SlideShare una empresa de Scribd logo
1 de 50
Descargar para leer sin conexión
ENERGY OPTIONS FOR INDIA
           BY




K. PERIASAMY M.Tech (Chemical Engg),
        Chennai - 600 096.
ENERGY OPTIONS FOR INDIA
                       K. Periasamy, M.Tech (Chem. Engg), Chennai - 600 096.
1. INTRODUCTION


India is the second largest populist Country in the world with a total electricity generation of 892 Billion Units
with a per capita electricity consumption of just about 735 units during the financial year 2011-12. This per
capita consumption is far less compared to that of China and the world average. There is no comparison if we
look at the values of developed countries like USA, France, Germany, etc. as can be seen from Figure-1.


If India has to improve the standard of living of its teaming millions atleast to the level of China, then the per
capita GDP has to triple to catch up with that of China. This is because the Average Life Expectancy, which is
the most important parameter of Human Development Index has a direct correlation with per capita GDP as
can be seen from Figure - 2. Of course correction for Inequitably Index needs to be given for a still better
correlation.


Also, it is a well known fact that GDP growth rate is directly proportional to Energy Consumption and it is called
as Energy intensity.


In India, the energy intensity for the electricity part in the past several decades has been hovering at about
0.01 units for every Rupee of GDP. It is likely to soften to some extent, with the steady increase of service
sector contribution to GDP. But it will not fall very drastically. In fact this will be offset to some extent by the
increase in electricity demand due to lifestyle changes.


So, there is no magic wand to improve the standard of living of the Indians other than substantially increasing
the per capita electricity availability. All other talks of Socialism Vs Capitalism, Globalization Vs Protectionism,
Centralization Vs Decentralization, etc. have no relevance if we do not increase the Energy production leaps
and bounds.


2. POWER RESOURCES AVAILABLE IN INDIA


India has sunshine throughout the year and is bestowed with reasonably high level of average rainfall. With
the result, the human fertility and population growth has always been on the higher side in our Subcontinent.
With the welfare measures initiated by the British Raj and the impetuous given by the subsequent
Governments of Independent India, the population grew steadily. After independence, with marked decline in
infant mortality rate and eradication of several epidemics in the last 6 decades, the population of India has
more than tripled from 35 crores to 121 crores.


Unfortunately, to keep pace with this population growth and to improve the standard of living of our people,
atleast to match with that of our contemporaries like, China and Brazil, we do not have sufficient quantities of
two important resources. These Two resources are Energy and Water.                 Atleast the later is sufficiently
available in terms of total quantity. It is only the question of storage, diversion and distribution from areas and
periods of surplus to deficit. The Government is embarking on the River Interlinking Schemes to solve this
problem. But Energy resources available are limited except Thorium.
Low–income countries                                                              Middle–income countries                                                                                  High–income countries
                                85
                                                                                                                                                                                                                                                                                      Japan           France

                                                     LIFE EXPECTANCY Vs PER CAPITA GDP                                                                                                                                                                                   Germany
                                                                                                                                                                                                                                                                         Spain
                                                                                                                                                                                                                                                                              Italy
                                                                                                                                                                                                                                                                                                       Sweden

                                                                                                                                                                                                                                                                                                      Iceland
                                                                                                                                                                                                                                                                                                              Hong Kong
                                                                                                                                                                                                                                                                                                                   Andorra
                                                                                                                                                                                                                                                                                                                Switzerland
                                                                                                                                                                                                                                                                                                           Australia Singa-
                                                                                                                                                                                                                                                                         Israel                           Canada pore Norway
                                                                                                                                                                                                                                                                                                              1
                                                                                                                                                                                                                                                                New Zealand      Finland                                         Liechten-
                                80                                                                                                                                                                                                                  Puerto      Malta                                   Netherlands    stein
                                                                Healthy                                                                                                                                                                                                        3     2
                                                                                                                                                                                                                   Cuba       Costa       Chile      Rico                South       UK           Bel- Ireland         Lux-
                                                                                                                                                                                                                                                                                                                       embourg
                                                                                                                                                                                                                              Rica                                        Korea Greece            gium Austria
                                                                                                                                                                                                                                                                                                                      USA
                                                                                                                                                                China
                                                                                                                                                                                                                                                             Portugal            Slovenia     Denmark
                                                                                                                                                                                                    Albania
                                                                                                                                                                                                                                 Mexico                    Barbados              Taiwan
                                                                                                                                                                                                                                                                                               UAE
                                                                                                                                                                                                                                                                                                     Kuwait

                                                                                                                                                                                                         Belize          Uruguay                        Croatia                 Czech Rep.                      Brunei
                                                                                                                                                                                                                Grenada Panama     Argen-              Oman
                                                                                                                                       Vietnam                                          Bosnia & H.         Dominica                  tina      Poland         Bahrain                                                       Qatar
                                75               Poor                                     Rich                            Kosovo                                Syria                                              Venezuela
                                                                                                                                                                                              Ecuador Macedonia4 Serbia
                                                                                                                                                                                                                                                     Slovakia
                                                                                                                                                                                                                                 Malaysia Antigua & Barbuda
                                                                                                                                                        Sri Lanka                              Tunisia Colo-5                     Libya                        Bahamas
                                                                                                                                                                 Armenia                                                Bulgaria                Hungary
                                                                                                                         Nicaragua        Palestine                                       Algeria Peru     mbia              St Kitts & N. Estonia
                                                                                                                                                                                                                                                           Saudi Arabia
                                                                                                                Micronesia
                                                                                                                                                                Honduras
                                                                                                                                                                    Paraguay
                                                                                                                                                                                       Jordan
                                                                                                                                                                                                  DR
                                                                                                                                                                                                                     Brazil
                                                                                                                                                                                                                        Romania                Latvia     Seychelles
                                                                                                                                      Philippines       Cape                     Tonga                                                         Leba-                                                        1.   San Marino
                                                                                                                                                                                          El Jamaica                                  Mauritiusnon Lithuania
                                                                                                                                                                            Maldives                                    6
                                                                                                                                                        Verde                  Samoa
                                                                                                                                                                           Georgia
                                                                    Sick                                             Marshall Isl.                                     Morocco       Salvador Palau
                                                                                                                                                                                                                             Iran Turkey
                                                                                                                                                                                                                                                                                                            2.   Monaco

                                                                                                                                        Indonesia                           Guate-
                                                                                                                                                            Vanuatu                                                                                                                                         3.   Cyprus
                                70                                                                                                                                         mala
                                                                                                                                                                                            Egypt
                                                                                                                                                                                                             Azerbaijan                                        Trinidad &                                   4.   Montenegro
                                                                                                   Tuvalu
                                                                                                                                                                    Fiji                                          Suriname               Belarus               Tobago
                                                                                                                                                                                                                                                                                                            5.   Saint Lucia
                                                                                                                                Moldova
                                                                                                                 Kyrgyzstan                                                 Ukraine                                                                                                                         6.   St Vincent &
                                                                                                                                             Uzbe-       Iraq                                        Thailand
                                                                                          Nepal             North                            kistan                                                                                                                                                              Grenadines
                                                                                                            Korea                    Paki- Solo-Isl.                                   Guyana
Health Life expectancy at birth (years)




