) [g] = 0.12  fish [g]  fat [%]
sea sand [g] = 0.08  fish [g]  fat [%]
SiO2
/H2
SO4
(44 % H2
SO4(c)
, w/w) and sea sand
SiO2
/H2
SO4
(44 % H2
SO4(c)
, w/w) [g] = 0.12  fish [g]  fat [%]
sea sand [g] = 0.08  fish [g]  fat [%]
lipidlipid
extractionextraction
isolation of theisolation of the
lipid-solublelipid-soluble
contaminantscontaminants
SimultaneousSimultaneous
SimultaneousSimultaneous
decompositiondecomposition
of lipidsof lipids
Clean-up: 1. StepClean-up: 1. StepClean-up: 1. StepClean-up: 1. Step
After the 1. Step:
lipid removal 99.9% and
the extract contains:
- rest of lipids: 0.1%
- all PCAs (recovery > 90%)
- other H2
SO4
resistant COS,
incl. toxaphene, PCBs etc.
 Reduction of necessary analysis time.
 Savings of substantial energy and water.
 Elimination of many manual operations and sources of
contamination.
 Avoidance of possible PCA decomposition and losses.
 Treatment of samples even with higher quantities of lipids.
ExtractionExtraction
ExtractionExtraction
LipidLipid
decompositiondecomposition
LipidLipid
decompositiondecomposition
PCAPCA
isolationisolation
PCAPCA
isolationisolation
2. Fraction (7 ml2. Fraction (7 ml nn-Hexane:CH-Hexane:CH22ClCl22 1:1)1:1)
90 % of C10-C13 and C‑ 14-C17 PCA mixtures
 ‑,  und‑ -HCH 10-20 % p,p´ DDD, p,p´ DDT‑ ‑
 rest of Toxaphen (ca. 10 %)
1. Fraction (8 ml n-Hexane)1. Fraction (8 ml n-Hexane)
 < 90 % of the Toxaphene components
 ca. 90 % p,p´ DDT‑
 ca. 80 % p,p´ DDD‑
 < 98 % PCT, HCB, -Chlorden, OCS,
-cis-Chlordan, p,p´-DDE, PCB 209
Clean-up: 2. StepClean-up: 2. StepClean-up: 2. StepClean-up: 2. Step
Eluent:
1. Fraction: 8 ml n-Hexane
2. Fraction: 7 ml n-Hexane:DCM (1:1)
Eluent:
1. Fraction: 8 ml n-Hexane
2. Fraction: 7 ml n-Hexane:DCM (1:1)
0.1 g SiO2
/H2
O(d)
(3 % H2
O(d)
, w/w)0.1 g SiO2
/H2
O(d)
(3 % H2
O(d)
, w/w)
1 g SiO2
/H2
SO4
(44 % H2
SO4(c)
, w/w)1 g SiO2
/H2
SO4
(44 % H2
SO4(c)
, w/w)
1 g SiO2
/H2
O(d)
(30 % H2
O(d)
, w/w)1 g SiO2
/H2
O(d)
(30 % H2
O(d)
, w/w)
0.3 g Na2
SO40.3 g Na2
SO4
sea sandsea sand
glass woolglass wool
Column: 22.0 cm length  0.7 cm i.d.
* particle size 0,063-0,200 mm
** particle size 0,2 0,5 mm‑
decomposition ofdecomposition of
the remaining lipidsthe remaining lipids
SimultaneousSimultaneous
SimultaneousSimultaneous
separation of the PCAsseparation of the PCAs
from the most part of thefrom the most part of the
interfering compoundsinterfering compounds
Clean-upClean-upClean-upClean-up
1
Zeit (min)
10 15 20 25 30 35 40 45 50
Zeit (min)
10 15 20 25 30 35 40 45 50
1
Zeit (min)
10 15 20 25 30 35 40 45 50
Zeit (min)
10 15 20 25 30 35 40 45 50
1
1
1
Zeit (min)
10 15 20 25 30 35 40 45 50
Figure: HRGC-ECD chromatograms of the separation
PCA/Toxaphene with adsorption chromatography. 1: -HCH
CB Standard C10-C13-PCA, 63 % Cl (w/w)
C10-C13-PCA, 63 % Cl (w/w)
and CB Standard
1. Fraction
1. Fraction
1. Fraction
2. Fraction
2. Fraction
2. Fraction
SiOSiO22/H/H22O, 10 % HO, 10 % H22OO
SiOSiO22/H/H22O, 30 % HO, 30 % H22OO
SiOSiO22/H/H22SOSO44,,
44 % H44 % H22SOSO4 conc.4 conc.
Vor theVor the
separationseparation
After theAfter the
separationseparation
Recovery:Recovery:
C10-C13 PCA with 45 % Cl (w/w): ca. 90 %
C10-C13 PCA with 56 % Cl (w/w): ca. 92 %
C10-C13 PCA with 63 % Cl (w/w): ca. 94 %
C14-C17 PCA with 52 % Cl (w/w): ca. 93 %
THF
Material: Phenogel 5 µ, 5Å
Clean-up: 3. StepClean-up: 3. StepClean-up: 3. StepClean-up: 3. Step
Figure: Clean-up procedure
and the corresponding
HRGC/ECD chromatograms.
1: HCB; 2: -HCH
2. Step2. Step2. Step2. Step
1. Step1. Step1. Step1. Step
3. Step3. Step3. Step3. Step
Commercial Toxaphene
(24 ng/µl)
C10-C13 PCA, 
63 % Cl (w/w)
Extract after the
1. Step of the clean-up
2. Fraction1. Fraction
GPC Fr. 27-32 minGPC Fr. 23-27 min
2
1
Zeit (min)
15 20 25 30 35 40 45
Zeit (min)
15 20 25 30 35 40 45
1
2
Zeit (min)
15 20 25 30 35 40 45
Zeit (min)
15 20 25 30 35 40 45
2
2
Zeit (min)
15 20 25 30 35 40 45
1
Zeit (min)
15 20 25 30 35 40 45
Zeit (min)
15 20 25 30 35 40 45
Clean-upClean-upClean-upClean-up
SamplesSamplesSamplesSamples
Mussels
(1 sample)
Baltic Tell-mussels
(1 sample)
23 Fish samples
Deep sea shrimp
(1 sample)
16 Cod liver oil
samples
14 Fish oil samples
Fish feed
(1 sample)
Fish or fish feed sample homogenised
Sample [g] : Na2SO4 [g] : Sea sand [g] = 1 : 4 : 2
STEP I : Column extraction of POPs and the
fatty material, decomposition of lipids with
SiO2/H2SO4 (C), and isolation of H2SO4 resistant
POPs including PCAs, simultaneously
SiO2/H2SO4 (C) [g] = 0,12 x Sample [g] x Fat [%]
n-Hexane : DCM (1:1) [ml] : Sample [g] = 10 : 1
STEP II: Column decomposition of the remaining lipids (< 0.1 %) and
separation of PCAs from the most part of interfering POPs
1 g SiO2/H2O (30 % H2O, w/w) and 1 g SiO2/H2SO4 (C), (44 % H2SO4 (C), w/w)
Eluents: 8 ml n-Hexane (1. Fraction) and 7 ml n-Hexane/DCM=1:1 (2. Fraction)
Extract drying, solution in 300 µl n-Hexane
STEP III: GPC separation of PCAs from the rest of interfering POPs
HPLC-Column (300 x 7,8 mm): Phenogel 5 µ, 50 Å; 0,2 ml/min THF;
Injection 200µl; Temp. 25 °C; PCA-Fraction 23-27min
PCA extract (Fr. 2) drying with N2, solution in 200µl THF
Oil solved in n-Hexane / DCM (1:1)
n-Hexane : DCM [ml] : Oil [g] = 10 : 1
STEP I: Column decomposition of lipids with
SiO2/H2SO4 (C), and isolation of H2SO4 esistant
POPs including PCAs, simultaneously
SiO2/H2SO4 (C) [g] : Oil [g] = 10 : 1
n-Hexane : DCM (1:1) [ml] : Oil [g] = 15 : 1
Clean-up technique for the PCA determination inClean-up technique for the PCA determination in
fish, fish oils and fish feedfish, fish oils and fish feed
Clean-up technique for the PCA determination inClean-up technique for the PCA determination in
fish, fish oils and fish feedfish, fish oils and fish feed
PCA determination in real environmental samplesPCA determination in real environmental samplesPCA determination in real environmental samplesPCA determination in real environmental samples Pag
Time (min)
0 5 10 15 20 25 30 35 40 45 50
A
B
Time (min)
0 5 10 15 20 25 30 35 40 45 50
A
B
Fish feedFish feed
GERMANYGERMANY
Cod liver oilCod liver oil
U.S.AU.S.A
AfterAfter
1. Step of1. Step of
clean-upclean-up
AfterAfter
3. Step of3. Step of
clean-upclean-up
Figure: HRGC/ECD chromatograms of real sample extracts after extraction and lipid
decomposition (1. Step of clean-up) and after complete elimination of interferences
(3. Step of clean-up) 1: HCB; 2: -HCH
Identification and quantification of PCAIdentification and quantification of PCAIdentification and quantification of PCAIdentification and quantification of PCA
SCGC/LRMS-ECNISCGC/LRMS-ECNI
in full scan modein full scan mode
HRGC/HRMS-ECNI-SIMHRGC/HRMS-ECNI-SIM
with time windowswith time windows
most recently developedmost recently developed
analytical methodsanalytical methods
for PCA analysisfor PCA analysis
HRCG/ECDHRCG/ECD
Analytic: HRGC/HRMS-ECNI-SIM with time windowsAnalytic: HRGC/HRMS-ECNI-SIM with time windowsAnalytic: HRGC/HRMS-ECNI-SIM with time windowsAnalytic: HRGC/HRMS-ECNI-SIM with time windows
CC1010
(Cl(Cl55 to Clto Cl1010))
CC1111
(Cl(Cl55 to Clto Cl1010))
CC1212
(Cl(Cl66 to Clto Cl1010))
CC1313
(Cl(Cl77 to Clto Cl99))
Ion - 279.0055
Ion - 293.0211
Ion - 312.9665
Ion - 326.9822
Ion - 346.9275
Ion - 360.9433
Ion - 394.9042
Ion - 416.8467
Ion - 430.8623
Ion - 450.8077
Ion - 464.8233
Ion - 380.8886
5:00 10:00 15:00 30:00
Zeit (min)
25:0020:00
5:00 10:00 15:00 30:00
Zeit (min)
25:0020:00
Ion - 340.9978
Ion - 374.9588
Ion - 408.9199
Ion - 444.8779
Ion - 478.8394
Ion - 388.9745
Ion - 422.9355
Ion - 458.8936
Figure: HRGC/LRMS elution range of selected
C12 and C13 -[M‑Cl]¯-ions of a commercial
C10-C13 PCA, 63 % Cl (w/w)
Figure: HRGC/LRMS elution range of selected
C10 and C11 [M‑Cl]¯-ions of a commercial
C10-C13 PCA, 63 % Cl (w/w)
Analytic:Analytic:
HRGC/HRMS-ECNIHRGC/HRMS-ECNI
SIM with timeSIM with time
windowswindows
Analytic:Analytic:
HRGC/HRMS-ECNIHRGC/HRMS-ECNI
SIM with timeSIM with time
windowswindows
SIM window
Nr. min:sek Quantification ion/ Confirmation ion (compound)
1 00:00-16:00 279,0055/277,0084 (C10H17Cl5); 293,0211/291,0241 (C11H19Cl5);
312,9665/314,9636 (C10H16Cl6); 326,9822/328,9792 (C11H18Cl6);
340,9978/342,9949 (C12H20Cl6); 346,9275/348,9246 (C10H15Cl7)
2 16:00-17:10 312,9665/314,9636 (C10H16Cl6); 326,9822/328,9792 (C11H18Cl6);
340,9978/342,9949 (C12H20Cl6); 346,9275/348,9246 (C10H15Cl7);
360,9432/362,9402 (C11H17Cl7); 380,8886/382,8856 (C10H14Cl8)
3 17:10-18:20 326,9822/328,9792 (C11H18Cl6); 340,9978/342,9949 (C12H20Cl6);
346,9275/348,9246 (C10H15Cl7); 360,9432/362,9402 (C11H17Cl7);
374,9588/376,9559 (C12H19Cl7); 380,8886/382,8856 (C10H14Cl8);
394,9042/396,9013 (C11H16Cl8)
4 18:20-20:20 326,9822/328,9792 (C11H18Cl6); 340,9978/342,9949 (C12H20Cl6);
360,9432/362,9402 (C11H17Cl7); 374,9588/376,9559 (C12H19Cl7);
380,8886/382,8856 (C10H14Cl8); 388,9745/390,9715 (C13H21Cl7);
394,9042/396,9013 (C11H16Cl8); 408,9199/410,9169 (C12H18Cl8);
416,8467/414,8496 (C10H13Cl9); 430,8623/428,8656 (C11H15Cl9)
5 20:20-21:00 374,9588/376,9559 (C12H19Cl7); 388,9745/390,9715 (C13H21Cl7);
394,9042/396,9013 (C11H16Cl8); 408,9199/410,9169 (C12H18Cl8);
416,8467/414,8496 (C10H13Cl9); 422,9355/424,9326 (C13H20Cl8);
430,8623/428,8656 (C11H15Cl9); 444,8779/442,8809 (C12H17Cl9)
6 21:00-22:40 374,9588/376,9559 (C12H19Cl7); 388,9745/390,9715 (C13H21Cl7);
394,9042/396,9013 (C11H16Cl8); 408,9199/410,9169 (C12H18Cl8);
416,8467/414,8496 (C10H13Cl9); 422,9355/424,9326 (C13H20Cl8);
430,8623/428,8656 (C11H15Cl9); 444,8779/442,8809 (C12H17Cl9);
450,8077/448,8106 (C10H12Cl10); 464,8233/462,8263 (C11H14Cl10)
7 22:40-25:00 388,9745/390,9715 (C13H21Cl7); 408,9199/410,9169 (C12H18Cl8);
416,8467/414,8496 (C10H13Cl9); 422,9355/424,9326 (C13H20Cl8);
430,8623/428,8656 (C11H15Cl9); 444,8779/442,8809 (C12H17Cl9);
450,8077/448,8106 (C10H12Cl10); 458,8936/456,8966 (C13H19Cl9);
464,8233/462,8263 (C11H14Cl10); 478,8390/476,8491 (C12H16Cl10)
8
25:00-35:00
422,9355/424,9326 (C13H20Cl8); 444,8779/442,8809 (C12H17Cl9);
450,8077/448,8106 (C10H12Cl10); 458,8936/456,8966 (C13H19Cl9);
Analytic:Analytic:
HRGC/HRMS-ECNI SIMHRGC/HRMS-ECNI SIM
with time windowswith time windows
Analytic:Analytic:
HRGC/HRMS-ECNI SIMHRGC/HRMS-ECNI SIM
with time windowswith time windows
Relativeconcentration(%)Relativeconcentration(%)Relativeconcentration(%)
Figure 1: Profile of components in selected
short chain commercial PCA mixtures
A
0
5
10
15
20
25
30
10 11 12 13 Z K
B
0
5
10
15
20
25
30
10 11 12 13 Z K
5 Cl
6 Cl
7 Cl
8 Cl
9 Cl
10 Cl
C
0
5
10
15
20
25
30
10 11 12 13 Z KC
C
C
CC1010-C-C1313 PCAPCA
60% Cl (w/w)60% Cl (w/w)
CC1010-C-C1313 PCAPCA
63% Cl63% Cl
(w/w)(w/w)
CC1010-C-C1313 PCAPCA
70% Cl70% Cl
(w/w)(w/w)Relativeconcentration(%)Relativeconcentration(%)
Figure 2: Profile of PCA components in a
environmental sample
0
5
10
15
20
10 11 12 13 Z KC
Relativeconcentration(%)
Cod liver oil
ENGLAND
Relativeconcentration(%)
e. St. external Standard (commercial C10-C13-PCA, 60 % Cl (w/w)
i. St. internal Standard (Pentachlorotoluol)
inj. Menge injected amount (ng/µl)
SIM (Probe) the highest integrated Signal in the sample
SIM (e. St.) the highest integrated Signal in the external Standard
Ffg Ffg = 0,01  (% RC)
MG molecular weight
Quantification:
 Integration of [M Cl]¯ Signals of the selected quantification ions (‑ ‑ SIM-Values)
 Calculation of TRIS–Values: TRIS = SIM/(0,01  Fna) (TRIS: true relative integrated signal)
 Calculation of RAIS- Values by normalising the TRIS–Values (RAIS: relative adjusted ion signal)
 Calculation of RC- Values: RC = RAIS/Cl-Atoms in the molecule (RC: relative concentration)
Analytic: HRGC/HRMS-ECNI-SIM with time windowsAnalytic: HRGC/HRMS-ECNI-SIM with time windows
St.)(e.MengeInj.
(Probe)MengeInj.

