SlideShare una empresa de Scribd logo
1 de 8
Descargar para leer sin conexión
American Journal of Industrial and Business Management, 2015, 5, 648-655
Published Online November 2015 in SciRes. http://www.scirp.org/journal/ajibm
http://dx.doi.org/10.4236/ajibm.2015.511065
How to cite this paper: Malisuwan, S., Tiamnara, N. and Suriyakrai, N. (2015) Radio Spectrum Valuation by Using Censored
Regression Method. American Journal of Industrial and Business Management, 5, 648-655.
http://dx.doi.org/10.4236/ajibm.2015.511065
Radio Spectrum Valuation by Using
Censored Regression Method
Settapong Malisuwan, Noppadol Tiamnara, Nattakit Suriyakrai
National Broadcasting and Telecommunications Commission (NBTC), Bangkok, Thailand
Received 8 October 2015; accepted 8 November 2015; published 11 November 2015
Copyright © 2015 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/
Abstract
Currently, the mobile markets in every country all around the world have been developing rapidly.
The adoption of 3G and 4G services will greatly benefit the economy. Consumers will receive fast
and quality telecommunication system and their quality of life will improve. Such development
will be beneficial to the production of goods and service in countries raising overall competitive-
ness both domestically and internationally. Radio spectrum is scarce and invaluable telecommu-
nication resource. Spectrum auction should determine spectrum value as consistent to its actual
value. In order to ensure that spectrum is efficiently assigned, spectrum is priced to reflect the
value it can add to help promote economic and technical efficiency with users who have bid for it.
Putting a price on spectrum not only ensures spectrum management efficiency, but also can add
revenue for the government which will in turn cover the cost of spectrum. This paper presents a
radio spectrum valuation method by using censored regression method. The contributions in this
paper could assist telecom policy makers to gain more understanding in development of radio spec-
trum valuation.
Keywords
Radio Spectrum, Valuation, Censored Regression, Estimation
1. Introduction
Studies on telecommunication service spectrum valuation were not widespread in the past but becoming more
readily available after the year 2000. From literature review on the spectrum valuation studies from international
experts, we can categorize the studies into two groups [1]. The first values spectrum by opportunity cost ap-
proach, which compares the cost and revenue of bidders with and without spectrum. The second group of studies
applies econometrics to data collected from past auctions in different countries as a guideline in spectrum valua-
S. Malisuwan et al.
649
tion for studied country. It starts by using statistical technique to estimate regression model in order to find the
relationship between actual auction prices in different countries and its determinants. Then, it forecasts the spec-
trum price for studied country by replacing the values of determinants in the equation. In this paper, we focus on
the second group which uses economic method in finding the relationship between spectrum price from real
auctions in different countries (auction price) and its determinants. Spectrum valuation by econometrics is easier
than the opportunity cost approach as an econometric model needs macro-level data which are usually public. In
contrast, the calculation of opportunity costs needs micro-level data including engineering, technology and busi-
ness data which are usually confidential.
This paper presents a radio spectrum valuation method by using censored regression method which is a type
of econometrics method. To construct censored regression model, the study in [2] categorized determinants of
spectrum value (price/MHz/pop) into five groups as shown in Table 1: variables that reflected economic condi-
tion and mobile market characteristics, license characteristics, financial obligation, service obligations and auc-
tion procedure.
Most variables on economic condition and mobile market characteristics have significant impacts on spectrum
value. The study found that the auction price would be higher if the population coverage of the spectrum license
increased. This result was consistent with [3] who conducted a theoretical study from both engineering and
economic perspectives, and empirical study to test the result using the data from spectrum auctions in Europe. It
found that in theory, important determinants were spectrum demand represented by traffic and spectrum supply
represented by bandwidth. In the empirical research, it found that the key determinants of spectrum value were
the number of populations (users). However, the spectrum value has a nonlinear relationship with the number of
populations. In addition, the income per capita also has a positive impact on spectrum price.
In the license characteristics group of variables, the license period and the reserve price are two factors that
have significant impacts on spectrum value. These two variables have a positive impact on spectrum value. The
findings were consistent with [1] [4]-[6] which found that the sufficiently high reserve price prevented bidder
collusion, which kept the auction price low.
Table 1. Determinants of spectrum value in study of [2].
Key variables group Variable Description
Economic condition and mobile
market characteristics
Income Real income per capita (US Dollar in PPP)
Market Population in coverage area of spectrum license (million)
Mcomp Reciprocal of one plus the number of operators
Shift (dummy) Equal to one if auction took place during 2001 to 2007, zero otherwise
License characteristics
Duration License period (year)
Entrant (dummy)
Equal to one if auctions rule stipulates that at least one
license is set-aside for operator who has never
received spectrum license, zero otherwise
Reserve Reserve price (US dollar)
Financial commitment after
winning the auction
Percent Means of annual fee (percent of income from using 3G spectrum)
Service obligation after winning
the auction
Deploy Percent of population in accordance with coverage obligation
Share (dummy) Equal to one if infrastructure sharing is mandated
Auction procedure
Accomp Ratio of the number of bidders to the number of license
Activity (dummy) Equal to one if auction has activity rule, zero otherwise
Info (dummy)
Equal to one if auction information are
disclosed to the public, 0 otherwise
Number (dummy) Equal to one if the number of license is predetermined, zero otherwise
Package (dummy) Equal to one if package bidding is permitted, zero otherwise
Sealed (dummy) Equal to one if auction is a sealed-bid format, zero otherwise
S. Malisuwan et al.
650
According to the studies of spectrum valuation by censored regression in the past, we can categorize variables
that have significant effects on spectrum value and have the relationship as predicted by the theory into three
groups: 1) factors concerning spectrum demand, 2) factor concerning spectrum auction characteristics and 3)
factors concerning pre- and post-auction obligations. Factors concerning spectrum demand are variables that re-
flect the size of the economy and the needs for spectrum. This group includes country’s income, the number of
populations, and the time when telecommunication market is booming. The group of factors concerning spec-
trum auction characteristics will express the level of competition in spectrum auction, including the number of
bidders per license offered. The last group of variables includes factors concerning pre- and post-auction obliga-
tions. They are important factors to be considered by bidders before entering the auction. These include reserva-
tion of license for next auction, amount of deposit to be made before auction, annual fee and coverage obligation.
2. Spectrum Valuation with Economic Approach: Censored Regression Method
Spectrum valuation with econometric approach considers demand- and supply-side determinants of spectrum
value. Supply-side determinants are, for example, license size, total spectrum to be auctioned, license length and
set-aside. Demand-side determinants are GDP, GDP per capita, the number of subscribers, education level, ratio
of revenue of telecommunication sector to GDP and long-run technological change. In short, spectrum valuation
with econometric approach is to find determinants of spectrum value while considering spectrum packaging, li-
censing procedure, payment schedule, domestic economy and market condition.
There are some remarks about the estimations. First, to specify a model, the independent variables must be
chosen in accordance with the theory or sensible assumptions. International Telecommunication Union (ITU)
categorizes determinants of spectrum value [7] [8].
Nevertheless, there is no rule about the choice of independent variables. It depends on data availability, as-
sumptions, historical data and economic theory. Each of these criteria may be applied individually or together
when choosing independent variables. It can say that an econometric model specification is both arts and science.
Second, data for the study are collected from government agencies, domestic and international firms and other
sources such as auction news. In practice, some variables cannot be included because of several reasons (e.g. no
data available). Therefore, some dependent or independent variables have to be replaced with other substitutable
variables that have available data.
Third, the model estimation is to estimate coefficients that explain the relationship between the spectrum val-
ue and the selected independent variables. There are two estimation techniques, ordinary least squares and
maximum likelihood estimation.
In this paper, we consider maximum likelihood estimation which is the censor regression model. Since spec-
trum value may be unobservable n some case, so-called censored sample, a censored regression model is used to
solve such problem. The censored regression model is estimated with maximum likelihood technique.
The censored regression model can be written as
*
i iY X β ε′= + (1)
where *
Y is the index of spectrum value indicating that spectrum value is observable (uncensored sample) or
observable (censored sample) data. x is a vector of independent variables. β is a vector of coefficients to be
estimated. ε is errors between the actual and predicted spectrum value. The index is
( )
* *
*
,
0,
i i
i
i
Y Y
Y f x
Y
τ
τ
 <
= = 
≥
(2)
where τ is the critical value designating whether spectrum value is an uncensored or censored sample, X is a
vector of independent variables, β is a vector of coefficients and ε are errors between actual and predicted
spectrum values.
The censored regression model is estimated with maximum likelihood. Conceptually, the distribution of spec-
trum value Y is a normal distribution that takes into account unobservable value as shown in the following equa-
tion.
( ) ( ) ( )
1* i i
d d
f Y f Y F τ
−
 =     (3)
S. Malisuwan et al.
651
where the maximum likelihood estimation considers the probability that each sample is observed to construct the
likelihood function and estimate the parameters. The likelihood function can be written as follows.
1
1
1
i id d
N i i i i
ci
Y X Y X
L
β β
σ σ σ
−
 −   −    
= ∅ −∅      
      