                                                                                    Comoros
                                                                                                                  Tajikistan
                                                                                                                                     stan mon
                                                                                                                                                       Mongolia
                                                                                                                                                                      Bolivia
                                                                                                                                                                                Bhutan                                                              Russia
                                                                                                                         Laos
                                                                                   Bangladesh
                                                                                                                                 India
                                                                                                              São Tomé                                                                                                                Kazakhstan
                                65                                                                               & P.                                                                     Turkmenistan
                                                                                                                                                                             Nauru
                                                                                                                      Yemen                                                               Kiribati
                                                                  Togo                                                                                                                                                                                                Colour by region:
                                                                             Myanmar               Benin         Cambodia
                                                                                                                                                                                                Namibia
                                                                                                                              Timor-
                                                               Madagascar                     Haiti                    Papua Leste                                                                                                              Gabon
                                60                   Eritrea                                                           New
                                                                                                                       Guinea
                                           Liberia                                                                                   Sudan
                                                                      Guinea
                                                                                          Côte d'Ivoire
                                                                                                            Ghana   Mauritania
                                                                                     Tanzania          Gam-                                                                                                                                                        Size by population:
                                                                  Ethiopia                            bia      Senegal        Djibouti
                                55                                                                              Kenya                                                                                                           Botswana

                                                                  Malawi
                                                                                      Uganda
                                                                                                  Burkina Faso
                                                                                                                                                                  Congo, Rep.
                                                                                                                                                                                                                                                                        3
                                                                                                                                                                                                                                                                                        100            1000
                                                                                                                                                                                                                                                                      or less
                                                                                                                                                                                                                                                                                 10
                                                                                                                                                                                                                                                                                                        millions




                                                                                                                                                                                                                                                                                                                                      Gapminder World Chart 2010 Version May 2010b
                                                                  Niger                                                                                                                                                       South Africa
                                          Burundi                                         Rwanda                             Cameroon
                                                                                                                                                                                                                                        Equatorial Guinea
                                50                      Somalia                                                                                                                                                                                                   Data are for 2009 for all 192 UN member states and the other
                                                                                                                                                                                                                                                                  5 countries and territories with more than 1 million people
                                                                Mozambique                 Mali              Chad                                                                                                                                                 (Hong Kong, Taiwan, Palestine, Puerto Rico and Kosovo).

                                           Congo, DR                Sierra Leone  Guinea-Bissau                                      Nigeria                                               Angola
                                                                                                                                                                                                                                                                  Free to copy, share and remix but attribute Gapminder.
                                                                                                                                                                                                                                                                  For sources see:
                                                                   Central African Rep.                                                                                                                                                                           www.gapminder.org
                                                                                                            Zambia                                                                      Swaziland                                                                 http://www.gapminder.org/worldmap
                                          Zimbabwe                       Afghanistan        Lesotho
                                45
                                            500                              1 000                                2 000                                               5 000                                       10 000                                    20 000                                                50 000

                                          Money GDP per person in US dollars (purchasing power adjusted) (log scale)                                                                                                                                                      FIGURE - 2
The various Energy Resources available in India and their usage options are given in the following Table:
                                                         TABLE – 1

 S.No.          Energy Resource                                Usage options                       Remarks
     1    Crude Oil                           Road / Rail Transport Fuel, Chemicals, LPG, ATF,         1
                                              etc.
     2    Gas (Associated Gas,                Fertilizer Feed Stock, Fuel for Power Plant,             2
          Liquified Natural Gas, Coal         Chemicals, Plastics, Fuel for Cooking, Transport,
          Bed Methane, LPG, etc.)             Etc.
     3    Coal, Lignite                       Fuel for Power Plant, Fuel / Reagent for Steel and       3
                                              Cement Plants, Chemicals, etc.
     4    Hydel                               Electricity                                              4
     5    Wind                                Electricity, Water Pumping
     6    Solar                               Electricity, Heat
     7    Biomass                             Manure, Fuel


Remarks:


    1. The Crude oil on distillation produces various products like, LPG, Petrol, Kerosene, Diesel, Naptha,
         Aviation Turbine Fuel, Lube Oil, Low Sulphur Heavy Stock (LSHS), Coal Tar, etc. Most of these have
         specific uses, except Naptha and LSHS which can be used either as Fuel for Power (or) Feed stock /
         Fuel in Fertilizer Plants.


         It is always better to avoid the use of petroleum products for power generation, since there are no
         other resources, which can replace petroleum products for their other needs. The Crude Oil reserves
         throughout the world are finite. In the last about 60 years there has been continuous growth in
         petroleum products consumption. There was matching production with new oil fields adding up. But
         in the last 10 years or so, there is slow down in the discovery of new oil fields. This has resulted in a
         situation called “Oil Peaking” whereby oil production is just matching the requirement with no room for
         further growth in production. This is clearly seen from Figure – 3.


         So, as a country with heavy dependence on imported petroleum, we must plan our alternative
         transport fuel on priority. Ethanol is an obvious choice as being followed in Brazil. It is unfortunate
         that we are having a very casual approach on this matter. There is an urgent need for producing more
         sugarcane for increasing the ethanol production. For this we need to bring more area under irrigation.
         From this perspective also River Inter Linking needs to be taken up on top priority.


    2. There are several Gas resources. The Associated Gas comes along with Crude oil in some Oil wells.
         Some Wells produce only Gas and it is called Natural Gas. Gas can be produced by in-situ
         Gasification of Coal, called Coal Bed Methane (CBM).


         These Gases contain mainly Methane (CH4 – one Carbon atom) Propane (C3H8 – 3 Carbon atoms)
         and Butane (C4 H10).         Liquefied Petroleum Gas (LPG) is mainly Propane & Butane.       It is either
         obtained during crude oil distillation in Refineries or by extracting the Propane and Butane from the
         Natural Gas or Associated Gas received from the Oil wells.
The LPG part of these Gases has a distinct use as domestic fuel. But the Methane, which is the major
        part of Natural Gas has two options. One as Fertilizer Feed Stock and the other as Fuel for Power
        generation. Gas is a better feed stock for fertilizer production. For a Country like India, which needs
        lot of fertilizers to produce enough food from limited land resources, using this Methane Gas for
        fertilizer production shall take precedence over Power generation. This is because, for producing
        urea, the most important fertilizer (Urea), we need lot of Hydrogen.             Methane has the highest
        Hydrogen to Carbon ratio (4 : 1) and it is easy to handle.


    3. Coal has a low Hydrogen to Carbon ratio of 0.7: 1 compared to that of Methane Gas (4 :1) and typical
        Crude oil (1.5 : 1). Moreover it has lot of inert like Silica and impurities like Sulphur. Hence, it is better
        to use it directly as fuel for power.


    4. Hydel Power is direct electricity. In some locations, we can build a lower Dam for storing the water so
        that it can be pumped back to the higher dam during Non Peak hours using surplus power from Coal /
        Nuclear Plants. This can be used to generate power during peak period. The Generator itself will
        work both as Generator and Pump. This is called Pumped Storage Scheme and this is the only way of
        storing electricity in high capacities. There will be a net loss of about 10 - 15% during pumping and
        regeneration.


Out of these various energy usage options, in this Article, let us discuss about Electrical Energy, which is the
key for the development of any society.


The present Installed capacity, Units generated, Total additional resources available, etc. for various Electrical
Energy sources in India is given in Table - 2.


