SlideShare una empresa de Scribd logo
1 de 32
Descargar para leer sin conexión
Introduction to X-ray imaging for
industrial applications
Markus Tarin
President & CEO
MoviMED
Agenda
Agenda
• What exactly are “X-rays” ?
• The X-ray tube
• Typical applications
• Methods of detection
• Detector types
• Challenges in x-ray imaging
• Detector selection
• Example application
• Conclusion
• Q & A
Head x-ray – “Homer Simpson”
The Electromagnetic Spectrum
Historical Background
• German Physicist
• Discovered x-rays or “Roentgen rays”
on Nov 8, 1895
• During experimentation with vacuum
tubes he noticed a faint glow
(fluorescent) on a cardboard covered
with “Barium Platinocyanide”
• Named the radiation “x-rays” as in
“unknown” rays
• Wilhelm Roentgen received the
Nobel Prize in 1901 for this discovery
Wilhelm Conrad Röntgen
*03/27/1845 † 02/10/1923
First X-ray image
• First X-ray images taken
by Wilhelm Roentgen
• 22nd December, 1895
• Shows the hand of
Wilhelm’s wife with ring
The X-ray tube
X-rays
Cathode
Filament
Glass body
Anode with Tungsten target
Electron beam
kV
(keV)
The filament provides an
“electron cloud” which is
accelerated by the high
voltage potential
between the anode and
cathode.
The electrons collide and rapidly decelerate on the
high-density Tungsten anode. The energy decay
causes a photon emission. The emitted wavelength is in
relation to the energy loss of the electron.
X-ray Energy
Definition of X-ray energy:
The term xxx kV (kilo Volt or 1 x 1,000 Volt) refers to the high voltage supplied to
the x-ray tube. With other words the potential between the anode and cathode.
A higher “kV” setting results in a higher x-ray energy output and a shorter
wavelength.
The current (mA – milli-Ampere - 1/1000 A) is the selected current allowed to flow
through the filament of the x-ray tube at the selected voltage. A higher current
causes a higher x-ray flux.
The term “eV” or more commonly “keV” or “MeV” is the “electron Volt” or the
energy given to an electron by accelerating it through 1 Volt. When
considering x-rays, the keV or MeV is referring to the output energy of the x-
ray photons generated by the x-ray tube.
Examples of Energy (eV)
The following are examples of eV energies:
• Visible light photons: 1.5 – 3.5 eV
• Approximate energy of an electron striking a color
television screen (CRT tube): 20,000 eV (20 keV)
• High energy medical, diagnostic x-ray: 200 keV
• 100W light bulb burning for one hour: 2.2 Trillion
TeV !!! (2.2 Trillion Trillion eV)
• Kinetic energy of an 1,900lb race car traveling at
230 mph: 28 x 10^24 eV
Typical Applications
• Airport/Homeland Security
• Electronics
• General Inspection
• Petro-Chemical
• Automotive
• Aerospace
• Non-Destructive Testing
• Medical/Diagnostic Imaging
• X-ray Fluoroscopy
X-ray detection methods
• Image Intensifier
• Scintillator
(Gamma detector)
• Amorphous Silicon
Panel
• X-ray film
• Phosphor plate
scanner (CR)
• others
X-ray image intensifier
Image Intensifier
• Commonly found
in industrial x-ray
applications
• Converts x-rays
into photons using
phosphor
Scintillator
• User for gamma
ray detection
• Could be
coupled to a
photon multiplier
counter
• Uses inorganic
material to
convert gamma
rays into
photons in the
visible
waveband
Conceptual overview – Scintillator with detector
Amorphous Silicon Panel
• Energy range from
10 to 160 keV
• Resolution about 48
µm (~10lp/mm)
• Standard frame
grabber interface
• Easy to integrate
• “X-ray camera”
• Compact form factor
Challenges in X-ray imaging
• X-ray applications are generally “light starved”
• Signal to noise ratio is usually not very favorable
• Achieving acceptable image quality requires
careful selection of optics and camera
• X-ray imaging requires a considerable amount of
“domain knowledge”
• Image contrast depends on many factors (x-ray
energy, absorption bands in specimen, type of
materials, focus quality of x-ray beam, selection of
