SlideShare una empresa de Scribd logo
1 de 6
5264785-453390-718628-453228PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR SEDE IBARRA<br />“PUCE-SI”.<br />Datos Informativos<br />Carrera: Arquitectura.<br />Nivel: Primero.<br />Nombre: Erick Bastidas.<br />Materia: Lógica Matemática. <br />Tema: Métodos de demostración.<br />Fecha: 19 de Octubre del 2010.<br />Objetivos: 1.- Conocer y aplicar cada una de los métodos de demostración.<br />Contenido:<br />Métodos Deductivos de demostración. <br />Según el sistema aristotélico, el método deductivo es un proceso que parte de un conocimiento general, y arriba a uno particular. La aplicación del métododeductivo nos lleva a un conocimiento con grado de certeza absoluta, y estacimentado en proposiciones llamadas  SILOGISMOS.<br />He aquí un ejemplo:<br />EJEMPLOS<br />“ Todos las venezolanas son bellas” , (Este es el conocimiento general)“Marta Colomina es venezolana”<br />                 Luego: <br />                “Marta Colomina es bella” <br /> “Todos los mamíferos son animales”<br /> “El perro es un animal”<br />   Por lo tanto:<br />   “El perro es un mamífero”<br />Se puede observar que partiendo de dos premisas, una de las cuales es una <br />hipótesis general se llega a una conclusión particular. También es de hacer notar que en este ejemplo las premisas pueden ser verdaderas o pueden ser falsas, y por consiguiente la conclusión puede ser igualmente verdadera o falsa. <br />En la lógica formal y sobre todo en el universo matemático, el proceso deductivo tiene un significado un poco diferente, pues esta basado en AXIOMAS, o proposiciones que son verdaderas por definición. <br />Por ejemplo, un axioma es:<br />“EL TODO ES MAYOR QUE LA PARTE”, otro axioma es“DOS COSAS IGUALES A UNA TERCERA SON IGUALES ENTRE SI”.El primer axioma define el concepto de MAYOR, y el segundo el concepto de IGUAL. <br />El método deductivo nos permite partir de un conjunto de hipótesis y llegar a una conclusión, pudiendo ser esta inclusive que el conjunto de hipótesis sea inválido.<br />Generalmente, en matemáticas, la deducción es un proceso concatenado del tipo quot;
si A entonces B, si B entonces C, si C entonces D...quot;
 hasta llegar a una conclusión.<br />Al conjunto de HIPOTESIS + DEMOSTRACION + CONCLUSIÖN se denomina TEOREMA. <br />La práctica de los razonamientos deductivos en el proceso de desarrollo del pensamiento lógico matemático es muy importante. Constituye una herramienta fundamental para el trabajo en la matemática y otras ciencias.<br />Demostración por el método directo. <br />Si tomamos una frase lógica condicional sencilla del tipo: <br />P⇒ Q<br />Que podemos analizar como “si se cumple P entonces se cumple Q”, esto lo hacemos de forma natural sin complicarnos en hacer análisis mas intensivos o mas extensivos pues lo hacemos de una forma innata.<br />Si decimos: “El cielo esta encapotado, va a llover” estamos <br />realizando una asociación de causa y efecto. En la cual “el cielo esta encapotado” es <br />la causa y el efecto lógico es que, “va a llover”.<br />Desde el punto de vista de la lógica esta relación es irrevocable. Así mismo en una relación matemática se puede verificar esta sencilla relación en la cual si se cumple la premisa P entonces se puede decir que se cumplirá la consecuencia Q. <br />A este proceso formal se le denomina “demostración mediante el método directo” es innecesario decir que si no se cumple o verifica P entonces su consecuencia tampoco se verificará.<br />¬P ⇒ ¬Q <br />Supóngase que P⇒ Q es una tautología, en donde P y Q pueden ser proposiciones compuestas, en las que intervengan cualquier número de variables propositivas, se dice que q se desprende lógicamente de p.<br />Supóngase una implicación de la forma. <br />(P1∧ P2∧ P3∧...∧ Pn) ⇒Q <br />Es una tautología. <br />Entonces está implicación es verdadera sin importar los valores de verdad decualquiera de sus componentes. En este caso, se dice que q se desprendelógicamente de P1, P2,......, Pn. Se escribe.<br />El camino que se debe seguir para llevar a cabo una demostración formal <br />usando el método directo. Significa que sí se sabe que P1 es verdadera, P2 es <br />verdadera,...... y Pn también es verdadera, entonces se sabe que Q es verdadera. <br />La mayoría de los teoremas matemáticos cumplen con esta estructura básica: <br />(P1∧ P2∧ P3∧...∧ Pn)⇒Q <br />Donde las Pi condiciones son llamadas hipótesis o premisas, y Q es la <br />conclusión. <br />“Demostrar un teorema” es demostrar que la condicional es una <br />tautología. <br />Ojo, no se pide demostrar que la conclusión es verdadera, lo que se quiere esdemostrar que Q es verdadera siempre y cuando todas las Pi condiciones sonverdaderas.<br />En conclusión podemos decir que: <br />Cualquier demostración, sea de enunciados o matemática debe:<br />a. Comenzar con las hipótesis.b. Debe seguir con las tautologías y reglas de inferencias necesarias para...c. Llegar a la conclusión.<br />A continuación se prueba un enunciado en donde se puede apreciar el uso <br />tanto de las tautologías como de las reglas de inferencia.<br />Seanp: Trabajo<br />q: Ahorror: Compraré una casas: Podré guardar el automóvil en mi casa<br />Analizar el siguiente argumento: <br />quot;
Si trabajo y ahorro, entonces compraré una casa. Si compro una casa, entoncespodré guardar el coche en mi casa. Por consiguiente, si no puedo guardar el cocheen mi casa, entonces no ahorroquot;
.<br />El enunciado anterior se puede representar como:<br />p∧ q⇒ r;              y                         r⇒ s;                  entonces s'⇒ q'<br />Equivale también a probar el siguiente teorema: <br />[(p∧ q) ⇒ r]∧ [r⇒ s]; [s'⇒ q'] <br />Como se trata de probar un teorema de la forma general: <br />p1∧ p2∧...... ∧ pn entonces  q<br />Se aplica el procedimiento general para demostración de enunciados válidos.A continuación se demuestra el teorema respaldando cada uno de sus pasos en tautologías o reglas de inferencia ya conocidas.<br />1. - (p∧ q) ⇒ r                         Hipótesis<br />2.- r⇒ s                                     Hipótesis <br />3.- p⇒ q               Silogismo Hipotético <br />4.- q⇒r                Silogismo Hipotético <br />5.- q⇒ s<br />6. - ¬s ⇒ ¬q                                                              Conclusión<br />Método Inductivo<br />Sirve para demostrar fórmulas o propiedades que son verdaderas para infinitos números naturales. Es decir para demostrar que las propiedades de la forma P(m) se cumple casi siempre para todo número natural m € N siendo n+ el conjunto de los característicos sin el cero V n € N+ (Siendo N* = N-{0}) Se trata de demostrar P(n), V n € N* El método de demostración inductivo consta de 3 pasos. <br />1. Paso Básico <br />Demostrar que la propiedad se cumple para el primer valor de de N que nos digan, casi siempre será 1. Se trata de demostrar P(1). <br />2. Paso Inductivo <br />Consiste en demostrar que si se cumple para un cierto n entonces también se cumple para n+1. Es decir que si se cumple para P(n) entonces se tiene que cumplir P(n+1). Se trata de demostrar la implicación P(n)->P(n+1). Supondremos como hipótesis P(n) (hipótesis de inducción). <br />3. Conclusión <br />Del paso básico y del paso inductivo se deduce que la proposición se cumple para todos los n naturales mayores o iguales a 1 (n>=1). <br />Método reducción al absurdo<br />Sólo sabremos si es una tautología. Supondremos que es una contradicción, por tanto podemos suponer que puede ser falsa. Sin con esta suposición se llega a una contradicción quería decir que esa falsedad supuesta nunca podría darse, por tanto la proposición sería siempre verdadera es decir una tautología.<br /> <br />
Métodos de demostración en lógica matemática
Métodos de demostración en lógica matemática
Métodos de demostración en lógica matemática
Métodos de demostración en lógica matemática
Métodos de demostración en lógica matemática