For a country like India with such a large population, looking at imported resources, like Iran Gas,
Turkmanistan Gas, LNG, Indonesian Coal, Oil Wells in Africa, etc., as part of long term energy security plan is
ridiculous. These resources are finite and are expected to last for just 20 years. There are always technical /
political / commercial risks. What happened to Indonesian Coal import price in the last 3 years is a typical
example. Also, when an individual considers 10 to 20 years as long term, should a Country not plan for atleast
100 years as part of its long term energy security plan? If we do not understand the long term energy options
of India properly and plan accordingly, at some stage it will create chaos in the society.


Let us analyze the various energy resources available with us and evolve the right long term energy security
plan.


A. Hydroelectric Power: This is one of the cheapest and cleanest forms of energies and it is renewable as
well. This is produced by water flowing from the Dams which store water at higher elevations. Thus, Dams
serve by providing both Water and Electricity, the lifelines for the society.


Hence, we need to exploit this resource fully by building more dams which have a total capacity to produce
100000 MW and by completing the 29 Inter Link Canals already identified and approved by the Central Water
Commission. These Inter Link Canals are expected to provide a net surplus of 30,000 MW after deducting the
pumping needs for pumping in certain areas like Vindhyas. With this 30,000 MW, the total hydel potential yet
to be exploited works out to 1,30,000 MW (1,00,000 + 30,000).
Table -2
                                                          INDIA - ENERGY RESOURCES
        SOURCE        INSTALLED     UNITS PRODUCED AVERAGE PERCENTAGE UNITS       TOTAL ADDITIONAL MW WITH         LONGEVITY, REMARKS
                    CAPACITY AS ON FROM APRIL'11 TO  PLF, %     PRODUCED BY    AVAILABLE / SUSTAINABLE RESOURCE      YEARS
                    MARCH'12, MW      MARCH'12,               EACH RESOURCE, %
                                        Bn KWHr                                    MW              RESOURCE
    COAL                   112,022               709       80             78.9      2,00,000 284 Bn Ton                   150        1
    GAS                     18,131                         75                              0 1500 Bn M^3                   10
    OIL                       1,200                        75                              0 0.757 Bn Ton                  15
    NUCLEAR -                 4,780               32       80              3.6        20,000 60,000 Ton of Natural         80        2
    Uranium                                                                                  Uranium
    NUCLEAR -                     0                0                         0      4,00,000 4,00,000 MW with             400        3
    Thorium                                                                                  4,00,000 Tons of
                                                                                             Natural Thorium
    HYDRO                    38,990                130          35                14.5      1,30,000 RENEWABLE             NO LIMIT       4
    BHUTAN IMPORT                                     5                            0.6
    SMALL HYDRO               3,200                  16         25                 1.8         8,000   RENEWABLE           NO LIMIT
    WIND                     15,700                             15                            50,000   RENEWABLE           NO LIMIT       5
    SOLAR                       482                             15                            20,000   RENEWABLE           NO LIMIT       5
    COGENERATION               2000                  5          30                 0.6         5,000   RENEWABLE           NO LIMIT       6
    BIOMASS                    1325                  2          20                 0.2        15,000   RENEWABLE           NO LIMIT       7
    TOTAL                   197,830                899                            100

1 Includes 113 Bn tons of Proven reserves, 137 Bn Tons of Indicated Reserves and 33.5 Bn tons of Inferred Reserves.
2 If we consider imported Uranium, there is no limit, since there are huge Uranium resources available in the world.
3 We have about 1/3 rd of world known resources of Thorium and it is estimated between 3,60,000 tons to 5,18,000 tons.
4 It includes 30,000 MW of net surplus that is possible with River Inter Linking schemes.
5 The Wind and Solar power plant capacity additions are limited by the huge investments required for every unit of electricity produced
  ( about 10 times) due to their very low PLF, which is 5 times lower.
6 Cogeneration is mainly from Sugar plants, which generate bagasse a bye-product, which is used for power generation.
7 The Bio mass potential is assumed as if all Agriwastes are treated as wastes and given for burning, which is not true.
We must exploit the entire hydroelectric potential on top priority, since these projects are multipurpose and the
investment is shared between various benefits like Drinking water, Irrigation water, Flood Control, Navigation,
Saving on health care, Carbon fixation, Saving on electricity consumption in agriculture pump sets, etc.


All the talks of environmental damages due to large dams need to be bulldozed as we know that the one time
damage to flora and fauna due to submergence of few thousand acres is much less compared to the
destruction caused by annual flood and draught, year after year.


Also, we can always create forests equal to double the area submerged by any dam. Moreover, with the
advent of large Tunnel Boring Machines, we can minimize destruction of forests by avoiding open canals in
those areas. The Tunnel concept has many other advantages like, need for lesser land acquisition, lesser
human displacements, eliminating bridges, eliminating the pumping needs across hills, minimizes the pilferage,
etc.


The arguments that the Dams and Inter Link Canals hardly store and divert few percentage of the flood water
and hence does not help in flood mitigation is totally false. Since the Dams store the water mostly during the
peak flow periods, they eliminate the peaking flood flow, even though the storage is less compared to the
yearly total flow. Every inch reduction in water flow level in rivers is important during flood times.


B. Coal: As can be seen from Table – 2, this source contributes the maximum electricity production, and it
continues to be given top priority in the on going power projects also. With the present installed capacity, the
Coal resources are expected to last for about 200 years. But with the tripling of Coal based power plants in the
next 15 years, the resources will last only for 80 years. Already we are importing about 100 million tons to
meet the total coal requirement of 800 million tons. International coal prices have doubled in the recent 3
years from USD 60 to USD 120 per ton. It will continue to rise since China, Japan, India, etc need to import
large quantities of coal if they continue to rely on coal for major part of their energy needs.


One of the major issues with Coal resource in India is that much of the Coal is at a depth of 1200 meters. But
it is technically and commercially feasible to mine coals available upto a depth of 300 meters only.


Hence, it is absolutely necessary for us to slowly reduce our dependence on coal as part of our long term
energy security.


C. Nuclear: Nuclear Power is the second best in terms of clean, safe, environmentally benign and cheap
power, next to Hydel Power. There are two nuclear fuels–Uranium and Thorium. Natural Uranium has 0.72%
of U – 235 and balance U-238. Only U – 235 can be used directly as fuel. U – 238, can be used as fuel only
by converting it into Plutonium – 239 (Pu–239). Natural Thorium ore has only Thorium – 132 which can be
used as fuel only by converting it into U – 233.


As can be seen from Table – 2, we have only 60,000 Tons of Uranium. But we have 3,60,000 to 5,18,000
Tons of Thorium. With this Thorium we can generate 2,00,000 MW of Power for next 800 years or 4,00,000
MW for 400 years. Hence, for our long term energy security, we shall rely on Thorium based nuclear energy.
As mentioned above, Thorium – 232 can not be directly used as fuel. For converting this Th – 232 to U
– 233, we need Pu – 239.


For producing sufficient quantity of Pu – 239 and U – 233, we need to have a Three Phase Nuclear Power
Program, as shown in Figure – 4.


In the First Phase, we operate Natural Uranium based reactors to get electricity and simultaneously produce
Pu -239 from the U – 238 present in Natural Uranium. This Pu-239 is separated from the Spent Nuclear Fuel
by Reprocessing.


In the Second Phase, this Pu-239 is mixed with U–238 and used in Fast Breeder Reactors to get
electricity and produce more Pu – 239. The specialty of Fast Breeder Reactors is that for every Atom of Pu-
239 consumed, about 1.4 Atoms of Pu-239 are produced from U – 238. Simultaneously, some part of Th–232
kept as Blankets around the core gets converted into U–233. This Pu-239 and U–233 are separated by
reprocessing.