St.)(e.SIM
(Probe)SIM

(Probe)Fna
St.)(e.Fna

(Probe)Ffg
St.)(e.Ffg

St.)(e.MG
(Probe)MG

St.)e.inSt.(i.SIM
Probe)St.(i.SIM
Quantification of PCA residues in cleaned-up samplesQuantification of PCA residues in cleaned-up samplesQuantification of PCA residues in cleaned-up samplesQuantification of PCA residues in cleaned-up samples
interinter
laboratorylaboratory
teststests
independentindependent
methods ofmethods of
analysisanalysis
CorrectnessCorrectness
andand
repeatabilityrepeatability
of aof a
quantification methodquantification method
certifiedcertified
referencereference
materialsmaterials
no certified referenceno certified reference
materials are presentmaterials are present
HRGC/HRMS-ECNI-SIM with time windowsHRGC/HRMS-ECNI-SIM with time windows
Inter laboratory studyInter laboratory study
HRGC/HRMS-ECNI-SIM with time windowsHRGC/HRMS-ECNI-SIM with time windows
Inter laboratory studyInter laboratory study
CommercialCommercial
CC1010-C-C1313 PCA,PCA,
60 % Cl (w/w)60 % Cl (w/w)
Mix of pureMix of pure
synthesised Csynthesised C1010 PCAPCA
componentscomponents (PCA-1)(PCA-1)
Biological sampleBiological sample
CommercialCommercial
CC1010-C-C1313 PCA,PCA,
70 % Cl (w/w)70 % Cl (w/w)
True value:True value: 7474ng/µlng/µl
Measured:Measured: 8181ng/µl (ng/µl (99±2099±20ng/µl)ng/µl)
Error: 10%Error: 10%
True value:True value: 118118ng/µlng/µl
Measured:Measured: 309309ng/µl (ng/µl (297297±132±132ng/µl)ng/µl)
Error: 160 %Error: 160 %
True value: ? ng/µlTrue value: ? ng/µl
Measured:Measured: 5858 ng/µlng/µl
Error: ?? %Error: ?? %
C10= 12.26%
C11= 47.74%
Cl8 (18.79%)
C12= 35.80
C13= 4.19
0,00
2,00
4,00
6,00
8,00
10,00
12,00
14,00
16,00
18,00
20,00
22,00
10.5
10.6
10.7
10.8
10.9
1010
11.5
11.6
11.7
11.8
11.9
1110
12.6
12.7
12.8
12.9
12,10
13.7
13.8
13.9
%relativeadjustedionsignal
C:Cl numbers
CommercialCommercial
CC1010-C-C1313 PCA,PCA,
70 % Cl (w/w)70 % Cl (w/w)
4,38 %
23,00 %23.07 %
49.55 %
0,00
10,00
20,00
30,00
40,00
50,00
10.5
10.6
10.7
10.8
10.9
1010
%relativeadjustedionsignal
C:Cl numbers
Mix of pureMix of pure
synthesised Csynthesised C1010 PCAPCA
componentscomponents
C13 = 3.48%
C12 = 35.95%
C11 = 46.77%
Cl7 (18.71%)
C10 = 13.79%
0,00
2,00
4,00
6,00
8,00
10,00
12,00
14,00
16,00
18,00
20,00
10.5
10.6
10.7
10.8
10.9
1010
11.5
11.6
11.7
11.8
11.9
1110
12.6
12.7
12.8
12.9
12,10
13.7
13.8
13.9
%relativeadjustedionsignal
C:Cl numbers
CommercialCommercial
CC1010-C-C1313 PCA,PCA,
60 % Cl (w/w)60 % Cl (w/w)HRGC/LRMS-ECNI-SIM:HRGC/LRMS-ECNI-SIM:
inter laboratory studyinter laboratory study
HRGC/LRMS-ECNI-SIM:HRGC/LRMS-ECNI-SIM:
inter laboratory studyinter laboratory study
 a method errora method error
 use of an unsuitableuse of an unsuitable
standardstandard
 both factorsboth factors
?
TheThe extent of this deviationextent of this deviation depends ondepends on
thethe difference in the chlorine contentdifference in the chlorine content
between sample and standardbetween sample and standard..
HRGC/HRMS-ECNI-SIM with time windowsHRGC/HRMS-ECNI-SIM with time windows
Inter laboratory studyInter laboratory study
HRGC/HRMS-ECNI-SIM with time windowsHRGC/HRMS-ECNI-SIM with time windows
Inter laboratory studyInter laboratory study
Different commercial formulationsDifferent commercial formulations used asused as
standards would providestandards would provide quite different estimatesquite different estimates
of PCA concentrations.of PCA concentrations.
If the quantification standard has aIf the quantification standard has a
lower chlorine contentlower chlorine content than thatthan that of the sample quantifiedof the sample quantified,,
increased quantification results must be countedincreased quantification results must be counted..
SCGC/LRMS-ECNI mass spectra of CSCGC/LRMS-ECNI mass spectra of C1010 C‑C‑ 1717 PCAPCA
in selected fish samplesin selected fish samples
SCGC/LRMS-ECNI mass spectra of CSCGC/LRMS-ECNI mass spectra of C1010 C‑C‑ 1717 PCAPCA
in selected fish samplesin selected fish samples
0
20
40
60
80
%age
300 350 400 550450 500 600
329
359
375
395
409
431
443
457
479
495 511
0
20
40
60
80
%age
300 350 400 550450 500 600
336
347
361
375
397
411
429 443 459
482
MonkfishMonkfish
Northern North SeaNorthern North Sea
MonkfishMonkfish
Northern North SeaNorthern North Sea
FishFish
CanadaCanada
FishFish
CanadaCanada
SCGC/LRMS-ECNI in full scan modeSCGC/LRMS-ECNI in full scan modeSCGC/LRMS-ECNI in full scan modeSCGC/LRMS-ECNI in full scan mode
313
349
383
419
349
385
421
313
313
347
381
417
313
347
383 417
347 381
417
453
345
381 417
451
483
C - PCA, 45 % Chlorgehalt (Gew.-%)
10
C - PCA, 50 % Chlorgehalt (Gew.-%)
10
C - PCA, 55 % Chlorgehalt (Gew.-%)
10
C - PCA, 60 % Chlorgehalt (Gew.-%)
10
C - PCA, 65 % Chlorgehalt (Gew.-%)
10
C - PCA, 70 % Chlorgehalt (Gew.-%)
10
0
20
40
60
80
%age
0
20
40
60
80
%age
0
20
40
60
80
%age
0
20
40
60
80
%age
0
20
40
60
80
%age
0
20
40
60
80
%age
300 350 400 550450 500 600
300 350 400 550450 500 600
300 350 400 550450 500 600
300 350 400 550450 500 600
300 350 400 550450 500 600
300 350 400 550450 500 600
341
373
377
411
445
341
373
377
409
443
341
373
375
411
445
479
341
375 411
445
479
375
407
443
479
513
547
375
409
445
479
513
0
20
40
60
80
%age
0
20
40
60
80
%age
0
20
40
60
80
%age
0
20
40
60
80
%age
0
20
40
60
80
%age
0
20
40
60
80
%age
300 350 400 550450 500 600
300 350 400 550450 500 600
300 350 400 550450 500 600
300 350 400 550450 500 600
300 350 400 550450 500 600
300 350 400 550450 500 600
C - PCA, 45 % Chlorgehalt (Gew.-%)
12
C - PCA, 50 % Chlorgehalt (Gew.-%)
12
C - PCA, 55 % Chlorgehalt (Gew.-%)
12
C - PCA, 60 % Chlorgehalt (Gew.-%)
12
C - PCA
65 % Chlorgehalt (Gew.-%)
12
C - PCA
70 % Chlorgehalt (Gew.-%)
12
CC1010 PCA, 45 % Cl (w/w)PCA, 45 % Cl (w/w)CC1010 PCA, 45 % Cl (w/w)PCA, 45 % Cl (w/w)
CC1010 PCA, 50 % Cl (w/w)PCA, 50 % Cl (w/w)CC1010 PCA, 50 % Cl (w/w)PCA, 50 % Cl (w/w)
CC1010 PCA, 55 % Cl (w/w)PCA, 55 % Cl (w/w)CC1010 PCA, 55 % Cl (w/w)PCA, 55 % Cl (w/w)
CC1010 PCA, 60 % Cl (w/w)PCA, 60 % Cl (w/w)CC1010 PCA, 60 % Cl (w/w)PCA, 60 % Cl (w/w)
CC1010 PCA, 65 % Cl (w/w)PCA, 65 % Cl (w/w)CC1010 PCA, 65 % Cl (w/w)PCA, 65 % Cl (w/w)
CC1010 PCA, 70 % Cl (w/w)PCA, 70 % Cl (w/w)CC1010 PCA, 70 % Cl (w/w)PCA, 70 % Cl (w/w)
CC1212 PCA, 45 % Cl (w/w)PCA, 45 % Cl (w/w)CC1212 PCA, 45 % Cl (w/w)PCA, 45 % Cl (w/w)
CC1212 PCA, 50 % Cl (w/w)PCA, 50 % Cl (w/w)CC1212 PCA, 50 % Cl (w/w)PCA, 50 % Cl (w/w)
CC1212 PCA, 55 % Cl (w/w)PCA, 55 % Cl (w/w)CC1212 PCA, 55 % Cl (w/w)PCA, 55 % Cl (w/w)
CC1212 PCA, 60 % Cl (w/w)PCA, 60 % Cl (w/w)CC1212 PCA, 60 % Cl (w/w)PCA, 60 % Cl (w/w)
CC1212 PCA,PCA,
65 % Cl (w/w)65 % Cl (w/w)
CC1212 PCA,PCA,
65 % Cl (w/w)65 % Cl (w/w)
CC1212 PCA,PCA,
70% Cl (w/w)70% Cl (w/w)
CC1212 PCA,PCA,
70% Cl (w/w)70% Cl (w/w)
0
20
40
60
80
%age
300 350 400 550450 500 600
347
366
386
403
405
439
451
473
485
499
0
20
40
60
80
300 350 400 550450 500 600
368
380
403 405
421
439
453 473
487
C - C - PCA
52 % chlorine content (w/w)
14 17
327
341
359
397
431
445
459 477 483
361 375
0
20
40
60
80
%age
300 350 400 550450 500 600
411
C - C - PCA
60 % chlorine content (w/w)
10 13
333 360
368
389
403
405
439
453
473
487
507
0
20
40
60
80
%age
300 350 400 550450 500 600
Fish feed
Cod liver oil
%age
Fish feedFish feedFish feedFish feed
Cod liver oilCod liver oilCod liver oilCod liver oil
CC1414-C-C1717 PCAPCA
52 % Cl (w/w)52 % Cl (w/w)
CC1414-C-C1717 PCAPCA
52 % Cl (w/w)52 % Cl (w/w)
CC1010-C-C1313 PCAPCA
60 % Cl (w/w)60 % Cl (w/w)
CC1010-C-C1313 PCAPCA
60 % Cl (w/w)60 % Cl (w/w)
SCGC/LRMSSCGC/LRMS
ECNIECNI
mass spectramass spectra
SCGC/LRMSSCGC/LRMS
ECNIECNI
mass spectramass spectra
Identification and quantification by SCGC/LRMS-ECNIIdentification and quantification by SCGC/LRMS-ECNIIdentification and quantification by SCGC/LRMS-ECNIIdentification and quantification by SCGC/LRMS-ECNI
PCA
chain
length
Quantification ion
(Substance)
C10 313 (C10H16Cl6); 349 (C10H15Cl7); 379 (C10H14Cl8);
413 (C10H13Cl9); 447 (C10H12Cl10);
C11 327 (C11H18Cl6); 361 (C11H17Cl7); 397 (C11H16Cl8);
431 (C11H15Cl9); 463 (C11H14Cl10)
C12 341 (C12H20Cl6); 375 (C12H19Cl7); 411 (C12H18Cl8);
445 (C12H17Cl9); 481 (C12H16Cl10)
C13 353 (C13H22Cl6); 389 (C13H21Cl7); 423 (C13H20Cl8);
459 (C13H19Cl9); 493 (C13H18Cl10)
C14 369 (C14H24Cl6); 402 (C14H23Cl7); 438 (C14H22Cl8);
473 (C14H21Cl9)
C15 416 (C15H25Cl7); 453 (C15H24Cl8); 487 (C15H23Cl9)
Selected mass fragment ions for the
quantification of C10-C17 PCA by
SCGC/LRMS-ECNI
For each carbon chain lengthFor each carbon chain length
(i.e. C(i.e. C1010-C-C1313 PCA) only suchPCA) only such
m/z-fragment ions werem/z-fragment ions were
chosen, which were exactlychosen, which were exactly
in the gap between ECNIin the gap between ECNI
clusters of the other PCAclusters of the other PCA
carbon chain lengthcarbon chain length
(i.e. C(i.e. C1414-C-C1717 PCA).PCA).
The whole range CThe whole range C1010-C-C1313
and Cand C1414-C-C1717 PCA should bePCA should be
covered by SCGC/LRMS-ECNI.covered by SCGC/LRMS-ECNI.
Identification andIdentification and
quantificationquantification
byby
SCGC/LRMS-ECNISCGC/LRMS-ECNI
Identification andIdentification and
quantificationquantification
byby
SCGC/LRMS-ECNISCGC/LRMS-ECNI
327
341
359
397
431
445
459 477 483
361 375
0
20
40
60
80
%age
0
20
40
60
80
%age
300 350 400 550450 500 600
300 350 400 550450 500 600
0
20
40
60
80
%age
300 350 400 550450 500 600
0
20
40
60
80
%age
300 350 400 550450 500 600
359
361
375
395
409
431
445
463
479
481
495 513
409
324
341
359
361
375
395
425
443
457
477
493
495
411
368
380
403 405
421
439
453 473
487
C - C - PCA
60 % Chlorgehalt (Gew.-%)
10 13
C - C - PCA
63 % Chlorgehalt (Gew.-%)
10 13
C - C - PCA
70 % Chlorgehalt (Gew.-%)
10 13
C - C - PCA
52 % Chlorgehalt (Gew.-%)
14 17
CC1414HH2424ClCl66 m/z 369m/z 369
CC1414HH2121ClCl99 m/z 473m/z 473
CC1414HH2323ClCl77 m/z 402m/z 402 CC1414HH2323ClCl88 m/z 438m/z 438
CC1515HH2525ClCl77 m/z 416m/z 416
CC1515HH2323ClCl99 m/z 487m/z 487
CC1010-C-C1313 PCA withPCA with
60 % chlorine content (w/w)60 % chlorine content (w/w)
C10-C13 PCA withwith
63 % chlorine content (w/w)chlorine content (w/w)
CC1515HH2424ClCl88 m/z 453m/z 453
C10-C13 PCA withwith
70 % chlorine content (w/w)chlorine content (w/w)
C14-C17 PCA withwith
52 % chlorine content (w/w)chlorine content (w/w)
Figure: SCGC/LRMS
ECNI mass spectra of
commercial C10-C13 and
C14-C17 PCA mixtures with
different chlorine content
CC1616 and Cand C1717 PCAPCA
could not becould not be
identified.identified.
DisadvantagesDisadvantages
Quantification of PCA residues in cleaned-up samplesQuantification of PCA residues in cleaned-up samplesQuantification of PCA residues in cleaned-up samplesQuantification of PCA residues in cleaned-up samples
1. comparison N t-Test P-Value
A-B 26 6,9 <0,001
A-C 26 6,2 <0,001
B-C 25 -0,8 0,459
N Number of samples in the series
Hypothesis (HHypothesis (H00))Hypothesis (HHypothesis (H00))
Differences between
two series of data
amount to zero.
1.1. Different detection methodsDifferent detection methods
the same external standard.the same external standard.CC1010-C-C1313 PCAPCA
HRGC/ECDHRGC/ECD
(Methode A)(Methode A)
HRGC/ECDHRGC/ECD
(Methode A)(Methode A)
HRGC/LRMS-ECNIHRGC/LRMS-ECNI
in SIM modein SIM mode
(Methode B)(Methode B)
HRGC/LRMS-ECNIHRGC/LRMS-ECNI
in SIM modein SIM mode
(Methode B)(Methode B)
SCGC/LRMS-ECNISCGC/LRMS-ECNI
in full scan modein full scan mode
(Methode C)(Methode C)
SCGC/LRMS-ECNISCGC/LRMS-ECNI
in full scan modein full scan mode
(Methode C)(Methode C)
commercial
CC1010-C-C1313 PCAPCA
PCA residues:
Standard:
Quantification ofQuantification of
PCA residues inPCA residues in
cleaned-upcleaned-up
