SlideShare a Scribd company logo
1 of 20
Download to read offline
1
ABSTRACT
“Material Selection for Smartphone Body Shell”
By Muhd Arshad Hassni, Bill Kyung Seok Baik, Muhammad Harith Mohd Fauzi,Jaehyuk Daniel Shim
The main goal in manufacturing a smartphone body shell relates to the phone’s durability,                         
performance and design. In terms of performance, the phone should be fully functional; choosing a                           
material that does not hinder with signal reception. Since every smartphone must maintain its                         
performance, the phone’s shell must play a key role in sustaining its functionality over time. This leads to                                 
the importance of a durable shell, as our goal is to ensure that the device becomes capable of lasting                                   
over time in terms of both its performance and appearance. Lasting through minor physical damage,                           
keeping the inside of the phone safe, and keeping the device reasonably compact and light are vital for                                 
the current market.
Many resources exist in regards to the aspect of materials selection offering great potential to                           
significantly modify and optimize the current design of the smartphone shell. Some key characteristics                         
that we will be aiming to modify include the weight, stiffness and strength that the shell exhibits.
This report will explore a number of sequential steps through the material selection process that                           
is going to be used or considered in determining the best material candidates in designing the                             
smartphone shell. Through understanding the parameters which affect the performance of the shell,                       
important information has been collected and analyzed. This information will contribute to the process of                           
designing the smartphone shell thus affecting the materials selection. Therefore, by taking all of these into                             
account, this report is aiming to find the most suitable material that will optimize the functionality,                             
performance and durability of a smartphone body shell.
2
1.0 INTRODUCTION
The purpose of this report is to investigate the best material that can be used for the smartphone                                 
shell. This deduction is primarily based on our Material Engineering courses, including library and                         
internet research.
Advances in technology and the discovery of new materials have enabled researchers to create                         
new materials that perform better than existing materials. There are wide range of materials, some of                             
which make them viable candidates for use in the shell of the smartphone. There is always room for                                 
improvement as the purpose of new development of better design and material used is to serve a better                                 
performance of both the smartphone and its users.
First, the background history of the smartphone shell will be presented. This section will provide                           
a look into the evolution of the smartphone shell’s design. A section of design analysis is also included                                 
regarding the conditions that must be met with the design of the new shell. Some attributes will have to                                   
stay the same while others require improvements on ubiquitous problems that are prevalent in the widely                             
accepted standard for smartphone shell today. In regards to improvement of the current design, the                           
materials utilized for the shell of the smartphone in today’s market will be analyzed.
A free body diagram is provided for a better understanding of this concept. Material index will                             
be derived based on our desired material properties that we would like to optimize. From here, a                               
material will be selected from a list of material candidates that satisfies our design constraints. Next, we                               
will discuss about shape factors in order to determine the most appropriate shape for our selected                             
material in designing the smartphone shell. Finally, we are going to compare different processes in order                             
to select the ideal manufacturing route that both suits our design and minimize costs.
2.0 HISTORY
The first smartphone was introduced in 1990s produced by IBM. From its day of birth until                             
today, a number of design evolutions along with developments have occurred with the purpose to give a                               
better performance along with a better user experience. At the same time, the mechanical functions of                             
the smartphone shell also becoming more important. Different materials have been used throughout the                         
time in designing the shell in order to meet current design requirements. From plastic in the early days, it                                   
3
was developed through research to produce a stiff and light material known as polycarbonate that is                             
widely used currently by Samsung smartphone. On the other hand, stainless steel and aluminum alloy                           
have also become the choice of producers such as Apple in designing their smartphone(iPhone) shell                           
due to their unique properties. This shows that material selection plays an important role in designing the                               
smartphone shell in producing a smartphone with the best quality.
3.0 DESIGN ANALYSIS
This design strives not to change the fundamental principles of the object, but rather serves as an                               
update of incremental performance advancements. In regards to the shell of the smartphone which we                           
seek to optimize, there are several parameters that must be considered that will allow us to identify the                                 
bounds within our specified designing process. Though it would be possible to come up with hundreds                             
of disorganized suggestions for the specification of the shell in consideration, we will be taking a                             
systematical approach by clearly and concisely identifying goals and constraints that are associated with                         
the design of the shell.
3.1 Free Body Diagram
Figure 1. Smartphone shell in bending
The free body diagram shows a situation where a smartphone shell is in bending situation. From                             
the magnified figure, we can see tension and compression situation that happen in bending. Therefore,                           
the material that we are going to use for the shell must be able to withstand these forces in order to                                       
maintain the functionality of the smartphone.
4
3.2 Design Constraints
The goal of the project is to optimize the shell of a smartphone in regards to its performance in                                   
everyday use. Because there are a large quantity of resources to work with in regards to the aspect of                                   
materials selection, there is much potential to significant modification and thus optimizing the current                         
design of the smartphone shell. Some key characteristics that we will be aiming to modify include the                               
weight, stiffness, and strength that the shell exhibits.
There is a lot to be desired in regards to overall performance. One factor we must consider is                                 
thermal conductivity. In designing the smartphone shell, it would be reasonable to narrow down a                           
material that has a high thermal conductivity so that the body of the material does allow heat to flow                                   
freely and thus prevent damage towards other components of the smartphone.
It is also important to consider the elasticity of the material that we will be using. We want to                                   
choose a material with high toughness so that the material will not easily fracture, as such a mode of                                   
failure would most likely affect the functionality of the smartphone especially if the phone is dropped. If                               
the material dents elastically on the other hand, this should be tolerable as the shape of the design should                                   
only morph slightly and thus prevent any damage  from being inflicted to inner components.
In designing a smartphone shell, we must also consider a situation where the shell will most likely                               
experience most of the time: bending. The compression and tension which happen in bending can affect                             
the functionality of the phone and might as well causes the phone to break easily. Therefore, in                               
encountering this problem, a stiff material should be selected in designing the smartphone shell so that                             
the shell does not bend easily thus preserve the phone in good condition.
In regards to the optimization of the shell’s performance, we should consider that a lighter                           
design will most likely be more favorable to users. This is because people nowadays tend to depend on                                 
their smartphones more than ever and it is the device that they have in their hands everywhere they go.                                   
Therefore, it is more convenient to bring a lighter device instead of having a heavy piece of technology in                                   
their pocket.
5
4.0 MATERIALS SELECTION
We will start our material selection process by translating our design needs discussed above to                           
function statements. We break down our design needs into function, objective, constraints, and free                         
variable statements for a systematical approach. Then we will utilize the material indices and material                           
property charts to screen out the best candidates.
4.1 Function
The function of the smartphone shell is to protect the core system of a smartphone; therefore,                             
the shell must be an elastic beam that can resist fracture due to external energy and creep over time. The                                     
most significant function of the smartphone shell is not to exceed the elastic limit of the shell’s material                                 
because the inner components of the phone cannot be protected anymore once the shell is plastically                             
deformed. For this reason, the beam has to be elastic so that the shell can absorb certain amount of                                   
kinetic energy when the phone is dropped; in other words, the shell has to have the ability to return to its                                       
original shape when the beam absorbs energy.
4.2  Objective
Our objective is to minimize the mass of the smartphone shell. This might be inconsistent with                             
our function of the smartphone shell; however, our group agreed that the toughness of the smartphone                             
does not need to be maximized since a phone will almost never experience extremely high energy.                             
Rather, we are looking to optimize the toughness of the shell because the shell should have some                               
degrees of toughness as phones are normally used in everyday life, not in extreme environments. This is                               
one of the main reasons why we decided to minimize the mass since high toughness often requires high                                 
density that would make a phone too heavy for a user to carry. This leads to our main reason:                                   
