Agua en el_suelo (RDAL cohorte 3)

2.375 visualizaciones

Publicado el

flujo de agua en terraplenes

Publicado en: Tecnología
0 comentarios
1 recomendación
Estadísticas
Notas
  • Sé el primero en comentar

Sin descargas
Visualizaciones
Visualizaciones totales
2.375
En SlideShare
0
De insertados
0
Número de insertados
26
Acciones
Compartido
0
Descargas
151
Comentarios
0
Recomendaciones
1
Insertados 0
No insertados

No hay notas en la diapositiva.

Agua en el_suelo (RDAL cohorte 3)

  1. 1. LEY DE DARCY AikQ ** i = Gradiente hidráulico = h/L (adimensional) h = Pérdida de carga. L = Longitud de recorrido del flujo. A = Área de la sección transversal de la muestra, por la que circula el agua. k = Coeficiente de permeabilidad: constante de proporcionalidad y tiene unidades de velocidad.
  2. 2. EL AGUA EN EL SUELO Condición de Permeabilidad Tipo de Suelo k (cm/s) Muy Permeable. Gravas y arenas limpias. 1 Permeable. Arena Gruesa. 1 Arena Media. 10-1 Arena Fina. 10-2 Poco Permeable. Arenas muy Finas. 10-3 Limos 10-4 a 10-6 Limos Arcilloso 10-6 Impermeable. Arcillas y Arcillas Limosas < 10-6
  3. 3. GRADIENTE HIDRÁULICO Es la pérdida o disipación de altura hidráulica por unidad de longitud, medida en la dirección en que ocurre el flujo. i = h . L Donde: i = Gradiente hidráulico = h/L (adimensional) h = Pérdida de carga. L = Longitud de recorrido del flujo.
  4. 4. Un suelo esta bajo una condición hidrodinámica se presenta cuando el agua gravitacional en estado de reposo, es sometida a un gradiente hidráulico, lo cual origina una variación en la presión del líquido que se transforma en energía cinética y le transfiere movimiento a través del suelo. Flujo del agua en el suelo
  5. 5. Flujo del agua en el suelo
  6. 6. FLUJO EN PRESAS FLUJO A TRAVES DEL TERRAPLEN FLUJO A TRAVES DE LA FUNDACION
  7. 7. Presa homogenea Zona saturada FLUJO A TRAVES DE LA PRESA
  8. 8. Presa Homogénea con dren de “pie” Zona saturada El control de infiltración se efectúa mediante la incorporación de sistemas de drenaje, protegidos por filtros y capas apropiadas de transición. FLUJO A TRAVES DE LA PRESA
  9. 9. FLUJO A TRAVES DE LA FUNDACION PERMEAB
  10. 10. FLUJO A TRAVES DE LA FUNDACION PERMEAB
  11. 11. Permite estimar:  El gasto Pérdidas que sufrirá el embalse por concepto de las filtraciones  La distribución Presiones de poros y subpresiones de las presiones generadas, tanto en el terraplén como en las fundaciones. ANALISIS DE FILTRACIONES
  12. 12. Líneas equipotenciales: Es una línea a lo largo de la cual la carga de potencial es igual en todos sus puntos.
  13. 13. Líneas de flujo: Es una línea a lo largo de la cual una partícula de agua viaja del lado de aguas arriba al lado de aguas abajo en medio de un suelo permeable.
  14. 14. LINEA SUPERFICIAL DE FLUJO PRESA DE TIERRA En las presas de tierra la líneas de flujo es una superficie de agua libre o superficie de saturación, que no está determinada por ninguna masa sólida impermeable. a b c Equipotencial Línea de Flujo Superficie saturada (parábola de Kozeny)
  15. 15. LINEA SUPERFICIAL DE FLUJO PRESA DE TIERRA ENTRADA DEL FLUJO
  16. 16. LINEA SUPERFICIAL DE FLUJO PRESA DE TIERRA SALIDA
  17. 17. Caso 1 : 2 < 30° Calculo de la superficie humedecida a (distancia 4 - 3) 2 2 2 2 2 2 2 coscos sen hdd a LINEA SUPERFICIAL DE FLUJO PRESA DE TIERRA d = L - M + O,3M M = h/tg l d =L - O,7M
  18. 18. Luego de dibujar la presa de tierra a escala, se señala en ella la superficie humedecida aguas abajo "a", calculada por la fórmula anterior. El siguiente paso consiste en el trazado de la línea de saturación usando el método gráfico aproximado de la parábola básica de Kozeny, cuyo procedimiento se describe a continuación: 1. Ubicar el punto 2' en la línea freática a una distancia de 0,3M medida desde la cara del talud aguas arriba. La cara aguas abajo del talud es tangente a la parábola en el punto 4.
  19. 19. 2. Prolongar la línea en el talud aguas arriba de la presa. Trazar una horizontal por el punto 2 hasta cortar la cara del talud aguas abajo. El punto de intersección es 5.