samplessamples
Quantification ofQuantification of
PCA residues inPCA residues in
cleaned-upcleaned-up
samplessamples
C10-C13 PCA residues (µg/Kg Fat) in
real sample extracts quantified by:
(A) HRGC/ECD
(B) HRGC/LRMS-ECNI-SIM‘
(C) SCGC/LRMS-ECNI
with a commercial C10-C13 PCA with
63 % Cl (w/w).
NN number of samples in the data
series
0
100
200
300
400
500
1 6 11 16 21 26
HRGC/LRMS-ECNI-SIM
HRGC/ECD
0
200
400
600
800
1 6 11 16 21 26 31
SCGC/LRMS-ECNI
HRGC/ECD
0
30
60
90
120
150
1 6 11 16 21
HRGC/LRMS-ECNI-SIM
SCGC/LRMS-ECNI
N
A - B
A - C
Concentration(µg/KgFat)Concentration(µg/KgFat)Concentration(µg/KgFat)
N
B - C
N
HRGC/LRMS-ECNI-SIMHRGC/LRMS-ECNI-SIM
HRGC/ECDHRGC/ECD
SCGC/LRMS-ECNISCGC/LRMS-ECNI
HRGC/ECDHRGC/ECD
HRGC/LRMS-ECNI-SIMHRGC/LRMS-ECNI-SIM
SCGC/LRMS-ECNISCGC/LRMS-ECNI
Quantification ofQuantification of
PCA residues inPCA residues in
cleaned-upcleaned-up
samplessamples
Quantification ofQuantification of
PCA residues inPCA residues in
cleaned-upcleaned-up
samplessamples
C10-C13 PCA residues (µg/Kg Fat) in
real sample extracts quantified by:
(A) HRGC/ECD
(B) HRGC/LRMS-ECNI-SIM‘
(C) SCGC/LRMS-ECNI
with a commercial C10-C13 PCA with
63 % Cl (w/w).
NN number of samples in the data
series
0
100
200
300
400
500
1 6 11 16 21 26
HRGC/LRMS-ECNI-SIM
HRGC/ECD
0
200
400
600
800
1 6 11 16 21 26 31
SCGC/LRMS-ECNI
HRGC/ECD
0
30
60
90
120
150
1 6 11 16 21
HRGC/LRMS-ECNI-SIM
SCGC/LRMS-ECNI
N
A - B
A - C
Concentration(µg/KgFat)Concentration(µg/KgFat)Concentration(µg/KgFat)
N
B - C
N
HRGC/LRMS-ECNI-SIMHRGC/LRMS-ECNI-SIM
HRGC/ECDHRGC/ECD
SCGC/LRMS-ECNISCGC/LRMS-ECNI
HRGC/ECDHRGC/ECD
HRGC/LRMS-ECNI-SIMHRGC/LRMS-ECNI-SIM
SCGC/LRMS-ECNISCGC/LRMS-ECNI
Quantification of PCA: HRGC/ECDQuantification of PCA: HRGC/ECDQuantification of PCA: HRGC/ECDQuantification of PCA: HRGC/ECD
CC1010-C-C1313 PCA concentrationsPCA concentrations
measured by HRGC/ECDHRGC/ECD
(Method A)
CC1010-C-C1313-PCA concentrations-PCA concentrations
measured by GC/MS-ECNIGC/MS-ECNI
(Method B und C)
>
ExplanationExplanation::  maybe in the extracts besides C10-C13 exist also C14-C17 or C>17 PCA
 the new developed clean-up procedure
 the gas chromatography
provide no separation ofprovide no separation of
CC1010-C-C1313 from the other PCAsfrom the other PCAs
accordingly by EC-detection Caccordingly by EC-detection C1414-C-C1717 or Cor C>17>17 PCA are quantified with.PCA are quantified with.
SinceSince
bothboth
HRGC/ECD is suitable only forHRGC/ECD is suitable only for
screening investigationsscreening investigations and/orand/or
for afor a raw estimation of the totalraw estimation of the total
amount PCA residuesamount PCA residues inin
environmental samples.environmental samples.
ConclusionConclusion
Quantification of PCA residues in cleaned-up samplesQuantification of PCA residues in cleaned-up samplesQuantification of PCA residues in cleaned-up samplesQuantification of PCA residues in cleaned-up samples
Quantification of PCA residues in cleaned-up samplesQuantification of PCA residues in cleaned-up samplesQuantification of PCA residues in cleaned-up samplesQuantification of PCA residues in cleaned-up samples
To whatextentis affectedtheTo whatextentis affectedthe
GC/MS-ECNI quantificationGC/MS-ECNI quantification
fromtheuseof commercialfromtheuseof commercial
PCA standardsPCA standards ??
pure synthesised
C10
, C11
, C12
, C13
PCA
with 45 to 70% Cl (w/w)
Commercial
C10-C13 PCA
63 % Cl (w/w)
SCGC/LRMS-ECNISCGC/LRMS-ECNI
in full scan modein full scan mode
Quantification of PCA residues in cleaned-up samplesQuantification of PCA residues in cleaned-up samplesQuantification of PCA residues in cleaned-up samplesQuantification of PCA residues in cleaned-up samples
Hypothesis (HHypothesis (H00))Hypothesis (HHypothesis (H00))
Differences between
two series of data
amount to zero.
2. comparison N t-Test P-Value
C-F 35 -4,8 <0,001
N Number of samples in the series
2.2. The same detection method butThe same detection method but
different external standards.different external standards.CC1010-C-C1313-PCA-PCA
CC1010-C-C1313 PCA,PCA,
63% Cl (w/w)63% Cl (w/w)
(Method C)(Method C)
CC1010-C-C1313 PCA,PCA,
63% Cl (w/w)63% Cl (w/w)
(Method C)(Method C)
pure laboratory synthesised Cpure laboratory synthesised C1010-, C-, C1111-,-,
CC1212-, C-, C1313-PCAs, 45 to 70% Cl (w/w)-PCAs, 45 to 70% Cl (w/w)
(Methode F)(Methode F)
pure laboratory synthesised Cpure laboratory synthesised C1010-, C-, C1111-,-,
CC1212-, C-, C1313-PCAs, 45 to 70% Cl (w/w)-PCAs, 45 to 70% Cl (w/w)
(Methode F)(Methode F)
SCGC/LRMS-ECNISCGC/LRMS-ECNI
PCA residues:
Detection method:
The quantification with pureThe quantification with pure
laboratory synthesised PCAlaboratory synthesised PCA
components (mixtures) leadscomponents (mixtures) leads
probably to more accurateprobably to more accurate
concentrations of residues inconcentrations of residues in
environmental samples.environmental samples.
ConclusionConclusion
Quantification of PCA residues in cleaned-up samplesQuantification of PCA residues in cleaned-up samplesQuantification of PCA residues in cleaned-up samplesQuantification of PCA residues in cleaned-up samples
Quantification of PCA in selected environmental samplesQuantification of PCA in selected environmental samplesQuantification of PCA in selected environmental samplesQuantification of PCA in selected environmental samples
Several samplesSeveral samples CC1414 PCAPCA
(i.e. Fish feed,(i.e. Fish feed,  are the mainare the main
cod liver oil etc).cod liver oil etc). Components.Components.
In 40 % of fish oilsIn 40 % of fish oils CC1111 PCAPCA
in 45 % of the water organismsin 45 % of the water organisms  are the mainare the main
in 50 % of cod liver oilsin 50 % of cod liver oils components.components.
Identified: both CIdentified: both C1010-C-C1313 and Cand C1414-C-C1717 PCA.PCA.
PCA residuesPCA residues  in ca. 63 % of the samples (116,0-1719,3 µg/kg fat ).in ca. 63 % of the samples (116,0-1719,3 µg/kg fat ).
Real samples
Depending on the sample art and the origin the relation :Depending on the sample art and the origin the relation :
CC1010-C-C1313 PCA / CPCA / C1010-C-C1717 PCAPCA  0.11 to 5.89.0.11 to 5.89.
0,00
20,00
40,00
60,00
80,00
100,00
0 5 10 15 20 25 30 35
Number of samples
C10-C13PCAcontent(%)
Figure: Content of C10-C13 PCA in % compared to the total amount of PCA
residues quantified in real sample extracts
Quantification of PCA in selected environmental samplesQuantification of PCA in selected environmental samplesQuantification of PCA in selected environmental samplesQuantification of PCA in selected environmental samples
Quantification of PCA in selected fish samplesQuantification of PCA in selected fish samplesQuantification of PCA in selected fish samplesQuantification of PCA in selected fish samples
0
100
200
300
400
500
600
700
Sprat
Sprat
Hake
Redfish
Redfish
Redfish
Redfish
Salmon
Salmon
Monkfish
Monkfish
Herring
Herring
Mackerel
Halibut
BalticTellmuschel
Mussel
Sardine
Sardine
Mackerel(grilled)
Breedtrout
PCAconcentration[µg/kgfat]
Short chain PCA
Medium chain PCA
Figure: Content of C10-C17 PCA quantified in fish, mussels and deep sea shrimps sample extracts
Quantification of PCAQuantification of PCA
in selected oil samplesin selected oil samples
Quantification of PCAQuantification of PCA
in selected oil samplesin selected oil samples
0
50
100
150
200
250
300
350
Germany
Germany
England
Island
Island
Short chain PCAs
Medium chain PCAs
Fish oilsFish oilsFish oilsFish oils
Short chain PCAs:Short chain PCAs:
44.9 to 321.4 µg/kg44.9 to 321.4 µg/kg
Medium chain PCAs:Medium chain PCAs:
63.1 and 190.9 µg/kg63.1 and 190.9 µg/kg
ExceptionsExceptions: fish oils: fish oils
originated from Germanyoriginated from Germany
0
100
200
300
400
500
600
700
France
England
England
England
England
Island
USA
USA
Short chain PCAs
Medium chain PCAs
Cod liver oilsCod liver oilsCod liver oilsCod liver oils
Short chain PCAs:Short chain PCAs:
57.9 and 644.457.9 and 644.4 µg/kgµg/kg
Medium chain PCAs:Medium chain PCAs:
94.6 and 538.594.6 and 538.5 µg/kgµg/kg
ExceptionsExceptions: cod liver oils: cod liver oils
from France and U.S.A.from France and U.S.A.
SCGC/LRMS-ECNI mass spectra of CSCGC/LRMS-ECNI mass spectra of C1010 C‑C‑ 1717 PCAPCA
in selected oil samplesin selected oil samples
SCGC/LRMS-ECNI mass spectra of CSCGC/LRMS-ECNI mass spectra of C1010 C‑C‑ 1717 PCAPCA
in selected oil samplesin selected oil samples
0
20
40
60
80
%age
300 350 400 550450 500 600
333
397
403
441
467
0
20
40
60
80
%age
300 350 400 550450 500 600
319
347 368
403
437
473
509
Fish oilFish oil
Salmon (capsules)Salmon (capsules)
GERMANYGERMANY
Cod liver oilCod liver oil
(capsules)(capsules)
FRANCEFRANCE
SCGC/LRMS-ECNI mass spectra of CSCGC/LRMS-ECNI mass spectra of C1010 C‑C‑ 1717 PCAPCA
in selected environmental samplesin selected environmental samples
SCGC/LRMS-ECNI mass spectra of CSCGC/LRMS-ECNI mass spectra of C1010 C‑C‑ 1717 PCAPCA
in selected environmental samplesin selected environmental samples
0
20
40
60
80
%age
300 350 400 550450 500 600
347
366
386
403
405
439
451
473
485
499
360
368
389
403
405
439
453
473
487
507
0
20
40
60
80
%age
300 350 400 550450 500 600
Cod liver oilCod liver oil
(capsules)(capsules)
U.S.A.U.S.A.
Fish feedFish feed
GERMANYGERMANY
PerspectivePerspectivePerspectivePerspective
 certified reference materialscertified reference materials
 well defined Standardswell defined Standards
 validated clean-up andvalidated clean-up and
quantification methodsquantification methods
 certified reference materialscertified reference materials
 well defined Standardswell defined Standards
 validated clean-up andvalidated clean-up and
quantification methodsquantification methods
1. Problem:1. Problem:
Non-Non-
existenceexistence
Important and necessary:Important and necessary:
Well determined
study in internatio-
nal level.
What?What? How?How?
To establish well validated
analytical procedures for
this group of substances.
To establish well validated
analytical procedures for
this group of substances.
To produce well defined C10
to C17 PCA components and
certified reference materials
for different kind of environ-
mental matrices.
To produce well defined C10
to C17 PCA components and
certified reference materials
for different kind of environ-
mental matrices.
Why?Why?
In order to control
the accuracy,
reproducibility and
applicability of any
analytical procedure.
What?What?
The ecotoxikologic relevance of this group of chlorinated
substances should be clarified by toxicological studies
with single components or at least with pure synthesised
and well defined mixtures.
No possible to identify and quantify PCA with aNo possible to identify and quantify PCA with a
chain length >16 in environmental samples (lowchain length >16 in environmental samples (low
response factors and high molecular weight).response factors and high molecular weight).
No possible to identify and quantify PCA with aNo possible to identify and quantify PCA with a
chain length >16 in environmental samples (lowchain length >16 in environmental samples (low
response factors and high molecular weight).response factors and high molecular weight).
GC/ECD and/or GC/MS-ECNIGC/ECD and/or GC/MS-ECNI
detection very difficult.detection very difficult.
GC/ECD and/or GC/MS-ECNIGC/ECD and/or GC/MS-ECNI
detection very difficult.detection very difficult.
Alternative methodsAlternative methods
must be developed.must be developed.
Alternative methodsAlternative methods
must be developed.must be developed.
2. Problem:2. Problem:
PerspectivePerspectivePerspectivePerspective