detector, lens and imaging sensor)
• Feature definition may be “fuzzy” or “faint”
Importance of Detector Selection
Why using a standard machine vision
camera for X-ray will not work…
• The light output produced by an image
intensifier is typically very low
• Increasing the x-ray energy to achieve
more light output will not necessarily
improve the contrast ratio
• Using a small pixel size sensor (<7.4um
with 8-bit ADC) results in a limited dynamic
range
• Light starved x-ray imaging competes with
detector noise of the camera
Importance of Dynamic Range
Sensor A Sensor B
Pixel Size 7.4um x 7.4um 16um x 16um
Full well capacity 20,000 e 150,000 e
Read noise 16 e 15 e
Dynamic Range 20,000e/16e = 1,250 150,000e/15e = 10,000
Dynamic Range 62 dB 80 dB
Gray levels ADC @ 10-bit - 1024 ADC @ 14-bit = 16,384
(Effective #of bits: 13.3)
• Sensor B has a dynamic range 8 x higher than sensor A
• X-ray images need to be processed in 16-bit format
Lens Selection
• Due to the large pixel size
requirement, the sensor size of a
camera is also large.
• F-mount lenses are often required
• The field of view and working
distance needs to be matched to
the output port of the image
intensifier
• The lens needs a large aperture
(low f#) to capture all available
light. Ideally f# < 1.0
Example application - BGA
Ball grid array inspection
• Higher density integrated circuits also come
with a higher pin count
• The “BGA” or ball grid array IC package type
has little balls as connection leads
• The connections are underneath the chip
and are no longer visible, after assembly
• The solder paste is being placed onto the
circuit board, prior to chip placement
• The chip is then placed onto the PCB and
run through a reflow oven, where the solder
paste melts and forms an electric connection
between the PCB and the ball contacts
• X-ray inspection is the only method to “see
through the circuit board and verify that all
balls are in contact and that there are no
accidental short circuits
BGA – X-ray image
• The solder paste is very opaque
to the x-rays and provides a
very favorable contrast ratio.
• The electronics industry
frequently uses radio isotopes,
emitting gamma rays (MeV
energy)
• Automatic detection algorithms
can be used in this example for
verification.
Image Processing – X-ray
Step 1: Raw x-ray image
BGA – Threshold
Step 2: Threshold type “Moments”
Creates a binary image. Only black
areas are being considered.
BGA - Dilate
Step 2: Dilate
Dilates binary pixels in the object
BGA - Close
Step 3: Close
Closes holes in the blobs
BGA – Particle analysis
Step 4: Particle analysis
Counts objects, measures size and
location. 144 pins found – pass!
BGA defect
• This images show multiple
defects after the soldering
operation of a BGA IC.
• Multiple BGA contacts are
accidentally soldering
together.
• The bridged pins or ball
contacts are creating a
shortcut
• The circuit will not function
properly
BGA defect – raw image
BGA defect - Threshold
BGA defect - Erode
BGA defect – Remove particles
BGA defect - result
• The final image
processing step
reveals 7 shorts
• The blobs are
much larger than
the acceptance
criteria
• Their center of
gravity does not
coincide with the
IC package
definition
Conclusion
• X-ray imaging is a very useful, non-visible imaging
tool
• A considerable amount of domain knowledge is
required to successfully apply this technology
• Budgetary estimate for X-ray imaging systems
range from $60k to $500k and up.
• Exposure to x-ray radiation is potentially
dangerous to ones health and safety.
• Automated image processing may not always be
possible, due to sometime poor defect definition
• 16-bit image processing is necessary, due to the
need for large dynamic range.
Markus Tarin
President & CEO
MoviMED
15540 Rockfield Blvd., Suite C110
Irvine, CA 92618
USA
Phone: 949-699-6600
email: m.tarin@movimed.com
www.movimed.com
Q & A