convenience. As the name of the product, smartphone, implies, the phone has to carry as many                             
functions as possible without weight of the phone disturbing the users’ comfort. In summary, the ideal                             
material for smartphone would have some resistance to fracture with the minimum weight.
6
4.3 Constraints
● Stiffness: High stiffness is required as to prevent major deformation of the phone in any real life                               
circumstance such as the phone being dropped from a user’s hand.
● Elastic limit: Yield stress is the limit where the deformation caused by exerted force can return                             
to its original state. Since the plastic deformation of the smartphone shell would not fully                           
function, it is important for the shell to have high yield stress.
● Thermal conductivity: Insulating material would not allow heat from inner components to                     
dissipate therefore resulting in overheating of the phone. However, good thermal conductivity                     
would also cause overheating from outer environments such as sun. Moderate thermal                     
conductivity of the shell would prevent the phone from overheating from both environment and                         
inner components.
● Cost: The cost of the material used for the phone’s shell must be at a reasonable price and be                                   
kept as low as possible. However, we are not going to find materials index for cost as it should                                   
be dealt as multiple objectives. We are going to discuss cost in process selection part.
4.4 Free Variables
● Materials
● Cross sectional area
Figure 2 Solid rectangular beam
4.5 Material Index
Now that we have our constraints listed in 4.3, we can relate our objective with the constraints                               
to find the material indices to screen out the best material for a smartphone shell. We are going to use                                     
yield stress for hardness, Young’s modulus for stiffness, and thermal conductivity as those three                         
properties are the main constraints that involves protection of the inner components of a smartphone. in                             
addition, due to the complexity of actual smartphone case’s geometry, we simplified its geometry to a                             
square beam. Square beam is suitable cross sectional area as most of the smartphone are mostly                             
rectangular.
7
We are going to be using the equation for bending since bending is the most common                             
deformation for smartphone shell. Figure 3 illustrates how beam in bending is related to smartphone’s                           
deformation: 1 is the finger we use to click the smartphone and 2 and 3 acts as the supports. This also is                                         
the case for dropping a phone; in the case of a drop, 1 would be the weight of the phone, and 2 and 3                                             
would be the force due to the ground when the phone hits the ground.
Figure 3. Beam in bending
4.6 Derivation of Materials Indices
Derivation here is only a brief derivation. For the full derivation, refer to the appendix attached at
the back of this report. The variable are specified below:
m = mass; b = width; h = height; L = length; S = stiffness; F = Force due to bending;
E = Young modulus; I = second moment of area; = density;  = deformationρ δ
● Material Index for Stiffness
Objective Equation:  ALm = ρ
Constraints Equation:   Deformation =  Moment of Inertias = δ
F FL3
48EI I = A2
12
By rearranging the four equations above, and using area A as free variable, our objective equation
becomes,
( ) m = ρ 4E
SL3
2
1
therefore our material index becomes
 M = ρ
E2
1
since we always want to maximize the material index, and our objective is to minimize the mass, we use
8
the reciprocal of M. Thus our final material index for stiffness is with free variable “b” is
1
M = ρ
E2
1
● Material Index for Yield Stress
Since there is only one objective, the objective equation is going to be same for all the material
indices; therefore, all the equations that are referred as objective is the objective equation in the material
index for stiffness.
Constraint Equation:  or    σ = A
F
 A = σ
F
By rearranging and combining the objective equation and constraint equation, the objective equation
becomes
L( )  m = F
ρ
σ
then our material index for yield stress is
 1
M = ρ
σ
● Material Index for Thermal Conductivity
Constraint Equation:  −  Q = λ t
ΔT
by rearranging and combining the objective and constraint equation using “A” as our free variable,
L  m = ρ −( λ Q
ΔT
) 2
1
then our material index for thermal conductivity is
 1
M = 1
ρλ2
1
4.7 Material Property Charts and Screening
Now that we have material indices for our constraints, we are going to screen out materials that                               
has highest material indices therefore selecting the materials with the best performances for each                         
constraints.
9
Chart 1. Young’s Modulus against density
Chart 1 relates Young’s modulus and density. The slope of the line is 2 according to the material index                                   
with free variable A(refer to material index for stiffness and appendix for slope). Candidates: Bamboo,                           
CFRP, Rigid Polymer Foam (LD), Silicon Carbide, Wood (typical along grain)
Chart 2. Yield Strength against Density
Chart 2 relates yield strength and density. The slope of the line is 1 according to the material index with                                     
free variable A (refer to material index for yield stress and appendix for slope) Candidates: CFRP,                             
Low Alloy Steel, Magnesium Alloys, Silicon Carbide, and Titanium Alloys
10
Chart 3. Thermal conductivity against density
Chart 3 relates thermal conductivity and density. The slope of the line is ­1/2 according to our material                                 
index for thermal conductivity (refer to material index for thermal conductivity and appendix).                       
Candidates: Copper,Gold, Silver, Tungsten Alloys, Tungsten Carbides
4.8 Selection from Initial Screening
Utilizing the material property charts illustrated above to screen out the candidates for                       
smartphone shell, we are taking any materials that were selected twice or more in three screenings                             
performed. We concluded that the possible candidate materials are Silicon Carbide and CFRP. On the                           
one hand, CFRP may meet stiffness and yield stress constraints, but it is far away from the material                                 
index line for thermal conductivity. On the other hand, even though Silicon Carbide was not a candidate                               
material in thermal conductivity screening, it is fairly close to the material index line (refer to Chart 3)                                 
and it satisfies stiffness and yield stress constraints. For this reason, we have selected, at this stage,                               
Silicon Carbide to be the best material for smartphone shell.
11
5.0 SHAPE OPTIMIZATION
According to Ashby (2011), shape can be utilized “to increase the mechanical efficiency of a                           
material. which means that the section uses as little material as possible. Shape selection in design refers                               
to the selection on the cross­sectional shape in the form of tie or beam or shaft or column”(p.244). Our                                   
group has agreed that the shell must be an elastic beam that can resist fracture due to the external energy                                     
and creep over time.
5.1 Effect of Shape on Design
If we look at the existing design, smartphone manufacturers give their best to get the proper and                               
well­designed shape based on market demand. Some customers consider the mass of the smartphone                         
to be the most important, the lighter the phone, the more convenient the phone is. However, some of the                                   
consumers would prefer smartphones made from high quality material. Manufacturing higher quality                     
products requires high cost thus having the ideal shape is essential to minimize the amount of material                               
used and definitely minimize our production cost.
5.2 Existing Design
For the past decade, technology has evolved in many different aspects including the                       
improvement on the shape of the material. As we know that, there is a trade­off between mass and the                                   
performance of the smartphone. We can compare Samsung Galaxy II (SII) to Samsung Galaxy III                           
(SIII). Both smartphone models are made of polycarbonate, which exhibits a brittle fracture when the                           
material ( polycarbonate) is dropped with a very high speed. According to Gaymans, “brittle fracture                           
occurs on polycarbonate if the deformation rates are increased”(2000). For example, if we drop the                           
smartphone from the second floor of a building, the event will cause a large force when it hits the ground                                     
due to the higher rate of deformation and causes brittle fracture.
Probability of brittle fracture can be reduced if we lower the stress concentration factor of the                             
material. If we compare both smartphones, SIII(133g) is heavier than SII(116g) by 17g but is more                             
resistance to deformation and crack propagation due to its round corners and curved edges (refer                           
Figure 8 in appendix). In a simple way, SIII has demonstrated a lower stress concentration factor due                               
12
to a larger radius of the curvature of the crack tip formed. According to Callister, “stress concentration                               
factor is defined as the ratio of the maximum stress to the magnitude of the nominal applied                               
stress”(p.243).
The formula : = 2 as a is the length of the surface crack and is the radius of      Kt = σ°
σm
   [a
ρt
]
1/2
                    pt      
curvature of the crack tip.
Under a brittle condition, the polycarbonate will undergo fracture if the shell’s material has a                           
very large stress concentration factor because of large stress amplification. Therefore, Samsung has                       
changed the shape from a rectangular corner to the curved corners to get a large value for which                                  ρt
lowered the stress concentration factor. But due to the change in shape, extra amount of material has                               
been added to accommodate the design shape for SIII. Therefore, it increases the mass and definitely                             
the phone’s production cost.
5.3 Shape Factors and Material Indices
Shape factor is the measure of the efficiency of the material usage. Recalling back, our group                             
has agreed that the smartphone acts as an elastic beam in which the design constraints from are the                                 
stiffness and yield strength. Therefore, the beam must carry bending moments and our task is to                             
minimize the bending moment by having a proper shape. To do that, we need to obtain the correct                                 
shape factor, which is represented by the ratio of the stiffness of the shaped section to the neutral                                 
reference shape. Therefore, we make an analysis on the square beam and I­beam (refer to the                             
appendix). The best shape obtained in from previous analysis  is the square beam.
Objective equation Constraint equation
Equation of Mass
 (i) m =   (bh)Lρ
(ii)  = 1
m ρ
(Eϕ )e
B
1/3
( )( )4b
SL3 −1/3
1
bL
(iii) S =  =   (stiffness equation)δ
 F FL3 
 