∏ (4)
Taking log to get the log-likelihood function
( ) ( )2 1,
max ln ln ln 1 ln 1
N i i i i
i i ci
Y X Y X
L d dβ σ
β β
σ
σ σ=
  −   −    
= − + ∅ + − −∅       
       
∑ (5)
After estimating the censored regression model, if the sample is sufficiently large so that its distribution is ap-
proximately normal, the estimators will be unbiased. Reliable estimates lead to reliable spectrum valuation.
Therefore, the censored regression model is one of the most popular models for spectrum valuation if a suffi-
ciently large dataset is available.
In sum, econometrics is an important tool for analyzing economic data as econometrics combines mathemat-
ics, statistics and economic theory to construct a mathematical model to explain the relationship between the
dependent variable and its determinants given historical data. This model is not only able to portray influences
of independent variables on the dependent variable, but it can forecast the value of the dependant variable as
well.
3. Analysis of Spectrum Valuation Data Characteristics
Spectrum auction can be viewed as investment and a firm wants to invest in a profitable project. If awarded a
spectrum license, a firm can make use of spectrum not only to improve its telecommunication service, but to re-
duce cost of build out as well. A firm would participate in a spectrum auction whenever the net revenue from
spectrum license exceeds the auction price.
However, in each auction, government or auctioneer usually sets a reserve price for the auction. The reserve
price is usually greater than zero. The winning bidder is the one submitted the highest bid given that it must be
greater than the reserve price.
If the net revenue from spectrum license is less than the reserve price, firms will not participate in the auction
and the winning bid is equal to zero. Nevertheless, spectrum value is not equal to zero but it is simply lower than
the reserve price. Therefore, some auction prices are not observable and the data are thereby a censored sample.
The least squares are not appropriate for spectrum valuation because the estimates will be higher than the actual
values. An appropriate model for censored sample is Tobit.
Developed by James Tobin, Tobit model is suitable for a sample whose data for dependent variable is cen-
sored or censored sample.
The study in [9] employed Tobit model to estimate the relationship between spectrum value in unit of price/
MHz/pop and its determinants. They argued that winning bids are typically censored since an observable win-
ning bid must be the highest bid that is greater than the reserve price. In some circumstances, there are no bids as
the return from spectrum license is less than the reserve price. As a result, there is no winning bidder and his
spectrum value is unobservable. The winning bid is then equal to zero.
Due to such winning bid data, the spectrum value cannot be estimated with the least squares. Tobit model
which takes missing data of the dependent variable into consideration is more suitable for spectrum valuation.
This section discusses how to estimate Tobit model with maximum likelihood under assumption that variables
are distributed normally. The probability distribution function and cumulative distribution function of normal
variables are shown first and then the estimation of Tobit model is discussed.
Let y be a normal random variable with the mean of µ and the variance of 2
σ . Thus, the probability dis-
tribution function of y is
( )
( )2
2
2
2
1
e
2π
y
f y
µ
σ
σ
−
−
= (6)
S. Malisuwan et al.
652
The standard normal distribution of y with the mean of 0, the variance of 1 and
y
z
µ
σ
−
= is
( ) ( )
( ) ( )
2
1
22
1 1
e e
2π 2π
zy y
y
f y z
µ µ
σ σ
µ
σ σ σ
 
− −  −− ⋅ ⋅  
 − 
=∅ =∅ = = 
 
(7)
When 1σ = ,
( ) ( )
2
21
e
2π
z
f z z
 
 −
 
 
=∅ = (8)
Let ( )z∅ is the standard normal distribution function
( )c z∅ is the cumulative standard normal distribution function. Thus,
( )
( )
( )
22
2 22
2
1 1 1 1
e e
2π2π
zy
y
f y z
µ
σ
µ
σ σ σσσ
 −  −−  
  − 
= = =∅ =∅ 
 
(9)
where the cumulative distribution function is
( ) c
y
p Y y
µ
σ
− 
≤ =∅  
 
( ) 1 c
y
p Y y
µ
σ
− 
> = −∅  
 
(10)
As discussed earlier, the winning bid price per total MHz/pop data are left-censored sample since a firm de-
cides not to bid if the net revenue from spectrum license is below the reserve price. As a result, the winning bid
is equal to zero. Nevertheless, the spectrum value is not equal to zero. It is rather equal to the return which is
below the reserve price. This value is unobservable as shown in Figure 1.
According to Figure 1, the censored sample distribution can be written as follows.
* *
*
if Reserve price
0 if Reserve price
ij ij ij
ij
ij ij
PMHzp PMHzp
PMHzp
PMHzp
 >
= 
≤
(11)
Let *
ijy be the highest bid which is initially confidential and thus unobserved. This value is revealed only if it
is greater than the reserve price and it is the highest as in shown in the first case of ijPMHzp . The second case
involves no bid submitted since the spectrum value is below the reserve price and it is thereby not revealed and
equal to zero. Hence, the distribution of PMHzp is normal with unobserved data as shown in the following
equation.
( ) ( ) ( )
1*
Reserve price
i i
d d
f PMHzp f PMHzp F
−
 =     (12)
where 1id = if *
Reserve priceij ijPMHzp > ;
0id = if *
Reserve priceij ijPMHzp ≤ .
So, the cumulative distribution function of the censored data is
( ) ( )*
Reserve price Reserve price
Censored Reserve price 1
ij ij
ij ij c cp p PMHzp
µ µ
σ σ
− −   
= ≤ = ∅ = −∅   
   