Más contenido relacionado

La actualidad más candente

Biological effects of radiation
Biological effects of radiationBiological effects of radiation
Biological effects of radiationjmocherman
 
Mri coils
Mri coilsMri coils
Mri coilsSelf
 
Understanding Radiation Units and Quantities, MDIRT Nchanji Nkeh Keneth
Understanding Radiation Units and Quantities, MDIRT Nchanji Nkeh KenethUnderstanding Radiation Units and Quantities, MDIRT Nchanji Nkeh Keneth
Understanding Radiation Units and Quantities, MDIRT Nchanji Nkeh KenethNchanji Nkeh Keneth
 
Radiation absorbtion
Radiation absorbtionRadiation absorbtion
Radiation absorbtionIsha Jaiswal
 
Ppt on radiation protection 01 final
Ppt on radiation protection 01 finalPpt on radiation protection 01 final
Ppt on radiation protection 01 finalKajal Jha
 
Basics of radiation and production of x rays
Basics of radiation and production of x raysBasics of radiation and production of x rays
Basics of radiation and production of x raysdbc9427
 
Gas filled detectors
Gas filled detectorsGas filled detectors
Gas filled detectorsAmara Usman
 
Radiation protection, its hazards &amp; aerb guidelines
Radiation protection, its hazards &amp; aerb guidelinesRadiation protection, its hazards &amp; aerb guidelines
Radiation protection, its hazards &amp; aerb guidelinesDr. Bhaskar Jyoti Saikia
 
Radioactivity and laws of radioactivity
Radioactivity and laws of radioactivityRadioactivity and laws of radioactivity
Radioactivity and laws of radioactivitydypradio
 
2018 HM - RADIATION BIOLOGICAL EFFECT
2018 HM - RADIATION BIOLOGICAL EFFECT2018 HM - RADIATION BIOLOGICAL EFFECT
2018 HM - RADIATION BIOLOGICAL EFFECTHarsh Mohan
 
X ray tube, cassette and screens
X ray tube, cassette and screensX ray tube, cassette and screens
X ray tube, cassette and screensTarun Goyal
 
Faults in xray tube by Sandesh magar
Faults in xray tube by Sandesh magarFaults in xray tube by Sandesh magar
Faults in xray tube by Sandesh magarSandeshMagar4
 

La actualidad más candente (20)

Radiation units
Radiation unitsRadiation units
Radiation units
 
Biological effects of radiation
Biological effects of radiationBiological effects of radiation
Biological effects of radiation
 
Mri coils
Mri coilsMri coils
Mri coils
 
Understanding Radiation Units and Quantities, MDIRT Nchanji Nkeh Keneth
Understanding Radiation Units and Quantities, MDIRT Nchanji Nkeh KenethUnderstanding Radiation Units and Quantities, MDIRT Nchanji Nkeh Keneth
Understanding Radiation Units and Quantities, MDIRT Nchanji Nkeh Keneth
 
Radiation absorbtion
Radiation absorbtionRadiation absorbtion
Radiation absorbtion
 
Ppt on radiation protection 01 final
Ppt on radiation protection 01 finalPpt on radiation protection 01 final
Ppt on radiation protection 01 final
 
Basics of radiation and production of x rays
Basics of radiation and production of x raysBasics of radiation and production of x rays
Basics of radiation and production of x rays
 
Gas filled detectors
Gas filled detectorsGas filled detectors
Gas filled detectors
 
Nuclear imaging
Nuclear imagingNuclear imaging
Nuclear imaging
 
Radiation protection
Radiation protectionRadiation protection
Radiation protection
 
Radiation protection, its hazards &amp; aerb guidelines
Radiation protection, its hazards &amp; aerb guidelinesRadiation protection, its hazards &amp; aerb guidelines
Radiation protection, its hazards &amp; aerb guidelines
 
X ray tube
X ray tubeX ray tube
X ray tube
 
Radioactivity and laws of radioactivity
Radioactivity and laws of radioactivityRadioactivity and laws of radioactivity
Radioactivity and laws of radioactivity
 
Gamma camera
Gamma cameraGamma camera
Gamma camera
 
2018 HM - RADIATION BIOLOGICAL EFFECT
2018 HM - RADIATION BIOLOGICAL EFFECT2018 HM - RADIATION BIOLOGICAL EFFECT
2018 HM - RADIATION BIOLOGICAL EFFECT
 
X ray tube, cassette and screens
X ray tube, cassette and screensX ray tube, cassette and screens
X ray tube, cassette and screens
 
Mammography
MammographyMammography
Mammography
 
Faults in xray tube by Sandesh magar
Faults in xray tube by Sandesh magarFaults in xray tube by Sandesh magar
Faults in xray tube by Sandesh magar
 
Quality assurance
Quality  assuranceQuality  assurance
Quality assurance
 
Radiation units
Radiation unitsRadiation units
Radiation units
 

Similar a Introduction to X-Ray Imaging for Industrial Applications

Radiography Testing for Btech metallurgical and materirials science engineering
Radiography Testing for Btech metallurgical and materirials science engineeringRadiography Testing for Btech metallurgical and materirials science engineering
Radiography Testing for Btech metallurgical and materirials science engineeringshyamkumarrakoti1
 