Más contenido relacionado

Destacado

Pastor Training Institute East Africa
Pastor Training Institute East AfricaPastor Training Institute East Africa
Pastor Training Institute East Africasoglslidemeister
 
Wounded warriors project
Wounded warriors projectWounded warriors project
Wounded warriors projectwyattfuller
 
Huong dan thuc hanh nghe nghiep 2015
Huong dan thuc hanh nghe nghiep 2015Huong dan thuc hanh nghe nghiep 2015
Huong dan thuc hanh nghe nghiep 2015dgvbjhyg
 
AZcordbloodPROJECT-MIHS Powerpoint
AZcordbloodPROJECT-MIHS PowerpointAZcordbloodPROJECT-MIHS Powerpoint
AZcordbloodPROJECT-MIHS PowerpointAna Madrid
 
Shawver Brochure 2013 (small)
Shawver Brochure 2013 (small)Shawver Brochure 2013 (small)
Shawver Brochure 2013 (small)Kyle Williamson
 
Rodan + Fields Before & Afters 2015
Rodan + Fields Before & Afters 2015Rodan + Fields Before & Afters 2015
Rodan + Fields Before & Afters 2015Galit Janco
 
Pembahasan Mengenai Cyber Crime
Pembahasan Mengenai Cyber CrimePembahasan Mengenai Cyber Crime
Pembahasan Mengenai Cyber CrimeRerii
 
Rodan + Fields 2014 Canada Product Guide
Rodan + Fields 2014 Canada Product GuideRodan + Fields 2014 Canada Product Guide
Rodan + Fields 2014 Canada Product GuideGalit Janco
 

Destacado (12)

SRGross CV_2015_RPh
SRGross CV_2015_RPhSRGross CV_2015_RPh
SRGross CV_2015_RPh
 
Pastor Training Institute East Africa
Pastor Training Institute East AfricaPastor Training Institute East Africa
Pastor Training Institute East Africa
 
Diego pdf
Diego pdfDiego pdf
Diego pdf
 
Wounded warriors project
Wounded warriors projectWounded warriors project
Wounded warriors project
 
Huong dan thuc hanh nghe nghiep 2015
Huong dan thuc hanh nghe nghiep 2015Huong dan thuc hanh nghe nghiep 2015
Huong dan thuc hanh nghe nghiep 2015
 
AltES6 Introduction
AltES6 IntroductionAltES6 Introduction
AltES6 Introduction
 
AZcordbloodPROJECT-MIHS Powerpoint
AZcordbloodPROJECT-MIHS PowerpointAZcordbloodPROJECT-MIHS Powerpoint
AZcordbloodPROJECT-MIHS Powerpoint
 
Resume
ResumeResume
Resume
 
Shawver Brochure 2013 (small)
Shawver Brochure 2013 (small)Shawver Brochure 2013 (small)
Shawver Brochure 2013 (small)
 
Rodan + Fields Before & Afters 2015
Rodan + Fields Before & Afters 2015Rodan + Fields Before & Afters 2015
Rodan + Fields Before & Afters 2015
 
Pembahasan Mengenai Cyber Crime
Pembahasan Mengenai Cyber CrimePembahasan Mengenai Cyber Crime
Pembahasan Mengenai Cyber Crime
 
Rodan + Fields 2014 Canada Product Guide
Rodan + Fields 2014 Canada Product GuideRodan + Fields 2014 Canada Product Guide
Rodan + Fields 2014 Canada Product Guide
 

Similar a 2003-05-09_Ispra-ITALY

Danh muc hoa chat xu ly nuoc ntts 2011
Danh muc hoa chat xu ly nuoc ntts 2011Danh muc hoa chat xu ly nuoc ntts 2011
Danh muc hoa chat xu ly nuoc ntts 2011Truong Ngo Xuan
 
Danh muc hoa chat xu ly nuoc ntts 2011
Danh muc hoa chat xu ly nuoc ntts 2011Danh muc hoa chat xu ly nuoc ntts 2011
Danh muc hoa chat xu ly nuoc ntts 2011Truong Ngo Xuan
 
Danh muc hoa chat xu ly nuoc thai 2011
Danh muc hoa chat xu ly nuoc thai 2011Danh muc hoa chat xu ly nuoc thai 2011
Danh muc hoa chat xu ly nuoc thai 2011Truong Ngo Xuan
 
Danh muc hoa chat xu ly nuoc thai 2011
Danh muc hoa chat xu ly nuoc thai 2011Danh muc hoa chat xu ly nuoc thai 2011
Danh muc hoa chat xu ly nuoc thai 2011Truong Ngo Xuan
 
Polysaccharides based nanoparticles for drug delivery application
Polysaccharides based nanoparticles for drug delivery applicationPolysaccharides based nanoparticles for drug delivery application
Polysaccharides based nanoparticles for drug delivery applicationTomsk Polytechnic University
 
Irwa Presentation 2009
Irwa Presentation 2009Irwa Presentation 2009
Irwa Presentation 2009h20lyle
 
Finding the best separation for enantiomeric mixtures
Finding the best separation for enantiomeric mixturesFinding the best separation for enantiomeric mixtures
Finding the best separation for enantiomeric mixturesChiral Technologies Worldwide
 
Ankush Jindal Chemical Engg. Dept. NIT Hamirpur
Ankush Jindal Chemical Engg. Dept. NIT HamirpurAnkush Jindal Chemical Engg. Dept. NIT Hamirpur
Ankush Jindal Chemical Engg. Dept. NIT Hamirpurankushjindal26
 
Polymeric nanoparticles for encapsulation and controlled release of bioactive...
Polymeric nanoparticles for encapsulation and controlled release of bioactive...Polymeric nanoparticles for encapsulation and controlled release of bioactive...
Polymeric nanoparticles for encapsulation and controlled release of bioactive...Tomsk Polytechnic University
 
Initial stages of pyrolysis of polyethylene
Initial stages of pyrolysis of polyethyleneInitial stages of pyrolysis of polyethylene
Initial stages of pyrolysis of polyethylenelugalzagissi
 
Cellular respiration ppt wit turning pt qs
Cellular respiration ppt wit turning pt qsCellular respiration ppt wit turning pt qs
Cellular respiration ppt wit turning pt qstas11244
 
Enhancing separations performance for chemicals and polymers presentation
Enhancing separations performance for chemicals and polymers presentationEnhancing separations performance for chemicals and polymers presentation
Enhancing separations performance for chemicals and polymers presentationWaters Corporation - Chemical Materials
 
Proposed Pathways for the Reduction of a Reactive Azo Dye and kinetic reactio...
Proposed Pathways for the Reduction of a Reactive Azo Dye and kinetic reactio...Proposed Pathways for the Reduction of a Reactive Azo Dye and kinetic reactio...
Proposed Pathways for the Reduction of a Reactive Azo Dye and kinetic reactio...Eleazar Maximo Escamilla
 
Supercritical Gas Extraction
Supercritical Gas ExtractionSupercritical Gas Extraction
Supercritical Gas ExtractionMustapha Nasiru
 
SFC-UV and SFC-MS methods for the simultaneous detection of 23 fragrance alle...
SFC-UV and SFC-MS methods for the simultaneous detection of 23 fragrance alle...SFC-UV and SFC-MS methods for the simultaneous detection of 23 fragrance alle...
SFC-UV and SFC-MS methods for the simultaneous detection of 23 fragrance alle...Cyrille SANTERRE
 

Similar a 2003-05-09_Ispra-ITALY (20)

Danh muc hoa chat xu ly nuoc ntts 2011
Danh muc hoa chat xu ly nuoc ntts 2011Danh muc hoa chat xu ly nuoc ntts 2011
Danh muc hoa chat xu ly nuoc ntts 2011
 
Danh muc hoa chat xu ly nuoc ntts 2011
Danh muc hoa chat xu ly nuoc ntts 2011Danh muc hoa chat xu ly nuoc ntts 2011
Danh muc hoa chat xu ly nuoc ntts 2011
 
Danh muc hoa chat xu ly nuoc thai 2011
Danh muc hoa chat xu ly nuoc thai 2011Danh muc hoa chat xu ly nuoc thai 2011
Danh muc hoa chat xu ly nuoc thai 2011
 
Danh muc hoa chat xu ly nuoc thai 2011
Danh muc hoa chat xu ly nuoc thai 2011Danh muc hoa chat xu ly nuoc thai 2011
Danh muc hoa chat xu ly nuoc thai 2011
 
Polysaccharides based nanoparticles for drug delivery application
Polysaccharides based nanoparticles for drug delivery applicationPolysaccharides based nanoparticles for drug delivery application
Polysaccharides based nanoparticles for drug delivery application
 
Q-Fil Membrane Filters Catalogue 2020
Q-Fil Membrane Filters Catalogue 2020Q-Fil Membrane Filters Catalogue 2020
Q-Fil Membrane Filters Catalogue 2020
 
Vinoxy radical
Vinoxy radicalVinoxy radical
Vinoxy radical
 
Irwa Presentation 2009
Irwa Presentation 2009Irwa Presentation 2009
Irwa Presentation 2009
 
Use of APGC coupled to Tandem Quadrupole Mass Spectrometry for the analysis o...
Use of APGC coupled to Tandem Quadrupole Mass Spectrometry for the analysis o...Use of APGC coupled to Tandem Quadrupole Mass Spectrometry for the analysis o...
Use of APGC coupled to Tandem Quadrupole Mass Spectrometry for the analysis o...
 
Analysis of Allergens in Perfumes, Cosmetics and Personal Care Products
Analysis of Allergens in Perfumes, Cosmetics and Personal Care ProductsAnalysis of Allergens in Perfumes, Cosmetics and Personal Care Products
Analysis of Allergens in Perfumes, Cosmetics and Personal Care Products
 
Finding the best separation for enantiomeric mixtures
Finding the best separation for enantiomeric mixturesFinding the best separation for enantiomeric mixtures
Finding the best separation for enantiomeric mixtures
 
Ankush Jindal
Ankush JindalAnkush Jindal
Ankush Jindal
 
Ankush Jindal Chemical Engg. Dept. NIT Hamirpur
Ankush Jindal Chemical Engg. Dept. NIT HamirpurAnkush Jindal Chemical Engg. Dept. NIT Hamirpur
Ankush Jindal Chemical Engg. Dept. NIT Hamirpur
 
Polymeric nanoparticles for encapsulation and controlled release of bioactive...
Polymeric nanoparticles for encapsulation and controlled release of bioactive...Polymeric nanoparticles for encapsulation and controlled release of bioactive...
Polymeric nanoparticles for encapsulation and controlled release of bioactive...
 
Initial stages of pyrolysis of polyethylene
Initial stages of pyrolysis of polyethyleneInitial stages of pyrolysis of polyethylene
Initial stages of pyrolysis of polyethylene
 
Cellular respiration ppt wit turning pt qs
Cellular respiration ppt wit turning pt qsCellular respiration ppt wit turning pt qs
Cellular respiration ppt wit turning pt qs
 
Enhancing separations performance for chemicals and polymers presentation
Enhancing separations performance for chemicals and polymers presentationEnhancing separations performance for chemicals and polymers presentation
Enhancing separations performance for chemicals and polymers presentation
 
Proposed Pathways for the Reduction of a Reactive Azo Dye and kinetic reactio...
Proposed Pathways for the Reduction of a Reactive Azo Dye and kinetic reactio...Proposed Pathways for the Reduction of a Reactive Azo Dye and kinetic reactio...
Proposed Pathways for the Reduction of a Reactive Azo Dye and kinetic reactio...
 
Supercritical Gas Extraction
Supercritical Gas ExtractionSupercritical Gas Extraction
Supercritical Gas Extraction
 
SFC-UV and SFC-MS methods for the simultaneous detection of 23 fragrance alle...
SFC-UV and SFC-MS methods for the simultaneous detection of 23 fragrance alle...SFC-UV and SFC-MS methods for the simultaneous detection of 23 fragrance alle...
SFC-UV and SFC-MS methods for the simultaneous detection of 23 fragrance alle...
 