(13)
Figure 1. Left-censored spectrum value.
Winning Bid price
Reserve price
Spectrum price = 0
Censored price of
Spectrum
S. Malisuwan et al.
653
The cumulative distribution function of censored data is shown in Figure 2.
The cumulative distribution function is the white area in Figure 2. If the distribution is assumed uncensored
despite the imperfect data, the statistical properties violate the least squares assumptions and the estimation re-
sult is biased and inconsistent.
Tobit model uses the probability above for estimation and thus requires assumption about the distribution of
the random variable. It is usually assumed to be a normal distribution.
After showing the probability distribution of uncensored and censored data, estimation of Tobit model with
maximum likelihood which pools both uncensored and censored data as in probability theory is discussed.
Even if Tobit model specifies a linear relationship between dependent and independent variables as in the
general linear regression, some censored sample cannot be observed and thus the dependent variable is equal to
zero. The dependent variable, spectrum value ( )PMHz , is specified as *
PMHz under a condition that *
PMHz
can be observed only when *
PMHz is greater than the reserve price and it is the highest among all bidders.
However, *
PMHz is unobservable if a firm value the spectrum less than the reserve price. As a result, there is
no winning bidder and the spectrum value is equal to zero as discussed earlier. Therefore, the Tobit regression
model can be written as follows.
*
ij ij ijPMHzp X β ε= + (14)
where *
ijPMHzp is spectrum value per MHz/pop under sample observability conditions;
x′ is the vector of determinants of spectrum value per MHz/pop;
ε captures factors other than the determinants of spectrum value. Normally, it is assumed to be negligible in
explaining spectrum value;
i and j are subscripts representing country and license index, respectively. The value of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝∗
is specified
as follows.
* *
*
if Reserve price
0 if Reserve price
ij ij ij
ij
ij ij
PMHzp PMHzp
PMHzp
PMHzp
 >
= 
≤
(15)
The estimation of Tobit model which considers censored sample is shown below. The distribution of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
follows a normal distribution with censored data as shown below.
( ) ( ) ( )
1*
Reserve price
i i
d d
f PMHzp f PMHzp F
−
 =     (16)
where 1id = if *
Reserve priceij ijPMHzp >
0id = if *
Reserve priceij ijPMHzp ≤ .
Maximum likelihood estimation uses probabilities of each realization to construct a likelihood function to es-
timate parameters. The likelihood function is written as follows.
Reserve priceij
c
µ
σ
− 
∅  
 
Figure 2. Comparison between cumulative distribution functions of censored data (left)
and uncensored data (right), The cumulative distribution function of uncensored data is
( )
Reserve price
Uncensored 1 ij
cp
µ
σ
− 
= − ∅  
 
. Note: reserve price is smaller than the win-
ning bid price.
S. Malisuwan et al.
654
1
Reserve price1
1
i id d
N ij ij ij ij
ci
PMHzp X X
L
β β
σ σ σ
−
 −   −    
= ∅ −∅      
         
∏ (17)
Taking log yields a log-likelihood function
( ) ( )2 1,
Reserve price
Max ln ln ln 1 ln1
N ij ij ij ij
i i ci
PMHzp X X
L d dβ σ
β β
σ
σ σ=
  −   −    
= − + ∅ + − −∅          
        
∑ (18)
The log-likelihood function consists of two terms. The first term is the estimation of uncensored data and the
second term is the additional condition for estimation, says the probability that the sample is censored. Therefore,
the estimation of Tobit model not only considers observable data, but it estimates parameters that are consistent
to censored data as well.
The predicted spectrum value from the Tobit model is non-linear as shown in the equation below.
( ) ( )ij
ij ij c ij ij
X
E PMHzp X X
β
β σϕ
σ
 
=∅ + 
 
(19)
where
( )
( )
Reserve price
1 Reserve price
ij ij
ij
c ij ij
X
X
β σ
ϕ
β σ
 ∅ − =
 −∅ − 
The marginal effect considers a change in determinant of spectrum value. In other words, it considers the
magnitude and direction of change in spectrum value when an determinant of spectrum value increases by one
unit. The marginal effect can be calculated as follows.
( )ij ij
ij
E PMHzp X
x
β
∂
=
∂
(20)
Pros and Cons of Tobit Model
Pros. Since Tobit model requires maximum likelihood estimation, given that the sample size is sufficiently
large, Tobit model is desirable for estimating with variables or data that are inaccessible, especially spectrum
auction in which only winning bid prices are observed.
Cons. Tobit model requires maximum likelihood estimation assuming that variables are distributed normally.
In practice, according to the Central Limit Theorem, a sufficiently large sample is needed to overcome the prob-
lem of unknown distribution. Hence, if the sample size is small, the estimation will be inaccurate and inconsis-
tent. This is different from OLS which does not assume any particular distribution.
4. Estimation Framework
A good framework for estimation and prediction should have the following properties.
Variables in the model must be sensible and have precise conceptual foundation. In this study, we apply idea
from ITU and economic concepts as a basis for variable selection. However, ITU determinants of spectrum val-
ue rely on theoretical concepts. For some determinants, quantitative data are not available and their proxies are
used instead and for others, there is no data available. Nevertheless, from the precise theoretical concept, we can
conjecture the effects of various variables on spectrum value, whether they are positive or negative. Therefore, a
desirable model should yield the estimation result consistent with the expectation.
The predicted value from the model must be sensible and practical. Specifically, the predicted value must not
be unusually low or high. Also, it must not be insensible value such as negative spectrum value.
Statistical properties should be reliable. For censored regression, we consider two statistics: 1) significant lev-
el of various variables along with their signs, whether they are the same as expected, 2) pseudo R-squared which
is a statistic used for comparing explanatory powers (spectrum value) of different models. The pseudo R-
squared can be used in similar way as R-squared in least squares estimation. That is, a model with higher pseudo
R-squared can explain spectrum value statistically better. However, in the censored regression, R-squared can-
not be calculated. Thus, pseudo R-squared is used instead. The value of pseudo R-squared is not restricted to be
between 0 and 1 as R-squared from OLS but the better model has a higher pseudo R-squared as in the general
S. Malisuwan et al.
655
linear regression.
5. Conclusion
This paper aims to present the radio spectrum valuation by using censored regression model which is an econo-
metric model. Basically, Radio spectrum valuation employs econometric models and methodologies which inte-
grate mathematics, statistics, and economic theory to model the relationship between spectrum value and its de-
terminants. Econometrics has several advantages. First, it studies actual historical data instead of forecasted data
which are usually associated with uncertainty. Second, econometrics is desirable for the available dataset. Fur-
thermore, econometrics is more flexible and tractable. This allows us to appropriately define the relationship
between spectrum value and its determinants as well as better predict the spectrum value. Lastly, there are di-
verse econometric methods and techniques.
References
[1] Cramton, P. (2002) Spectrum Auctions.
[2] Madden, G., Sağlam, I. and Morey, A. (2010) Auction Design and the Success of National 3G Spectrum Auctions.
TÜSİAD-Koç University Economic Research Forum Working Paper Series.
[3] Van Bruwaene, K. (2003) Estimating the Value of Spectrum. EBU Technical Review.
[4] Klemperer, P. (2002) What Really Matters in Auction Design. The Journal of Economic Perspectives, 16, 169-189.
http://dx.doi.org/10.1257/0895330027166
[5] Cave, M.E., Majumdar, S.K. and Vogelsang, I. (2003) Handbook of Telecommunications Economics. Info, 5, 46-46.
[6] Cramton, P. (2006) Simultaneous Ascending Auctions. Wiley Encyclopedia of Operations Research and Management
Science.
[7] Alden, J. (2012) Exploring the Value and Economic Valuation of Spectrum. International Telecommunication Union,
Geneva.
[8] Dippon, C.M. (2009) Regulatory Policy Goals and Spectrum Auction Design: Lessons from the Canadian AWS Auc-
tion. NERA Economic Consulting, Statement.
[9] Bohlin, E., Madden, G. and Morey, A. (2010) An Econometric Analysis of 3G Auction Spectrum Valuations.