48EI
(iv) I =    ( the equation of I )
(v)   (deflection equation)δ = 12FL3
48Eϕ bhe
B
3
(vi) S =   ( new stiffness equation)L3
4Eϕ bhe
B
3 
 
(vii) h =  (taking h as free variable) [ SL3
4Eϕ be
B
]
−1/3
13
Assuming the materials is silicon carbide
The amount of mass used for the square beam (h                 
as the free variable) is 2.7*10^(­3) kg
The table above describes the derivation of the objective equation (i) as the function of density,                             
section area and length. From the table, we have taken the stiffness as the design constraint The                               
constraint equation is represented by equation (iii). Next, the second moment of area which is a variable                               
in the stiffness equation is defined as the function of the shape factor by equation (iv). Derivation has                                 
been made and we take h as the free variable in equation (vii). Finally, we substitute the equation (vii)                                   
into the objective equation (i) and get the new objective equation (ii).
Our group has agreed that the square beam is the optimal shape for our design as the mass for                                   
the beam made out of Silicon Carbide is a reasonable mass(2.7*10^(­3)kg). In contrast, I­beam shape                           
has given us an unreasonable mass of 6.6*10^(­4) kg. If we pick I­beam as our design shape, the                                 
design would be less stiff and there would be more deflection due to the bending.
5.4 Limiting Factor
However, when we consider the shape factor, there are some limitations that exist within the                           
design.The first is the empirical limit. If we look at the shape factor of the square beam, the shape factor                                     
is equivalent to the ratio of the second moment of area to the section area. Based on the objective                                   
equation, we have seen that, mass minimization requires us to maximize the shape factor.Theoretically,                         
we will take the second moment of area to be infinity and the section area to be as small as possible.                                       
However, it is impossible for that kind of design. Therefore, it limits the numerical value of our shape                                 
factor. Shape factor is represented by the slope of the log­log graph in the material chart below (                                 
obtained from CES) :   =  (refer to the appendix).ϕe
B A
12I
14
Chart 4. Second moment of area against section area
The upper limit for the shape efficiency are important. They are central to the design of                             
structures that are light or for which, for other reasons(cost), the material content should be minimized.                             
In addition to that, when efficient shapes can be fabricated, the limits of the efficiency are set by the                                   
competition between failure modes. For this design, we just consider the bending as the failure mode                             
even we have the other mode of failure like buckling. The shape factor avoid generalized buckling in                               
compression can only made be increased by a certain amount because further increasing the shape                           
factor leads to the structure becoming unstable for localized buckling.
6.0 PROCESS SELECTION
Now that we performed our overall material selection, we will examine possible processing                       
techniques and come up with one process that is most suitable for our design. Previous analysis proved                               
that silicon carbide (SiC) with a square cross sectional shape is most suitable for our design of a                                 
smartphone shell. Taking this into account, we will take the process selection approach to screen out                             
and rank the different processes accordingly. One type of process for each of the three manufacturing                             
steps (shaping, joining and finishing) will be needed. The screening process will be mainly taken through                             
the usage of process selection charts by Ashby and the CES software will help us the rank the                                 
processes.
15
6.1 Silicon Carbide
Silicon carbide (SiC, carborundum) is classified as a technical ceramic and is made by fusing                           
sand and coke (CES). It is a very hard, stiff material and works in very high temperature ranges. It is                                     
highly resistant to corrosion and has excellent durability in almost any circumstance. Silicon carbide has                           
a density range of 3100 to 3210 kg/m3
 at a price of roughly 14.76 USD/kg to 21.06 USD/kg.
6.2 Process Requirements
Before initial screening of the many processes, we should take into consideration exactly what                         
requirements should be met during processing. In the shaping process, we will aim to design a solid                               
square cross sectional shape as determined earlier through the use of shape factors. During the joining                             
process, it is crucial to regard which individual process will best keep the smartphone intact firmly                             
together when it faces damage. Finally, the finishing process will be essential to produce a smooth,                             
attractive surface for the smartphone to gain consumers’ interest.
The primary objective for process selection is to minimize the cost as much as possible. This is                               
an obvious choice since no manufacturer wants to inflate costs in processing especially. Another                         
objective is considering which process provides best compatibility and be as efficient as possible.
6.3 Shaping Process
Figure 4 consists of a process compatibility chart in which all types of materials are labeled and                               
recorded if a certain process can be made possible with a chosen material. In our case, we are only                                   
going to consider silicon carbide which is a ceramic. This chart shows us that our immediate process                               
candidates for shaping are powder methods, electro­machining and conventional shaping. All three                     
processes are able to generate our proposed shape (square beam shape) at a wide range of mass,                               
giving us some insured flexibility.
16
Figure 4. Shaping process selection
Subsequently, we will analyze a process­section thickness chart (Figure 5). This chart shows all
the different possible thickness ranges that individual processes can produce. We will arbitrarily set a
safe section thickness range of 7­10 mm and this is reasonable for a thickness of a modern smartphone.
As indicated by the chart, electro­machining cannot produce a section thickness of 10 mm it lies a little
short of it. Therefore, at this point we will eliminate electro­machining as a possible process solution.
This leaves conventional machining and powder methods as our candidates that will be analyzed further.
Figure 5. process­section thickness chart
17
6.4 Ranking the Shaping Process
Within the numerous different methods of conventional machining and powder methods, we will                       
narrow it down to three possible choices. The reason for this was that not all methods were compatible                                 
or could operate at a reasonable cost. The three methods we believe are best suitable is circular sawing                                 
(conventional machining), powder injection molding (powder methods), and pressing and sintering                   
(powder methods). From these 3 methods, we will then determine which one is the most efficient in                               
terms of cost and production for our smartphone shell design.
Circular sawing: a rotating circular blade is used to make contact and shape the material. The                             
blade can be used horizontally, vertically or in an inclined angle to provide great precision and smooth                               
finish on the surfaces. It provides compatibility with both small and large material masses as it is                               
commonly used in many engineering applications (specifications in appendix).
Powder injection molding: a process in which ceramic powder and a thermoplastic binder                       
injected together under a specific pressure into heated molds on standard injection molding machines                         
(specifications in appendix).
Pressing and sintering: loose powder packed in a shaped ceramic is sintered at almost 2/3 of                             
the powder’s melting temperature. Powder is first compressed in a cold die to give it strength so that it                                   
can be sintered as a free­standing body. Hot pressing is used for better densification, strength and                             
ductility of the final material (specifications in appendix).
As we are aiming to identify the process with the lowest cost when the smartphone case is in                                 
mass production, we are going to use process cost model equation to compare the costs of our                               
candidate processes. The cost model indicates that, for mass production, pressing and sintering has                         
lower cost than powder injection and molding (more details in Appendix). Then the comparison                         
between circular sawing and pressing/sintering tells us that pressing/sintering is more applicable in our                         
case because of high production rate and reasonable size of batch rate and capital cost (refer to Table                                 
1). aterial cost per unit mass C = m + Batch Size
Fixed Tooling Cost
+ 1
Batch Rate ∑
i
1
Overhead Costi
18
Circular sawing Powder injection
molding
Pressing and
sintering
Tooling Cost Low High Medium
Equipment Cost Medium High Medium
Labour Intensity Medium Low Low
Capital Cost (not specified) $165 945­
$1 659 450
$58 125­ $331 890
Production rate (not specified) 40­ 360 /hr 120­ 1200 /hr
Economic batch size 1­ 10 000 000 100 000­ 10 000 000 5000­ 5 000 000
Table 1. Cost­process comparison
For circular sawing, the batch size range spans too long to the extent that capital cost and                               
production rate varies vastly. The labour intensity for circular sawing is highest among the three, which                             
means that although tooling cost is low the labour costs cannot be neglected. The powder injection                             
molding method is a rather quick, expensive production method. In this process, although labour                         
intensity may be low, the tooling cost is considerably high along with equipment cost. This means that                               
this process is going to take up money periodically and fail to meet our objective. Consequently, the                               
pressing and sintering method appears to be the ideal choice it provides a moderate cost range that is                                 
fairly manageable.
At this point, it is safe to say that pressing and sintering is the most suitable for our smartphone                                   
case processing method.
6.5 Joining Process
The next step is the joining process, here we will examine which process is compatible with                             
silicon carbide and choose the one that offers the best results. According to Figure 6, it is accurate to                                   
state that adhesives and fasteners are the only possibilities in our design as silicon carbide is a ceramic.
19
Figure 6. Joining process selection
Through usage of the CES software, we learned that the specific processes that are directly                           
compatible with ceramics are flexible adhesives, rigid adhesives and snap fit fasteners. Further details                         
and specifications of these methods can be found in the Appendix.
Through comparison, rigid adhesives appear to be the best choice. First of all, snap fit fasteners                             
work best with materials with large yields strains such as polymers. Although usage with ceramics may                             
work, it may not be the ideal selection as snap fit fasteners are mainly used for polymer parts or metal                                     
casings. Although the usage of flexible adhesives could also be a fair choice, we believe that they are                                 
mostly applied with metals and polymers mostly on large scale structures. Rigid adhesives do offer                           
larger ranges of materials that were frequently used, which includes ceramics. As referenced in the                           
appendix, they are constantly used in the electronic industry from recent past therefore it was an                             
attractive choice for rigid adhesives for our joining process.
6.6 Finishing process (surface treatment)
Today’s users demand fashionable and trendy cases for their phones, which is why we need to                             
consider finishing processes that can enhance the appearance of our smartphone case. At this stage of                             
our designing process, we can improve our design by introducing and applying appropriate surface                         
treatment to our material.
In our case, our objectives for final processing are to improve the fracture toughness and                           
enhance the appearance. Ashby proposes a few of common final processes such as heat treatment,                           
quenching and coating. Polymer powder coating/spraying is one of the suitable options for our final                           
processing treatment since polymer coating would enable us to colour the surface for an attractive look.                             
Not only that, the polymeric surface would prevent surface cracks of SiC from propagating thus                           
20
improving our drawback of fracture toughness.
There are three types of polymer coating: polymer electrostatic spray, flame spraying, and                       
fluidized­bed coating. All polymer coatings are applicable to our smartphone case because none of them                           
are toxic, or has any negative effect on environment and all of them enhances the performance of the                                 
smartphone case. However, electrostatic spray stands out as our top candidate for surface treatment                         
due to its desired properties: good surface hardness, smooth surface, medium equipment cost, and low                           
relative tooling cost. Those physical properties would meet our finishing process objectives to improve                         
the fracture toughness and to improve the appearance.
7.0 CONCLUSION
Throughout this report, our group demonstrated how silicon carbide is the best material for our                           
design of a smartphone shell. Although ceramics are not commonly used in today’s smartphones, we                           
attempted to introduce several good qualities that ceramics possess and should be considered in future                           
smartphone designs. We were able to prove that silicon carbide satisfies all of our needs for this design                                 
through various analysis and comparisons with other materials. This material provides the ideal stiffness                         
to resist plastic deformation and maximizes our material indices for optimal performance. After that, we                           
observed that a solid square cross section is the most efficient through shape factor analysis. For the                               
manufacturing process, we undertook various screening and ranking of the numerous processes and                       
methods that were available to us. From these we were able to determine that shaping was to be done                                   
with the pressing and sintering method, using rigid adhesives for joining the material together, and                           
polymer electrostatic spray for surface treatment. Using all sequential analysis shown in this report, we                           
are now prepared to take the next step to material development in the smartphone industry.