Más contenido relacionado

La actualidad más candente

Leyes del algebra proposicional
Leyes del algebra proposicionalLeyes del algebra proposicional
Leyes del algebra proposicionalRonald Wielman
 
Circuitos LóGicos
Circuitos LóGicosCircuitos LóGicos
Circuitos LóGicosrafael felix
 
Presentacion matrices y determinantes
Presentacion matrices y determinantesPresentacion matrices y determinantes
Presentacion matrices y determinantesAndrio Mendoza
 
Métodos de Demostración en Matemática
Métodos de Demostración en MatemáticaMétodos de Demostración en Matemática
Métodos de Demostración en MatemáticaWilbert Tapia
 
Ejercicios resueltos grafos
Ejercicios resueltos grafosEjercicios resueltos grafos
Ejercicios resueltos grafosTERE FERNÁNDEZ
 
Matemáticas Discretas - Unidad III: Logica matemática
Matemáticas Discretas - Unidad III: Logica matemáticaMatemáticas Discretas - Unidad III: Logica matemática
Matemáticas Discretas - Unidad III: Logica matemáticaJosé Antonio Sandoval Acosta
 
Leyes del álgebra de proposiciones.
Leyes del álgebra de proposiciones.Leyes del álgebra de proposiciones.
Leyes del álgebra de proposiciones.Daniel Molinet
 
Alfabetos-Lenguajes y Automatas 1
Alfabetos-Lenguajes y Automatas 1Alfabetos-Lenguajes y Automatas 1
Alfabetos-Lenguajes y Automatas 1Osiris Mirerus
 
Ordenamientos burbuja e inserción
Ordenamientos burbuja e inserciónOrdenamientos burbuja e inserción
Ordenamientos burbuja e inserciónAlvaro Enrique Ruano
 
Lógica proposicional
Lógica proposicionalLógica proposicional
Lógica proposicionalYerikson Huz
 
1.5 metodos iterativos
1.5 metodos iterativos1.5 metodos iterativos
1.5 metodos iterativosmorenito9001
 