Más contenido relacionado

La actualidad más candente

Bidding strategies in deregulated power market
Bidding strategies in deregulated power marketBidding strategies in deregulated power market
Bidding strategies in deregulated power market
Gautham Reddy
 
Capgemini_SmartGrid_RenewableEnergySurvey_0209
Capgemini_SmartGrid_RenewableEnergySurvey_0209Capgemini_SmartGrid_RenewableEnergySurvey_0209
Capgemini_SmartGrid_RenewableEnergySurvey_0209
Jeffrey Norman
 

La actualidad más candente (17)

Electricity Markets Regulation - Lesson 8 - Pricing
Electricity Markets Regulation - Lesson 8 - PricingElectricity Markets Regulation - Lesson 8 - Pricing
Electricity Markets Regulation - Lesson 8 - Pricing
 
IRJET- Enhancement in Financial Time Series Prediction with Feature Extra...
IRJET-  	  Enhancement in Financial Time Series Prediction with Feature Extra...IRJET-  	  Enhancement in Financial Time Series Prediction with Feature Extra...
IRJET- Enhancement in Financial Time Series Prediction with Feature Extra...
 
Principles of Price Regulation
Principles of Price RegulationPrinciples of Price Regulation
Principles of Price Regulation
 
bidding strategies in indian restructured power market
bidding strategies in indian restructured power marketbidding strategies in indian restructured power market
bidding strategies in indian restructured power market
 
Bidding strategies in deregulated power market
Bidding strategies in deregulated power marketBidding strategies in deregulated power market
Bidding strategies in deregulated power market
 
Policy guide
Policy guidePolicy guide
Policy guide
 
Modeling and Analysis of Wholesale Competitive Electricity Markets: A Case Fo...
Modeling and Analysis of Wholesale Competitive Electricity Markets: A Case Fo...Modeling and Analysis of Wholesale Competitive Electricity Markets: A Case Fo...
Modeling and Analysis of Wholesale Competitive Electricity Markets: A Case Fo...
 
Electricity Markets Regulation - Lesson 1 - Regulation General Principles
Electricity Markets Regulation - Lesson 1 - Regulation  General PrinciplesElectricity Markets Regulation - Lesson 1 - Regulation  General Principles
Electricity Markets Regulation - Lesson 1 - Regulation General Principles
 
Capgemini_SmartGrid_RenewableEnergySurvey_0209
Capgemini_SmartGrid_RenewableEnergySurvey_0209Capgemini_SmartGrid_RenewableEnergySurvey_0209
Capgemini_SmartGrid_RenewableEnergySurvey_0209
 
C05222124
C05222124C05222124
C05222124
 
Analysis group
Analysis groupAnalysis group
Analysis group
 
Fixed costs recovery, renewables adoption, and rate fairness 5 6-14
Fixed costs recovery, renewables adoption, and rate fairness 5 6-14Fixed costs recovery, renewables adoption, and rate fairness 5 6-14
Fixed costs recovery, renewables adoption, and rate fairness 5 6-14
 
Electricity Markets Regulation - Lesson 3 - Price Regulation
Electricity Markets Regulation - Lesson 3 - Price RegulationElectricity Markets Regulation - Lesson 3 - Price Regulation
Electricity Markets Regulation - Lesson 3 - Price Regulation
 
IRJET - An Auction Mechanism for Product Verification using Cloud
IRJET - An Auction Mechanism for Product Verification using CloudIRJET - An Auction Mechanism for Product Verification using Cloud
IRJET - An Auction Mechanism for Product Verification using Cloud
 
Gravitational Search Algorithm for Bidding Strategy in Uniform Price Spot Market
Gravitational Search Algorithm for Bidding Strategy in Uniform Price Spot MarketGravitational Search Algorithm for Bidding Strategy in Uniform Price Spot Market
Gravitational Search Algorithm for Bidding Strategy in Uniform Price Spot Market
 
Electricity Markets Regulation - Lesson 2 - Market Design
Electricity Markets Regulation - Lesson 2 - Market DesignElectricity Markets Regulation - Lesson 2 - Market Design
Electricity Markets Regulation - Lesson 2 - Market Design
 
Mr. bk syngal trai nipfp spectrum valuation and management presentation - 2...
Mr. bk syngal   trai nipfp spectrum valuation and management presentation - 2...Mr. bk syngal   trai nipfp spectrum valuation and management presentation - 2...
Mr. bk syngal trai nipfp spectrum valuation and management presentation - 2...
 

Destacado

Secrets of nations
Secrets of nationsSecrets of nations
Secrets of nations
Naeem Akhtar
 

Destacado (6)

To my friends
To my friendsTo my friends
To my friends
 
Secrets of nations
Secrets of nationsSecrets of nations
Secrets of nations
 
Preliminary Research on Adoption and Diffusion Model of SMEs E-Learning in Th...
Preliminary Research on Adoption and Diffusion Model of SMEs E-Learning in Th...Preliminary Research on Adoption and Diffusion Model of SMEs E-Learning in Th...
Preliminary Research on Adoption and Diffusion Model of SMEs E-Learning in Th...
 
พ.อ.ดร.เศรษฐพงค์ ต้นกำเนิด Cyber security
พ.อ.ดร.เศรษฐพงค์   ต้นกำเนิด Cyber securityพ.อ.ดร.เศรษฐพงค์   ต้นกำเนิด Cyber security
พ.อ.ดร.เศรษฐพงค์ ต้นกำเนิด Cyber security
 
My Academic Journey
My Academic JourneyMy Academic Journey
My Academic Journey
 
พ.อ.ดร.เศรษฐพงค์ 700 MHz Future broadband
พ.อ.ดร.เศรษฐพงค์   700 MHz Future broadbandพ.อ.ดร.เศรษฐพงค์   700 MHz Future broadband
พ.อ.ดร.เศรษฐพงค์ 700 MHz Future broadband
 

Similar a Radio Spectrum Valuation by Using Censored Regression Method

Determinants of subscriber churn and customer loyalty in the korean mobile te...
Determinants of subscriber churn and customer loyalty in the korean mobile te...Determinants of subscriber churn and customer loyalty in the korean mobile te...
Determinants of subscriber churn and customer loyalty in the korean mobile te...
Cuong Dinh
 
William Hancock Honors Thesis
William Hancock Honors ThesisWilliam Hancock Honors Thesis
William Hancock Honors Thesis
William Hancock
 
Laffont tirole rey (engl)
Laffont tirole rey (engl)Laffont tirole rey (engl)
Laffont tirole rey (engl)
gueste64d459f
 
C:\fakepath\laffont tirole (engl)
C:\fakepath\laffont tirole  (engl)C:\fakepath\laffont tirole  (engl)
C:\fakepath\laffont tirole (engl)
gueste64d459f
 
Reliability cost assessment for upgrading feeder by using customer surveys
Reliability cost assessment for upgrading feeder by using customer surveysReliability cost assessment for upgrading feeder by using customer surveys
Reliability cost assessment for upgrading feeder by using customer surveys
IAEME Publication
 

Similar a Radio Spectrum Valuation by Using Censored Regression Method (20)

Determinants of subscriber churn and customer loyalty in the korean mobile te...
Determinants of subscriber churn and customer loyalty in the korean mobile te...Determinants of subscriber churn and customer loyalty in the korean mobile te...
Determinants of subscriber churn and customer loyalty in the korean mobile te...
 
IRJET- Valuation of Real Estate in Karad City
IRJET- Valuation of Real Estate in Karad CityIRJET- Valuation of Real Estate in Karad City
IRJET- Valuation of Real Estate in Karad City
 
A Framework For Analysing Strategies Of Internet Service Providers
A Framework For Analysing Strategies Of Internet Service ProvidersA Framework For Analysing Strategies Of Internet Service Providers
A Framework For Analysing Strategies Of Internet Service Providers
 
Business models for the next generation of mobile communications
Business models for the next generation of mobile communicationsBusiness models for the next generation of mobile communications
Business models for the next generation of mobile communications
 
BUSINESS MODELS FOR THE NEXT GENERATION OF MOBILE COMMUNICATIONS
BUSINESS MODELS FOR THE NEXT GENERATION OF MOBILE COMMUNICATIONSBUSINESS MODELS FOR THE NEXT GENERATION OF MOBILE COMMUNICATIONS
BUSINESS MODELS FOR THE NEXT GENERATION OF MOBILE COMMUNICATIONS
 
Business Models for the Next Generation of Mobile Communications
Business Models for the Next Generation of Mobile Communications Business Models for the Next Generation of Mobile Communications
Business Models for the Next Generation of Mobile Communications
 
IRJET- Android Application for Service by using Bidding and Ratings in nearby...
IRJET- Android Application for Service by using Bidding and Ratings in nearby...IRJET- Android Application for Service by using Bidding and Ratings in nearby...
IRJET- Android Application for Service by using Bidding and Ratings in nearby...
 
