SlideShare una empresa de Scribd logo
1 de 15
Teachers Training Kit in Nanotechnologies Experiment Module A comprehensive training kit for teachers  Experiment B Luisa Filipponi, iNANO, Aarhus University This document has been created in the context of the NANOYOU project. (WP4, Task 4.1) All information is provided “as is” and no guarantee or warranty is given that the information is fit for any particular purpose. The user thereof uses the information at its sole risk and liability. The document reflects solely the views of its authors. The European Commission is not liable for any use that may be made of the information contained therein.
Before you use this presentation ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],DISCLAIMER : The experiments described in the following training kit use chemicals which need to be used according to MSDS specifications and according to specific school safety rules. Personal protection must be taken as indicated. As with all chemicals, use precautions. Solids should not be inhaled and contact with skin, eyes or clothing should be avoided. Wash hands thoroughly after handling. Dispose as indicated. All experiments must be conducted in the presence of an educator trained for science teaching. All experiments will be carried out at your own risk. Aarhus University (iNANO) and the entire NANOYOU consortium assume no liability for damage or consequential losses sustained as a result of the carrying out of the experiments described.
EXPERIMENT B  AGE LEVEL: 14-18 YEARS ,[object Object]
Experiment B- Liquid Crystals Fundamental concept of nanoscience ,[object Object],[object Object],[object Object],[object Object],[object Object],Figure 1.  Schematic representation of liquid crystal molecules. Image credit see slide 15 1
Experiment B- Liquid Crystals Fundamental concept of nanoscience ,[object Object],[object Object],[object Object],[object Object],[object Object],2
Experiment B- Liquid Crystals Fundamental concepts of nanoscience ,[object Object],[object Object],[object Object],[object Object],[object Object],Figure 2.  Smectic and nematic phase. Image credit see slide 15
Experiment B- Liquid Crystals Fundamental concepts of nanoscience ,[object Object],[object Object],Figure 3.  Smectic and nematic phase. Image credit see slide 15
Experiment B- Liquid crystals Fundamental concepts of nanoscience ,[object Object],[object Object],[object Object],Figure 4  Schematic representation of the chiral twisting in a chiral nematic liquid crystal. Image credit see slide 15
Colour generation in thermotropic LCs ,[object Object],[object Object],[object Object],[object Object],[object Object],Figure 4  Change in colour in a thermotropic LC. Image credit see slide 15
Experiment B- How is this “nano”? ,[object Object],[object Object],[object Object]
Experiment B- Protocol ,[object Object],[object Object],Liquid crystal  Cholesteryl oleyl carbonate Cholesteryl pelargonate Cholesteryl benzoate Temperature (°C) Type 1 0.65 0.25 0.10 17-23 Type 2 0.45 0.45 0.10 26.5-30.5 Type 3 0.40 0.50 0.10 32-35 Type 4 0.30 0.60 0.10 37-40
NANO LC Thermometer ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
NANO LC Thermometer ,[object Object],[object Object],[object Object],[object Object]
Running Experiment B in class 1. Start with a discussion on self-assembly .  What other molecules self-assemble in organized structures? (e.g., proteins, DNA).  Discuss how the structure is fundamental for the function of the macromolecule.   2. Link structure to function .  Discuss   that the way a material behaves at the macroscale is affected by its nanostructure. Although we cannot see this with our eyes, we can observe changes in the material properties, such as its colour. Liquid crystals are such an example: they are self-assembled molecules which have specific properties, like colour, depending on the structure they have.    4. Liquid crystals that change colour with temperature . Discuss how they work. Give examples (small flat thermometers, sensors etc.)   5. Run the experiment in the lab  diving students in groups of 2 or more depending on need. Each couple should make four different liquid crystals sheets and test them with their fingers and in a water bath. One or more room thermometers can be made in the class.
Images credit Figure 1 :  Example of the self-organisation of anisometric (i.e., with asymmetrical parts) molecules in liquid-crystalline phases. On the left: rod-like molecules form a nematic liquid, in which the longitudinal axes of the molecules are aligned parallel to a common preferred direction ("director"). On the right: disc-like (discotic) molecules arrange to molecule-stacks (columns), in which the longitudinal axes are also aligned parallel to the director. As a result of their orientational order, liquid crystals exhibit anisotropic physical properties, just like crystals. (Image Credit:  http://www.ipc.uni-stuttgart.de/~giesselm/AG_Giesselmann/Forschung/Fluessigkristalle/Fluessigkristalle.html ) Figure 2 :  Schematic representation of the structure transition of a thermotropic LC from the smetic to the nematic phase as the temperature is increased. (Image credit: own work adapted from Wiki commons, Creative Commons Attribution ShareAlike 3.0 and from IPSE Educational resources “liquid crystals”, University of Wisconsin-Madison.) Figure 3 : see Figure 2. Figure 4 (top, left):  Schematic representation of ordering in chiral liquid crystal phases: a chiral nematic phase (also called the cholesteric phase) in an LC (Image credit: Wiki Commons, Creative Commons Attribution ShareAlike 3.0) Figure 4 (top, right):  Schematic representations of stacked rotating layers in a chiral LC forming a “spiral staircase” having a pitch  p . (Image credit: Wiki Commons, Creative Commons Attribution ShareAlike 3.0) Figure 4 (bottom):  Schematic representation of the pitch in a chiral LC (Images credit: Wiki commons, Creative Commons Attribution ShareAlike 3.0). Figure 5 :  Representation of a pitch change in a chiral LC as the temperature is changed. Image credit: Image adapted from IPSE Educational Resources (Liquid crystals), University of Wisconsin Madison).