Dea01 Cuantificadores
Dea01 CuantificadoresDea01 Cuantificadores
Dea01 CuantificadoresSaúl Qc
 
Metodo de demostracion directa e indirecta
Metodo de demostracion directa e indirectaMetodo de demostracion directa e indirecta
Metodo de demostracion directa e indirectaShoppy Mind'Freak
 
Mapa conceptual unidad 1 benita
Mapa conceptual unidad 1 benitaMapa conceptual unidad 1 benita
Mapa conceptual unidad 1 benitaTAtiizz Villalobos
 
Leyes de algebra proposicional
Leyes de algebra proposicionalLeyes de algebra proposicional
Leyes de algebra proposicionalelisa pizano
 

La actualidad más candente (20)

Leyes del algebra proposicional
Leyes del algebra proposicionalLeyes del algebra proposicional
Leyes del algebra proposicional
 
Circuitos LóGicos
Circuitos LóGicosCircuitos LóGicos
Circuitos LóGicos
 
Presentacion matrices y determinantes
Presentacion matrices y determinantesPresentacion matrices y determinantes
Presentacion matrices y determinantes
 
Métodos de Demostración en Matemática
Métodos de Demostración en MatemáticaMétodos de Demostración en Matemática
Métodos de Demostración en Matemática
 
Ejercicios resueltos grafos
Ejercicios resueltos grafosEjercicios resueltos grafos
Ejercicios resueltos grafos
 
Matemáticas Discretas - Unidad III: Logica matemática
Matemáticas Discretas - Unidad III: Logica matemáticaMatemáticas Discretas - Unidad III: Logica matemática
Matemáticas Discretas - Unidad III: Logica matemática
 
Lógica matemática
Lógica matemáticaLógica matemática
Lógica matemática
 
Leyes del álgebra de proposiciones.
Leyes del álgebra de proposiciones.Leyes del álgebra de proposiciones.
Leyes del álgebra de proposiciones.
 
Alfabetos-Lenguajes y Automatas 1
Alfabetos-Lenguajes y Automatas 1Alfabetos-Lenguajes y Automatas 1
Alfabetos-Lenguajes y Automatas 1
 
CALCULO PROPOSICIONAL
CALCULO PROPOSICIONALCALCULO PROPOSICIONAL
CALCULO PROPOSICIONAL
 
Aplicaciones de los árboles y grafos
Aplicaciones de los árboles y grafosAplicaciones de los árboles y grafos
Aplicaciones de los árboles y grafos
 
Ordenamientos burbuja e inserción
Ordenamientos burbuja e inserciónOrdenamientos burbuja e inserción
Ordenamientos burbuja e inserción
 
Lógica proposicional
Lógica proposicionalLógica proposicional
Lógica proposicional
 
1.5 metodos iterativos
1.5 metodos iterativos1.5 metodos iterativos
1.5 metodos iterativos
 
Induccion matematica
Induccion matematicaInduccion matematica
Induccion matematica
 
Dea01 Cuantificadores
Dea01 CuantificadoresDea01 Cuantificadores
Dea01 Cuantificadores
 
Metodo de demostracion directa e indirecta
Metodo de demostracion directa e indirectaMetodo de demostracion directa e indirecta
Metodo de demostracion directa e indirecta
 
Lógica matemáticas
Lógica matemáticasLógica matemáticas
Lógica matemáticas
 
Mapa conceptual unidad 1 benita
Mapa conceptual unidad 1 benitaMapa conceptual unidad 1 benita
Mapa conceptual unidad 1 benita
 
Leyes de algebra proposicional
Leyes de algebra proposicionalLeyes de algebra proposicional
Leyes de algebra proposicional
 

Destacado

Ejemplos de demostracion deductiva
Ejemplos de demostracion deductivaEjemplos de demostracion deductiva
Ejemplos de demostracion deductivaAlex Cáceres
 
Métodos de Demostracion
Métodos de DemostracionMétodos de Demostracion
Métodos de DemostracionMario
 
Cómo desarrollar el pensamiento lógico matemático de los alumnos
Cómo desarrollar el pensamiento lógico matemático de los alumnosCómo desarrollar el pensamiento lógico matemático de los alumnos
Cómo desarrollar el pensamiento lógico matemático de los alumnosCindy Martinez
 
Teoremas Fundamentales Algebra de Boole
Teoremas Fundamentales Algebra de BooleTeoremas Fundamentales Algebra de Boole
Teoremas Fundamentales Algebra de BooleEmi Fernandez
 
Leyes de la logica e inferencias
Leyes de la  logica  e inferenciasLeyes de la  logica  e inferencias
Leyes de la logica e inferenciasMaria Gaitan
 

Destacado (9)

Ejemplos de demostracion deductiva
Ejemplos de demostracion deductivaEjemplos de demostracion deductiva
Ejemplos de demostracion deductiva
 
Métodos de Demostracion
Métodos de DemostracionMétodos de Demostracion
Métodos de Demostracion
 
Cómo desarrollar el pensamiento lógico matemático de los alumnos
Cómo desarrollar el pensamiento lógico matemático de los alumnosCómo desarrollar el pensamiento lógico matemático de los alumnos
Cómo desarrollar el pensamiento lógico matemático de los alumnos
 