William Hancock Honors Thesis
William Hancock Honors ThesisWilliam Hancock Honors Thesis
William Hancock Honors Thesis
 
Laffont tirole rey (engl)
Laffont tirole rey (engl)Laffont tirole rey (engl)
Laffont tirole rey (engl)
 
C:\fakepath\laffont tirole (engl)
C:\fakepath\laffont tirole  (engl)C:\fakepath\laffont tirole  (engl)
C:\fakepath\laffont tirole (engl)
 
Financial Transmission Right effects on transmission expansion
Financial Transmission Right effects on transmission expansionFinancial Transmission Right effects on transmission expansion
Financial Transmission Right effects on transmission expansion
 
Introduction to effective spectrum pricing
Introduction to effective spectrum pricingIntroduction to effective spectrum pricing
Introduction to effective spectrum pricing
 
Measuring competitive pressure in mobile telecommunication sectors using oecd...
Measuring competitive pressure in mobile telecommunication sectors using oecd...Measuring competitive pressure in mobile telecommunication sectors using oecd...
Measuring competitive pressure in mobile telecommunication sectors using oecd...
 
2009 doe smart grid system report
2009 doe smart grid system report2009 doe smart grid system report
2009 doe smart grid system report
 
Master project
Master projectMaster project
Master project
 
IRJET- Research On Android Application for service By Using Bidding and R...
IRJET-  	  Research On Android Application for service By Using Bidding and R...IRJET-  	  Research On Android Application for service By Using Bidding and R...
IRJET- Research On Android Application for service By Using Bidding and R...
 
Reliability cost assessment for upgrading feeder by using customer surveys
Reliability cost assessment for upgrading feeder by using customer surveysReliability cost assessment for upgrading feeder by using customer surveys
Reliability cost assessment for upgrading feeder by using customer surveys
 
CellularNote-Final
CellularNote-FinalCellularNote-Final
CellularNote-Final
 
Broadband tariffs in latin america: Benchmarking and analysis - Hernán Galper...
Broadband tariffs in latin america: Benchmarking and analysis - Hernán Galper...Broadband tariffs in latin america: Benchmarking and analysis - Hernán Galper...
Broadband tariffs in latin america: Benchmarking and analysis - Hernán Galper...
 
Ekf i w w-w for mobile telcos. - ciet 2018 - fin pptx
Ekf i w w-w for mobile telcos. - ciet 2018 - fin pptxEkf i w w-w for mobile telcos. - ciet 2018 - fin pptx
Ekf i w w-w for mobile telcos. - ciet 2018 - fin pptx
 

Más de www.nbtc.go.th

Más de www.nbtc.go.th (20)

Impact of Disruptive Technology in Businesses
Impact of Disruptive Technology in BusinessesImpact of Disruptive Technology in Businesses
Impact of Disruptive Technology in Businesses
 
สถานการณ์เศรษฐกิจไทยและเศรษฐกิจโลก, ความสำเร็จในการบริหารจากภาครัฐสู่ภาคเอกชน...
สถานการณ์เศรษฐกิจไทยและเศรษฐกิจโลก, ความสำเร็จในการบริหารจากภาครัฐสู่ภาคเอกชน...สถานการณ์เศรษฐกิจไทยและเศรษฐกิจโลก, ความสำเร็จในการบริหารจากภาครัฐสู่ภาคเอกชน...
สถานการณ์เศรษฐกิจไทยและเศรษฐกิจโลก, ความสำเร็จในการบริหารจากภาครัฐสู่ภาคเอกชน...
 
การเรียนรู้ตามรอยพระยุคลบาท และ พระอัจฉริยะภาพด้านการสื่อสารโทรคมนาคมในหลวงรั...
การเรียนรู้ตามรอยพระยุคลบาท และ พระอัจฉริยะภาพด้านการสื่อสารโทรคมนาคมในหลวงรั...การเรียนรู้ตามรอยพระยุคลบาท และ พระอัจฉริยะภาพด้านการสื่อสารโทรคมนาคมในหลวงรั...
การเรียนรู้ตามรอยพระยุคลบาท และ พระอัจฉริยะภาพด้านการสื่อสารโทรคมนาคมในหลวงรั...
 
How do it and telecom change ... วตท v2
How do it and telecom change ... วตท v2How do it and telecom change ... วตท v2
How do it and telecom change ... วตท v2
 
Disruptive technology and impact v3
Disruptive technology and impact v3Disruptive technology and impact v3
Disruptive technology and impact v3
 
Disruptive technology and impact v3
Disruptive technology and impact v3Disruptive technology and impact v3
Disruptive technology and impact v3
 
Human capability v5
Human capability v5Human capability v5
Human capability v5
 
Human capability v5
Human capability v5Human capability v5
Human capability v5
 
Digital disruption v6
Digital disruption v6Digital disruption v6
Digital disruption v6
 
Digital disruption v6
Digital disruption v6Digital disruption v6
Digital disruption v6
 
settapong
settapongsettapong
settapong
 
Digital disruption v5
Digital disruption v5Digital disruption v5
Digital disruption v5
 
เศรษฐพงค์ มะลิสุวรรณ แนวคิดในการดำเนินการด้านความมั่นคงไซเบอร์ของประเทศไทย (เ...
เศรษฐพงค์ มะลิสุวรรณ แนวคิดในการดำเนินการด้านความมั่นคงไซเบอร์ของประเทศไทย (เ...เศรษฐพงค์ มะลิสุวรรณ แนวคิดในการดำเนินการด้านความมั่นคงไซเบอร์ของประเทศไทย (เ...
เศรษฐพงค์ มะลิสุวรรณ แนวคิดในการดำเนินการด้านความมั่นคงไซเบอร์ของประเทศไทย (เ...
 
Spectrum auction Theory and Spectrum Price Model
Spectrum auction Theory and Spectrum Price ModelSpectrum auction Theory and Spectrum Price Model
Spectrum auction Theory and Spectrum Price Model
 
A Broadband Rectangular Microstrip Patch Antenna for Wireless Communications
A Broadband Rectangular Microstrip Patch Antenna for Wireless CommunicationsA Broadband Rectangular Microstrip Patch Antenna for Wireless Communications
A Broadband Rectangular Microstrip Patch Antenna for Wireless Communications
 
Infograghic 3G4G Economic Impact โดย พ.อ.ดร.เศรษฐพงค์ มะลิสุวรรณ
Infograghic 3G4G Economic Impact โดย พ.อ.ดร.เศรษฐพงค์  มะลิสุวรรณInfograghic 3G4G Economic Impact โดย พ.อ.ดร.เศรษฐพงค์  มะลิสุวรรณ
Infograghic 3G4G Economic Impact โดย พ.อ.ดร.เศรษฐพงค์ มะลิสุวรรณ
 
พ.อ.ดร.เศรษฐพงค์ สงครามไซเบอร์เขย่าโลก Sony and north korea
พ.อ.ดร.เศรษฐพงค์   สงครามไซเบอร์เขย่าโลก Sony and north koreaพ.อ.ดร.เศรษฐพงค์   สงครามไซเบอร์เขย่าโลก Sony and north korea
พ.อ.ดร.เศรษฐพงค์ สงครามไซเบอร์เขย่าโลก Sony and north korea
 