Más contenido relacionado

Similar a Experiment with Liquid Crystals - Nanotechnology

Ionic And Covalent Compounds Essay
Ionic And Covalent Compounds EssayIonic And Covalent Compounds Essay
Ionic And Covalent Compounds Essay
Renee Jones
 
Liquid Crystals And Their Applications
Liquid Crystals And Their ApplicationsLiquid Crystals And Their Applications
Liquid Crystals And Their Applications
Minhas Azeem
 
Liquid crystal
Liquid crystalLiquid crystal
Liquid crystal
Afia Riaz
 

Similar a Experiment with Liquid Crystals - Nanotechnology (13)

liquid crystals and their applications
liquid crystals and their applicationsliquid crystals and their applications
liquid crystals and their applications
 
Chemistry Solubility
Chemistry SolubilityChemistry Solubility
Chemistry Solubility
 
Ionic And Covalent Compounds Essay
Ionic And Covalent Compounds EssayIonic And Covalent Compounds Essay
Ionic And Covalent Compounds Essay
 
Liquid Crystals And Their Applications
Liquid Crystals And Their ApplicationsLiquid Crystals And Their Applications
Liquid Crystals And Their Applications
 
Liquid crystal
Liquid crystalLiquid crystal
Liquid crystal
 
Liqued crystals
Liqued crystalsLiqued crystals
Liqued crystals
 
B.Sc. I Year Physical Chemistry_Unit II_b_Lequid State
B.Sc. I Year Physical Chemistry_Unit II_b_Lequid StateB.Sc. I Year Physical Chemistry_Unit II_b_Lequid State
B.Sc. I Year Physical Chemistry_Unit II_b_Lequid State
 
first demonstration lesson plan on physics.docx
first demonstration lesson plan on physics.docxfirst demonstration lesson plan on physics.docx
first demonstration lesson plan on physics.docx
 
92 chemistry
92 chemistry92 chemistry
92 chemistry
 
Liquid Crystal and Liquid Crystal Polymer
Liquid Crystal and Liquid Crystal PolymerLiquid Crystal and Liquid Crystal Polymer
Liquid Crystal and Liquid Crystal Polymer
 
Experiment with colorimetric gold nanosensors
Experiment with colorimetric gold nanosensorsExperiment with colorimetric gold nanosensors
Experiment with colorimetric gold nanosensors
 
Liquid Crystals
Liquid CrystalsLiquid Crystals
Liquid Crystals
 
Intermolecular forces (liquids and solids)
Intermolecular forces (liquids and solids)Intermolecular forces (liquids and solids)
Intermolecular forces (liquids and solids)
 

Más de NANOYOU

Más de NANOYOU (20)