2003-05-09_Ispra-ITALY

  • 1. Quantification of short and medium chain chlorinated paraffin residues in selected environmental samples Majlinda R. Lahaniatis Ispra-Italy, 9 May 2003 TU MunichTU Munich Weihenstephan Scientific Centre for Nutrition,Weihenstephan Scientific Centre for Nutrition, Land Use and Environment,Land Use and Environment, Chair of Ecological Chemistry and EnvironmentalChair of Ecological Chemistry and Environmental Analysis, Weihenstephaner Steig 23Analysis, Weihenstephaner Steig 23 85350 Freising-Weihenstephan, Germany85350 Freising-Weihenstephan, Germany (e-mail: lahaniatis@mesaep.org)(e-mail: lahaniatis@mesaep.org)
  • 2. Short storyShort storyShort storyShort story 18401840 August-Wilhelm von Hofmann (1818-†1892) Founder and President of DEUTSCHEN CHEMISCHEN GESELLSCHAFT (German Chemical Society) TuilerienTuilerien
  • 3. Jean Baptiste-Andre DUMAS Chemist (1800-†1884) Alexandre BRONGNIART director of the porcelain factory of Sèvres (1770-†1847) Short storyShort storyShort storyShort story
  • 4. P. BOLLEY Synthesis of long chain chlorinated paraffins "Chloraffin" empirical formula CxHn-xClx Short storyShort storyShort storyShort story 1. World War1. World War:: antiseptic solutions of Chlorcosans (first commer-first commer- cial use of chlorinated paraffinscial use of chlorinated paraffins) 2. World War:2. World War: chlorinated paraffins are used as flame retardants 1993:1993: global consumption 300 kt Nowadays:Nowadays: it is believed that the demand for PCAs will likely continue to grow at about 1%/year
  • 5. Industrial productionIndustrial productionIndustrial productionIndustrial production CCnnHH2n+22n+2 +Cl+Cl22  CCnnHH2n+12n+1Cl + HClCl + HCl nn-Alkane-Alkane C10 C‑ 13, C14 C‑ 17, C>17  , h ClCl22 PCAPCA+ Chlorination:Chlorination: radical substitutionradical substitution reactionreaction Propagation steps:Propagation steps: CCnnHH2n+22n+2 + Cl+ Cl   CCnnHH2n+12n+1  + HCl+ HCl CCnnHH2n+12n+1  + Cl+ Cl22  CCnnHH2n+12n+1Cl + ClCl + Cl  CCnnHH2n+2-y2n+2-yClClyy + Cl+ Cl   CCnnHH2n+1-y2n+1-yClClyy  + HCl+ HCl CCnnHH2n+1-y2n+1-yClClyy  + Cl+ Cl22  CCnnHH2n-y2n-yClCl y+1y+1 + Cl+ Cl  Propagation steps:Propagation steps: CCnnHH2n+22n+2 + Cl+ Cl   CCnnHH2n+12n+1  + HCl+ HCl CCnnHH2n+12n+1  + Cl+ Cl22  CCnnHH2n+12n+1Cl + ClCl + Cl  CCnnHH2n+2-y2n+2-yClClyy + Cl+ Cl   CCnnHH2n+1-y2n+1-yClClyy  + HCl+ HCl CCnnHH2n+1-y2n+1-yClClyy  + Cl+ Cl22  CCnnHH2n-y2n-yClCl y+1y+1 + Cl+ Cl  Chain termination steps:Chain termination steps: ClCl  + Cl+ Cl   ClCl22 CCnnHH2n+1-x2n+1-xClClxx  + C+ CnnHH2n+1-y2n+1-yClClyy   CC2n2nHH4n4n+2-x-y+2-x-yClClx+yx+y CCnnHH2n+1-y2n+1-yClClyy  + Cl+ Cl   CCnnHH2n+1-y2n+1-yClCly+1y+1 Chain termination steps:Chain termination steps: ClCl  + Cl+ Cl   ClCl22 CCnnHH2n+1-x2n+1-xClClxx  + C+ CnnHH2n+1-y2n+1-yClClyy   CC2n2nHH4n4n+2-x-y+2-x-yClClx+yx+y CCnnHH2n+1-y2n+1-yClClyy  + Cl+ Cl   CCnnHH2n+1-y2n+1-yClCly+1y+1 Initiation stepInitiation step:: ClCl22  2 Cl2 Cl  Initiation stepInitiation step:: ClCl22  2 Cl2 Cl 
  • 6. Long chainLong chain (C(C>17>17) PCA) PCA Medium chainMedium chain (C(C1414 C‑C‑ 1717) PCA) PCA Short chainShort chain (C(C1010 C‑C‑ 1313) PCA) PCA Chlorine content of theChlorine content of the formulation (40-72 %, w/w)formulation (40-72 %, w/w) and Commercial PCA areCommercial PCA are characterised by:characterised by: Chain length ofChain length of n-alkanen-alkane PCAPCA consist ofconsist of mixtures of thousand componentsmixtures of thousand components withwith different chain lengthdifferent chain length andand different chlorination degree.different chlorination degree. Characterisation of technical productsCharacterisation of technical productsCharacterisation of technical productsCharacterisation of technical products
  • 7. PCA Carbon chain C10 -C13 short chain C14 -C17 medium chain C>17 long chain liquid liquid liquid Solid Chlorine content (%) 48-71 40-59 26 59‑ 10 20 and 69-72‑ CAS Nr. 85535-84-8 85535-85-9 - 63449-39-8 EINECS Nr. 287-476-5 287-477-0 - 264-150-0 EINECS Alkane C10 -C13 , Chlor‑ Alkane C14 -C17 , Chlor‑ Alkane C>17 , Chlor‑ Paraffin wax and hydrocarbon wax,‑ Chlor‑ IUPAC-Name Chloralkane C10 -C13 Chloralkane C14 -C17 Chloralkane C>17 Chloroalkane C>17 (solid) Other Chloro- paraffine C10 C‑ 13 Chloro- paraffine C14 C‑ 17 Chloro- paraffine C>17 (liquid) Chlorparaffine C>17 (solid) Nomenclature of technical productsNomenclature of technical productsNomenclature of technical productsNomenclature of technical products Overview of the numbers and designations used for PCA in different sources
  • 8.  pH-neutral, chemically inertpH-neutral, chemically inert  Low water solubility (WS).Low water solubility (WS).  Chlorine substitution had significant effects on the waterChlorine substitution had significant effects on the water solubility.solubility.  Soluble in organic solvents, as well as in most of mineral,Soluble in organic solvents, as well as in most of mineral, animal and vegetable oils.animal and vegetable oils.  Among themselves miscible.Among themselves miscible.  Prolonged heating at elevated temperatures results inProlonged heating at elevated temperatures results in the release of HCl (>200 °C).the release of HCl (>200 °C). Physical and Chemical Properties of PCAPhysical and Chemical Properties of PCAPhysical and Chemical Properties of PCAPhysical and Chemical Properties of PCA
  • 9. Plasticiser for PVC Extreme pressure additive for metal-working fluids Fire retardant additive for polymers Plasticiser and extender for paint resins Plasticiser for sealants and additives Fat liquor for leather processing Use applicationsUse applicationsUse applicationsUse applications
  • 10. Compared to the other anthropogenic compounds, world wide relatively little useful datarelatively little useful data are available on PCA concentrations in the ecosphere. Analytic:Analytic: Determination of PCA in environmentalDetermination of PCA in environmental samplessamples Analytic:Analytic: Determination of PCA in environmentalDetermination of PCA in environmental samplessamples
  • 11. ProblemsProblems by the identification and quantification:  no chromatographic methodno chromatographic method able to separate all PCA components according to their chain length and chlorine content. ProblemsProblems by the identification and quantification:  no chromatographic methodno chromatographic method able to separate all PCA components according to their chain length and chlorine content. Analytic: Complex composition of PCA mixturesAnalytic: Complex composition of PCA mixturesAnalytic: Complex composition of PCA mixturesAnalytic: Complex composition of PCA mixtures large number of homologueslarge number of homologues andand isomersisomers high molecular weight,high molecular weight, low volatility,low volatility, non polar characternon polar character of PCA componentsof PCA components very difficult the measurementvery difficult the measurement of PCA at low concentrationsof PCA at low concentrations complex constitution of the components in the mixturescomplex constitution of the components in the mixtures
  • 12. Analytic: Gas chromatographic separation of PCA mixturesAnalytic: Gas chromatographic separation of PCA mixturesAnalytic: Gas chromatographic separation of PCA mixturesAnalytic: Gas chromatographic separation of PCA mixtures 4035302520 Zeit (min) 45 Year 1972 Gas chromatogram of a commercialGas chromatogram of a commercial CC1010 C‑C‑ 1616 PCA with 50 % Cl (w/w)PCA with 50 % Cl (w/w) after separation with aafter separation with a packedcolumnpackedcolumn ((glass column: length 280cm; 4 mm i.D.glass column: length 280cm; 4 mm i.D. material: 1% Silicon OV 1in Chromosorb‑material: 1% Silicon OV 1in Chromosorb‑ 6 AW, DMCS 70/80mesh6 AW, DMCS 70/80mesh)) 5045403530252015 Zeit (min) 5045403530252015 Zeit (min) Year 2000 ca. 30 yearsca. 30 years latterlatter ? ? Gas chromatogram (ECD) of aGas chromatogram (ECD) of a commercial Ccommercial C1010 C‑C‑ 1313 PCA mix,‑PCA mix,‑ 63 % Cl (w/w) after the sepa-63 % Cl (w/w) after the sepa- ration with a 30 m long fusedration with a 30 m long fused silicacapillarysilicacapillary columncolumn (DB 5).‑(DB 5).‑
  • 13. 0 20 40 60 80 %age 300 350 400 550450 500 600 347 366 386 403 405 439 451 473 485 499 0 20 40 60 80 300 350 400 550450 500 600 368 380 403 405 421 439 453 473 487 C - C - PCA 52 % chlorine content (w/w) 14 17 327 341 359 397 431 445 459 477 483 361 375 0 20 40 60 80 %age 300 350 400 550450 500 600 411 C - C - PCA 60 % chlorine content (w/w) 10 13 333 360 368 389 403 405 439 453 473 487 507 0 20 40 60 80 %age 300 350 400 550450 500 600 Fish feed Cod liver oil %age Cod liver oilCod liver oil CC1010-C-C1313 PCA, 60% Cl (w/w)PCA, 60% Cl (w/w) Different constitutionDifferent constitution ofof PCA components inPCA components in technical productstechnical products as compared to theas compared to the environmental samples.environmental samples. Analytic: Determination of PCA in environmental samplesAnalytic: Determination of PCA in environmental samplesAnalytic: Determination of PCA in environmental samplesAnalytic: Determination of PCA in environmental samples ProblemProblem by theby the sample preparationsample preparation recommended clean-up procedures are generally unspecificunspecific
  • 14. The concentrations published up to now are determined with differentdifferent analytic proceduresanalytic procedures and because of their missing comparability are hardly usableare hardly usable for the estimation of the PCA contamination in the environment.HRGC-ECD chromatograms of several commercial PCA identificationidentification and quantificationquantification normally incorrectincorrect Commercial PCA as external standardsCommercial PCA as external standards co-elution of many homologues and isomers 30,683 32,747 Zeit (min) 10 15 20 25 30 35 40 45 50 33,430 A B C C10-C13 PCA, 63 % Cl (w/w) C10-C13 PCA, 63 % Cl (w/w) C10-C13 PCA, 70 % Cl (w/w) C10-C13 PCA, 70 % Cl (w/w) C14-C17 PCA, 52 % Cl (w/w) C14-C17 PCA, 52 % Cl (w/w) Time (min) Analytic: Determination of PCA in environmental samplesAnalytic: Determination of PCA in environmental samplesAnalytic: Determination of PCA in environmental samplesAnalytic: Determination of PCA in environmental samples
  • 15. QuantificationQuantification of PCA residues in cleaned-up sample extracts with independent detection methodsindependent detection methodsand different external standards.different external standards. 22 A newselectiveclean-up procedurenewselectiveclean-up procedurefor the separation of C10-C13 PCA and C14-C17 PCA from lipids and interfering chlorinated organic compounds, especially from toxaphene, in selected fatty foods (altogether 56 samples). 11 Here we present:Here we present:Here we present:Here we present: TheresultsTheresultsthus obtained with the different methods are comparedcomparedwith each other and their environmental relevance is assessedassessed. 33
  • 16. Clean-up: 1. StepClean-up: 1. StepClean-up: 1. StepClean-up: 1. Step Eluent: n-Hexane:DCM (1:1) Eluent [ml] : Probe [g] = 10 : 1 Eluent: n-Hexane:DCM (1:1) Eluent [ml] : Probe [g] = 10 : 1 Na2SO4 [g] =0.1 x Sample [g]Na2SO4 [g] =0.1 x Sample [g] Sample [g] : Na2SO4 [g] : sea sand =1 : 4 : 2Sample [g] : Na2SO4 [g] : sea sand =1 : 4 : 2 Na2SO4 [g] =0.4 x Sample [g]Na2SO4 [g] =0.4 x Sample [g] SiO2 [g] = 0.2 x Sample [g]SiO2 [g] = 0.2 x Sample [g] SiO2 [g] = 0.3 x Sample [g]SiO2 [g] = 0.3 x Sample [g] Sea sandSea sand Glas woolGlas wool SiO2 /H2 SO4 (44 % H2 SO4(c) , w/w) and sea sand SiO2 /H2 SO4 (44 % H2 SO4(c) , w/w) [g] = 0.12  fish [g]  fat [%] sea sand [g] = 0.08  fish [g]  fat [%] SiO2 /H2 SO4 (44 % H2 SO4(c) , w/w) and sea sand SiO2 /H2 SO4 (44 % H2 SO4(c) , w/w) [g] = 0.12  fish [g]  fat [%] sea sand [g] = 0.08  fish [g]  fat [%] lipidlipid extractionextraction isolation of theisolation of the lipid-solublelipid-soluble contaminantscontaminants SimultaneousSimultaneous SimultaneousSimultaneous decompositiondecomposition of lipidsof lipids