พ.อ.ดร.เศรษฐพงค์ ตลาดโทรคมนาคมของประเทศไทย
พ.อ.ดร.เศรษฐพงค์   ตลาดโทรคมนาคมของประเทศไทยพ.อ.ดร.เศรษฐพงค์   ตลาดโทรคมนาคมของประเทศไทย
พ.อ.ดร.เศรษฐพงค์ ตลาดโทรคมนาคมของประเทศไทย
 
เศรษฐพงค์ มะลิสุวรรณ
เศรษฐพงค์ มะลิสุวรรณเศรษฐพงค์ มะลิสุวรรณ
เศรษฐพงค์ มะลิสุวรรณ
 
เศรษฐพงค์ มะลิสุวรรณ ,Mobile Broadband, Dr.Settapong Malisuwan
เศรษฐพงค์ มะลิสุวรรณ ,Mobile Broadband, Dr.Settapong Malisuwanเศรษฐพงค์ มะลิสุวรรณ ,Mobile Broadband, Dr.Settapong Malisuwan
เศรษฐพงค์ มะลิสุวรรณ ,Mobile Broadband, Dr.Settapong Malisuwan
 

Último

Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Victor Rentea
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(☎️+971_581248768%)**%*]'#abortion pills for sale in dubai@
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Victor Rentea
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
panagenda
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
WSO2
 

Último (20)

ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challenges
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
CNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In PakistanCNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In Pakistan
 
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
 
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfRising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024
 
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamDEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Exploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusExploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with Milvus
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
 