More Related Content

Similar to FinalReport

Curbell Final Report
Curbell Final ReportCurbell Final Report
Curbell Final ReportGlen Noworyta
 
Simplexity Smart Goods workshop presentation rev3
Simplexity Smart Goods workshop presentation rev3Simplexity Smart Goods workshop presentation rev3
Simplexity Smart Goods workshop presentation rev3Dorota Shortell
 
Running head MEMO .docx
Running head MEMO                                              .docxRunning head MEMO                                              .docx
Running head MEMO .docxtodd581
 
Running head MEMO .docx
Running head MEMO                                              .docxRunning head MEMO                                              .docx
Running head MEMO .docxglendar3
 
Handheld device design
Handheld device designHandheld device design
Handheld device designEunice Wong
 
COSMOS: A CONTEXT SENSITIVE MODEL FOR DYNAMIC CONFIGURATION OF SMARTPHONES US...
COSMOS: A CONTEXT SENSITIVE MODEL FOR DYNAMIC CONFIGURATION OF SMARTPHONES US...COSMOS: A CONTEXT SENSITIVE MODEL FOR DYNAMIC CONFIGURATION OF SMARTPHONES US...
COSMOS: A CONTEXT SENSITIVE MODEL FOR DYNAMIC CONFIGURATION OF SMARTPHONES US...Zac Darcy
 
How flash responds to different AIoT needs -- C&T RF Antennas Inc
How flash responds to different AIoT needs -- C&T RF Antennas IncHow flash responds to different AIoT needs -- C&T RF Antennas Inc
How flash responds to different AIoT needs -- C&T RF Antennas IncAntenna Manufacturer Coco
 
Samsung Galaxy S23
Samsung Galaxy S23Samsung Galaxy S23
Samsung Galaxy S23ssusera6bfb6
 
NEW PRODUCT DEVELOPMENT - EDT 700
 NEW PRODUCT DEVELOPMENT - EDT 700 NEW PRODUCT DEVELOPMENT - EDT 700
NEW PRODUCT DEVELOPMENT - EDT 700Zatie Marzuki
 
Design and testing for better power consumption and battery life in smartphones
Design and testing for better power consumption and battery life in smartphonesDesign and testing for better power consumption and battery life in smartphones
Design and testing for better power consumption and battery life in smartphonesMoe Tanabian
 
Seven small but important things to observe before order 3d printed parts online
Seven small but important things to observe before order 3d printed parts onlineSeven small but important things to observe before order 3d printed parts online
Seven small but important things to observe before order 3d printed parts onlineIannone 3D
 

Similar to FinalReport (20)

Design for Failure
Design for FailureDesign for Failure
Design for Failure
 
Curbell Final Report
Curbell Final ReportCurbell Final Report
Curbell Final Report
 
Simplexity Smart Goods workshop presentation rev3
Simplexity Smart Goods workshop presentation rev3Simplexity Smart Goods workshop presentation rev3
Simplexity Smart Goods workshop presentation rev3
 
KGV GCSE RM 2016
KGV GCSE RM 2016KGV GCSE RM 2016
KGV GCSE RM 2016
 
Project ara
Project araProject ara
Project ara
 
Running head MEMO .docx
Running head MEMO                                              .docxRunning head MEMO                                              .docx
Running head MEMO .docx
 
Running head MEMO .docx
Running head MEMO                                              .docxRunning head MEMO                                              .docx
Running head MEMO .docx
 