  • 17. Clean-up: 1. StepClean-up: 1. StepClean-up: 1. StepClean-up: 1. Step After the 1. Step: lipid removal 99.9% and the extract contains: - rest of lipids: 0.1% - all PCAs (recovery > 90%) - other H2 SO4 resistant COS, incl. toxaphene, PCBs etc.  Reduction of necessary analysis time.  Savings of substantial energy and water.  Elimination of many manual operations and sources of contamination.  Avoidance of possible PCA decomposition and losses.  Treatment of samples even with higher quantities of lipids. ExtractionExtraction ExtractionExtraction LipidLipid decompositiondecomposition LipidLipid decompositiondecomposition PCAPCA isolationisolation PCAPCA isolationisolation
  • 18. 2. Fraction (7 ml2. Fraction (7 ml nn-Hexane:CH-Hexane:CH22ClCl22 1:1)1:1) 90 % of C10-C13 and C‑ 14-C17 PCA mixtures  ‑,  und‑ -HCH 10-20 % p,p´ DDD, p,p´ DDT‑ ‑  rest of Toxaphen (ca. 10 %) 1. Fraction (8 ml n-Hexane)1. Fraction (8 ml n-Hexane)  < 90 % of the Toxaphene components  ca. 90 % p,p´ DDT‑  ca. 80 % p,p´ DDD‑  < 98 % PCT, HCB, -Chlorden, OCS, -cis-Chlordan, p,p´-DDE, PCB 209 Clean-up: 2. StepClean-up: 2. StepClean-up: 2. StepClean-up: 2. Step Eluent: 1. Fraction: 8 ml n-Hexane 2. Fraction: 7 ml n-Hexane:DCM (1:1) Eluent: 1. Fraction: 8 ml n-Hexane 2. Fraction: 7 ml n-Hexane:DCM (1:1) 0.1 g SiO2 /H2 O(d) (3 % H2 O(d) , w/w)0.1 g SiO2 /H2 O(d) (3 % H2 O(d) , w/w) 1 g SiO2 /H2 SO4 (44 % H2 SO4(c) , w/w)1 g SiO2 /H2 SO4 (44 % H2 SO4(c) , w/w) 1 g SiO2 /H2 O(d) (30 % H2 O(d) , w/w)1 g SiO2 /H2 O(d) (30 % H2 O(d) , w/w) 0.3 g Na2 SO40.3 g Na2 SO4 sea sandsea sand glass woolglass wool Column: 22.0 cm length  0.7 cm i.d. * particle size 0,063-0,200 mm ** particle size 0,2 0,5 mm‑ decomposition ofdecomposition of the remaining lipidsthe remaining lipids SimultaneousSimultaneous SimultaneousSimultaneous separation of the PCAsseparation of the PCAs from the most part of thefrom the most part of the interfering compoundsinterfering compounds
  • 19. Clean-upClean-upClean-upClean-up 1 Zeit (min) 10 15 20 25 30 35 40 45 50 Zeit (min) 10 15 20 25 30 35 40 45 50 1 Zeit (min) 10 15 20 25 30 35 40 45 50 Zeit (min) 10 15 20 25 30 35 40 45 50 1 1 1 Zeit (min) 10 15 20 25 30 35 40 45 50 Figure: HRGC-ECD chromatograms of the separation PCA/Toxaphene with adsorption chromatography. 1: -HCH CB Standard C10-C13-PCA, 63 % Cl (w/w) C10-C13-PCA, 63 % Cl (w/w) and CB Standard 1. Fraction 1. Fraction 1. Fraction 2. Fraction 2. Fraction 2. Fraction SiOSiO22/H/H22O, 10 % HO, 10 % H22OO SiOSiO22/H/H22O, 30 % HO, 30 % H22OO SiOSiO22/H/H22SOSO44,, 44 % H44 % H22SOSO4 conc.4 conc. Vor theVor the separationseparation After theAfter the separationseparation
  • 20. Recovery:Recovery: C10-C13 PCA with 45 % Cl (w/w): ca. 90 % C10-C13 PCA with 56 % Cl (w/w): ca. 92 % C10-C13 PCA with 63 % Cl (w/w): ca. 94 % C14-C17 PCA with 52 % Cl (w/w): ca. 93 % THF Material: Phenogel 5 µ, 5Å Clean-up: 3. StepClean-up: 3. StepClean-up: 3. StepClean-up: 3. Step
  • 21. Figure: Clean-up procedure and the corresponding HRGC/ECD chromatograms. 1: HCB; 2: -HCH 2. Step2. Step2. Step2. Step 1. Step1. Step1. Step1. Step 3. Step3. Step3. Step3. Step Commercial Toxaphene (24 ng/µl) C10-C13 PCA,  63 % Cl (w/w) Extract after the 1. Step of the clean-up 2. Fraction1. Fraction GPC Fr. 27-32 minGPC Fr. 23-27 min 2 1 Zeit (min) 15 20 25 30 35 40 45 Zeit (min) 15 20 25 30 35 40 45 1 2 Zeit (min) 15 20 25 30 35 40 45 Zeit (min) 15 20 25 30 35 40 45 2 2 Zeit (min) 15 20 25 30 35 40 45 1 Zeit (min) 15 20 25 30 35 40 45 Zeit (min) 15 20 25 30 35 40 45 Clean-upClean-upClean-upClean-up
  • 22. SamplesSamplesSamplesSamples Mussels (1 sample) Baltic Tell-mussels (1 sample) 23 Fish samples Deep sea shrimp (1 sample) 16 Cod liver oil samples 14 Fish oil samples Fish feed (1 sample)
  • 23. Fish or fish feed sample homogenised Sample [g] : Na2SO4 [g] : Sea sand [g] = 1 : 4 : 2 STEP I : Column extraction of POPs and the fatty material, decomposition of lipids with SiO2/H2SO4 (C), and isolation of H2SO4 resistant POPs including PCAs, simultaneously SiO2/H2SO4 (C) [g] = 0,12 x Sample [g] x Fat [%] n-Hexane : DCM (1:1) [ml] : Sample [g] = 10 : 1 STEP II: Column decomposition of the remaining lipids (< 0.1 %) and separation of PCAs from the most part of interfering POPs 1 g SiO2/H2O (30 % H2O, w/w) and 1 g SiO2/H2SO4 (C), (44 % H2SO4 (C), w/w) Eluents: 8 ml n-Hexane (1. Fraction) and 7 ml n-Hexane/DCM=1:1 (2. Fraction) Extract drying, solution in 300 µl n-Hexane STEP III: GPC separation of PCAs from the rest of interfering POPs HPLC-Column (300 x 7,8 mm): Phenogel 5 µ, 50 Å; 0,2 ml/min THF; Injection 200µl; Temp. 25 °C; PCA-Fraction 23-27min PCA extract (Fr. 2) drying with N2, solution in 200µl THF Oil solved in n-Hexane / DCM (1:1) n-Hexane : DCM [ml] : Oil [g] = 10 : 1 STEP I: Column decomposition of lipids with SiO2/H2SO4 (C), and isolation of H2SO4 esistant POPs including PCAs, simultaneously SiO2/H2SO4 (C) [g] : Oil [g] = 10 : 1 n-Hexane : DCM (1:1) [ml] : Oil [g] = 15 : 1 Clean-up technique for the PCA determination inClean-up technique for the PCA determination in fish, fish oils and fish feedfish, fish oils and fish feed Clean-up technique for the PCA determination inClean-up technique for the PCA determination in fish, fish oils and fish feedfish, fish oils and fish feed
  • 24. PCA determination in real environmental samplesPCA determination in real environmental samplesPCA determination in real environmental samplesPCA determination in real environmental samples Pag Time (min) 0 5 10 15 20 25 30 35 40 45 50 A B Time (min) 0 5 10 15 20 25 30 35 40 45 50 A B Fish feedFish feed GERMANYGERMANY Cod liver oilCod liver oil U.S.AU.S.A AfterAfter 1. Step of1. Step of clean-upclean-up AfterAfter 3. Step of3. Step of clean-upclean-up Figure: HRGC/ECD chromatograms of real sample extracts after extraction and lipid decomposition (1. Step of clean-up) and after complete elimination of interferences (3. Step of clean-up) 1: HCB; 2: -HCH
  • 25. Identification and quantification of PCAIdentification and quantification of PCAIdentification and quantification of PCAIdentification and quantification of PCA SCGC/LRMS-ECNISCGC/LRMS-ECNI in full scan modein full scan mode HRGC/HRMS-ECNI-SIMHRGC/HRMS-ECNI-SIM with time windowswith time windows most recently developedmost recently developed analytical methodsanalytical methods for PCA analysisfor PCA analysis HRCG/ECDHRCG/ECD
  • 26. Analytic: HRGC/HRMS-ECNI-SIM with time windowsAnalytic: HRGC/HRMS-ECNI-SIM with time windowsAnalytic: HRGC/HRMS-ECNI-SIM with time windowsAnalytic: HRGC/HRMS-ECNI-SIM with time windows CC1010 (Cl(Cl55 to Clto Cl1010)) CC1111 (Cl(Cl55 to Clto Cl1010)) CC1212 (Cl(Cl66 to Clto Cl1010)) CC1313 (Cl(Cl77 to Clto Cl99)) Ion - 279.0055 Ion - 293.0211 Ion - 312.9665 Ion - 326.9822 Ion - 346.9275 Ion - 360.9433 Ion - 394.9042 Ion - 416.8467 Ion - 430.8623 Ion - 450.8077 Ion - 464.8233 Ion - 380.8886 5:00 10:00 15:00 30:00 Zeit (min) 25:0020:00 5:00 10:00 15:00 30:00 Zeit (min) 25:0020:00 Ion - 340.9978 Ion - 374.9588 Ion - 408.9199 Ion - 444.8779 Ion - 478.8394 Ion - 388.9745 Ion - 422.9355 Ion - 458.8936 Figure: HRGC/LRMS elution range of selected C12 and C13 -[M‑Cl]¯-ions of a commercial C10-C13 PCA, 63 % Cl (w/w) Figure: HRGC/LRMS elution range of selected C10 and C11 [M‑Cl]¯-ions of a commercial C10-C13 PCA, 63 % Cl (w/w)
  • 27. Analytic:Analytic: HRGC/HRMS-ECNIHRGC/HRMS-ECNI SIM with timeSIM with time windowswindows Analytic:Analytic: HRGC/HRMS-ECNIHRGC/HRMS-ECNI SIM with timeSIM with time windowswindows SIM window Nr. min:sek Quantification ion/ Confirmation ion (compound) 1 00:00-16:00 279,0055/277,0084 (C10H17Cl5); 293,0211/291,0241 (C11H19Cl5); 312,9665/314,9636 (C10H16Cl6); 326,9822/328,9792 (C11H18Cl6); 340,9978/342,9949 (C12H20Cl6); 346,9275/348,9246 (C10H15Cl7) 2 16:00-17:10 312,9665/314,9636 (C10H16Cl6); 326,9822/328,9792 (C11H18Cl6); 340,9978/342,9949 (C12H20Cl6); 346,9275/348,9246 (C10H15Cl7); 360,9432/362,9402 (C11H17Cl7); 380,8886/382,8856 (C10H14Cl8) 3 17:10-18:20 326,9822/328,9792 (C11H18Cl6); 340,9978/342,9949 (C12H20Cl6); 346,9275/348,9246 (C10H15Cl7); 360,9432/362,9402 (C11H17Cl7); 374,9588/376,9559 (C12H19Cl7); 380,8886/382,8856 (C10H14Cl8); 394,9042/396,9013 (C11H16Cl8) 4 18:20-20:20 326,9822/328,9792 (C11H18Cl6); 340,9978/342,9949 (C12H20Cl6); 360,9432/362,9402 (C11H17Cl7); 374,9588/376,9559 (C12H19Cl7); 380,8886/382,8856 (C10H14Cl8); 388,9745/390,9715 (C13H21Cl7); 394,9042/396,9013 (C11H16Cl8); 408,9199/410,9169 (C12H18Cl8); 416,8467/414,8496 (C10H13Cl9); 430,8623/428,8656 (C11H15Cl9) 5 20:20-21:00 374,9588/376,9559 (C12H19Cl7); 388,9745/390,9715 (C13H21Cl7); 394,9042/396,9013 (C11H16Cl8); 408,9199/410,9169 (C12H18Cl8); 416,8467/414,8496 (C10H13Cl9); 422,9355/424,9326 (C13H20Cl8); 430,8623/428,8656 (C11H15Cl9); 444,8779/442,8809 (C12H17Cl9) 6 21:00-22:40 374,9588/376,9559 (C12H19Cl7); 388,9745/390,9715 (C13H21Cl7); 394,9042/396,9013 (C11H16Cl8); 408,9199/410,9169 (C12H18Cl8); 416,8467/414,8496 (C10H13Cl9); 422,9355/424,9326 (C13H20Cl8); 430,8623/428,8656 (C11H15Cl9); 444,8779/442,8809 (C12H17Cl9); 450,8077/448,8106 (C10H12Cl10); 464,8233/462,8263 (C11H14Cl10) 7 22:40-25:00 388,9745/390,9715 (C13H21Cl7); 408,9199/410,9169 (C12H18Cl8); 416,8467/414,8496 (C10H13Cl9); 422,9355/424,9326 (C13H20Cl8); 430,8623/428,8656 (C11H15Cl9); 444,8779/442,8809 (C12H17Cl9); 450,8077/448,8106 (C10H12Cl10); 458,8936/456,8966 (C13H19Cl9); 464,8233/462,8263 (C11H14Cl10); 478,8390/476,8491 (C12H16Cl10) 8 25:00-35:00 422,9355/424,9326 (C13H20Cl8); 444,8779/442,8809 (C12H17Cl9); 450,8077/448,8106 (C10H12Cl10); 458,8936/456,8966 (C13H19Cl9);
  • 28. Analytic:Analytic: HRGC/HRMS-ECNI SIMHRGC/HRMS-ECNI SIM with time windowswith time windows Analytic:Analytic: HRGC/HRMS-ECNI SIMHRGC/HRMS-ECNI SIM with time windowswith time windows Relativeconcentration(%)Relativeconcentration(%)Relativeconcentration(%) Figure 1: Profile of components in selected short chain commercial PCA mixtures A 0 5 10 15 20 25 30 10 11 12 13 Z K B 0 5 10 15 20 25 30 10 11 12 13 Z K 5 Cl 6 Cl 7 Cl 8 Cl 9 Cl 10 Cl C 0 5 10 15 20 25 30 10 11 12 13 Z KC C C CC1010-C-C1313 PCAPCA 60% Cl (w/w)60% Cl (w/w) CC1010-C-C1313 PCAPCA 63% Cl63% Cl (w/w)(w/w) CC1010-C-C1313 PCAPCA 70% Cl70% Cl (w/w)(w/w)Relativeconcentration(%)Relativeconcentration(%) Figure 2: Profile of PCA components in a environmental sample 0 5 10 15 20 10 11 12 13 Z KC Relativeconcentration(%) Cod liver oil ENGLAND Relativeconcentration(%)
  • 29. e. St. external Standard (commercial C10-C13-PCA, 60 % Cl (w/w) i. St. internal Standard (Pentachlorotoluol) inj. Menge injected amount (ng/µl) SIM (Probe) the highest integrated Signal in the sample SIM (e. St.) the highest integrated Signal in the external Standard Ffg Ffg = 0,01  (% RC) MG molecular weight Quantification:  Integration of [M Cl]¯ Signals of the selected quantification ions (‑ ‑ SIM-Values)  Calculation of TRIS–Values: TRIS = SIM/(0,01  Fna) (TRIS: true relative integrated signal)  Calculation of RAIS- Values by normalising the TRIS–Values (RAIS: relative adjusted ion signal)  Calculation of RC- Values: RC = RAIS/Cl-Atoms in the molecule (RC: relative concentration) Analytic: HRGC/HRMS-ECNI-SIM with time windowsAnalytic: HRGC/HRMS-ECNI-SIM with time windows St.)(e.MengeInj. (Probe)MengeInj.  St.)(e.SIM (Probe)SIM  (Probe)Fna St.)(e.Fna  (Probe)Ffg St.)(e.Ffg  St.)(e.MG (Probe)MG  St.)e.inSt.(i.SIM Probe)St.(i.SIM