Teachers' guide - NANOYOU project - Education on nanotechnologies
Teachers' guide - NANOYOU project - Education on nanotechnologiesTeachers' guide - NANOYOU project - Education on nanotechnologies
Teachers' guide - NANOYOU project - Education on nanotechnologies
 
Experiment amb materials superhidròfobs
Experiment amb materials superhidròfobsExperiment amb materials superhidròfobs
Experiment amb materials superhidròfobs
 
Experiment amb nanosensors colorimètrics d'or
Experiment amb nanosensors colorimètrics d'orExperiment amb nanosensors colorimètrics d'or
Experiment amb nanosensors colorimètrics d'or
 
Experiment amb nanomaterials naturals
Experiment amb nanomaterials naturalsExperiment amb nanomaterials naturals
Experiment amb nanomaterials naturals
 
Experiment with superhydrophobic materials - Student laboratory worksheet (ag...
Experiment with superhydrophobic materials - Student laboratory worksheet (ag...Experiment with superhydrophobic materials - Student laboratory worksheet (ag...
Experiment with superhydrophobic materials - Student laboratory worksheet (ag...
 
Experiment with superhydrophobic materials - Teacher guide (age 14 -18)
Experiment with superhydrophobic materials - Teacher guide (age 14 -18)Experiment with superhydrophobic materials - Teacher guide (age 14 -18)
Experiment with superhydrophobic materials - Teacher guide (age 14 -18)
 
Experiment with colorimetric gold nanosensors - Student laboratory worksheet ...
Experiment with colorimetric gold nanosensors - Student laboratory worksheet ...Experiment with colorimetric gold nanosensors - Student laboratory worksheet ...
Experiment with colorimetric gold nanosensors - Student laboratory worksheet ...
 
Experiment with colorimetric cold nanosensors - Teacher guide (age 14-18)
Experiment with colorimetric cold nanosensors - Teacher guide (age 14-18)Experiment with colorimetric cold nanosensors - Teacher guide (age 14-18)
Experiment with colorimetric cold nanosensors - Teacher guide (age 14-18)
 
Experiment with liquid crystals - Student laboratory worksheet (age 14-18)
Experiment with liquid crystals - Student laboratory worksheet (age 14-18)Experiment with liquid crystals - Student laboratory worksheet (age 14-18)
Experiment with liquid crystals - Student laboratory worksheet (age 14-18)
 
Experiment with natural nanomaterials - Student laboratory worksheet (age 14-18)
Experiment with natural nanomaterials - Student laboratory worksheet (age 14-18)Experiment with natural nanomaterials - Student laboratory worksheet (age 14-18)
Experiment with natural nanomaterials - Student laboratory worksheet (age 14-18)
 
Experiment with superhydrophobic materials - Student laboratory worksheet (ag...
Experiment with superhydrophobic materials - Student laboratory worksheet (ag...Experiment with superhydrophobic materials - Student laboratory worksheet (ag...
Experiment with superhydrophobic materials - Student laboratory worksheet (ag...
 
Experiment with superhydrophobic materials - Teacher guide (age 11-13)
Experiment with superhydrophobic materials - Teacher guide (age 11-13)Experiment with superhydrophobic materials - Teacher guide (age 11-13)
Experiment with superhydrophobic materials - Teacher guide (age 11-13)
 
Experiment with colorimetric gold nanosensors - Student laboratory worksheet ...
Experiment with colorimetric gold nanosensors - Student laboratory worksheet ...Experiment with colorimetric gold nanosensors - Student laboratory worksheet ...
Experiment with colorimetric gold nanosensors - Student laboratory worksheet ...
 
Experiment with colorimetric gold nanosensors - Teacher guide (age 11-13)
Experiment with colorimetric gold nanosensors - Teacher guide (age 11-13)Experiment with colorimetric gold nanosensors - Teacher guide (age 11-13)
Experiment with colorimetric gold nanosensors - Teacher guide (age 11-13)
 
Experiment with natural nanomaterials - Student laboratory worksheet (age 11-13)
Experiment with natural nanomaterials - Student laboratory worksheet (age 11-13)Experiment with natural nanomaterials - Student laboratory worksheet (age 11-13)
Experiment with natural nanomaterials - Student laboratory worksheet (age 11-13)
 