GCSE RM 2016
GCSE RM 2016GCSE RM 2016
GCSE RM 2016
 
DanielNakhaee-Zadeh_Poster1_Intership_2016
DanielNakhaee-Zadeh_Poster1_Intership_2016DanielNakhaee-Zadeh_Poster1_Intership_2016
DanielNakhaee-Zadeh_Poster1_Intership_2016
 
UNIT-1_DME.pptx
UNIT-1_DME.pptxUNIT-1_DME.pptx
UNIT-1_DME.pptx
 
Project ARA
Project ARAProject ARA
Project ARA
 
Handheld device design
Handheld device designHandheld device design
Handheld device design
 
COSMOS: A CONTEXT SENSITIVE MODEL FOR DYNAMIC CONFIGURATION OF SMARTPHONES US...
COSMOS: A CONTEXT SENSITIVE MODEL FOR DYNAMIC CONFIGURATION OF SMARTPHONES US...COSMOS: A CONTEXT SENSITIVE MODEL FOR DYNAMIC CONFIGURATION OF SMARTPHONES US...
COSMOS: A CONTEXT SENSITIVE MODEL FOR DYNAMIC CONFIGURATION OF SMARTPHONES US...
 
How flash responds to different AIoT needs -- C&T RF Antennas Inc
How flash responds to different AIoT needs -- C&T RF Antennas IncHow flash responds to different AIoT needs -- C&T RF Antennas Inc
How flash responds to different AIoT needs -- C&T RF Antennas Inc
 
Samsung Galaxy S23
Samsung Galaxy S23Samsung Galaxy S23
Samsung Galaxy S23
 
Smart phone for elderly populace
Smart phone for elderly populaceSmart phone for elderly populace
Smart phone for elderly populace
 
NEW PRODUCT DEVELOPMENT - EDT 700
 NEW PRODUCT DEVELOPMENT - EDT 700 NEW PRODUCT DEVELOPMENT - EDT 700
NEW PRODUCT DEVELOPMENT - EDT 700
 
Design and testing for better power consumption and battery life in smartphones
Design and testing for better power consumption and battery life in smartphonesDesign and testing for better power consumption and battery life in smartphones
Design and testing for better power consumption and battery life in smartphones
 
Seven small but important things to observe before order 3d printed parts online
Seven small but important things to observe before order 3d printed parts onlineSeven small but important things to observe before order 3d printed parts online
Seven small but important things to observe before order 3d printed parts online
 
Phonebloks
PhonebloksPhonebloks
Phonebloks
 

More from Muhammad Harith Mohd Fauzi (9)

Project 5 report 5.13 pm
Project 5 report 5.13 pmProject 5 report 5.13 pm
Project 5 report 5.13 pm
 
Lab 5 Report harith edit 8.32pm
Lab 5 Report harith edit 8.32pmLab 5 Report harith edit 8.32pm
Lab 5 Report harith edit 8.32pm
 
Supercapacitors as an Energy Storage Device
Supercapacitors as an Energy Storage DeviceSupercapacitors as an Energy Storage Device
Supercapacitors as an Energy Storage Device
 
Material Selection of Smartphone Body Shell [Autosaved].ppt 2
Material Selection of Smartphone Body Shell [Autosaved].ppt 2Material Selection of Smartphone Body Shell [Autosaved].ppt 2
Material Selection of Smartphone Body Shell [Autosaved].ppt 2
 
Project 2
Project 2Project 2
Project 2
 
MTRL 485 - V3
MTRL 485 - V3MTRL 485 - V3
MTRL 485 - V3
 
MTRL 460-2014-TutRep3-Team9
MTRL 460-2014-TutRep3-Team9MTRL 460-2014-TutRep3-Team9
MTRL 460-2014-TutRep3-Team9
 
MTRL 456 Term Project report March 24 11.21 pm
MTRL 456  Term Project report March 24 11.21 pmMTRL 456  Term Project report March 24 11.21 pm
MTRL 456 Term Project report March 24 11.21 pm
 