  • 30. Quantification of PCA residues in cleaned-up samplesQuantification of PCA residues in cleaned-up samplesQuantification of PCA residues in cleaned-up samplesQuantification of PCA residues in cleaned-up samples interinter laboratorylaboratory teststests independentindependent methods ofmethods of analysisanalysis CorrectnessCorrectness andand repeatabilityrepeatability of aof a quantification methodquantification method certifiedcertified referencereference materialsmaterials no certified referenceno certified reference materials are presentmaterials are present
  • 31. HRGC/HRMS-ECNI-SIM with time windowsHRGC/HRMS-ECNI-SIM with time windows Inter laboratory studyInter laboratory study HRGC/HRMS-ECNI-SIM with time windowsHRGC/HRMS-ECNI-SIM with time windows Inter laboratory studyInter laboratory study CommercialCommercial CC1010-C-C1313 PCA,PCA, 60 % Cl (w/w)60 % Cl (w/w) Mix of pureMix of pure synthesised Csynthesised C1010 PCAPCA componentscomponents (PCA-1)(PCA-1) Biological sampleBiological sample CommercialCommercial CC1010-C-C1313 PCA,PCA, 70 % Cl (w/w)70 % Cl (w/w) True value:True value: 7474ng/µlng/µl Measured:Measured: 8181ng/µl (ng/µl (99±2099±20ng/µl)ng/µl) Error: 10%Error: 10% True value:True value: 118118ng/µlng/µl Measured:Measured: 309309ng/µl (ng/µl (297297±132±132ng/µl)ng/µl) Error: 160 %Error: 160 % True value: ? ng/µlTrue value: ? ng/µl Measured:Measured: 5858 ng/µlng/µl Error: ?? %Error: ?? %
  • 32. C10= 12.26% C11= 47.74% Cl8 (18.79%) C12= 35.80 C13= 4.19 0,00 2,00 4,00 6,00 8,00 10,00 12,00 14,00 16,00 18,00 20,00 22,00 10.5 10.6 10.7 10.8 10.9 1010 11.5 11.6 11.7 11.8 11.9 1110 12.6 12.7 12.8 12.9 12,10 13.7 13.8 13.9 %relativeadjustedionsignal C:Cl numbers CommercialCommercial CC1010-C-C1313 PCA,PCA, 70 % Cl (w/w)70 % Cl (w/w) 4,38 % 23,00 %23.07 % 49.55 % 0,00 10,00 20,00 30,00 40,00 50,00 10.5 10.6 10.7 10.8 10.9 1010 %relativeadjustedionsignal C:Cl numbers Mix of pureMix of pure synthesised Csynthesised C1010 PCAPCA componentscomponents C13 = 3.48% C12 = 35.95% C11 = 46.77% Cl7 (18.71%) C10 = 13.79% 0,00 2,00 4,00 6,00 8,00 10,00 12,00 14,00 16,00 18,00 20,00 10.5 10.6 10.7 10.8 10.9 1010 11.5 11.6 11.7 11.8 11.9 1110 12.6 12.7 12.8 12.9 12,10 13.7 13.8 13.9 %relativeadjustedionsignal C:Cl numbers CommercialCommercial CC1010-C-C1313 PCA,PCA, 60 % Cl (w/w)60 % Cl (w/w)HRGC/LRMS-ECNI-SIM:HRGC/LRMS-ECNI-SIM: inter laboratory studyinter laboratory study HRGC/LRMS-ECNI-SIM:HRGC/LRMS-ECNI-SIM: inter laboratory studyinter laboratory study  a method errora method error  use of an unsuitableuse of an unsuitable standardstandard  both factorsboth factors ?
  • 33. TheThe extent of this deviationextent of this deviation depends ondepends on thethe difference in the chlorine contentdifference in the chlorine content between sample and standardbetween sample and standard.. HRGC/HRMS-ECNI-SIM with time windowsHRGC/HRMS-ECNI-SIM with time windows Inter laboratory studyInter laboratory study HRGC/HRMS-ECNI-SIM with time windowsHRGC/HRMS-ECNI-SIM with time windows Inter laboratory studyInter laboratory study Different commercial formulationsDifferent commercial formulations used asused as standards would providestandards would provide quite different estimatesquite different estimates of PCA concentrations.of PCA concentrations. If the quantification standard has aIf the quantification standard has a lower chlorine contentlower chlorine content than thatthan that of the sample quantifiedof the sample quantified,, increased quantification results must be countedincreased quantification results must be counted..
  • 34. SCGC/LRMS-ECNI mass spectra of CSCGC/LRMS-ECNI mass spectra of C1010 C‑C‑ 1717 PCAPCA in selected fish samplesin selected fish samples SCGC/LRMS-ECNI mass spectra of CSCGC/LRMS-ECNI mass spectra of C1010 C‑C‑ 1717 PCAPCA in selected fish samplesin selected fish samples 0 20 40 60 80 %age 300 350 400 550450 500 600 329 359 375 395 409 431 443 457 479 495 511 0 20 40 60 80 %age 300 350 400 550450 500 600 336 347 361 375 397 411 429 443 459 482 MonkfishMonkfish Northern North SeaNorthern North Sea MonkfishMonkfish Northern North SeaNorthern North Sea FishFish CanadaCanada FishFish CanadaCanada
  • 35. SCGC/LRMS-ECNI in full scan modeSCGC/LRMS-ECNI in full scan modeSCGC/LRMS-ECNI in full scan modeSCGC/LRMS-ECNI in full scan mode 313 349 383 419 349 385 421 313 313 347 381 417 313 347 383 417 347 381 417 453 345 381 417 451 483 C - PCA, 45 % Chlorgehalt (Gew.-%) 10 C - PCA, 50 % Chlorgehalt (Gew.-%) 10 C - PCA, 55 % Chlorgehalt (Gew.-%) 10 C - PCA, 60 % Chlorgehalt (Gew.-%) 10 C - PCA, 65 % Chlorgehalt (Gew.-%) 10 C - PCA, 70 % Chlorgehalt (Gew.-%) 10 0 20 40 60 80 %age 0 20 40 60 80 %age 0 20 40 60 80 %age 0 20 40 60 80 %age 0 20 40 60 80 %age 0 20 40 60 80 %age 300 350 400 550450 500 600 300 350 400 550450 500 600 300 350 400 550450 500 600 300 350 400 550450 500 600 300 350 400 550450 500 600 300 350 400 550450 500 600 341 373 377 411 445 341 373 377 409 443 341 373 375 411 445 479 341 375 411 445 479 375 407 443 479 513 547 375 409 445 479 513 0 20 40 60 80 %age 0 20 40 60 80 %age 0 20 40 60 80 %age 0 20 40 60 80 %age 0 20 40 60 80 %age 0 20 40 60 80 %age 300 350 400 550450 500 600 300 350 400 550450 500 600 300 350 400 550450 500 600 300 350 400 550450 500 600 300 350 400 550450 500 600 300 350 400 550450 500 600 C - PCA, 45 % Chlorgehalt (Gew.-%) 12 C - PCA, 50 % Chlorgehalt (Gew.-%) 12 C - PCA, 55 % Chlorgehalt (Gew.-%) 12 C - PCA, 60 % Chlorgehalt (Gew.-%) 12 C - PCA 65 % Chlorgehalt (Gew.-%) 12 C - PCA 70 % Chlorgehalt (Gew.-%) 12 CC1010 PCA, 45 % Cl (w/w)PCA, 45 % Cl (w/w)CC1010 PCA, 45 % Cl (w/w)PCA, 45 % Cl (w/w) CC1010 PCA, 50 % Cl (w/w)PCA, 50 % Cl (w/w)CC1010 PCA, 50 % Cl (w/w)PCA, 50 % Cl (w/w) CC1010 PCA, 55 % Cl (w/w)PCA, 55 % Cl (w/w)CC1010 PCA, 55 % Cl (w/w)PCA, 55 % Cl (w/w) CC1010 PCA, 60 % Cl (w/w)PCA, 60 % Cl (w/w)CC1010 PCA, 60 % Cl (w/w)PCA, 60 % Cl (w/w) CC1010 PCA, 65 % Cl (w/w)PCA, 65 % Cl (w/w)CC1010 PCA, 65 % Cl (w/w)PCA, 65 % Cl (w/w) CC1010 PCA, 70 % Cl (w/w)PCA, 70 % Cl (w/w)CC1010 PCA, 70 % Cl (w/w)PCA, 70 % Cl (w/w) CC1212 PCA, 45 % Cl (w/w)PCA, 45 % Cl (w/w)CC1212 PCA, 45 % Cl (w/w)PCA, 45 % Cl (w/w) CC1212 PCA, 50 % Cl (w/w)PCA, 50 % Cl (w/w)CC1212 PCA, 50 % Cl (w/w)PCA, 50 % Cl (w/w) CC1212 PCA, 55 % Cl (w/w)PCA, 55 % Cl (w/w)CC1212 PCA, 55 % Cl (w/w)PCA, 55 % Cl (w/w) CC1212 PCA, 60 % Cl (w/w)PCA, 60 % Cl (w/w)CC1212 PCA, 60 % Cl (w/w)PCA, 60 % Cl (w/w) CC1212 PCA,PCA, 65 % Cl (w/w)65 % Cl (w/w) CC1212 PCA,PCA, 65 % Cl (w/w)65 % Cl (w/w) CC1212 PCA,PCA, 70% Cl (w/w)70% Cl (w/w) CC1212 PCA,PCA, 70% Cl (w/w)70% Cl (w/w)
  • 36. 0 20 40 60 80 %age 300 350 400 550450 500 600 347 366 386 403 405 439 451 473 485 499 0 20 40 60 80 300 350 400 550450 500 600 368 380 403 405 421 439 453 473 487 C - C - PCA 52 % chlorine content (w/w) 14 17 327 341 359 397 431 445 459 477 483 361 375 0 20 40 60 80 %age 300 350 400 550450 500 600 411 C - C - PCA 60 % chlorine content (w/w) 10 13 333 360 368 389 403 405 439 453 473 487 507 0 20 40 60 80 %age 300 350 400 550450 500 600 Fish feed Cod liver oil %age Fish feedFish feedFish feedFish feed Cod liver oilCod liver oilCod liver oilCod liver oil CC1414-C-C1717 PCAPCA 52 % Cl (w/w)52 % Cl (w/w) CC1414-C-C1717 PCAPCA 52 % Cl (w/w)52 % Cl (w/w) CC1010-C-C1313 PCAPCA 60 % Cl (w/w)60 % Cl (w/w) CC1010-C-C1313 PCAPCA 60 % Cl (w/w)60 % Cl (w/w) SCGC/LRMSSCGC/LRMS ECNIECNI mass spectramass spectra SCGC/LRMSSCGC/LRMS ECNIECNI mass spectramass spectra
  • 37. Identification and quantification by SCGC/LRMS-ECNIIdentification and quantification by SCGC/LRMS-ECNIIdentification and quantification by SCGC/LRMS-ECNIIdentification and quantification by SCGC/LRMS-ECNI PCA chain length Quantification ion (Substance) C10 313 (C10H16Cl6); 349 (C10H15Cl7); 379 (C10H14Cl8); 413 (C10H13Cl9); 447 (C10H12Cl10); C11 327 (C11H18Cl6); 361 (C11H17Cl7); 397 (C11H16Cl8); 431 (C11H15Cl9); 463 (C11H14Cl10) C12 341 (C12H20Cl6); 375 (C12H19Cl7); 411 (C12H18Cl8); 445 (C12H17Cl9); 481 (C12H16Cl10) C13 353 (C13H22Cl6); 389 (C13H21Cl7); 423 (C13H20Cl8); 459 (C13H19Cl9); 493 (C13H18Cl10) C14 369 (C14H24Cl6); 402 (C14H23Cl7); 438 (C14H22Cl8); 473 (C14H21Cl9) C15 416 (C15H25Cl7); 453 (C15H24Cl8); 487 (C15H23Cl9) Selected mass fragment ions for the quantification of C10-C17 PCA by SCGC/LRMS-ECNI For each carbon chain lengthFor each carbon chain length (i.e. C(i.e. C1010-C-C1313 PCA) only suchPCA) only such m/z-fragment ions werem/z-fragment ions were chosen, which were exactlychosen, which were exactly in the gap between ECNIin the gap between ECNI clusters of the other PCAclusters of the other PCA carbon chain lengthcarbon chain length (i.e. C(i.e. C1414-C-C1717 PCA).PCA). The whole range CThe whole range C1010-C-C1313 and Cand C1414-C-C1717 PCA should bePCA should be covered by SCGC/LRMS-ECNI.covered by SCGC/LRMS-ECNI.
  • 38. Identification andIdentification and quantificationquantification byby SCGC/LRMS-ECNISCGC/LRMS-ECNI Identification andIdentification and quantificationquantification byby SCGC/LRMS-ECNISCGC/LRMS-ECNI 327 341 359 397 431 445 459 477 483 361 375 0 20 40 60 80 %age 0 20 40 60 80 %age 300 350 400 550450 500 600 300 350 400 550450 500 600 0 20 40 60 80 %age 300 350 400 550450 500 600 0 20 40 60 80 %age 300 350 400 550450 500 600 359 361 375 395 409 431 445 463 479 481 495 513 409 324 341 359 361 375 395 425 443 457 477 493 495 411 368 380 403 405 421 439 453 473 487 C - C - PCA 60 % Chlorgehalt (Gew.-%) 10 13 C - C - PCA 63 % Chlorgehalt (Gew.-%) 10 13 C - C - PCA 70 % Chlorgehalt (Gew.-%) 10 13 C - C - PCA 52 % Chlorgehalt (Gew.-%) 14 17 CC1414HH2424ClCl66 m/z 369m/z 369 CC1414HH2121ClCl99 m/z 473m/z 473 CC1414HH2323ClCl77 m/z 402m/z 402 CC1414HH2323ClCl88 m/z 438m/z 438 CC1515HH2525ClCl77 m/z 416m/z 416 CC1515HH2323ClCl99 m/z 487m/z 487 CC1010-C-C1313 PCA withPCA with 60 % chlorine content (w/w)60 % chlorine content (w/w) C10-C13 PCA withwith 63 % chlorine content (w/w)chlorine content (w/w) CC1515HH2424ClCl88 m/z 453m/z 453 C10-C13 PCA withwith 70 % chlorine content (w/w)chlorine content (w/w) C14-C17 PCA withwith 52 % chlorine content (w/w)chlorine content (w/w) Figure: SCGC/LRMS ECNI mass spectra of commercial C10-C13 and C14-C17 PCA mixtures with different chlorine content CC1616 and Cand C1717 PCAPCA could not becould not be identified.identified. DisadvantagesDisadvantages
  • 39. Quantification of PCA residues in cleaned-up samplesQuantification of PCA residues in cleaned-up samplesQuantification of PCA residues in cleaned-up samplesQuantification of PCA residues in cleaned-up samples 1. comparison N t-Test P-Value A-B 26 6,9 <0,001 A-C 26 6,2 <0,001 B-C 25 -0,8 0,459 N Number of samples in the series Hypothesis (HHypothesis (H00))Hypothesis (HHypothesis (H00)) Differences between two series of data amount to zero. 1.1. Different detection methodsDifferent detection methods the same external standard.the same external standard.CC1010-C-C1313 PCAPCA HRGC/ECDHRGC/ECD (Methode A)(Methode A) HRGC/ECDHRGC/ECD (Methode A)(Methode A) HRGC/LRMS-ECNIHRGC/LRMS-ECNI in SIM modein SIM mode (Methode B)(Methode B) HRGC/LRMS-ECNIHRGC/LRMS-ECNI in SIM modein SIM mode (Methode B)(Methode B) SCGC/LRMS-ECNISCGC/LRMS-ECNI in full scan modein full scan mode (Methode C)(Methode C) SCGC/LRMS-ECNISCGC/LRMS-ECNI in full scan modein full scan mode (Methode C)(Methode C) commercial CC1010-C-C1313 PCAPCA PCA residues: Standard:
  • 40. Quantification ofQuantification of PCA residues inPCA residues in cleaned-upcleaned-up samplessamples Quantification ofQuantification of PCA residues inPCA residues in cleaned-upcleaned-up samplessamples C10-C13 PCA residues (µg/Kg Fat) in real sample extracts quantified by: (A) HRGC/ECD (B) HRGC/LRMS-ECNI-SIM‘ (C) SCGC/LRMS-ECNI with a commercial C10-C13 PCA with 63 % Cl (w/w). NN number of samples in the data series 0 100 200 300 400 500 1 6 11 16 21 26 HRGC/LRMS-ECNI-SIM HRGC/ECD 0 200 400 600 800 1 6 11 16 21 26 31 SCGC/LRMS-ECNI HRGC/ECD 0 30 60 90 120 150 1 6 11 16 21 HRGC/LRMS-ECNI-SIM SCGC/LRMS-ECNI N A - B A - C Concentration(µg/KgFat)Concentration(µg/KgFat)Concentration(µg/KgFat) N B - C N HRGC/LRMS-ECNI-SIMHRGC/LRMS-ECNI-SIM HRGC/ECDHRGC/ECD SCGC/LRMS-ECNISCGC/LRMS-ECNI HRGC/ECDHRGC/ECD HRGC/LRMS-ECNI-SIMHRGC/LRMS-ECNI-SIM SCGC/LRMS-ECNISCGC/LRMS-ECNI
  • 41. Quantification ofQuantification of PCA residues inPCA residues in cleaned-upcleaned-up samplessamples Quantification ofQuantification of PCA residues inPCA residues in cleaned-upcleaned-up samplessamples C10-C13 PCA residues (µg/Kg Fat) in real sample extracts quantified by: (A) HRGC/ECD (B) HRGC/LRMS-ECNI-SIM‘ (C) SCGC/LRMS-ECNI with a commercial C10-C13 PCA with 63 % Cl (w/w). NN number of samples in the data series 0 100 200 300 400 500 1 6 11 16 21 26 HRGC/LRMS-ECNI-SIM HRGC/ECD 0 200 400 600 800 1 6 11 16 21 26 31 SCGC/LRMS-ECNI HRGC/ECD 0 30 60 90 120 150 1 6 11 16 21 HRGC/LRMS-ECNI-SIM SCGC/LRMS-ECNI N A - B A - C Concentration(µg/KgFat)Concentration(µg/KgFat)Concentration(µg/KgFat) N B - C N HRGC/LRMS-ECNI-SIMHRGC/LRMS-ECNI-SIM HRGC/ECDHRGC/ECD SCGC/LRMS-ECNISCGC/LRMS-ECNI HRGC/ECDHRGC/ECD HRGC/LRMS-ECNI-SIMHRGC/LRMS-ECNI-SIM SCGC/LRMS-ECNISCGC/LRMS-ECNI
  • 42. Quantification of PCA: HRGC/ECDQuantification of PCA: HRGC/ECDQuantification of PCA: HRGC/ECDQuantification of PCA: HRGC/ECD CC1010-C-C1313 PCA concentrationsPCA concentrations measured by HRGC/ECDHRGC/ECD (Method A) CC1010-C-C1313-PCA concentrations-PCA concentrations measured by GC/MS-ECNIGC/MS-ECNI (Method B und C) > ExplanationExplanation::  maybe in the extracts besides C10-C13 exist also C14-C17 or C>17 PCA  the new developed clean-up procedure  the gas chromatography provide no separation ofprovide no separation of CC1010-C-C1313 from the other PCAsfrom the other PCAs accordingly by EC-detection Caccordingly by EC-detection C1414-C-C1717 or Cor C>17>17 PCA are quantified with.PCA are quantified with. SinceSince bothboth
  • 43. HRGC/ECD is suitable only forHRGC/ECD is suitable only for screening investigationsscreening investigations and/orand/or for afor a raw estimation of the totalraw estimation of the total amount PCA residuesamount PCA residues inin environmental samples.environmental samples. ConclusionConclusion Quantification of PCA residues in cleaned-up samplesQuantification of PCA residues in cleaned-up samplesQuantification of PCA residues in cleaned-up samplesQuantification of PCA residues in cleaned-up samples
  • 44. Quantification of PCA residues in cleaned-up samplesQuantification of PCA residues in cleaned-up samplesQuantification of PCA residues in cleaned-up samplesQuantification of PCA residues in cleaned-up samples To whatextentis affectedtheTo whatextentis affectedthe GC/MS-ECNI quantificationGC/MS-ECNI quantification fromtheuseof commercialfromtheuseof commercial PCA standardsPCA standards ?? pure synthesised C10 , C11 , C12 , C13 PCA with 45 to 70% Cl (w/w) Commercial C10-C13 PCA 63 % Cl (w/w) SCGC/LRMS-ECNISCGC/LRMS-ECNI in full scan modein full scan mode
  • 45. Quantification of PCA residues in cleaned-up samplesQuantification of PCA residues in cleaned-up samplesQuantification of PCA residues in cleaned-up samplesQuantification of PCA residues in cleaned-up samples Hypothesis (HHypothesis (H00))Hypothesis (HHypothesis (H00)) Differences between two series of data amount to zero. 2. comparison N t-Test P-Value C-F 35 -4,8 <0,001 N Number of samples in the series 2.2. The same detection method butThe same detection method but different external standards.different external standards.CC1010-C-C1313-PCA-PCA CC1010-C-C1313 PCA,PCA, 63% Cl (w/w)63% Cl (w/w) (Method C)(Method C) CC1010-C-C1313 PCA,PCA, 63% Cl (w/w)63% Cl (w/w) (Method C)(Method C) pure laboratory synthesised Cpure laboratory synthesised C1010-, C-, C1111-,-, CC1212-, C-, C1313-PCAs, 45 to 70% Cl (w/w)-PCAs, 45 to 70% Cl (w/w) (Methode F)(Methode F) pure laboratory synthesised Cpure laboratory synthesised C1010-, C-, C1111-,-, CC1212-, C-, C1313-PCAs, 45 to 70% Cl (w/w)-PCAs, 45 to 70% Cl (w/w) (Methode F)(Methode F) SCGC/LRMS-ECNISCGC/LRMS-ECNI PCA residues: Detection method:
  • 46. The quantification with pureThe quantification with pure laboratory synthesised PCAlaboratory synthesised PCA components (mixtures) leadscomponents (mixtures) leads probably to more accurateprobably to more accurate concentrations of residues inconcentrations of residues in environmental samples.environmental samples. ConclusionConclusion Quantification of PCA residues in cleaned-up samplesQuantification of PCA residues in cleaned-up samplesQuantification of PCA residues in cleaned-up samplesQuantification of PCA residues in cleaned-up samples
  • 47. Quantification of PCA in selected environmental samplesQuantification of PCA in selected environmental samplesQuantification of PCA in selected environmental samplesQuantification of PCA in selected environmental samples Several samplesSeveral samples CC1414 PCAPCA (i.e. Fish feed,(i.e. Fish feed,  are the mainare the main cod liver oil etc).cod liver oil etc). Components.Components. In 40 % of fish oilsIn 40 % of fish oils CC1111 PCAPCA in 45 % of the water organismsin 45 % of the water organisms  are the mainare the main in 50 % of cod liver oilsin 50 % of cod liver oils components.components. Identified: both CIdentified: both C1010-C-C1313 and Cand C1414-C-C1717 PCA.PCA. PCA residuesPCA residues  in ca. 63 % of the samples (116,0-1719,3 µg/kg fat ).in ca. 63 % of the samples (116,0-1719,3 µg/kg fat ).
  • 48. Real samples Depending on the sample art and the origin the relation :Depending on the sample art and the origin the relation : CC1010-C-C1313 PCA / CPCA / C1010-C-C1717 PCAPCA  0.11 to 5.89.0.11 to 5.89. 0,00 20,00 40,00 60,00 80,00 100,00 0 5 10 15 20 25 30 35 Number of samples C10-C13PCAcontent(%) Figure: Content of C10-C13 PCA in % compared to the total amount of PCA residues quantified in real sample extracts Quantification of PCA in selected environmental samplesQuantification of PCA in selected environmental samplesQuantification of PCA in selected environmental samplesQuantification of PCA in selected environmental samples
  • 49. Quantification of PCA in selected fish samplesQuantification of PCA in selected fish samplesQuantification of PCA in selected fish samplesQuantification of PCA in selected fish samples 0 100 200 300 400 500 600 700 Sprat Sprat Hake Redfish Redfish Redfish Redfish Salmon Salmon Monkfish Monkfish Herring Herring Mackerel Halibut BalticTellmuschel Mussel Sardine Sardine Mackerel(grilled) Breedtrout PCAconcentration[µg/kgfat] Short chain PCA Medium chain PCA Figure: Content of C10-C17 PCA quantified in fish, mussels and deep sea shrimps sample extracts
  • 50. Quantification of PCAQuantification of PCA in selected oil samplesin selected oil samples Quantification of PCAQuantification of PCA in selected oil samplesin selected oil samples 0 50 100 150 200 250 300 350 Germany Germany England Island Island Short chain PCAs Medium chain PCAs Fish oilsFish oilsFish oilsFish oils Short chain PCAs:Short chain PCAs: 44.9 to 321.4 µg/kg44.9 to 321.4 µg/kg Medium chain PCAs:Medium chain PCAs: 63.1 and 190.9 µg/kg63.1 and 190.9 µg/kg ExceptionsExceptions: fish oils: fish oils originated from Germanyoriginated from Germany 0 100 200 300 400 500 600 700 France England England England England Island USA USA Short chain PCAs Medium chain PCAs Cod liver oilsCod liver oilsCod liver oilsCod liver oils Short chain PCAs:Short chain PCAs: 57.9 and 644.457.9 and 644.4 µg/kgµg/kg Medium chain PCAs:Medium chain PCAs: 94.6 and 538.594.6 and 538.5 µg/kgµg/kg ExceptionsExceptions: cod liver oils: cod liver oils from France and U.S.A.from France and U.S.A.
  • 51. SCGC/LRMS-ECNI mass spectra of CSCGC/LRMS-ECNI mass spectra of C1010 C‑C‑ 1717 PCAPCA in selected oil samplesin selected oil samples SCGC/LRMS-ECNI mass spectra of CSCGC/LRMS-ECNI mass spectra of C1010 C‑C‑ 1717 PCAPCA in selected oil samplesin selected oil samples 0 20 40 60 80 %age 300 350 400 550450 500 600 333 397 403 441 467 0 20 40 60 80 %age 300 350 400 550450 500 600 319 347 368 403 437 473 509 Fish oilFish oil Salmon (capsules)Salmon (capsules) GERMANYGERMANY Cod liver oilCod liver oil (capsules)(capsules) FRANCEFRANCE
  • 52. SCGC/LRMS-ECNI mass spectra of CSCGC/LRMS-ECNI mass spectra of C1010 C‑C‑ 1717 PCAPCA in selected environmental samplesin selected environmental samples SCGC/LRMS-ECNI mass spectra of CSCGC/LRMS-ECNI mass spectra of C1010 C‑C‑ 1717 PCAPCA in selected environmental samplesin selected environmental samples 0 20 40 60 80 %age 300 350 400 550450 500 600 347 366 386 403 405 439 451 473 485 499 360 368 389 403 405 439 453 473 487 507 0 20 40 60 80 %age 300 350 400 550450 500 600 Cod liver oilCod liver oil (capsules)(capsules) U.S.A.U.S.A. Fish feedFish feed GERMANYGERMANY
  • 53. PerspectivePerspectivePerspectivePerspective  certified reference materialscertified reference materials  well defined Standardswell defined Standards  validated clean-up andvalidated clean-up and quantification methodsquantification methods  certified reference materialscertified reference materials  well defined Standardswell defined Standards  validated clean-up andvalidated clean-up and quantification methodsquantification methods 1. Problem:1. Problem: Non-Non- existenceexistence Important and necessary:Important and necessary: Well determined study in internatio- nal level. What?What? How?How? To establish well validated analytical procedures for this group of substances. To establish well validated analytical procedures for this group of substances. To produce well defined C10 to C17 PCA components and certified reference materials for different kind of environ- mental matrices. To produce well defined C10 to C17 PCA components and certified reference materials for different kind of environ- mental matrices. Why?Why? In order to control the accuracy, reproducibility and applicability of any analytical procedure. What?What?
  • 54. The ecotoxikologic relevance of this group of chlorinated substances should be clarified by toxicological studies with single components or at least with pure synthesised and well defined mixtures. No possible to identify and quantify PCA with aNo possible to identify and quantify PCA with a chain length >16 in environmental samples (lowchain length >16 in environmental samples (low response factors and high molecular weight).response factors and high molecular weight). No possible to identify and quantify PCA with aNo possible to identify and quantify PCA with a chain length >16 in environmental samples (lowchain length >16 in environmental samples (low response factors and high molecular weight).response factors and high molecular weight). GC/ECD and/or GC/MS-ECNIGC/ECD and/or GC/MS-ECNI detection very difficult.detection very difficult. GC/ECD and/or GC/MS-ECNIGC/ECD and/or GC/MS-ECNI detection very difficult.detection very difficult. Alternative methodsAlternative methods must be developed.must be developed. Alternative methodsAlternative methods must be developed.must be developed. 2. Problem:2. Problem: PerspectivePerspectivePerspectivePerspective