Teoremas Fundamentales Algebra de Boole
Teoremas Fundamentales Algebra de BooleTeoremas Fundamentales Algebra de Boole
Teoremas Fundamentales Algebra de Boole
 
Modulo logica matematica
Modulo  logica matematicaModulo  logica matematica
Modulo logica matematica
 
Leyes de la logica e inferencias
Leyes de la  logica  e inferenciasLeyes de la  logica  e inferencias
Leyes de la logica e inferencias
 
Razonamiento logico matematico
Razonamiento logico matematicoRazonamiento logico matematico
Razonamiento logico matematico
 
Inferencia LóGica
Inferencia LóGicaInferencia LóGica
Inferencia LóGica
 
Leyes De Lógica
Leyes De LógicaLeyes De Lógica
Leyes De Lógica
 

Similar a Métodos de demostración en lógica matemática

Metodos de demostracion
Metodos de demostracionMetodos de demostracion
Metodos de demostracionpuce-si
 
metodos de demostracion
metodos de demostracionmetodos de demostracion
metodos de demostracionCristopher
 
Proposiciones
ProposicionesProposiciones
Proposicionesluisv9616
 
Logica matematica
Logica matematicaLogica matematica
Logica matematica08061028
 
Logica matematica
Logica matematicaLogica matematica
Logica matematica28100608
 
Trabajo estruccturas discretas tema 1 manuel alfredo
Trabajo estruccturas discretas tema 1 manuel alfredoTrabajo estruccturas discretas tema 1 manuel alfredo
Trabajo estruccturas discretas tema 1 manuel alfredomagom13196829
 
Linero demostracion matematicas(jsimon)
Linero demostracion matematicas(jsimon)Linero demostracion matematicas(jsimon)
Linero demostracion matematicas(jsimon)YomarkCarrasco
 
Inferencias logicas
Inferencias logicasInferencias logicas
Inferencias logicasEva Vásquez
 
métodos de demostración matemática
métodos de demostración matemática métodos de demostración matemática
métodos de demostración matemática LeoNaula1
 
3ro numero complejos grupal
3ro numero complejos   grupal3ro numero complejos   grupal
3ro numero complejos grupalJeremyPolo1
 
Logicamatematica herney guzman
Logicamatematica herney guzmanLogicamatematica herney guzman
Logicamatematica herney guzmanHerneyGuzman
 
3ro numero complejos mishel barzallo jeremy polo damaris
3ro numero complejos mishel barzallo jeremy polo damaris3ro numero complejos mishel barzallo jeremy polo damaris
3ro numero complejos mishel barzallo jeremy polo damarisjordycedillo1
 
Logicamatematica paula alejandra
Logicamatematica paula alejandraLogicamatematica paula alejandra
Logicamatematica paula alejandrapaula0610
 
Trabajo de logica matematica
Trabajo de logica matematicaTrabajo de logica matematica
Trabajo de logica matematicaMaria_Olave
 
Trabajo de logica matematica modalidad.
Trabajo de logica matematica modalidad.Trabajo de logica matematica modalidad.
Trabajo de logica matematica modalidad.olave_julian
 
Trabajo de logica matematica
Trabajo de logica matematicaTrabajo de logica matematica
Trabajo de logica matematicaFabian_Figueroa
 

Similar a Métodos de demostración en lógica matemática (20)

Metodos de demostracion
Metodos de demostracionMetodos de demostracion
Metodos de demostracion
 
Deber 19 oct 2010
Deber 19 oct 2010Deber 19 oct 2010
Deber 19 oct 2010
 
metodos de demostracion
metodos de demostracionmetodos de demostracion
metodos de demostracion
 
Proposiciones
ProposicionesProposiciones
Proposiciones
 
Logica matematica
Logica matematicaLogica matematica
Logica matematica
 
Logica matematica
Logica matematicaLogica matematica
Logica matematica
 
Trabajo estruccturas discretas tema 1 manuel alfredo
Trabajo estruccturas discretas tema 1 manuel alfredoTrabajo estruccturas discretas tema 1 manuel alfredo
Trabajo estruccturas discretas tema 1 manuel alfredo
 
Linero demostracion matematicas(jsimon)
Linero demostracion matematicas(jsimon)Linero demostracion matematicas(jsimon)
Linero demostracion matematicas(jsimon)
 
Inferencias logicas
Inferencias logicasInferencias logicas
Inferencias logicas
 
métodos de demostración matemática
métodos de demostración matemática métodos de demostración matemática
métodos de demostración matemática
 
3ro numero complejos grupal
3ro numero complejos   grupal3ro numero complejos   grupal
3ro numero complejos grupal
 
Logicamatematica herney guzman
Logicamatematica herney guzmanLogicamatematica herney guzman
Logicamatematica herney guzman
 
Logica matematica
Logica matematicaLogica matematica
Logica matematica
 
Logica matematica
Logica matematicaLogica matematica
Logica matematica
 
02 logmat
02 logmat02 logmat
02 logmat
 
3ro numero complejos mishel barzallo jeremy polo damaris
3ro numero complejos mishel barzallo jeremy polo damaris3ro numero complejos mishel barzallo jeremy polo damaris
3ro numero complejos mishel barzallo jeremy polo damaris
 
Logicamatematica paula alejandra
Logicamatematica paula alejandraLogicamatematica paula alejandra
Logicamatematica paula alejandra
 
Trabajo de logica matematica
Trabajo de logica matematicaTrabajo de logica matematica
Trabajo de logica matematica
 
Trabajo de logica matematica modalidad.
Trabajo de logica matematica modalidad.Trabajo de logica matematica modalidad.
Trabajo de logica matematica modalidad.
 