SICP Radiation Principles
SICP Radiation Principles SICP Radiation Principles
SICP Radiation Principles kristendschmidt
 
compiter radiography and digital radiography
compiter radiography and digital radiography compiter radiography and digital radiography
compiter radiography and digital radiography Unaiz Musthafa
 
DIGITAL RADIOGRAPHY FOR bachelor of science in medical imaging technology
DIGITAL RADIOGRAPHY FOR bachelor of science in medical imaging technologyDIGITAL RADIOGRAPHY FOR bachelor of science in medical imaging technology
DIGITAL RADIOGRAPHY FOR bachelor of science in medical imaging technologyDilshanDillu1
 
Finding hardware hacks using x-rays
Finding hardware hacks using x-raysFinding hardware hacks using x-rays
Finding hardware hacks using x-raysBill Cardoso
 
WORKING PRINCIPLE OF SEM.pptx
WORKING PRINCIPLE OF SEM.pptxWORKING PRINCIPLE OF SEM.pptx
WORKING PRINCIPLE OF SEM.pptxjunaid syed
 
Rad 206 p04
Rad 206 p04Rad 206 p04
Rad 206 p04sehlawi
 
Intro to radiography 1_2(NDT)
Intro to radiography 1_2(NDT)Intro to radiography 1_2(NDT)
Intro to radiography 1_2(NDT)Ravi Shekhar
 
CT SCAN equipment.pptx
CT SCAN equipment.pptxCT SCAN equipment.pptx
CT SCAN equipment.pptxRohit Bansal
 
ELECTRON MICROSCOPY (TEM & SEM)
ELECTRON MICROSCOPY (TEM & SEM)ELECTRON MICROSCOPY (TEM & SEM)
ELECTRON MICROSCOPY (TEM & SEM)ADITYA ARYA
 
Basic principle of x ray
Basic principle of x rayBasic principle of x ray
Basic principle of x rayprahlad maurya
 
X-ray Machine
X-ray Machine X-ray Machine
X-ray Machine SamyaQadi
 

Similar a Introduction to X-Ray Imaging for Industrial Applications (20)

Radiography Testing.ppt
Radiography Testing.pptRadiography Testing.ppt
Radiography Testing.ppt
 
Radiography Testing for Btech metallurgical and materirials science engineering
Radiography Testing for Btech metallurgical and materirials science engineeringRadiography Testing for Btech metallurgical and materirials science engineering
Radiography Testing for Btech metallurgical and materirials science engineering
 
Cbct
CbctCbct
Cbct
 
SICP Radiation Principles
SICP Radiation Principles SICP Radiation Principles
SICP Radiation Principles
 
compiter radiography and digital radiography
compiter radiography and digital radiography compiter radiography and digital radiography
compiter radiography and digital radiography
 
DIGITAL RADIOGRAPHY FOR bachelor of science in medical imaging technology
DIGITAL RADIOGRAPHY FOR bachelor of science in medical imaging technologyDIGITAL RADIOGRAPHY FOR bachelor of science in medical imaging technology
DIGITAL RADIOGRAPHY FOR bachelor of science in medical imaging technology
 
Finding hardware hacks using x-rays
Finding hardware hacks using x-raysFinding hardware hacks using x-rays
Finding hardware hacks using x-rays
 
nasif radiology
nasif radiologynasif radiology
nasif radiology
 
WORKING PRINCIPLE OF SEM.pptx
WORKING PRINCIPLE OF SEM.pptxWORKING PRINCIPLE OF SEM.pptx
WORKING PRINCIPLE OF SEM.pptx
 
Rad 206 p04
Rad 206 p04Rad 206 p04
Rad 206 p04
 
Analytical instrumentation
Analytical instrumentationAnalytical instrumentation
Analytical instrumentation
 
Intro to radiography 1_2(NDT)
Intro to radiography 1_2(NDT)Intro to radiography 1_2(NDT)
Intro to radiography 1_2(NDT)
 
CT SCAN equipment.pptx
CT SCAN equipment.pptxCT SCAN equipment.pptx
CT SCAN equipment.pptx
 
DIGITAL IMAGING
DIGITAL IMAGINGDIGITAL IMAGING
DIGITAL IMAGING
 
ELECTRON MICROSCOPY (TEM & SEM)
ELECTRON MICROSCOPY (TEM & SEM)ELECTRON MICROSCOPY (TEM & SEM)
ELECTRON MICROSCOPY (TEM & SEM)
 
Basic principle of x ray
Basic principle of x rayBasic principle of x ray
Basic principle of x ray
 