In the Third phase which starts when we have sufficient quantity of U – 233, we switch over to the U–133.
Here U – 233 is mixed with Thorium – 232 and used as fuel in the U – 133 based Fast Breeder Reactors.
Here again these Fast Breeder Reactors produce about 1.3 Atoms of U – 233 from Th–232 for every
Atom of U – 233 consumed. If Thermal Breeder Reactors are used, then 1.4 to 1.5 Atoms of U-233 are
produced.


We have the complete technology for the Design, Construction and Operation of Nuclear Reactors. Contrary
to the general belief, we also have the complete Technology for the Fuel Enrichment, Reprocessing and Waste
Management.      What is not available with us is the collective political will and the priority for funds
allocation. For example, we have invested Rs. 51,000 Crores to build 6,300 MW Wind Mills in Tamil Nadu.
With the same amount we could have built 6000 MW of Nuclear Power Plant, which would produce 4 times
that of Wind Mills Of course there are some limitations in the Indian industry in manufacturing certain large
components required for Nuclear Reactors. Slowly our industries are gearing up. In the meanwhile, we shall
import those components. Nothing wrong or unusual about it, since the scale of operation now does not justify
the investments required to be made.


Hence, we need to give priority for Nuclear Energy by getting sufficient funds by way of Foreign Direct
Investment (FDI) and also by encouraging import of Reactors from foreign suppliers at favorable credit terms.
Please note, presently the foreign companies do not have sufficient orders and hence they will offer attractive
price and payment terms. It is a win – win situation for all.


Talks like American MNCs want to exploit us, they want to dump outdated technology on us, etc are all
childish. The fact is that, we have Russian, French, Canadian, Korean and Japanese Companies who are
already in dialogue with us. American Companies are lagging behind. All companies offer the latest Reactors.
In Jaitapur some people oppose Nuclear Power because AREVA offers the latest technology !
One important dimension to the whole Energy scenario is the Nuclear Fusion Energy. The Nuclear energy
presently in vogue is based on Nuclear Fission. That is, when                   a   larger     atom, like U–235 or
Pu – 239 or U – 233, is split into two smaller atoms, there is energy release. In the same way, if two smaller
atoms (like Hydrogen) are fused together to form a bigger atom (Helium), then also there is energy release.
This is called Fusion Energy. Fusion Energy is almost 200 times higher in intensity compared to Fission
Energy. The newly formed bigger atom (Helium) is also harmless. Hence, Fusion Energy is the best form of
energy.


Sun gets its energy by this fusion reaction only. Fusion Energy is likely to be commercialized in the next 50 to
100 years. The Technology is conceptually proved. For commercialization of the Technology, the major
impediment is the development of some metal alloy, which can have super conductivity near room
temperature. Once such an alloy is developed, Fusion Reactors will be commercially feasible. Till then
Fission based Nuclear energy is an obvious choice.


D. Wind: India has some wind potential, thanks to the monsoon winds and some narrow Mountain Passes.
Wind Energy potential in the various windy regions of India is given in the Wind Power Density Map (Figure -
5). The wind energy potential with a wind velocity of 9 m/sec at 80 m hub height has been estimated to be
65,000 MW. Out of this, 15700 MW is already installed. The main driving force for the fast growth of wind
energy in India have been the 80% Depreciation benefit allowed in the first year itself and the permission to set
up Wind Mills under TUF Scheme. The accelerated depreciation benefit provides about 25% Income Tax
saving, which is almost the promoters margin money required for installing Wind Mills. The TUF scheme
offered loan at just 4% interest. But with effect from April 2012, the Depreciation benefit has been withdrawn.
We have to see how much this is going to affect the Wind Mill industry.


As wind is seasonal, the Wind Power will be available only during the few months in a year. During these few
months also, the capacity utilization will be hardly 40 to 50%, even in the best wind sites.


E. Solar: Being some what close to the Equator, most part of India has good sunshine throughout the year.
In some parts of India, which are close to Tropic of Cancer, the solar irradiance, a measure of solar power
intensity is substantially higher. But still due to the low average energy intensity per unit area, the land
requirement is substantially higher. Each MW of installed capacity requires about 6 Acres of land. Hence,
Solar Power can be installed in large capacities only in areas like Rajasthan and Gujarat where large tracts of
unused land is available. Due to the combination of humidity and dust, most of the fallow lands of other
regions of India are not suitable for Solar Power. The accompanying Map provides information on the Solar
Intensity across India (Figure – 6).


Major limiting factors of Solar Power are non-availability during Peak hours and the high investment cost
required per MW. It costs about Rs. 10 – 12 Crores per MW. Based on the land availability and high cost, it
has been planned to install about 20,000 MW of Solar Power using about 1,20,000 acres at an investment of
Rs. 2,00,000 Crores over the next 10 years. But, it is to be noted that this 20,000 MW is equal to only 4000
MW of Coal / Nuclear Power Plant in terms of electricity produced (Units) and that too it will not be available
during the peak load period of 6.00 P.M. to 10.00 P.M.
3. HEALTH, SAFETY & ENVIRONMENT IMPACT OF ENERGY SOURCES (HSE)


There has been lot of debates on these issues. The debates are taking place in two distinctly different
platforms. One is the well informed, scientifically substantiated debates with facts and figures, taking place in
AC Halls among the experts concerned and the officials involved. The other is the ill informed, emotionally
surcharged discussions often supported by “some experts” or “some eminent citizens” or “ former scientists” or
“former officials” with limited data, taking place in street corners. These street corner discussions are always
conducted in the guise of support of the project affected persons, who will always have genuine grievances,
which are nothing to do with HSE.


The participants of these two discussions seldom meet. If at all they meet, they meet at Courts, which is the
wrong place for any meaningful discussion of this nature to take place. After all this discussion is more to do
with science, engineering, economics, social development, etc. and less of legalities.


The Political Bosses who are supposed to be the bridge between the two platforms do not have time and
inclination to do the bridging. The lack of inclination on their part stems mainly from the media response,
which in most cases, is biased towards the emotionally surcharged street corner revelations rather than the
scientifically supported discussions. For the media, street corner meetings are sensational and have better
news value. The Politicians do not want them to be identified on the “wrong side” by the media. So, as far as
possible, they keep off or they side with those project affected people who are invariably there in any project.


Keeping this in mind, now let us analyze the HSE issues in detail with some techno-economic data in the
context of Power Options for India for the five major options – Hydel, Coal, Nuclear, Wind and Solar.


    A) HYDEL
        1. Health: Hydel Power Plants do not cause any health hazards to human beings or animals. But
            actually they help in improving the health by providing adequate water for irrigation and drinking
            water. With the increase in population there is more and more dependence on ground water for
            drinking, by way of deep bore wells. As we go down deeper into the earth, the temperature
            increases. This results in higher solubility of salts. If we drink this water the salts overload the
            organs in our body resulting in health problems. Presently this problem has been completely
            ignored by the Planners of India.


            This problem is solved by the Hydel power projects which are always built as multipurpose
            projects with Irrigation, Drinking Water, Power, Flood mitigation, Water Transport, Fishing, etc. as
            part of the overall scheme.