Trabajo de logica matematica
Trabajo de logica matematicaTrabajo de logica matematica
Trabajo de logica matematica
 

Más de MishellCarvajal

Ejercicios de silogismos
Ejercicios de silogismosEjercicios de silogismos
Ejercicios de silogismosMishellCarvajal
 
Trabajo de logica.. mishell
Trabajo de logica.. mishellTrabajo de logica.. mishell
Trabajo de logica.. mishellMishellCarvajal
 
Tarea linea, angulos_y_triangulos
Tarea linea, angulos_y_triangulosTarea linea, angulos_y_triangulos
Tarea linea, angulos_y_triangulosMishellCarvajal
 
Tarea linea, angulos_y_triangulos
Tarea linea, angulos_y_triangulosTarea linea, angulos_y_triangulos
Tarea linea, angulos_y_triangulosMishellCarvajal
 
Fracciones 328 330--resueltos
Fracciones 328 330--resueltosFracciones 328 330--resueltos
Fracciones 328 330--resueltosMishellCarvajal
 
Problemas con fracciones
Problemas con fraccionesProblemas con fracciones
Problemas con fraccionesMishellCarvajal
 
Problemas con fracciones
Problemas con fraccionesProblemas con fracciones
Problemas con fraccionesMishellCarvajal
 
Pontificia universidad catolica__del_ecuador_sede_ibarra_triangulos
Pontificia universidad catolica__del_ecuador_sede_ibarra_triangulosPontificia universidad catolica__del_ecuador_sede_ibarra_triangulos
Pontificia universidad catolica__del_ecuador_sede_ibarra_triangulosMishellCarvajal
 
Pontificia universidad catolica__del_ecuador_sede_ibarra_triangulos
Pontificia universidad catolica__del_ecuador_sede_ibarra_triangulosPontificia universidad catolica__del_ecuador_sede_ibarra_triangulos
Pontificia universidad catolica__del_ecuador_sede_ibarra_triangulosMishellCarvajal
 
C:\users\hp\desktop\pontificia universidad catolica__del_ecuador_sede_ibarra_...
C:\users\hp\desktop\pontificia universidad catolica__del_ecuador_sede_ibarra_...C:\users\hp\desktop\pontificia universidad catolica__del_ecuador_sede_ibarra_...
C:\users\hp\desktop\pontificia universidad catolica__del_ecuador_sede_ibarra_...MishellCarvajal
 

Más de MishellCarvajal (20)

Silogismos
SilogismosSilogismos
Silogismos
 
Silogismos
SilogismosSilogismos
Silogismos
 
Silogismos
SilogismosSilogismos
Silogismos
 
Ejercicios de silogismos
Ejercicios de silogismosEjercicios de silogismos
Ejercicios de silogismos
 
Trabajo de logica.. mishell
Trabajo de logica.. mishellTrabajo de logica.. mishell
Trabajo de logica.. mishell
 
Shaum
ShaumShaum
Shaum
 
Trabajo de lógica
Trabajo de lógicaTrabajo de lógica
Trabajo de lógica
 
Tarea linea, angulos_y_triangulos
Tarea linea, angulos_y_triangulosTarea linea, angulos_y_triangulos
Tarea linea, angulos_y_triangulos
 
Tarea linea, angulos_y_triangulos
Tarea linea, angulos_y_triangulosTarea linea, angulos_y_triangulos
Tarea linea, angulos_y_triangulos
 
Fracciones 328 330--resueltos
Fracciones 328 330--resueltosFracciones 328 330--resueltos
Fracciones 328 330--resueltos
 
Problemas con fracciones
Problemas con fraccionesProblemas con fracciones
Problemas con fracciones
 
Problemas con fracciones
Problemas con fraccionesProblemas con fracciones
Problemas con fracciones
 
Parejas de angulos
Parejas de angulosParejas de angulos
Parejas de angulos
 
Parejas de angulos
Parejas de angulosParejas de angulos
Parejas de angulos
 
Parejas de angulos
Parejas de angulosParejas de angulos
Parejas de angulos
 
Parejs de angulos
Parejs de angulosParejs de angulos
Parejs de angulos
 
Parejas de ángulos
Parejas de ángulosParejas de ángulos
Parejas de ángulos
 
Pontificia universidad catolica__del_ecuador_sede_ibarra_triangulos
Pontificia universidad catolica__del_ecuador_sede_ibarra_triangulosPontificia universidad catolica__del_ecuador_sede_ibarra_triangulos
Pontificia universidad catolica__del_ecuador_sede_ibarra_triangulos
 
Pontificia universidad catolica__del_ecuador_sede_ibarra_triangulos
Pontificia universidad catolica__del_ecuador_sede_ibarra_triangulosPontificia universidad catolica__del_ecuador_sede_ibarra_triangulos
Pontificia universidad catolica__del_ecuador_sede_ibarra_triangulos
 
C:\users\hp\desktop\pontificia universidad catolica__del_ecuador_sede_ibarra_...
C:\users\hp\desktop\pontificia universidad catolica__del_ecuador_sede_ibarra_...C:\users\hp\desktop\pontificia universidad catolica__del_ecuador_sede_ibarra_...
C:\users\hp\desktop\pontificia universidad catolica__del_ecuador_sede_ibarra_...
 