X-ray Machine
X-ray Machine X-ray Machine
X-ray Machine
 
426368105-Digital-RT-PPT-04-04-2018.pptx
426368105-Digital-RT-PPT-04-04-2018.pptx426368105-Digital-RT-PPT-04-04-2018.pptx
426368105-Digital-RT-PPT-04-04-2018.pptx
 
CT Generations and Artefacts
CT Generations and ArtefactsCT Generations and Artefacts
CT Generations and Artefacts
 
Cathode ray
Cathode rayCathode ray
Cathode ray
 

Último

Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfRankYa
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piececharlottematthew16
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):comworks
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsMiki Katsuragi
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxNavinnSomaal
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024Stephanie Beckett
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsSergiu Bodiu
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationSlibray Presentation
 
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Wonjun Hwang
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsMemoori
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr LapshynFwdays
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfAddepto
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationSafe Software
 
My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024The Digital Insurer
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 

Último (20)

Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdf
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piece
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering Tips
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptx
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platforms
 
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptxE-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck Presentation
 
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial Buildings
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdf
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
 
My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 

Introduction to X-Ray Imaging for Industrial Applications

  • 1. Introduction to X-ray imaging for industrial applications Markus Tarin President & CEO MoviMED
  • 2. Agenda Agenda • What exactly are “X-rays” ? • The X-ray tube • Typical applications • Methods of detection • Detector types • Challenges in x-ray imaging • Detector selection • Example application • Conclusion • Q & A Head x-ray – “Homer Simpson”
  • 4. Historical Background • German Physicist • Discovered x-rays or “Roentgen rays” on Nov 8, 1895 • During experimentation with vacuum tubes he noticed a faint glow (fluorescent) on a cardboard covered with “Barium Platinocyanide” • Named the radiation “x-rays” as in “unknown” rays • Wilhelm Roentgen received the Nobel Prize in 1901 for this discovery Wilhelm Conrad Röntgen *03/27/1845 † 02/10/1923
  • 5. First X-ray image • First X-ray images taken by Wilhelm Roentgen • 22nd December, 1895 • Shows the hand of Wilhelm’s wife with ring
  • 6. The X-ray tube X-rays Cathode Filament Glass body Anode with Tungsten target Electron beam kV (keV) The filament provides an “electron cloud” which is accelerated by the high voltage potential between the anode and cathode. The electrons collide and rapidly decelerate on the high-density Tungsten anode. The energy decay causes a photon emission. The emitted wavelength is in relation to the energy loss of the electron.
  • 7. X-ray Energy Definition of X-ray energy: The term xxx kV (kilo Volt or 1 x 1,000 Volt) refers to the high voltage supplied to the x-ray tube. With other words the potential between the anode and cathode. A higher “kV” setting results in a higher x-ray energy output and a shorter wavelength. The current (mA – milli-Ampere - 1/1000 A) is the selected current allowed to flow through the filament of the x-ray tube at the selected voltage. A higher current causes a higher x-ray flux. The term “eV” or more commonly “keV” or “MeV” is the “electron Volt” or the energy given to an electron by accelerating it through 1 Volt. When considering x-rays, the keV or MeV is referring to the output energy of the x- ray photons generated by the x-ray tube.
  • 8. Examples of Energy (eV) The following are examples of eV energies: • Visible light photons: 1.5 – 3.5 eV • Approximate energy of an electron striking a color television screen (CRT tube): 20,000 eV (20 keV) • High energy medical, diagnostic x-ray: 200 keV • 100W light bulb burning for one hour: 2.2 Trillion TeV !!! (2.2 Trillion Trillion eV) • Kinetic energy of an 1,900lb race car traveling at 230 mph: 28 x 10^24 eV
  • 9. Typical Applications • Airport/Homeland Security • Electronics • General Inspection • Petro-Chemical • Automotive • Aerospace • Non-Destructive Testing • Medical/Diagnostic Imaging • X-ray Fluoroscopy
  • 10. X-ray detection methods • Image Intensifier • Scintillator (Gamma detector) • Amorphous Silicon Panel • X-ray film • Phosphor plate scanner (CR) • others