            The dams minimize the diseases caused by flood and also mitigate the effects of draught. Hence,
            the Hydel Power Plant Projects help in improving the health of humans and animals, in many
            ways.
2. Safety: The Hydel projects have some safety issues during construction and during operation.
    During construction of Dams there are possibilities for accidental damages for the temporary
    structures / Tunnels built to divert the regular water flow. Sometimes the accidents are caused by
    unprecedented rain during construction causing landslides / excess flooding.           These are rare
    accidents happening despite precautions.


    During operation of the Hydel projects the accidents can happen by way of Struck Sluice Gates
    resulting in damage of dams, damages due to earthquake, etc. Failures of Turbine Blades,
    Generator Fires, Transformer Fire, etc. are some of the other freak accidents.


    In the past there were quite a few dam failures, some of which due to earthquakes. But with the
    advent of technology the new major dams built in recent 50 years have not been damaged in
    earthquake or any other natural causes. The details of Dam failures and the number of deaths in
    each case are given in Table – 3.


    According to International Commission on Large Dams (ICOLD), as of 2011, there are 37,640
    large dams (>30 m Height for China and > 15 M for others). If China dams > 15M height are also
    included, the total number is about 52,000. Though there were about 300 accidents in these large
    dams, the accident rates have come down drastically in recent decades.


    Out of these 52,000 large dams in operation, more than half of them were built in the second half
         th
    of 20 Century.


    It is important to note that if these Dams had not been built there would have been lot of human /
    animal casualties due to draught and flooding each year. This aspect needs to be added to the
    credit of the Dams when we evaluate the Hydel project for their safety.
.
3. Environment: This is one of the important factors which is put forth against the Hydel Power
    Projects. There is some truth in it. But it is always exaggerated. More importantly the positive
    effect of these projects on the environment is always overlooked. There are several environmental
    aspects. Let us discuss each of them in detail.


    a) Damage to Flora and Fauna due to the one time submergence of land when the Dam gets
        filled up for the first time. Mostly these lands happen to be forests. Yes, it is true that there is
        disturbance to humans and animals due to this. Most of the animals can be saved. Only the
        insects, bacteria, the trees and other plants in these forests, will die.


        However, these forests can always be grown in double of the submerged area and it can be
        set as a precondition for project clearance. Most of the insects and bacteria can also be more
        or less reestablished in this new forest. It is not fair to insist that we need to get back the
        same insects. We forget the fact that these insects die every season and new insects are
        born again.
Table – 3
                                                           DAM ACCIDENTS



                                                                                                                 Failure
                         Dam                                               Reservoir                                                   No. of
        Dam             type*          Country            Height, m      Volume,106 m 3       Date built      Date         Type        deaths

Vega de Tera          CMB           Spain                     34                 8              1957         1959          SF          144
Malpasset             CA            France                    66               22               1954         1959          FF          421
Babii Yar              Emb          Ukraine                                                                  1961          OF          145
Vaiont                CA            Italy                    265              150               1960         1963          LA         2600
Baldwin Hills         Emb           USA                       71                                1951         1963          IE            5
Frias                 Emb           Argentina                 15                0·2             1940         1970          OF          >42
Banqiao                Emb          China                    118              492               1953         1975          OF            t
Teton                  Emb          USA                       93              308               1975         1976           IE          11
Machhu II              Emb          India                     26              100               1972         1979          OF         2000
Bagauda                Emb          Nigeria                   20                1               1970         1988          OF            50
Belci                  Emb          Romania                   18               13               1962         1991          OF           25
Gouhou                 Emb          China                     71                3               1989         1993           IE         400
Zeizoun                Emb          Syria                     42               71               1996         2002          OF            20
Camara                 RCC          Brazil                    50               27              2002          2004                         5
Shakidor              Emb           Pakistan                                                   2003          2005          OF        >135
Situ Gintung          Emb           Indonesia                 16                2                            2009          IE         100


*CMB, Concrete and masonry buttress; CA, Concrete arch; Emb, Embankment; RCC, Roller compacted concrete
SF, structural failure on first filling; FF, foundation failure; OF, overtopping during flood; LA, Land slide (270 x I 06 m 3 landslide into the
reservoir caused overtopping of the dam by a wave 125m high, but remarkably the dam survived); IE, Internal erosion
t-It has been reported that tens of thousands died in this disaster, which involved the failure of a number of dams, of which Banqiao was
the largest.
There could be permanent destruction of certain species (both flora and fauna) which are
                 specific to that forest. We need not be unduly apologetic about it. After all they were neither
                 there time immemorial nor they are going to be there for ever in future also irrespective of
                 what human beings did or going to do. Also with passage of time, the type of insects also
                 keeps changing by natural evolution. Whether we like it or not, this is part and parcel of
                 nature. Our intervention is only minimal and incidental. It is very much justifiable, as long as
                 the street corner meetings do not address the population growth on this Planet, especially in
                 Countries like India.


                  It is quite natural for “Experts” and “Green activists” from those Countries which have sparse
                  population density, and from those Countries which have declining population, to ignore the
                  population growth issue. As long as we are unable to control the population growth, the
                  survival competition between man and other species in our country can not be
                  avoided.     This is the ground reality.       We can keep making abstract statements like
                  “Sustainable Development”, “Green Economy”, etc.


             b) The Dams cause earthquake is another argument put forth against Hydel Power Projects.
                 This is a myth. How many of us know that there are atleast a dozen earthquakes taking place
                 everyday in some part of this planet? Some occur on the land and some others on the sea
                 bed. What relations these earthquakes have with dams? It was postulated that once Tehri
                 Dam fills up there will be earthquake the very next year. Nothing of that sort has happened till
                 date, even after several years.


Contrary to general perception, the environmental destruction caused by natural disturbances are much severe
and irrevocable compared to the manmade disturbances like Dams, Canals, Factories, etc. For example, the
dust thrown into the atmosphere by a typical Volcano in few days is higher than the dust thrown by all Steel
Plants in this world put together in one year. The environmental destruction caused by the river floods year
after year is much higher compared to the one time destruction caused by the Dam submergence.


Time and again we worry about silting of dam or sand quarrying in river beds. Supposing both are not
happening. What will happen? The river will continue to erode the hills, generate silt / sand and disburse in
the delta. If the silt / sand is not removed, the river bed in the delta area will get filled up and the river will take
new course every year. This will destroy the flora and fauna in new areas every year, apart from destroying
crops and flooding human habitats along the river.


Forest fires destroy thousands of acres of forests every year. They do not destroy only the trees. But they
destroy the complete flora and fauna as well. With human intervention using advanced technologies, we are
able to control the forest fires to some extent.


This is not an argument against the protection of environment and nature. This is not an argument against
regulation of sand quarrying in river beds. This is not against preserving forests. But this is only to make it
clear that certain things happening on this Planet are “natural”, including the growth of certain species in
certain periods and destruction of the same at some other time by nature. May be it is the turn of the human
species! With certain efforts of scientists we are trying to sustain our growth and simultaneously we may
retard the growth of certain others. In that process unknowingly we may also be making the life easy for the
nature to do its duty of destroying the humans!


But the anticlimax is that the human beings learn from their mistakes and make amends to the natural
disturbances made by them now and then. This game is going on for millions of years. This is also part of
nature!


Let us accept this reality and let us not over react to the changes brought by humans. After all change is the
only thing which is not changeable and human beings are also part and parcel of nature!