Radio Spectrum Valuation by Using Censored Regression Method

  • 1. American Journal of Industrial and Business Management, 2015, 5, 648-655 Published Online November 2015 in SciRes. http://www.scirp.org/journal/ajibm http://dx.doi.org/10.4236/ajibm.2015.511065 How to cite this paper: Malisuwan, S., Tiamnara, N. and Suriyakrai, N. (2015) Radio Spectrum Valuation by Using Censored Regression Method. American Journal of Industrial and Business Management, 5, 648-655. http://dx.doi.org/10.4236/ajibm.2015.511065 Radio Spectrum Valuation by Using Censored Regression Method Settapong Malisuwan, Noppadol Tiamnara, Nattakit Suriyakrai National Broadcasting and Telecommunications Commission (NBTC), Bangkok, Thailand Received 8 October 2015; accepted 8 November 2015; published 11 November 2015 Copyright © 2015 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Currently, the mobile markets in every country all around the world have been developing rapidly. The adoption of 3G and 4G services will greatly benefit the economy. Consumers will receive fast and quality telecommunication system and their quality of life will improve. Such development will be beneficial to the production of goods and service in countries raising overall competitive- ness both domestically and internationally. Radio spectrum is scarce and invaluable telecommu- nication resource. Spectrum auction should determine spectrum value as consistent to its actual value. In order to ensure that spectrum is efficiently assigned, spectrum is priced to reflect the value it can add to help promote economic and technical efficiency with users who have bid for it. Putting a price on spectrum not only ensures spectrum management efficiency, but also can add revenue for the government which will in turn cover the cost of spectrum. This paper presents a radio spectrum valuation method by using censored regression method. The contributions in this paper could assist telecom policy makers to gain more understanding in development of radio spec- trum valuation. Keywords Radio Spectrum, Valuation, Censored Regression, Estimation 1. Introduction Studies on telecommunication service spectrum valuation were not widespread in the past but becoming more readily available after the year 2000. From literature review on the spectrum valuation studies from international experts, we can categorize the studies into two groups [1]. The first values spectrum by opportunity cost ap- proach, which compares the cost and revenue of bidders with and without spectrum. The second group of studies applies econometrics to data collected from past auctions in different countries as a guideline in spectrum valua-
  • 2. S. Malisuwan et al. 649 tion for studied country. It starts by using statistical technique to estimate regression model in order to find the relationship between actual auction prices in different countries and its determinants. Then, it forecasts the spec- trum price for studied country by replacing the values of determinants in the equation. In this paper, we focus on the second group which uses economic method in finding the relationship between spectrum price from real auctions in different countries (auction price) and its determinants. Spectrum valuation by econometrics is easier than the opportunity cost approach as an econometric model needs macro-level data which are usually public. In contrast, the calculation of opportunity costs needs micro-level data including engineering, technology and busi- ness data which are usually confidential. This paper presents a radio spectrum valuation method by using censored regression method which is a type of econometrics method. To construct censored regression model, the study in [2] categorized determinants of spectrum value (price/MHz/pop) into five groups as shown in Table 1: variables that reflected economic condi- tion and mobile market characteristics, license characteristics, financial obligation, service obligations and auc- tion procedure. Most variables on economic condition and mobile market characteristics have significant impacts on spectrum value. The study found that the auction price would be higher if the population coverage of the spectrum license increased. This result was consistent with [3] who conducted a theoretical study from both engineering and economic perspectives, and empirical study to test the result using the data from spectrum auctions in Europe. It found that in theory, important determinants were spectrum demand represented by traffic and spectrum supply represented by bandwidth. In the empirical research, it found that the key determinants of spectrum value were the number of populations (users). However, the spectrum value has a nonlinear relationship with the number of populations. In addition, the income per capita also has a positive impact on spectrum price. In the license characteristics group of variables, the license period and the reserve price are two factors that have significant impacts on spectrum value. These two variables have a positive impact on spectrum value. The findings were consistent with [1] [4]-[6] which found that the sufficiently high reserve price prevented bidder collusion, which kept the auction price low. Table 1. Determinants of spectrum value in study of [2]. Key variables group Variable Description Economic condition and mobile market characteristics Income Real income per capita (US Dollar in PPP) Market Population in coverage area of spectrum license (million) Mcomp Reciprocal of one plus the number of operators Shift (dummy) Equal to one if auction took place during 2001 to 2007, zero otherwise License characteristics Duration License period (year) Entrant (dummy) Equal to one if auctions rule stipulates that at least one license is set-aside for operator who has never received spectrum license, zero otherwise Reserve Reserve price (US dollar) Financial commitment after winning the auction Percent Means of annual fee (percent of income from using 3G spectrum) Service obligation after winning the auction Deploy Percent of population in accordance with coverage obligation Share (dummy) Equal to one if infrastructure sharing is mandated Auction procedure Accomp Ratio of the number of bidders to the number of license Activity (dummy) Equal to one if auction has activity rule, zero otherwise Info (dummy) Equal to one if auction information are disclosed to the public, 0 otherwise Number (dummy) Equal to one if the number of license is predetermined, zero otherwise Package (dummy) Equal to one if package bidding is permitted, zero otherwise Sealed (dummy) Equal to one if auction is a sealed-bid format, zero otherwise
  • 3. S. Malisuwan et al. 650 According to the studies of spectrum valuation by censored regression in the past, we can categorize variables that have significant effects on spectrum value and have the relationship as predicted by the theory into three groups: 1) factors concerning spectrum demand, 2) factor concerning spectrum auction characteristics and 3) factors concerning pre- and post-auction obligations. Factors concerning spectrum demand are variables that re- flect the size of the economy and the needs for spectrum. This group includes country’s income, the number of populations, and the time when telecommunication market is booming. The group of factors concerning spec- trum auction characteristics will express the level of competition in spectrum auction, including the number of bidders per license offered. The last group of variables includes factors concerning pre- and post-auction obliga- tions. They are important factors to be considered by bidders before entering the auction. These include reserva- tion of license for next auction, amount of deposit to be made before auction, annual fee and coverage obligation. 2. Spectrum Valuation with Economic Approach: Censored Regression Method Spectrum valuation with econometric approach considers demand- and supply-side determinants of spectrum value. Supply-side determinants are, for example, license size, total spectrum to be auctioned, license length and set-aside. Demand-side determinants are GDP, GDP per capita, the number of subscribers, education level, ratio of revenue of telecommunication sector to GDP and long-run technological change. In short, spectrum valuation with econometric approach is to find determinants of spectrum value while considering spectrum packaging, li- censing procedure, payment schedule, domestic economy and market condition. There are some remarks about the estimations. First, to specify a model, the independent variables must be chosen in accordance with the theory or sensible assumptions. International Telecommunication Union (ITU) categorizes determinants of spectrum value [7] [8]. Nevertheless, there is no rule about the choice of independent variables. It depends on data availability, as- sumptions, historical data and economic theory. Each of these criteria may be applied individually or together when choosing independent variables. It can say that an econometric model specification is both arts and science. Second, data for the study are collected from government agencies, domestic and international firms and other sources such as auction news. In practice, some variables cannot be included because of several reasons (e.g. no data available). Therefore, some dependent or independent variables have to be replaced with other substitutable variables that have available data. Third, the model estimation is to estimate coefficients that explain the relationship between the spectrum val- ue and the selected independent variables. There are two estimation techniques, ordinary least squares and maximum likelihood estimation. In this paper, we consider maximum likelihood estimation which is the censor regression model. Since spec- trum value may be unobservable n some case, so-called censored sample, a censored regression model is used to solve such problem. The censored regression model is estimated with maximum likelihood technique. The censored regression model can be written as * i iY X β ε′= + (1) where * Y is the index of spectrum value indicating that spectrum value is observable (uncensored sample) or observable (censored sample) data. x is a vector of independent variables. β is a vector of coefficients to be estimated. ε is errors between the actual and predicted spectrum value. The index is ( ) * * * , 0, i i i i Y Y Y f x Y τ τ  < = =  ≥ (2) where τ is the critical value designating whether spectrum value is an uncensored or censored sample, X is a vector of independent variables, β is a vector of coefficients and ε are errors between actual and predicted spectrum values. The censored regression model is estimated with maximum likelihood. Conceptually, the distribution of spec- trum value Y is a normal distribution that takes into account unobservable value as shown in the following equa- tion. ( ) ( ) ( ) 1* i i d d f Y f Y F τ −  =     (3)