ANM-100 Proposal
ANM-100 ProposalANM-100 Proposal
ANM-100 Proposal
 

FinalReport

  • 1. 1 ABSTRACT “Material Selection for Smartphone Body Shell” By Muhd Arshad Hassni, Bill Kyung Seok Baik, Muhammad Harith Mohd Fauzi,Jaehyuk Daniel Shim The main goal in manufacturing a smartphone body shell relates to the phone’s durability,                          performance and design. In terms of performance, the phone should be fully functional; choosing a                            material that does not hinder with signal reception. Since every smartphone must maintain its                          performance, the phone’s shell must play a key role in sustaining its functionality over time. This leads to                                  the importance of a durable shell, as our goal is to ensure that the device becomes capable of lasting                                    over time in terms of both its performance and appearance. Lasting through minor physical damage,                            keeping the inside of the phone safe, and keeping the device reasonably compact and light are vital for                                  the current market. Many resources exist in regards to the aspect of materials selection offering great potential to                            significantly modify and optimize the current design of the smartphone shell. Some key characteristics                          that we will be aiming to modify include the weight, stiffness and strength that the shell exhibits. This report will explore a number of sequential steps through the material selection process that                            is going to be used or considered in determining the best material candidates in designing the                              smartphone shell. Through understanding the parameters which affect the performance of the shell,                        important information has been collected and analyzed. This information will contribute to the process of                            designing the smartphone shell thus affecting the materials selection. Therefore, by taking all of these into                              account, this report is aiming to find the most suitable material that will optimize the functionality,                              performance and durability of a smartphone body shell.
  • 2. 2 1.0 INTRODUCTION The purpose of this report is to investigate the best material that can be used for the smartphone                                  shell. This deduction is primarily based on our Material Engineering courses, including library and                          internet research. Advances in technology and the discovery of new materials have enabled researchers to create                          new materials that perform better than existing materials. There are wide range of materials, some of                              which make them viable candidates for use in the shell of the smartphone. There is always room for                                  improvement as the purpose of new development of better design and material used is to serve a better                                  performance of both the smartphone and its users. First, the background history of the smartphone shell will be presented. This section will provide                            a look into the evolution of the smartphone shell’s design. A section of design analysis is also included                                  regarding the conditions that must be met with the design of the new shell. Some attributes will have to                                    stay the same while others require improvements on ubiquitous problems that are prevalent in the widely                              accepted standard for smartphone shell today. In regards to improvement of the current design, the                            materials utilized for the shell of the smartphone in today’s market will be analyzed. A free body diagram is provided for a better understanding of this concept. Material index will                              be derived based on our desired material properties that we would like to optimize. From here, a                                material will be selected from a list of material candidates that satisfies our design constraints. Next, we                                will discuss about shape factors in order to determine the most appropriate shape for our selected                              material in designing the smartphone shell. Finally, we are going to compare different processes in order                              to select the ideal manufacturing route that both suits our design and minimize costs. 2.0 HISTORY The first smartphone was introduced in 1990s produced by IBM. From its day of birth until                              today, a number of design evolutions along with developments have occurred with the purpose to give a                                better performance along with a better user experience. At the same time, the mechanical functions of                              the smartphone shell also becoming more important. Different materials have been used throughout the                          time in designing the shell in order to meet current design requirements. From plastic in the early days, it                                   
  • 3. 3 was developed through research to produce a stiff and light material known as polycarbonate that is                              widely used currently by Samsung smartphone. On the other hand, stainless steel and aluminum alloy                            have also become the choice of producers such as Apple in designing their smartphone(iPhone) shell                            due to their unique properties. This shows that material selection plays an important role in designing the                                smartphone shell in producing a smartphone with the best quality. 3.0 DESIGN ANALYSIS This design strives not to change the fundamental principles of the object, but rather serves as an                                update of incremental performance advancements. In regards to the shell of the smartphone which we                            seek to optimize, there are several parameters that must be considered that will allow us to identify the                                  bounds within our specified designing process. Though it would be possible to come up with hundreds                              of disorganized suggestions for the specification of the shell in consideration, we will be taking a                              systematical approach by clearly and concisely identifying goals and constraints that are associated with                          the design of the shell. 3.1 Free Body Diagram Figure 1. Smartphone shell in bending The free body diagram shows a situation where a smartphone shell is in bending situation. From                              the magnified figure, we can see tension and compression situation that happen in bending. Therefore,                            the material that we are going to use for the shell must be able to withstand these forces in order to                                        maintain the functionality of the smartphone.
  • 4. 4 3.2 Design Constraints The goal of the project is to optimize the shell of a smartphone in regards to its performance in                                    everyday use. Because there are a large quantity of resources to work with in regards to the aspect of                                    materials selection, there is much potential to significant modification and thus optimizing the current                          design of the smartphone shell. Some key characteristics that we will be aiming to modify include the                                weight, stiffness, and strength that the shell exhibits. There is a lot to be desired in regards to overall performance. One factor we must consider is                                  thermal conductivity. In designing the smartphone shell, it would be reasonable to narrow down a                            material that has a high thermal conductivity so that the body of the material does allow heat to flow                                    freely and thus prevent damage towards other components of the smartphone. It is also important to consider the elasticity of the material that we will be using. We want to                                    choose a material with high toughness so that the material will not easily fracture, as such a mode of                                    failure would most likely affect the functionality of the smartphone especially if the phone is dropped. If                                the material dents elastically on the other hand, this should be tolerable as the shape of the design should                                    only morph slightly and thus prevent any damage  from being inflicted to inner components. In designing a smartphone shell, we must also consider a situation where the shell will most likely                                experience most of the time: bending. The compression and tension which happen in bending can affect                              the functionality of the phone and might as well causes the phone to break easily. Therefore, in                                encountering this problem, a stiff material should be selected in designing the smartphone shell so that                              the shell does not bend easily thus preserve the phone in good condition. In regards to the optimization of the shell’s performance, we should consider that a lighter                            design will most likely be more favorable to users. This is because people nowadays tend to depend on                                  their smartphones more than ever and it is the device that they have in their hands everywhere they go.                                    Therefore, it is more convenient to bring a lighter device instead of having a heavy piece of technology in                                    their pocket.
  • 5. 5 4.0 MATERIALS SELECTION We will start our material selection process by translating our design needs discussed above to                            function statements. We break down our design needs into function, objective, constraints, and free                          variable statements for a systematical approach. Then we will utilize the material indices and material                            property charts to screen out the best candidates. 4.1 Function The function of the smartphone shell is to protect the core system of a smartphone; therefore,                              the shell must be an elastic beam that can resist fracture due to external energy and creep over time. The                                      most significant function of the smartphone shell is not to exceed the elastic limit of the shell’s material                                  because the inner components of the phone cannot be protected anymore once the shell is plastically                              deformed. For this reason, the beam has to be elastic so that the shell can absorb certain amount of                                    kinetic energy when the phone is dropped; in other words, the shell has to have the ability to return to its                                        original shape when the beam absorbs energy. 4.2  Objective Our objective is to minimize the mass of the smartphone shell. This might be inconsistent with                              our function of the smartphone shell; however, our group agreed that the toughness of the smartphone                              does not need to be maximized since a phone will almost never experience extremely high energy.                              Rather, we are looking to optimize the toughness of the shell because the shell should have some                                degrees of toughness as phones are normally used in everyday life, not in extreme environments. This is                                one of the main reasons why we decided to minimize the mass since high toughness often requires high                                  density that would make a phone too heavy for a user to carry. This leads to our main reason:                                    convenience. As the name of the product, smartphone, implies, the phone has to carry as many                              functions as possible without weight of the phone disturbing the users’ comfort. In summary, the ideal                              material for smartphone would have some resistance to fracture with the minimum weight.
  • 6. 6 4.3 Constraints ● Stiffness: High stiffness is required as to prevent major deformation of the phone in any real life                                circumstance such as the phone being dropped from a user’s hand. ● Elastic limit: Yield stress is the limit where the deformation caused by exerted force can return                              to its original state. Since the plastic deformation of the smartphone shell would not fully                            function, it is important for the shell to have high yield stress. ● Thermal conductivity: Insulating material would not allow heat from inner components to                      dissipate therefore resulting in overheating of the phone. However, good thermal conductivity                      would also cause overheating from outer environments such as sun. Moderate thermal                      conductivity of the shell would prevent the phone from overheating from both environment and                          inner components. ● Cost: The cost of the material used for the phone’s shell must be at a reasonable price and be                                    kept as low as possible. However, we are not going to find materials index for cost as it should                                    be dealt as multiple objectives. We are going to discuss cost in process selection part. 4.4 Free Variables ● Materials ● Cross sectional area Figure 2 Solid rectangular beam 4.5 Material Index Now that we have our constraints listed in 4.3, we can relate our objective with the constraints                                to find the material indices to screen out the best material for a smartphone shell. We are going to use                                      yield stress for hardness, Young’s modulus for stiffness, and thermal conductivity as those three                          properties are the main constraints that involves protection of the inner components of a smartphone. in                              addition, due to the complexity of actual smartphone case’s geometry, we simplified its geometry to a                              square beam. Square beam is suitable cross sectional area as most of the smartphone are mostly                              rectangular.