    B) COAL :


          1. Health: Among the various Energy Sources, Coal has the highest health hazards. Starting with
             Coal mining, the working environment in underground mines or even in open cast mines is very
             tough. The workers have no choice but to inhale the dust laden air. They are exposed to high
             temperatures prevailing in underground mine shafts. It is a well known fact that the average life
             expectancy of coal mine workers is reduced by several years depending upon their service in coal
             mines.


              The general public must understand and appreciate the sacrifices made by these workers while
              enjoying the electricity. At the same time the public must also support the initiatives of the
              Scientists when they try to find alternatives to coal. They shall not over react based on just one or
              two incidents where the scientists / engineers might have failed or natural calamities might have
              created trouble beyond expectations. Otherwise, we may have to live with old problems of Coal,
              which we all know is much larger in magnitude. Moreover Coal is also a finite resource and we
              need to firm up the right alternate for Coal before it is too late.


              The same problems of coal dust are encountered while loading in the Ship / Train and unloading
              from Ship / Train.     Recently the Madras High Court has taken a sue motto petition against
              Chennai Port Trust on this issue of coal dust coming to the Court premises and ordered the
              shifting of Coal Terminal to Ennore Port.


              The health hazards posed by the flue gases coming out of Coal Power Plant boilers are the most
              severe one. It contains all sorts of chemicals harmful to the life on earth like SO2, SO, NO,
              Unburnt Hydrocarbons, etc. It also contains particulate matter which causes Silicosis and several
              other respiratory and gastric disorders.


              There are certain other substances which are more harmful to the health.             They are toxic
              substances like Arsenic, Lead, Mercury, etc. These are mostly confined to fly ash. But a small
              fraction does go with flue gas and pollute the Air.
The Fly ash which is the residue left out of Coal burning contain all the inerts like Silica, Calcium,
    Potassium, Phosphorus, etc. It also contains all heavy metals like Lead, Mercury, Antimony, etc.
    Some coals may contain radioactive substances like Uranium. Since the presence of Uranium is
    rare, it is not measured as a routine. Hence, it may go unnoticed and get into the public domain.
    This is more dangerous.


    The quantity of Fly Ash is so much that the disposal is a real challenge for the coal power plants.
    The Indian coal has close to 40% ash content thereby making both the transportation of coal and
    fly ash handling as formidable tasks. The health hazards of fly ash being very slow, it goes
    unnoticed. Typically a 1000 MW Coal Power Plant needs about 14,000 Tons of Coal every day (7
    Trains!) and it discharges about 6000 Tons of Fly Ash. We can imagine the magnitude of the
    problem.


    In the power plant, the Boiler operators are also subjected to air pollution and hot working
    environments.


2. Safety: The most striking safety issue is the coal mine accidents. The nature of coal mining is
   such there are innumerable causes for unexpected accidents like, Gas explosions, Coal Dust
   explosions, Mine collapse, Flooding, Poisonous Gas eruptions, Fire, etc. Due to this, despite the
   best mining safety precautions, about 4,41,000 persons have died in coal mine accidents in the
   world in the past 60 years. This is the single largest cause of industrial accident deaths in the
   world. It has also caused 6,78,275 disabilities in USA alone in the same period. Coal mine
   accidents are so common that they hardly make news !


    Even now, on an average atleast one person dies every alternate day in Indian Coal mines!
    Since it is so common, it has no news value for the Print media and Television channels. But, if
    one person dies in Uranium mine or a Nuclear Power Plant or even a Road accident near a
    Nuclear Power Plant, it will be a Breaking News, since it is uncommon.


    There are other accidents in Coal Power Plants like Boiler explosions, Electrical accidents, coal
    handling accidents, pipeline ruptures, etc. These are also some what frequent though not as
    common as Coal mine accidents, and cause human loss and innumerable disabilities.


3. Environment: Like the single largest industrial activity which has caused the maximum deaths,
   Coal is also the single largest cause for the climate change which is looming large. For every unit
   of electricity generated, about 1.0 Kg. of CO2 is released into atmosphere. CO2 which is getting
   accumulated in the atmosphere absorbs part of the infrared radiation emitted by the earth into the
   space and reemits back to the earth causing an effect called, Green House Effect. This results in
   continuous increase in the average temperature of earth.           In the last 100 years, the CO2
   concentration in atmosphere has increased from 280 ppm to 390 ppm. Currently it is increasing at
   about 2 ppm per year and it is rapidly increasing year after year due to increasing trend in fossil
   fuel dependence for energy. India and China are going to increase this rate by almost 30 to 40%
   in the next 10 years.
The Acid rain caused by the SO2, SO3 released into the atmosphere by the Sulphur bearing coal
      is another major environmental hazard.


       Flue Gas, Dust, Soot, etc. coming out of coal power plants cause enormous environmental
       damages in the vicinity of the power plants.


       The environmental damages caused by Fly Ash dumping is another area of concern. The shear
       volume of Coal / Ash handled in power plants brings in related environmental issues in Loading /
       Unloading, Transportation, Storage, etc.


C) NUCLEAR:


   1. Health : The effect of radiation on health of human beings has been extensively studied for so
      many decades. Due to the hidden nature of radiation risk, there is always a fear psychosis and
      stigma attached to the health effects of radiation. A detailed analysis on this subject is given in a
      separate Article titled “Fission Products Radioactivity and their Effects” attached herewith


      As can be understood from the above Article, though there is risk of higher cancer incidence due
      to high radiation doses, it is not a monster as depicted by mass media and believed so, by the
      gullible public.


      Having known about the risks involved, the Nuclear Industry throughout the world has always
      been extra cautious and has always been kept on toes.


      With the result, the health effects from Nuclear Industry, either to the public or to the Nuclear
      Industry personal, have almost been nil.             In the early years of Uranium mining and
      Reprocessing, there were lapses, like in any other polluting industry. But due to the radioactivity
      associated with it, it has been quickly corrected unlike in other industries.


   2. Safety: Safety in Nuclear industries is one subject which has been analyzed thread bare by
      everyone, right from the common man on the street to the highest political head in every country.
      In the 60 years history of Nuclear Industry there have been only 3 major accidents in Nuclear
      Installations. They are:


          (a) Three Mile Island Accident (1979) - USA
          (b) Chernobyl Accident ( 1986) – Russia
          (c) Fukushima Accident (2011) – Japan


      Let us analyze these accidents in detail since there is complete misinformation and confusion
      among the Public.
(a) Three Mile Island Accident:


This accident took place when a Safety Relief Valve got struck in open position and this was
misjudged by the operators. They overruled all the automatic safety systems which came online as
per design basis to cool the reactor with additional water injection.      So the water level was not
maintained and dropped due to the continuous escaping of steam through the struck open valve. Due
to this, there was partial melt down of Nuclear Reactor Core.


But there was not a single fatality. There was no major release of radioactivity except the release of
short lived radioactive gases like Krypton-85, Xenon-133, etc. and about 15 Curies of I-131 into the air.
It was classified as level – 5 in the IAEA accident scale of 1 to 7. There was almost negligible radiation
effect for the human beings or for the environment. But still it became a world famous accident!


Based on the lessons learnt from this accident, “Fail-safe” concept was reinforced in design and
operation. That is, when some Equipment / Instrument / Valve fails to operate due to power problem
or leakage or malfunction, the Reactor can only lead to shut down and not increase in power
production. Also, the “Hands off” concept on safety systems was introduced. That is, when some
safety system comes on line, no one can interfere in it. It can only be strengthened. For example, if
one emergency coolant pump automatically starts, even by a spurious signal, it can not be stopped by
the operator. At the maximum he can start one more pump. This way safety of the plant is completely
taken out of human error / judgment.