  20. 20. 3. Dividir 4 -5 Y 5 - 2' en el mismo número de partes iguales, no más de 4 o 5, y marcar estos puntos (en 5 - 2' se parte de 5 numerando con letras A -B , etc., en 4 - 5 se parte de 4 numerando A-B-C, etc.). 4. Trazar por 4 - 5 líneas horizontales en los puntos marcados. 5. Unir cada uno de los puntos marcados en la horizontal 2'- 5 con el punto 4. 6. Trazar la línea freática por los puntos obtenidos. 7. Como la línea freática parte perpendicular a la cara del talud aguas arriba, este ajuste debe realizarse manualmente. 5 ∆h ∆h ∆h 2’ ∆x∆x ∆x 4
  21. 21. Método para determinar la Línea de Saturación Caso 2 : 2 > 30° En este caso el procedimiento a seguir es: ddhP 22 1. La parábola tiene su origen a una distancia P del vértice del talud aguas abajo de la presa, es decir este vértice es su foco y es tangente a la vertical que pasa por el punto P. P se calcula por medio de la siguiente expresión:
  22. 22. 2. Trazar la parábola básica de Kozeny. En este caso la tangente al origen es una línea vertical. 3. La distancia desde el punto 4 hasta la intersección de la parábola con el talud aguas abajo es a + a, y no es realmente el punto por donde sale el agua en el talud, por lo tanto se debe realizar una corrección y encontrar a. Casagrande encontró que la relación es un escalar que puede ser llamado a', y que se relaciona con el ángulo 2 según se muestra en la siguiente tabla: a a a 2 ( ) a 30 0.375 60 0.320 90 0.260 120 0.185 150 0.105 180 0 Método para determinar la Línea de Saturación
  23. 23. Los valores entre estos ángulos pueden interpolarse, y midiendo a + a, se calcula a' usando las formulas: a = a´ ( a + a ) y a = ( a + a ) - a Finalmente se trazan manualmente la entrada y la salida de la línea de saturación. Método para determinar la Línea de Saturación
  24. 24. a. Hacer un dibujo a escala que muestre la masa de suelo, los límites permeables a través de los cuales entra y sale el agua del suelo y las fronteras impermeables que confinan o limitan el flujo. REGLAS PRÁCTICAS PARA ELABORAR REDES DE FLUJO A TRAVES DE LA FUNDACION
  25. 25. b. Dibujar de dos a cuatro líneas de flujo que formen ángulos rectos con los límites permeables a la entrada y a la salida y que sean aproximadamente paralelas a los límites impermeables. REGLAS PRÁCTICAS PARA ELABORAR REDES DE FLUJO A TRAVES DE LA FUNDACION
  26. 26. c. Dibujar líneas equipotenciales que formen ángulos rectos con las líneas de flujo, de manera que el ancho y el largo promedio del cuadrado curvilíneo que forman sean iguales (a=b). Desde luego, esto es imposible de lograr en el primer tanteo, porque las posiciones de las líneas de flujo son supuestas, pero esta primera red servirá de guía para un segundo tanteo. REGLAS PRÁCTICAS PARA ELABORAR REDES DE FLUJO A TRAVES DE LA FUNDACION
  27. 27. d. Se reajustan las líneas de flujo y las líneas equipotenciales hasta que todas las intersecciones sean en ángulo recto y el largo y ancho de cada cuadrado sean iguales. Los tamaños de los cuadrados pueden ser distintos pero la relación a/b = 1 debe mantenerse. REGLAS PRÁCTICAS PARA ELABORAR REDES DE FLUJO A TRAVES DE LA FUNDACION
  28. 28. Caudal de Filtraciones: Donde K = coeficiente de permeabilidad h = pérdida total de altura piezométrica Nf = número de tubos de flujo resultantes Np = número de espacios de igual caída de carga hidráulica resultantes q = gasto de las filtraciones por unidad de ancho
  29. 29. La presa del dibujo se asienta sobre materiales cuya permeabilidad es 0,3 m/día. Bajo dichos materiales se encuentra un sustrato impermeable. Se pide: a) Dibujar la red de flujo bajo la presa. b) Calcular el flujo por metro de presa (un metro perpendicular al dibujo). c) La pérdida de altura de agua en un punto a cuatro caídas equipotenciales bajo la presa.
  30. 30. Dibujo de la red Np= 15 Nf=4
  31. 31. Calculo de caída en cada equipotencial Np= 15 Nf=4 p
  32. 32. Calculo del caudal por unidad de ancho Np= 15 Nf=4
  33. 33. CALCULAR EL DIAGRAMA DE SUBPRESIONE
  34. 34. Agua en cuerpo de la presa de tierra Licuefacción – ebullición del suelo (movimiento ascendente) –lecho de dundacion Tubificacion
  35. 35. La superficie freática del régimen de infiltración, es decir, la superficie libre, debe mantenerse alejada del paramento aguas abajo para evitar altas presiones del agua en los poros que puedan promover la inestabilidad del talud.
  36. 36. Cuando la línea de infiltración emerge en el paramento, ocurrirá ablandamiento local y erosión, lo cual iniciará desprendimientos.

×