  • 7. 7 We are going to be using the equation for bending since bending is the most common                              deformation for smartphone shell. Figure 3 illustrates how beam in bending is related to smartphone’s                            deformation: 1 is the finger we use to click the smartphone and 2 and 3 acts as the supports. This also is                                          the case for dropping a phone; in the case of a drop, 1 would be the weight of the phone, and 2 and 3                                              would be the force due to the ground when the phone hits the ground. Figure 3. Beam in bending 4.6 Derivation of Materials Indices Derivation here is only a brief derivation. For the full derivation, refer to the appendix attached at the back of this report. The variable are specified below: m = mass; b = width; h = height; L = length; S = stiffness; F = Force due to bending; E = Young modulus; I = second moment of area; = density;  = deformationρ δ ● Material Index for Stiffness Objective Equation:  ALm = ρ Constraints Equation:   Deformation =  Moment of Inertias = δ F FL3 48EI I = A2 12 By rearranging the four equations above, and using area A as free variable, our objective equation becomes, ( ) m = ρ 4E SL3 2 1 therefore our material index becomes  M = ρ E2 1 since we always want to maximize the material index, and our objective is to minimize the mass, we use
  • 8. 8 the reciprocal of M. Thus our final material index for stiffness is with free variable “b” is 1 M = ρ E2 1 ● Material Index for Yield Stress Since there is only one objective, the objective equation is going to be same for all the material indices; therefore, all the equations that are referred as objective is the objective equation in the material index for stiffness. Constraint Equation:  or    σ = A F  A = σ F By rearranging and combining the objective equation and constraint equation, the objective equation becomes L( )  m = F ρ σ then our material index for yield stress is  1 M = ρ σ ● Material Index for Thermal Conductivity Constraint Equation:  −  Q = λ t ΔT by rearranging and combining the objective and constraint equation using “A” as our free variable, L  m = ρ −( λ Q ΔT ) 2 1 then our material index for thermal conductivity is  1 M = 1 ρλ2 1 4.7 Material Property Charts and Screening Now that we have material indices for our constraints, we are going to screen out materials that                                has highest material indices therefore selecting the materials with the best performances for each                          constraints.
  • 9. 9 Chart 1. Young’s Modulus against density Chart 1 relates Young’s modulus and density. The slope of the line is 2 according to the material index                                    with free variable A(refer to material index for stiffness and appendix for slope). Candidates: Bamboo,                            CFRP, Rigid Polymer Foam (LD), Silicon Carbide, Wood (typical along grain) Chart 2. Yield Strength against Density Chart 2 relates yield strength and density. The slope of the line is 1 according to the material index with                                      free variable A (refer to material index for yield stress and appendix for slope) Candidates: CFRP,                              Low Alloy Steel, Magnesium Alloys, Silicon Carbide, and Titanium Alloys
  • 10. 10 Chart 3. Thermal conductivity against density Chart 3 relates thermal conductivity and density. The slope of the line is ­1/2 according to our material                                  index for thermal conductivity (refer to material index for thermal conductivity and appendix).                        Candidates: Copper,Gold, Silver, Tungsten Alloys, Tungsten Carbides 4.8 Selection from Initial Screening Utilizing the material property charts illustrated above to screen out the candidates for                        smartphone shell, we are taking any materials that were selected twice or more in three screenings                              performed. We concluded that the possible candidate materials are Silicon Carbide and CFRP. On the                            one hand, CFRP may meet stiffness and yield stress constraints, but it is far away from the material                                  index line for thermal conductivity. On the other hand, even though Silicon Carbide was not a candidate                                material in thermal conductivity screening, it is fairly close to the material index line (refer to Chart 3)                                  and it satisfies stiffness and yield stress constraints. For this reason, we have selected, at this stage,                                Silicon Carbide to be the best material for smartphone shell.
  • 11. 11 5.0 SHAPE OPTIMIZATION According to Ashby (2011), shape can be utilized “to increase the mechanical efficiency of a                            material. which means that the section uses as little material as possible. Shape selection in design refers                                to the selection on the cross­sectional shape in the form of tie or beam or shaft or column”(p.244). Our                                    group has agreed that the shell must be an elastic beam that can resist fracture due to the external energy                                      and creep over time. 5.1 Effect of Shape on Design If we look at the existing design, smartphone manufacturers give their best to get the proper and                                well­designed shape based on market demand. Some customers consider the mass of the smartphone                          to be the most important, the lighter the phone, the more convenient the phone is. However, some of the                                    consumers would prefer smartphones made from high quality material. Manufacturing higher quality                      products requires high cost thus having the ideal shape is essential to minimize the amount of material                                used and definitely minimize our production cost. 5.2 Existing Design For the past decade, technology has evolved in many different aspects including the                        improvement on the shape of the material. As we know that, there is a trade­off between mass and the                                    performance of the smartphone. We can compare Samsung Galaxy II (SII) to Samsung Galaxy III                            (SIII). Both smartphone models are made of polycarbonate, which exhibits a brittle fracture when the                            material ( polycarbonate) is dropped with a very high speed. According to Gaymans, “brittle fracture                            occurs on polycarbonate if the deformation rates are increased”(2000). For example, if we drop the                            smartphone from the second floor of a building, the event will cause a large force when it hits the ground                                      due to the higher rate of deformation and causes brittle fracture. Probability of brittle fracture can be reduced if we lower the stress concentration factor of the                              material. If we compare both smartphones, SIII(133g) is heavier than SII(116g) by 17g but is more                              resistance to deformation and crack propagation due to its round corners and curved edges (refer                            Figure 8 in appendix). In a simple way, SIII has demonstrated a lower stress concentration factor due                               
  • 12. 12 to a larger radius of the curvature of the crack tip formed. According to Callister, “stress concentration                                factor is defined as the ratio of the maximum stress to the magnitude of the nominal applied                                stress”(p.243). The formula : = 2 as a is the length of the surface crack and is the radius of      Kt = σ° σm    [a ρt ] 1/2                     pt       curvature of the crack tip. Under a brittle condition, the polycarbonate will undergo fracture if the shell’s material has a                            very large stress concentration factor because of large stress amplification. Therefore, Samsung has                        changed the shape from a rectangular corner to the curved corners to get a large value for which                                  ρt lowered the stress concentration factor. But due to the change in shape, extra amount of material has                                been added to accommodate the design shape for SIII. Therefore, it increases the mass and definitely                              the phone’s production cost. 5.3 Shape Factors and Material Indices Shape factor is the measure of the efficiency of the material usage. Recalling back, our group                              has agreed that the smartphone acts as an elastic beam in which the design constraints from are the                                  stiffness and yield strength. Therefore, the beam must carry bending moments and our task is to                              minimize the bending moment by having a proper shape. To do that, we need to obtain the correct                                  shape factor, which is represented by the ratio of the stiffness of the shaped section to the neutral                                  reference shape. Therefore, we make an analysis on the square beam and I­beam (refer to the                              appendix). The best shape obtained in from previous analysis  is the square beam. Objective equation Constraint equation Equation of Mass  (i) m =   (bh)Lρ (ii)  = 1 m ρ (Eϕ )e B 1/3 ( )( )4b SL3 −1/3 1 bL (iii) S =  =   (stiffness equation)δ  F FL3    48EI (iv) I =    ( the equation of I ) (v)   (deflection equation)δ = 12FL3 48Eϕ bhe B 3 (vi) S =   ( new stiffness equation)L3 4Eϕ bhe B 3    (vii) h =  (taking h as free variable) [ SL3 4Eϕ be B ] −1/3
  • 13. 13 Assuming the materials is silicon carbide The amount of mass used for the square beam (h                  as the free variable) is 2.7*10^(­3) kg The table above describes the derivation of the objective equation (i) as the function of density,                              section area and length. From the table, we have taken the stiffness as the design constraint The                                constraint equation is represented by equation (iii). Next, the second moment of area which is a variable                                in the stiffness equation is defined as the function of the shape factor by equation (iv). Derivation has                                  been made and we take h as the free variable in equation (vii). Finally, we substitute the equation (vii)                                    into the objective equation (i) and get the new objective equation (ii). Our group has agreed that the square beam is the optimal shape for our design as the mass for                                    the beam made out of Silicon Carbide is a reasonable mass(2.7*10^(­3)kg). In contrast, I­beam shape                            has given us an unreasonable mass of 6.6*10^(­4) kg. If we pick I­beam as our design shape, the                                  design would be less stiff and there would be more deflection due to the bending. 5.4 Limiting Factor However, when we consider the shape factor, there are some limitations that exist within the                            design.The first is the empirical limit. If we look at the shape factor of the square beam, the shape factor                                      is equivalent to the ratio of the second moment of area to the section area. Based on the objective                                    equation, we have seen that, mass minimization requires us to maximize the shape factor.Theoretically,                          we will take the second moment of area to be infinity and the section area to be as small as possible.                                        However, it is impossible for that kind of design. Therefore, it limits the numerical value of our shape                                  factor. Shape factor is represented by the slope of the log­log graph in the material chart below (                                  obtained from CES) :   =  (refer to the appendix).ϕe B A 12I