Último

Uses of simple past and time expressions
Uses of simple past and time expressionsUses of simple past and time expressions
Uses of simple past and time expressionsConsueloSantana3
 
Fichas de MatemáticA QUINTO DE SECUNDARIA).pdf
Fichas de MatemáticA QUINTO DE SECUNDARIA).pdfFichas de MatemáticA QUINTO DE SECUNDARIA).pdf
Fichas de MatemáticA QUINTO DE SECUNDARIA).pdfssuser50d1252
 
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdf
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdfFichas de matemática DE PRIMERO DE SECUNDARIA.pdf
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdfssuser50d1252
 
DETALLES EN EL DISEÑO DE INTERIOR
DETALLES EN EL DISEÑO DE INTERIORDETALLES EN EL DISEÑO DE INTERIOR
DETALLES EN EL DISEÑO DE INTERIORGonella
 
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdfTema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdfDaniel Ángel Corral de la Mata, Ph.D.
 
SIMULACROS Y SIMULACIONES DE SISMO 2024.docx
SIMULACROS Y SIMULACIONES DE SISMO 2024.docxSIMULACROS Y SIMULACIONES DE SISMO 2024.docx
SIMULACROS Y SIMULACIONES DE SISMO 2024.docxLudy Ventocilla Napanga
 
EDUCACION FISICA 1° PROGRAMACIÓN ANUAL 2023.docx
EDUCACION FISICA 1°  PROGRAMACIÓN ANUAL 2023.docxEDUCACION FISICA 1°  PROGRAMACIÓN ANUAL 2023.docx
EDUCACION FISICA 1° PROGRAMACIÓN ANUAL 2023.docxLuisAndersonPachasto
 
EJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docx
EJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docxEJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docx
EJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docxFabianValenciaJabo
 
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfEstrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfAlfredoRamirez953210
 
4º SOY LECTOR PART2- MD EDUCATIVO.p df PARTE
4º SOY LECTOR PART2- MD  EDUCATIVO.p df PARTE4º SOY LECTOR PART2- MD  EDUCATIVO.p df PARTE
4º SOY LECTOR PART2- MD EDUCATIVO.p df PARTESaraNolasco4
 
libro para colorear de Peppa pig, ideal para educación inicial
libro para colorear de Peppa pig, ideal para educación iniciallibro para colorear de Peppa pig, ideal para educación inicial
libro para colorear de Peppa pig, ideal para educación inicialLorenaSanchez350426
 
describimos como son afectados las regiones naturales del peru por la ola de ...
describimos como son afectados las regiones naturales del peru por la ola de ...describimos como son afectados las regiones naturales del peru por la ola de ...
describimos como son afectados las regiones naturales del peru por la ola de ...DavidBautistaFlores1
 
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdf
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdfFisiologia.Articular. 3 Kapandji.6a.Ed.pdf
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdfcoloncopias5
 
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024gharce
 
Presentación Bloque 3 Actividad 2 transversal.pptx
Presentación Bloque 3 Actividad 2 transversal.pptxPresentación Bloque 3 Actividad 2 transversal.pptx
Presentación Bloque 3 Actividad 2 transversal.pptxRosabel UA
 

Último (20)

recursos naturales america cuarto basico
recursos naturales america cuarto basicorecursos naturales america cuarto basico
recursos naturales america cuarto basico
 
Uses of simple past and time expressions
Uses of simple past and time expressionsUses of simple past and time expressions
Uses of simple past and time expressions
 
Fichas de MatemáticA QUINTO DE SECUNDARIA).pdf
Fichas de MatemáticA QUINTO DE SECUNDARIA).pdfFichas de MatemáticA QUINTO DE SECUNDARIA).pdf
Fichas de MatemáticA QUINTO DE SECUNDARIA).pdf
 
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdf
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdfFichas de matemática DE PRIMERO DE SECUNDARIA.pdf
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdf
 
DETALLES EN EL DISEÑO DE INTERIOR
DETALLES EN EL DISEÑO DE INTERIORDETALLES EN EL DISEÑO DE INTERIOR
DETALLES EN EL DISEÑO DE INTERIOR
 
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdfTema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
 
SIMULACROS Y SIMULACIONES DE SISMO 2024.docx
SIMULACROS Y SIMULACIONES DE SISMO 2024.docxSIMULACROS Y SIMULACIONES DE SISMO 2024.docx
SIMULACROS Y SIMULACIONES DE SISMO 2024.docx
 
EDUCACION FISICA 1° PROGRAMACIÓN ANUAL 2023.docx
EDUCACION FISICA 1°  PROGRAMACIÓN ANUAL 2023.docxEDUCACION FISICA 1°  PROGRAMACIÓN ANUAL 2023.docx
EDUCACION FISICA 1° PROGRAMACIÓN ANUAL 2023.docx
 
EJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docx
EJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docxEJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docx
EJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docx
 
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfEstrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
 
4º SOY LECTOR PART2- MD EDUCATIVO.p df PARTE
4º SOY LECTOR PART2- MD  EDUCATIVO.p df PARTE4º SOY LECTOR PART2- MD  EDUCATIVO.p df PARTE
4º SOY LECTOR PART2- MD EDUCATIVO.p df PARTE
 
libro para colorear de Peppa pig, ideal para educación inicial
libro para colorear de Peppa pig, ideal para educación iniciallibro para colorear de Peppa pig, ideal para educación inicial
libro para colorear de Peppa pig, ideal para educación inicial
 
describimos como son afectados las regiones naturales del peru por la ola de ...
describimos como son afectados las regiones naturales del peru por la ola de ...describimos como son afectados las regiones naturales del peru por la ola de ...
describimos como son afectados las regiones naturales del peru por la ola de ...
 
Aedes aegypti + Intro to Coquies EE.pptx
Aedes aegypti + Intro to Coquies EE.pptxAedes aegypti + Intro to Coquies EE.pptx
Aedes aegypti + Intro to Coquies EE.pptx
 
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdf
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdfFisiologia.Articular. 3 Kapandji.6a.Ed.pdf
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdf
 
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
 
Presentación Bloque 3 Actividad 2 transversal.pptx
Presentación Bloque 3 Actividad 2 transversal.pptxPresentación Bloque 3 Actividad 2 transversal.pptx
Presentación Bloque 3 Actividad 2 transversal.pptx
 
La luz brilla en la oscuridad. Necesitamos luz
La luz brilla en la oscuridad. Necesitamos luzLa luz brilla en la oscuridad. Necesitamos luz
La luz brilla en la oscuridad. Necesitamos luz
 
PPTX: La luz brilla en la oscuridad.pptx
PPTX: La luz brilla en la oscuridad.pptxPPTX: La luz brilla en la oscuridad.pptx
PPTX: La luz brilla en la oscuridad.pptx
 
Aedes aegypti + Intro to Coquies EE.pptx
Aedes aegypti + Intro to Coquies EE.pptxAedes aegypti + Intro to Coquies EE.pptx
Aedes aegypti + Intro to Coquies EE.pptx
 