(b) Chernobyl Accident:


This accident happened when some operators wanted to do Turbine Run Down Test when the
Reactor was about to be shut down. In fact some of the Control Rods had been removed as part of
shut down procedure. Reactor had been restarted at this stage bye passing all rules and regulations
in order to conduct this unauthorized test.


The chronology of the accident is – Overheating of Reactor core where Control Rods had been
removed – Rupture of a Coolant Header – Reaction of coolant water with Graphite Moderator –
Generation of Hydrogen during this Reaction – Accumulation of Hydrogen – Auto explosion of
Hydrogen – Opening of Reactor Roof Slab – Eventual exposure of Nuclear Reactor core to the
atmosphere – Continued burning of Graphite in Air – Escape of Radioactive Fission Products to
environment.


This is the worst accident that can ever happen to a Nuclear Reactor, and it is classified as Level – 7
in IAEA Scale.


Within one week of the accident, 28 persons died. All of them were among the 134 fire fighting and
army personal who were employed to drop Lead sheets over the exposed nuclear reactor core to stop
the fire and radiation. Out of about 5000 Thyroid cancer cases detected after few years, only 15 died
due to cancer. Rest all have responded well to the Thyroid treatment and are completely out of
danger.
What about the long term effects?


Now that 25 years have elapsed since the accident. Totally only 43 ( 28 + 15 ) people have died of
cancer caused by the accident.


The next question is, how many more will die of cancer due to the effect of radiation caused by this
accident ? It has been estimated that there will be about 5000 people among the 626,000 people living
in the vicinity, who may eventually die of cancer caused by this accident. It represents about 3-4%
increase over the normal cancer death. That is, out of the 626,000 people, about 1,30,000 are
expected to die at old age due to cancer. If this accident had not happened, about 1,25,000 would
have died of cancer in normal course.


Among the 5 million people who were living in Belarus region which had Cesium deposition of 37 KBq
per square meter due to wind direction, an additional cancer death of about 5000 had been predicted
based on scientific model. This represents an increase of 0.6% over the normal value. The effect in all
other areas including Europe and Russian Federation will naturally be much smaller due to very low
levels of radiation dose received.


Please note, these are only probabilities and not conclusive. However there is absolutely no
possibility for upward revision of these numbers (5000+ 5000) as evidenced from the fact that there is
no radiation effect on the remaining 106 (134 – 28) people who were acutely exposed.


Chernobyl Reactor is one of the earliest reactors built with primitive design concepts with not much of
redundant safety features. Moreover it is built with positive reactivity coefficient, as opposed to the
negative reactivity coefficient concept followed in most reactors. Negative reactivity coefficient makes
the reactor to bring down the nuclear reaction rate whenever the temperature increases (or) there is
steam formation. This makes the Reactors inherently safe.


( c ) Fukushima Accident:


Firstly, it is not equal to the Chernobyl accident, even though the Japanese have declared it as Level -
7, the most severe accident that can happen to any reactor, with widespread contamination with
serious health and environmental effects. Actually, Fukushima accident qualifies for Level – 5 or at the
max 6 only. Since the accident was unfolding slowly, with increasing severity day by day and it was a
cumulative effect of three reactor accidents, the Japanese probably thought that it is better to
anticipate the worst and declare the worst level upfront. That is how they would have skipped the
Level-6 while upgrading the levels one by one.


So far there is not a single casualty due to this nuclear accident. But more than 20,000 have died due
to tsunami triggered by a strong earth quake, about 150 KM away from the Reactor site. Many of the
common people have mixed up both tsunami effect and Fukushima Nuclear accident due to the
media hype on the nuclear incident. For example, when the Nuclear accident is discussed, the
tsunami death number of about 20,000 is always referred in very ambiguous manner that ordinary
people can not distinguish as to what caused the death, the tsunami or the nuclear accident !
The media has completely ignored the real disaster associated with the tsunami and blown the nuclear
    accident out of proportions. Due to this, there was very little attention on the relief activities required
    for the tsunami affected people, unlike in the tsunami caused by the Indonesian earth quake in 2004.


    In Fukusima nuclear accident, so far no major Thyroid exposures have been identified. The fact is that
    the quantity of I -131 which has been released into the air is much less, about 6 to 9% only, compared
    to that of Chernobyl. In Chernobyl the fuel was completely exposed to atmosphere and literally
    spewed radioactive material into the air for few days. Chernobyl was a 1000 MWe reactor and the
    capacity of all the three reactors of Fukushima put together was almost same at 1317 MWe (439 *3).


    Even the much talked about Hydrogen explosion in Fukushima needs to be proved beyond doubt,
    since the quantity of Hydrogen can not be so much that even after dilution with so much steam, it
    could have reached above the 4% concentration level for auto ignition to take place. Moreover, for
    auto ignition to take place, we need sufficient Oxygen. Temperature also has to be above 5000C.
    Where was so much Oxygen? The explosion of the outside reactor buildings in all the three Units of
    Fukushima could be possibly due to the simple steam pressure build up also.


    Since the Reactor vessels were in tact at the top, the reaction rate of Zircoalloy Fuel clad with the near
    stagnant steam would have been much lower compared to the total exposure of the fuel / graphite to
    air (Oxygen) in case of Chernobyl, which was like "free for all" ! Moreover, in Fukushima the I-131 and
    small quantities of Caesium-137 were mixed completely with steam cloud unlike in Chernobyl, where it
    was all air. Once the steam cloud condenses, majority of this I-131 and possibly all Caesium-137
    would have settled in few KM vicinity of the Reactors only.


    Now, everyone knows about all that hype created by the media as if USA, Europe, India, China,
    everyone on this Planet is going to be affected by the fall out of Fukushima accident! Today, absolutely
    there is no media to explain what happened to those “radiation clouds” carrying “so much “of
    radioactive substances threatening every country including India! They didn’t know, it was a simple
    water vapour cloud with small quantities of I-131 and Cs – 137.
.
    But the fact remains that due to heavy pumping / pouring of Sea Water into the Reactors in unusual
    manners, there was lot of low level radioactive contaminated water which was discharged into the sea.
    Some water also directly seeped into the soil through the cracked trenches. However, owing to the
    very low quantities of radioactive nuclides involved (primarily due to the fact that not much of fuel was
    outside the reactor domain), and due to the slow development over several days (Read: I-131 half life
    is only 8 days), the effect of sea discharge also would have been very low only.


    Only if there had been substantial damage to Reactor No.2 at the bottom, and the fuel pellets /
    particles were lying loose due to the damaged Zircoalloy clad, then there is possibility that these
    pellets / particles could have been carried out of the reactor. But still the possibility of the particles
    reaching the sea is remote. If it were really “core melt” as confirmed by almost everyone, and not mere
    damage to the fuel pins due to Zircoalloy clad rupture, then this possibility of loose pellets / particles is
    also ruled out. The fused / melted / sintered fuel will be in tact in the reactor only. It could not have
    been carried away by the water. This will be known in due course of time.
The fuel Pond heating up also did not cause any radiation leaks, as feared during the course of the
        accident.