  • 14. 14 Chart 4. Second moment of area against section area The upper limit for the shape efficiency are important. They are central to the design of                              structures that are light or for which, for other reasons(cost), the material content should be minimized.                              In addition to that, when efficient shapes can be fabricated, the limits of the efficiency are set by the                                    competition between failure modes. For this design, we just consider the bending as the failure mode                              even we have the other mode of failure like buckling. The shape factor avoid generalized buckling in                                compression can only made be increased by a certain amount because further increasing the shape                            factor leads to the structure becoming unstable for localized buckling. 6.0 PROCESS SELECTION Now that we performed our overall material selection, we will examine possible processing                        techniques and come up with one process that is most suitable for our design. Previous analysis proved                                that silicon carbide (SiC) with a square cross sectional shape is most suitable for our design of a                                  smartphone shell. Taking this into account, we will take the process selection approach to screen out                              and rank the different processes accordingly. One type of process for each of the three manufacturing                              steps (shaping, joining and finishing) will be needed. The screening process will be mainly taken through                              the usage of process selection charts by Ashby and the CES software will help us the rank the                                  processes.
  • 15. 15 6.1 Silicon Carbide Silicon carbide (SiC, carborundum) is classified as a technical ceramic and is made by fusing                            sand and coke (CES). It is a very hard, stiff material and works in very high temperature ranges. It is                                      highly resistant to corrosion and has excellent durability in almost any circumstance. Silicon carbide has                            a density range of 3100 to 3210 kg/m3  at a price of roughly 14.76 USD/kg to 21.06 USD/kg. 6.2 Process Requirements Before initial screening of the many processes, we should take into consideration exactly what                          requirements should be met during processing. In the shaping process, we will aim to design a solid                                square cross sectional shape as determined earlier through the use of shape factors. During the joining                              process, it is crucial to regard which individual process will best keep the smartphone intact firmly                              together when it faces damage. Finally, the finishing process will be essential to produce a smooth,                              attractive surface for the smartphone to gain consumers’ interest. The primary objective for process selection is to minimize the cost as much as possible. This is                                an obvious choice since no manufacturer wants to inflate costs in processing especially. Another                          objective is considering which process provides best compatibility and be as efficient as possible. 6.3 Shaping Process Figure 4 consists of a process compatibility chart in which all types of materials are labeled and                                recorded if a certain process can be made possible with a chosen material. In our case, we are only                                    going to consider silicon carbide which is a ceramic. This chart shows us that our immediate process                                candidates for shaping are powder methods, electro­machining and conventional shaping. All three                      processes are able to generate our proposed shape (square beam shape) at a wide range of mass,                                giving us some insured flexibility.
  • 16. 16 Figure 4. Shaping process selection Subsequently, we will analyze a process­section thickness chart (Figure 5). This chart shows all the different possible thickness ranges that individual processes can produce. We will arbitrarily set a safe section thickness range of 7­10 mm and this is reasonable for a thickness of a modern smartphone. As indicated by the chart, electro­machining cannot produce a section thickness of 10 mm it lies a little short of it. Therefore, at this point we will eliminate electro­machining as a possible process solution. This leaves conventional machining and powder methods as our candidates that will be analyzed further. Figure 5. process­section thickness chart
  • 17. 17 6.4 Ranking the Shaping Process Within the numerous different methods of conventional machining and powder methods, we will                        narrow it down to three possible choices. The reason for this was that not all methods were compatible                                  or could operate at a reasonable cost. The three methods we believe are best suitable is circular sawing                                  (conventional machining), powder injection molding (powder methods), and pressing and sintering                    (powder methods). From these 3 methods, we will then determine which one is the most efficient in                                terms of cost and production for our smartphone shell design. Circular sawing: a rotating circular blade is used to make contact and shape the material. The                              blade can be used horizontally, vertically or in an inclined angle to provide great precision and smooth                                finish on the surfaces. It provides compatibility with both small and large material masses as it is                                commonly used in many engineering applications (specifications in appendix). Powder injection molding: a process in which ceramic powder and a thermoplastic binder                        injected together under a specific pressure into heated molds on standard injection molding machines                          (specifications in appendix). Pressing and sintering: loose powder packed in a shaped ceramic is sintered at almost 2/3 of                              the powder’s melting temperature. Powder is first compressed in a cold die to give it strength so that it                                    can be sintered as a free­standing body. Hot pressing is used for better densification, strength and                              ductility of the final material (specifications in appendix). As we are aiming to identify the process with the lowest cost when the smartphone case is in                                  mass production, we are going to use process cost model equation to compare the costs of our                                candidate processes. The cost model indicates that, for mass production, pressing and sintering has                          lower cost than powder injection and molding (more details in Appendix). Then the comparison                          between circular sawing and pressing/sintering tells us that pressing/sintering is more applicable in our                          case because of high production rate and reasonable size of batch rate and capital cost (refer to Table                                  1). aterial cost per unit mass C = m + Batch Size Fixed Tooling Cost + 1 Batch Rate ∑ i 1 Overhead Costi
  • 18. 18 Circular sawing Powder injection molding Pressing and sintering Tooling Cost Low High Medium Equipment Cost Medium High Medium Labour Intensity Medium Low Low Capital Cost (not specified) $165 945­ $1 659 450 $58 125­ $331 890 Production rate (not specified) 40­ 360 /hr 120­ 1200 /hr Economic batch size 1­ 10 000 000 100 000­ 10 000 000 5000­ 5 000 000 Table 1. Cost­process comparison For circular sawing, the batch size range spans too long to the extent that capital cost and                                production rate varies vastly. The labour intensity for circular sawing is highest among the three, which                              means that although tooling cost is low the labour costs cannot be neglected. The powder injection                              molding method is a rather quick, expensive production method. In this process, although labour                          intensity may be low, the tooling cost is considerably high along with equipment cost. This means that                                this process is going to take up money periodically and fail to meet our objective. Consequently, the                                pressing and sintering method appears to be the ideal choice it provides a moderate cost range that is                                  fairly manageable. At this point, it is safe to say that pressing and sintering is the most suitable for our smartphone                                    case processing method. 6.5 Joining Process The next step is the joining process, here we will examine which process is compatible with                              silicon carbide and choose the one that offers the best results. According to Figure 6, it is accurate to                                    state that adhesives and fasteners are the only possibilities in our design as silicon carbide is a ceramic.
  • 19. 19 Figure 6. Joining process selection Through usage of the CES software, we learned that the specific processes that are directly                            compatible with ceramics are flexible adhesives, rigid adhesives and snap fit fasteners. Further details                          and specifications of these methods can be found in the Appendix. Through comparison, rigid adhesives appear to be the best choice. First of all, snap fit fasteners                              work best with materials with large yields strains such as polymers. Although usage with ceramics may                              work, it may not be the ideal selection as snap fit fasteners are mainly used for polymer parts or metal                                      casings. Although the usage of flexible adhesives could also be a fair choice, we believe that they are                                  mostly applied with metals and polymers mostly on large scale structures. Rigid adhesives do offer                            larger ranges of materials that were frequently used, which includes ceramics. As referenced in the                            appendix, they are constantly used in the electronic industry from recent past therefore it was an                              attractive choice for rigid adhesives for our joining process. 6.6 Finishing process (surface treatment) Today’s users demand fashionable and trendy cases for their phones, which is why we need to                              consider finishing processes that can enhance the appearance of our smartphone case. At this stage of                              our designing process, we can improve our design by introducing and applying appropriate surface                          treatment to our material. In our case, our objectives for final processing are to improve the fracture toughness and                            enhance the appearance. Ashby proposes a few of common final processes such as heat treatment,                            quenching and coating. Polymer powder coating/spraying is one of the suitable options for our final                            processing treatment since polymer coating would enable us to colour the surface for an attractive look.                              Not only that, the polymeric surface would prevent surface cracks of SiC from propagating thus                           
  • 20. 20 improving our drawback of fracture toughness. There are three types of polymer coating: polymer electrostatic spray, flame spraying, and                        fluidized­bed coating. All polymer coatings are applicable to our smartphone case because none of them                            are toxic, or has any negative effect on environment and all of them enhances the performance of the                                  smartphone case. However, electrostatic spray stands out as our top candidate for surface treatment                          due to its desired properties: good surface hardness, smooth surface, medium equipment cost, and low                            relative tooling cost. Those physical properties would meet our finishing process objectives to improve                          the fracture toughness and to improve the appearance. 7.0 CONCLUSION Throughout this report, our group demonstrated how silicon carbide is the best material for our                            design of a smartphone shell. Although ceramics are not commonly used in today’s smartphones, we                            attempted to introduce several good qualities that ceramics possess and should be considered in future                            smartphone designs. We were able to prove that silicon carbide satisfies all of our needs for this design                                  through various analysis and comparisons with other materials. This material provides the ideal stiffness                          to resist plastic deformation and maximizes our material indices for optimal performance. After that, we                            observed that a solid square cross section is the most efficient through shape factor analysis. For the                                manufacturing process, we undertook various screening and ranking of the numerous processes and                        methods that were available to us. From these we were able to determine that shaping was to be done                                    with the pressing and sintering method, using rigid adhesives for joining the material together, and                            polymer electrostatic spray for surface treatment. Using all sequential analysis shown in this report, we                            are now prepared to take the next step to material development in the smartphone industry.