  • 11. X-ray image intensifier Image Intensifier • Commonly found in industrial x-ray applications • Converts x-rays into photons using phosphor
  • 12. Scintillator • User for gamma ray detection • Could be coupled to a photon multiplier counter • Uses inorganic material to convert gamma rays into photons in the visible waveband Conceptual overview – Scintillator with detector
  • 13. Amorphous Silicon Panel • Energy range from 10 to 160 keV • Resolution about 48 µm (~10lp/mm) • Standard frame grabber interface • Easy to integrate • “X-ray camera” • Compact form factor
  • 14. Challenges in X-ray imaging • X-ray applications are generally “light starved” • Signal to noise ratio is usually not very favorable • Achieving acceptable image quality requires careful selection of optics and camera • X-ray imaging requires a considerable amount of “domain knowledge” • Image contrast depends on many factors (x-ray energy, absorption bands in specimen, type of materials, focus quality of x-ray beam, selection of detector, lens and imaging sensor) • Feature definition may be “fuzzy” or “faint”
  • 15. Importance of Detector Selection Why using a standard machine vision camera for X-ray will not work… • The light output produced by an image intensifier is typically very low • Increasing the x-ray energy to achieve more light output will not necessarily improve the contrast ratio • Using a small pixel size sensor (<7.4um with 8-bit ADC) results in a limited dynamic range • Light starved x-ray imaging competes with detector noise of the camera
  • 16. Importance of Dynamic Range Sensor A Sensor B Pixel Size 7.4um x 7.4um 16um x 16um Full well capacity 20,000 e 150,000 e Read noise 16 e 15 e Dynamic Range 20,000e/16e = 1,250 150,000e/15e = 10,000 Dynamic Range 62 dB 80 dB Gray levels ADC @ 10-bit - 1024 ADC @ 14-bit = 16,384 (Effective #of bits: 13.3) • Sensor B has a dynamic range 8 x higher than sensor A • X-ray images need to be processed in 16-bit format
  • 17. Lens Selection • Due to the large pixel size requirement, the sensor size of a camera is also large. • F-mount lenses are often required • The field of view and working distance needs to be matched to the output port of the image intensifier • The lens needs a large aperture (low f#) to capture all available light. Ideally f# < 1.0
  • 18. Example application - BGA Ball grid array inspection • Higher density integrated circuits also come with a higher pin count • The “BGA” or ball grid array IC package type has little balls as connection leads • The connections are underneath the chip and are no longer visible, after assembly • The solder paste is being placed onto the circuit board, prior to chip placement • The chip is then placed onto the PCB and run through a reflow oven, where the solder paste melts and forms an electric connection between the PCB and the ball contacts • X-ray inspection is the only method to “see through the circuit board and verify that all balls are in contact and that there are no accidental short circuits
  • 19. BGA – X-ray image • The solder paste is very opaque to the x-rays and provides a very favorable contrast ratio. • The electronics industry frequently uses radio isotopes, emitting gamma rays (MeV energy) • Automatic detection algorithms can be used in this example for verification.
  • 20. Image Processing – X-ray Step 1: Raw x-ray image
  • 21. BGA – Threshold Step 2: Threshold type “Moments” Creates a binary image. Only black areas are being considered.
  • 22. BGA - Dilate Step 2: Dilate Dilates binary pixels in the object
  • 23. BGA - Close Step 3: Close Closes holes in the blobs
  • 24. BGA – Particle analysis Step 4: Particle analysis Counts objects, measures size and location. 144 pins found – pass!
  • 25. BGA defect • This images show multiple defects after the soldering operation of a BGA IC. • Multiple BGA contacts are accidentally soldering together. • The bridged pins or ball contacts are creating a shortcut • The circuit will not function properly
  • 26. BGA defect – raw image
  • 27. BGA defect - Threshold
  • 28. BGA defect - Erode
  • 29. BGA defect – Remove particles
  • 30. BGA defect - result • The final image processing step reveals 7 shorts • The blobs are much larger than the acceptance criteria • Their center of gravity does not coincide with the IC package definition
  • 31. Conclusion • X-ray imaging is a very useful, non-visible imaging tool • A considerable amount of domain knowledge is required to successfully apply this technology • Budgetary estimate for X-ray imaging systems range from $60k to $500k and up. • Exposure to x-ray radiation is potentially dangerous to ones health and safety. • Automated image processing may not always be possible, due to sometime poor defect definition • 16-bit image processing is necessary, due to the need for large dynamic range.
  • 32. Markus Tarin President & CEO MoviMED 15540 Rockfield Blvd., Suite C110 Irvine, CA 92618 USA Phone: 949-699-6600 email: m.tarin@movimed.com www.movimed.com Q & A