Application of nanotechnologies: ICT
Application of nanotechnologies: ICTApplication of nanotechnologies: ICT
Application of nanotechnologies: ICT
 
Application of nanotechnologies: energy
Application of nanotechnologies: energyApplication of nanotechnologies: energy
Application of nanotechnologies: energy
 
Application of nanotechnologies: environment
Application of nanotechnologies: environmentApplication of nanotechnologies: environment
Application of nanotechnologies: environment
 
Application of nanotechnologies: Medicine and healthcare
Application of nanotechnologies: Medicine and healthcareApplication of nanotechnologies: Medicine and healthcare
Application of nanotechnologies: Medicine and healthcare
 
Fabrication methods - Nanoscience and nanotechnologies
Fabrication methods - Nanoscience and nanotechnologiesFabrication methods - Nanoscience and nanotechnologies
Fabrication methods - Nanoscience and nanotechnologies
 

Último

Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
heathfieldcps1
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
kauryashika82
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 

Último (20)

Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural ResourcesEnergy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 

Experiment with Liquid Crystals - Nanotechnology

  • 1. Teachers Training Kit in Nanotechnologies Experiment Module A comprehensive training kit for teachers Experiment B Luisa Filipponi, iNANO, Aarhus University This document has been created in the context of the NANOYOU project. (WP4, Task 4.1) All information is provided “as is” and no guarantee or warranty is given that the information is fit for any particular purpose. The user thereof uses the information at its sole risk and liability. The document reflects solely the views of its authors. The European Commission is not liable for any use that may be made of the information contained therein.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14. Running Experiment B in class 1. Start with a discussion on self-assembly . What other molecules self-assemble in organized structures? (e.g., proteins, DNA). Discuss how the structure is fundamental for the function of the macromolecule.   2. Link structure to function . Discuss that the way a material behaves at the macroscale is affected by its nanostructure. Although we cannot see this with our eyes, we can observe changes in the material properties, such as its colour. Liquid crystals are such an example: they are self-assembled molecules which have specific properties, like colour, depending on the structure they have.   4. Liquid crystals that change colour with temperature . Discuss how they work. Give examples (small flat thermometers, sensors etc.)   5. Run the experiment in the lab diving students in groups of 2 or more depending on need. Each couple should make four different liquid crystals sheets and test them with their fingers and in a water bath. One or more room thermometers can be made in the class.
  • 15. Images credit Figure 1 : Example of the self-organisation of anisometric (i.e., with asymmetrical parts) molecules in liquid-crystalline phases. On the left: rod-like molecules form a nematic liquid, in which the longitudinal axes of the molecules are aligned parallel to a common preferred direction ("director"). On the right: disc-like (discotic) molecules arrange to molecule-stacks (columns), in which the longitudinal axes are also aligned parallel to the director. As a result of their orientational order, liquid crystals exhibit anisotropic physical properties, just like crystals. (Image Credit: http://www.ipc.uni-stuttgart.de/~giesselm/AG_Giesselmann/Forschung/Fluessigkristalle/Fluessigkristalle.html ) Figure 2 : Schematic representation of the structure transition of a thermotropic LC from the smetic to the nematic phase as the temperature is increased. (Image credit: own work adapted from Wiki commons, Creative Commons Attribution ShareAlike 3.0 and from IPSE Educational resources “liquid crystals”, University of Wisconsin-Madison.) Figure 3 : see Figure 2. Figure 4 (top, left): Schematic representation of ordering in chiral liquid crystal phases: a chiral nematic phase (also called the cholesteric phase) in an LC (Image credit: Wiki Commons, Creative Commons Attribution ShareAlike 3.0) Figure 4 (top, right): Schematic representations of stacked rotating layers in a chiral LC forming a “spiral staircase” having a pitch p . (Image credit: Wiki Commons, Creative Commons Attribution ShareAlike 3.0) Figure 4 (bottom): Schematic representation of the pitch in a chiral LC (Images credit: Wiki commons, Creative Commons Attribution ShareAlike 3.0). Figure 5 : Representation of a pitch change in a chiral LC as the temperature is changed. Image credit: Image adapted from IPSE Educational Resources (Liquid crystals), University of Wisconsin Madison).