  • 4. S. Malisuwan et al. 651 where the maximum likelihood estimation considers the probability that each sample is observed to construct the likelihood function and estimate the parameters. The likelihood function can be written as follows. 1 1 1 i id d N i i i i ci Y X Y X L β β σ σ σ −  −   −     = ∅ −∅              ∏ (4) Taking log to get the log-likelihood function ( ) ( )2 1, max ln ln ln 1 ln 1 N i i i i i i ci Y X Y X L d dβ σ β β σ σ σ=   −   −     = − + ∅ + − −∅                ∑ (5) After estimating the censored regression model, if the sample is sufficiently large so that its distribution is ap- proximately normal, the estimators will be unbiased. Reliable estimates lead to reliable spectrum valuation. Therefore, the censored regression model is one of the most popular models for spectrum valuation if a suffi- ciently large dataset is available. In sum, econometrics is an important tool for analyzing economic data as econometrics combines mathemat- ics, statistics and economic theory to construct a mathematical model to explain the relationship between the dependent variable and its determinants given historical data. This model is not only able to portray influences of independent variables on the dependent variable, but it can forecast the value of the dependant variable as well. 3. Analysis of Spectrum Valuation Data Characteristics Spectrum auction can be viewed as investment and a firm wants to invest in a profitable project. If awarded a spectrum license, a firm can make use of spectrum not only to improve its telecommunication service, but to re- duce cost of build out as well. A firm would participate in a spectrum auction whenever the net revenue from spectrum license exceeds the auction price. However, in each auction, government or auctioneer usually sets a reserve price for the auction. The reserve price is usually greater than zero. The winning bidder is the one submitted the highest bid given that it must be greater than the reserve price. If the net revenue from spectrum license is less than the reserve price, firms will not participate in the auction and the winning bid is equal to zero. Nevertheless, spectrum value is not equal to zero but it is simply lower than the reserve price. Therefore, some auction prices are not observable and the data are thereby a censored sample. The least squares are not appropriate for spectrum valuation because the estimates will be higher than the actual values. An appropriate model for censored sample is Tobit. Developed by James Tobin, Tobit model is suitable for a sample whose data for dependent variable is cen- sored or censored sample. The study in [9] employed Tobit model to estimate the relationship between spectrum value in unit of price/ MHz/pop and its determinants. They argued that winning bids are typically censored since an observable win- ning bid must be the highest bid that is greater than the reserve price. In some circumstances, there are no bids as the return from spectrum license is less than the reserve price. As a result, there is no winning bidder and his spectrum value is unobservable. The winning bid is then equal to zero. Due to such winning bid data, the spectrum value cannot be estimated with the least squares. Tobit model which takes missing data of the dependent variable into consideration is more suitable for spectrum valuation. This section discusses how to estimate Tobit model with maximum likelihood under assumption that variables are distributed normally. The probability distribution function and cumulative distribution function of normal variables are shown first and then the estimation of Tobit model is discussed. Let y be a normal random variable with the mean of µ and the variance of 2 σ . Thus, the probability dis- tribution function of y is ( ) ( )2 2 2 2 1 e 2π y f y µ σ σ − − = (6)
  • 5. S. Malisuwan et al. 652 The standard normal distribution of y with the mean of 0, the variance of 1 and y z µ σ − = is ( ) ( ) ( ) ( ) 2 1 22 1 1 e e 2π 2π zy y y f y z µ µ σ σ µ σ σ σ   − −  −− ⋅ ⋅    −  =∅ =∅ = =    (7) When 1σ = , ( ) ( ) 2 21 e 2π z f z z    −     =∅ = (8) Let ( )z∅ is the standard normal distribution function ( )c z∅ is the cumulative standard normal distribution function. Thus, ( ) ( ) ( ) 22 2 22 2 1 1 1 1 e e 2π2π zy y f y z µ σ µ σ σ σσσ  −  −−     −  = = =∅ =∅    (9) where the cumulative distribution function is ( ) c y p Y y µ σ −  ≤ =∅     ( ) 1 c y p Y y µ σ −  > = −∅     (10) As discussed earlier, the winning bid price per total MHz/pop data are left-censored sample since a firm de- cides not to bid if the net revenue from spectrum license is below the reserve price. As a result, the winning bid is equal to zero. Nevertheless, the spectrum value is not equal to zero. It is rather equal to the return which is below the reserve price. This value is unobservable as shown in Figure 1. According to Figure 1, the censored sample distribution can be written as follows. * * * if Reserve price 0 if Reserve price ij ij ij ij ij ij PMHzp PMHzp PMHzp PMHzp  > =  ≤ (11) Let * ijy be the highest bid which is initially confidential and thus unobserved. This value is revealed only if it is greater than the reserve price and it is the highest as in shown in the first case of ijPMHzp . The second case involves no bid submitted since the spectrum value is below the reserve price and it is thereby not revealed and equal to zero. Hence, the distribution of PMHzp is normal with unobserved data as shown in the following equation. ( ) ( ) ( ) 1* Reserve price i i d d f PMHzp f PMHzp F −  =     (12) where 1id = if * Reserve priceij ijPMHzp > ; 0id = if * Reserve priceij ijPMHzp ≤ . So, the cumulative distribution function of the censored data is ( ) ( )* Reserve price Reserve price Censored Reserve price 1 ij ij ij ij c cp p PMHzp µ µ σ σ − −    = ≤ = ∅ = −∅        (13) Figure 1. Left-censored spectrum value. Winning Bid price Reserve price Spectrum price = 0 Censored price of Spectrum
  • 6. S. Malisuwan et al. 653 The cumulative distribution function of censored data is shown in Figure 2. The cumulative distribution function is the white area in Figure 2. If the distribution is assumed uncensored despite the imperfect data, the statistical properties violate the least squares assumptions and the estimation re- sult is biased and inconsistent. Tobit model uses the probability above for estimation and thus requires assumption about the distribution of the random variable. It is usually assumed to be a normal distribution. After showing the probability distribution of uncensored and censored data, estimation of Tobit model with maximum likelihood which pools both uncensored and censored data as in probability theory is discussed. Even if Tobit model specifies a linear relationship between dependent and independent variables as in the general linear regression, some censored sample cannot be observed and thus the dependent variable is equal to zero. The dependent variable, spectrum value ( )PMHz , is specified as * PMHz under a condition that * PMHz can be observed only when * PMHz is greater than the reserve price and it is the highest among all bidders. However, * PMHz is unobservable if a firm value the spectrum less than the reserve price. As a result, there is no winning bidder and the spectrum value is equal to zero as discussed earlier. Therefore, the Tobit regression model can be written as follows. * ij ij ijPMHzp X β ε= + (14) where * ijPMHzp is spectrum value per MHz/pop under sample observability conditions; x′ is the vector of determinants of spectrum value per MHz/pop; ε captures factors other than the determinants of spectrum value. Normally, it is assumed to be negligible in explaining spectrum value; i and j are subscripts representing country and license index, respectively. The value of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝∗ is specified as follows. * * * if Reserve price 0 if Reserve price ij ij ij ij ij ij PMHzp PMHzp PMHzp PMHzp  > =  ≤ (15) The estimation of Tobit model which considers censored sample is shown below. The distribution of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 follows a normal distribution with censored data as shown below. ( ) ( ) ( ) 1* Reserve price i i d d f PMHzp f PMHzp F −  =     (16) where 1id = if * Reserve priceij ijPMHzp > 0id = if * Reserve priceij ijPMHzp ≤ . Maximum likelihood estimation uses probabilities of each realization to construct a likelihood function to es- timate parameters. The likelihood function is written as follows. Reserve priceij c µ σ −  ∅     Figure 2. Comparison between cumulative distribution functions of censored data (left) and uncensored data (right), The cumulative distribution function of uncensored data is ( ) Reserve price Uncensored 1 ij cp µ σ −  = − ∅     . Note: reserve price is smaller than the win- ning bid price.
  • 7. S. Malisuwan et al. 654 1 Reserve price1 1 i id d N ij ij ij ij ci PMHzp X X L β β σ σ σ −  −   −     = ∅ −∅                 ∏ (17) Taking log yields a log-likelihood function ( ) ( )2 1, Reserve price Max ln ln ln 1 ln1 N ij ij ij ij i i ci PMHzp X X L d dβ σ β β σ σ σ=   −   −     = − + ∅ + − −∅                    ∑ (18) The log-likelihood function consists of two terms. The first term is the estimation of uncensored data and the second term is the additional condition for estimation, says the probability that the sample is censored. Therefore, the estimation of Tobit model not only considers observable data, but it estimates parameters that are consistent to censored data as well. The predicted spectrum value from the Tobit model is non-linear as shown in the equation below. ( ) ( )ij ij ij c ij ij X E PMHzp X X β β σϕ σ   =∅ +    (19) where ( ) ( ) Reserve price 1 Reserve price ij ij ij c ij ij X X β σ ϕ β σ  ∅ − =  −∅ −  The marginal effect considers a change in determinant of spectrum value. In other words, it considers the magnitude and direction of change in spectrum value when an determinant of spectrum value increases by one unit. The marginal effect can be calculated as follows. ( )ij ij ij E PMHzp X x β ∂ = ∂ (20) Pros and Cons of Tobit Model Pros. Since Tobit model requires maximum likelihood estimation, given that the sample size is sufficiently large, Tobit model is desirable for estimating with variables or data that are inaccessible, especially spectrum auction in which only winning bid prices are observed. Cons. Tobit model requires maximum likelihood estimation assuming that variables are distributed normally. In practice, according to the Central Limit Theorem, a sufficiently large sample is needed to overcome the prob- lem of unknown distribution. Hence, if the sample size is small, the estimation will be inaccurate and inconsis- tent. This is different from OLS which does not assume any particular distribution. 4. Estimation Framework A good framework for estimation and prediction should have the following properties. Variables in the model must be sensible and have precise conceptual foundation. In this study, we apply idea from ITU and economic concepts as a basis for variable selection. However, ITU determinants of spectrum val- ue rely on theoretical concepts. For some determinants, quantitative data are not available and their proxies are used instead and for others, there is no data available. Nevertheless, from the precise theoretical concept, we can conjecture the effects of various variables on spectrum value, whether they are positive or negative. Therefore, a desirable model should yield the estimation result consistent with the expectation. The predicted value from the model must be sensible and practical. Specifically, the predicted value must not be unusually low or high. Also, it must not be insensible value such as negative spectrum value. Statistical properties should be reliable. For censored regression, we consider two statistics: 1) significant lev- el of various variables along with their signs, whether they are the same as expected, 2) pseudo R-squared which is a statistic used for comparing explanatory powers (spectrum value) of different models. The pseudo R- squared can be used in similar way as R-squared in least squares estimation. That is, a model with higher pseudo R-squared can explain spectrum value statistically better. However, in the censored regression, R-squared can- not be calculated. Thus, pseudo R-squared is used instead. The value of pseudo R-squared is not restricted to be between 0 and 1 as R-squared from OLS but the better model has a higher pseudo R-squared as in the general
  • 8. S. Malisuwan et al. 655 linear regression. 5. Conclusion This paper aims to present the radio spectrum valuation by using censored regression model which is an econo- metric model. Basically, Radio spectrum valuation employs econometric models and methodologies which inte- grate mathematics, statistics, and economic theory to model the relationship between spectrum value and its de- terminants. Econometrics has several advantages. First, it studies actual historical data instead of forecasted data which are usually associated with uncertainty. Second, econometrics is desirable for the available dataset. Fur- thermore, econometrics is more flexible and tractable. This allows us to appropriately define the relationship between spectrum value and its determinants as well as better predict the spectrum value. Lastly, there are di- verse econometric methods and techniques. References [1] Cramton, P. (2002) Spectrum Auctions. [2] Madden, G., Sağlam, I. and Morey, A. (2010) Auction Design and the Success of National 3G Spectrum Auctions. TÜSİAD-Koç University Economic Research Forum Working Paper Series. [3] Van Bruwaene, K. (2003) Estimating the Value of Spectrum. EBU Technical Review. [4] Klemperer, P. (2002) What Really Matters in Auction Design. The Journal of Economic Perspectives, 16, 169-189. http://dx.doi.org/10.1257/0895330027166 [5] Cave, M.E., Majumdar, S.K. and Vogelsang, I. (2003) Handbook of Telecommunications Economics. Info, 5, 46-46. [6] Cramton, P. (2006) Simultaneous Ascending Auctions. Wiley Encyclopedia of Operations Research and Management Science. [7] Alden, J. (2012) Exploring the Value and Economic Valuation of Spectrum. International Telecommunication Union, Geneva. [8] Dippon, C.M. (2009) Regulatory Policy Goals and Spectrum Auction Design: Lessons from the Canadian AWS Auc- tion. NERA Economic Consulting, Statement. [9] Bohlin, E., Madden, G. and Morey, A. (2010) An Econometric Analysis of 3G Auction Spectrum Valuations.