Métodos de demostración en lógica matemática

  • 1. 5264785-453390-718628-453228PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR SEDE IBARRA<br />“PUCE-SI”.<br />Datos Informativos<br />Carrera: Arquitectura.<br />Nivel: Primero.<br />Nombre: Erick Bastidas.<br />Materia: Lógica Matemática. <br />Tema: Métodos de demostración.<br />Fecha: 19 de Octubre del 2010.<br />Objetivos: 1.- Conocer y aplicar cada una de los métodos de demostración.<br />Contenido:<br />Métodos Deductivos de demostración. <br />Según el sistema aristotélico, el método deductivo es un proceso que parte de un conocimiento general, y arriba a uno particular. La aplicación del métododeductivo nos lleva a un conocimiento con grado de certeza absoluta, y estacimentado en proposiciones llamadas SILOGISMOS.<br />He aquí un ejemplo:<br />EJEMPLOS<br />“ Todos las venezolanas son bellas” , (Este es el conocimiento general)“Marta Colomina es venezolana”<br /> Luego: <br /> “Marta Colomina es bella” <br /> “Todos los mamíferos son animales”<br /> “El perro es un animal”<br /> Por lo tanto:<br /> “El perro es un mamífero”<br />Se puede observar que partiendo de dos premisas, una de las cuales es una <br />hipótesis general se llega a una conclusión particular. También es de hacer notar que en este ejemplo las premisas pueden ser verdaderas o pueden ser falsas, y por consiguiente la conclusión puede ser igualmente verdadera o falsa. <br />En la lógica formal y sobre todo en el universo matemático, el proceso deductivo tiene un significado un poco diferente, pues esta basado en AXIOMAS, o proposiciones que son verdaderas por definición. <br />Por ejemplo, un axioma es:<br />“EL TODO ES MAYOR QUE LA PARTE”, otro axioma es“DOS COSAS IGUALES A UNA TERCERA SON IGUALES ENTRE SI”.El primer axioma define el concepto de MAYOR, y el segundo el concepto de IGUAL. <br />El método deductivo nos permite partir de un conjunto de hipótesis y llegar a una conclusión, pudiendo ser esta inclusive que el conjunto de hipótesis sea inválido.<br />Generalmente, en matemáticas, la deducción es un proceso concatenado del tipo quot; si A entonces B, si B entonces C, si C entonces D...quot; hasta llegar a una conclusión.<br />Al conjunto de HIPOTESIS + DEMOSTRACION + CONCLUSIÖN se denomina TEOREMA. <br />La práctica de los razonamientos deductivos en el proceso de desarrollo del pensamiento lógico matemático es muy importante. Constituye una herramienta fundamental para el trabajo en la matemática y otras ciencias.<br />Demostración por el método directo. <br />Si tomamos una frase lógica condicional sencilla del tipo: <br />P⇒ Q<br />Que podemos analizar como “si se cumple P entonces se cumple Q”, esto lo hacemos de forma natural sin complicarnos en hacer análisis mas intensivos o mas extensivos pues lo hacemos de una forma innata.<br />Si decimos: “El cielo esta encapotado, va a llover” estamos <br />realizando una asociación de causa y efecto. En la cual “el cielo esta encapotado” es <br />la causa y el efecto lógico es que, “va a llover”.<br />Desde el punto de vista de la lógica esta relación es irrevocable. Así mismo en una relación matemática se puede verificar esta sencilla relación en la cual si se cumple la premisa P entonces se puede decir que se cumplirá la consecuencia Q. <br />A este proceso formal se le denomina “demostración mediante el método directo” es innecesario decir que si no se cumple o verifica P entonces su consecuencia tampoco se verificará.<br />¬P ⇒ ¬Q <br />Supóngase que P⇒ Q es una tautología, en donde P y Q pueden ser proposiciones compuestas, en las que intervengan cualquier número de variables propositivas, se dice que q se desprende lógicamente de p.<br />Supóngase una implicación de la forma. <br />(P1∧ P2∧ P3∧...∧ Pn) ⇒Q <br />Es una tautología. <br />Entonces está implicación es verdadera sin importar los valores de verdad decualquiera de sus componentes. En este caso, se dice que q se desprendelógicamente de P1, P2,......, Pn. Se escribe.<br />El camino que se debe seguir para llevar a cabo una demostración formal <br />usando el método directo. Significa que sí se sabe que P1 es verdadera, P2 es <br />verdadera,...... y Pn también es verdadera, entonces se sabe que Q es verdadera. <br />La mayoría de los teoremas matemáticos cumplen con esta estructura básica: <br />(P1∧ P2∧ P3∧...∧ Pn)⇒Q <br />Donde las Pi condiciones son llamadas hipótesis o premisas, y Q es la <br />conclusión. <br />“Demostrar un teorema” es demostrar que la condicional es una <br />tautología. <br />Ojo, no se pide demostrar que la conclusión es verdadera, lo que se quiere esdemostrar que Q es verdadera siempre y cuando todas las Pi condiciones sonverdaderas.<br />En conclusión podemos decir que: <br />Cualquier demostración, sea de enunciados o matemática debe:<br />a. Comenzar con las hipótesis.b. Debe seguir con las tautologías y reglas de inferencias necesarias para...c. Llegar a la conclusión.<br />A continuación se prueba un enunciado en donde se puede apreciar el uso <br />tanto de las tautologías como de las reglas de inferencia.<br />Seanp: Trabajo<br />q: Ahorror: Compraré una casas: Podré guardar el automóvil en mi casa<br />Analizar el siguiente argumento: <br />quot; Si trabajo y ahorro, entonces compraré una casa. Si compro una casa, entoncespodré guardar el coche en mi casa. Por consiguiente, si no puedo guardar el cocheen mi casa, entonces no ahorroquot; .<br />El enunciado anterior se puede representar como:<br />p∧ q⇒ r; y r⇒ s; entonces s'⇒ q'<br />Equivale también a probar el siguiente teorema: <br />[(p∧ q) ⇒ r]∧ [r⇒ s]; [s'⇒ q'] <br />Como se trata de probar un teorema de la forma general: <br />p1∧ p2∧...... ∧ pn entonces q<br />Se aplica el procedimiento general para demostración de enunciados válidos.A continuación se demuestra el teorema respaldando cada uno de sus pasos en tautologías o reglas de inferencia ya conocidas.<br />1. - (p∧ q) ⇒ r Hipótesis<br />2.- r⇒ s Hipótesis <br />3.- p⇒ q Silogismo Hipotético <br />4.- q⇒r Silogismo Hipotético <br />5.- q⇒ s<br />6. - ¬s ⇒ ¬q Conclusión<br />Método Inductivo<br />Sirve para demostrar fórmulas o propiedades que son verdaderas para infinitos números naturales. Es decir para demostrar que las propiedades de la forma P(m) se cumple casi siempre para todo número natural m € N siendo n+ el conjunto de los característicos sin el cero V n € N+ (Siendo N* = N-{0}) Se trata de demostrar P(n), V n € N* El método de demostración inductivo consta de 3 pasos. <br />1. Paso Básico <br />Demostrar que la propiedad se cumple para el primer valor de de N que nos digan, casi siempre será 1. Se trata de demostrar P(1). <br />2. Paso Inductivo <br />Consiste en demostrar que si se cumple para un cierto n entonces también se cumple para n+1. Es decir que si se cumple para P(n) entonces se tiene que cumplir P(n+1). Se trata de demostrar la implicación P(n)->P(n+1). Supondremos como hipótesis P(n) (hipótesis de inducción). <br />3. Conclusión <br />Del paso básico y del paso inductivo se deduce que la proposición se cumple para todos los n naturales mayores o iguales a 1 (n>=1). <br />Método reducción al absurdo<br />Sólo sabremos si es una tautología. Supondremos que es una contradicción, por tanto podemos suponer que puede ser falsa. Sin con esta suposición se llega a una contradicción quería decir que esa falsedad supuesta nunca podría darse, por tanto la proposición sería siempre verdadera es decir una tautología.<br /> <br />