        So, in Fukushima there were no casualties. There were no Iodine effects on children. No major
        contamination of Air. There was some contamination of soil and sea water in the vicinity only.
        The present Exclusion Zones which have been maintained as a matter of caution, will be progressively
        removed over the years with proper identification and decontamination of hot spots.


The facts and figures given above for the 3 Nuclear accidents are all based on scientifically studied Reports.
These are neutral Reports which are based on authentic studies conducted by World Health Organisation and
United Nations experts on the entire population in the vicinity. These are Reports which are written without any
prejudice to prove or disprove that Nuclear Energy is safe or not.


There are thousands of other Reports quoted by the media which are subjective studies conducted to highlight
the " ill effects" of Nuclear Energy and to prove that nuclear energy is unsafe, as they have been fearing from
childhood or as told by their parents.


Now, of late there are “experts” who come out with the concept of “Internal” and “External” radiation as if it is
not known to the Nuclear experts. They say, the damage due to the continuous irradiation of tissues by
radioactive particles which are inside the body is more and it should not be compared with the radiation dose
received by gamma rays externally.


It is perfectly correct and that is how the cancer probability based on the Iodine and Cesium intake are
estimated. These two are the two main radioactive elements which will come out in the event of breach in the
fuel clad. Rest all elements like Plutonium, Uranium, Neptunium, etc, which when go into the body stay long
and give appreciable dose to the body, do not come out to atmosphere as they are heavy elements. Without
knowing these fundamentals many argue that Uranium and Plutonium, if they go into the body will emit
radiation for 240,000 years ( as if he is going to live for 240,000 years !), and hence it also needs to be
accounted, while estimating the accident scenarios.


The three Nuclear Reactor accidents (in 2 of which no one died, and in one, only 43 have died and only about
10000 are expected to develop cancer in old age), have dispelled the myth that the Nuclear Reactor Accidents
will kill several thousand people immediately and create cancer among millions of people.


Also, the rebuilding of Hiroshima and Nagasaki cities within about few decades of Atom Bombs and the
healthy living of people there without any effect on the background radiation is a proof that the radiation can be
cleaned to a great extent and low levels of radiation do not cause any effect. Moreover, with the lapse of 70
years of Atom Bombs, among the few lakhs of acutely affected people, there is second and third generation
population of about 50,000. They do not have any symptoms of cancer / deformation dispelling another myth
about the genetic effects of radiation.


3. Environment: In the Nuclear Fuel cycle the environmental effects are there in two areas. One is the
Uranium Mining activity. The second is the disposal of radioactive fission products.
As explained earlier, the Uranium Mining activity is done with utmost care unlike in other mining activities due
to the involvement of radioactive substances. The wastes are recycled back into the mining area itself after
proper treatment.


Regarding the radioactive fission products disposal, it calls for a detailed technical discussion. It is given in a
separate Article titled “Nuclear Waste Management” attached herewith.


From this Article, we can understand that the Fission Products can be made into glass, embedded into
concrete cubicles and disposed off inside deep abandoned mines.              This is an absolutely benign and
environmentally sound method. There is no short term or long term impacts on the environment due to the
disposal of fission products.


Except a few small countries, all those countries whose per capita GDP has grown more than 20,000 USD,
have had ambitious nuclear program with Nuclear Energy contributing more than 20% of their total power
production. Proportionately the life expectancy has also increased. This can be seen from Figure – 8.
From this Figure it is obvious that Nuclear Power has provided the cheap, clean and environmentally safe
power to these countries.


    D) SOLAR:


        1. Health : Solar Power Plants, either Photovoltaic (PV) or Concentrated Solar Thermal Power (CSP)
        have no health hazards, except the health hazards associated with the manufacture of Glass, Steel,
        Polysilicon, etc used in Solar Power plants.


        2. Safety : There are no safety issues with PV based Solar Power. The CSP based solar power
        involves handling of Chemicals (Thermic Fluid - Phenolic compounds) and steam at high pressures
        and high temperatures. In CSP with Thermal storage, molten salts at high temperatures are used.
        The other conventional accident probabilities related to Turbine / Generator / Pump / Piping exist in
        CSP.
        3. Environment: There are no major environmental issues associated with Solar Power excepting the
        following:


        a) Chemical pollution and used chemical disposal in the manufacture of Polysilicon and Glass.


        b) At present the solar power installed capacity is not much and it is well spread out. But when there is
        large scale deployment of PV or CSP in a particular region, say Dhar desert in India, then it might have
        some implication on the climate by way of disturbance in the local atmospheric temperature / pressure,
        leading to disturbances in monsoon pattern. It need not be in that region or in India. It can have some
        effect anywhere in the world since the atmospheric changes are very complex and interlinked
        throughout the Planet.


    E) WIND:


        1. Health: Wind Mills do not have any health effects on human beings. It may have some effect on the
        birds. But due to slow speeds associated with Wind Mills, the effect on birds is minimal, excepting that
        the birds are scared away from that region.
NUCLEAR POWER - GDP - LIFE EXPECTANCY




                 FIGURE 8
2. Safety: Excepting the accident probabilities during erection and maintenance, there are no major
       safety issues associated with Wind Mills. Lightning damage to the Wind Mills is an area of concern.


       3. Environment: Wind Mills have to be installed in specific regions where Wind speeds are higher.
       Since the Kinetic Energy associated with the wind velocity only is converted into electrical energy in
       Wind Mills, there is proportionate reduction in Wind Velocity down stream of Wind Mills. The Wind
       Mills act as “obstructions” to normal flow of wind. As we all know, monsoon is associated with wind
       flow pattern. So, naturally the Wind Mills are bound to have some effect on the monsoon pattern.


       Today it may be insignificant and not yet mapped and correlated. But surely it will be known some day
       when there is further growth of Wind Mills in high / medium wind regions, especially in narrow
       mountain passes.


4. ECONOMICS FOR VARIOUS ENERGY OPTIONS


There are lot of confusions, myths and qualitative statements floating around about the economic aspects of
various power sources. Before going into the actual costing per unit of electricity produced from various
sources, we have to understand certain techno – economic parameters and they are discussed below.


   a) Plant Load Factor (PLF): It is a measure of how many units a power plant actually produces in a year
       per MW of installed capacity, as against how many units it can produce if it operates at its full capacity
       for all 24 hours throughout the year. It is measured in terms of percentage as per following formula:
                Total number of units actually produced (KW.hr)
       PLF =    ----------------------------------------------------------------- x 100
                    MW of Installed capacity x 1000 x 365 x 24
       The following Table provides information on the average PLF of various Power Plants:

                   S.No.         POWER SOURCE                               PLF %
                   1            Coal                                       75 – 85
                   2            Hydel                                      30 – 50
                   3            Nuclear                                    80 – 90
                   4            Wind                                       15 – 25
                   5            Solar – PV                                 10 – 20
                   6            Solar – CSP                                10 – 25


       As can be seen from the above Table, Coal and Nuclear Power Plants have PLF of about 80%.
       Whereas other sources have much less. Which means, the installed capacity, in terms of MW of each
       Power source, can not produce the same number of units in a year. For example, a Solar PV or CSP
                                                                                          th
       Power Plant with 1000MW installed capacity will produce only about 1/4 of what a 1000MW Nuclear
       Power Plant will produce.          So, just comparing the installed capacities on one to one basis is
       meaningless. Most of the people do this mistake.


       Most of the times, comparisons are made based on Percentage share of Installed capacity of various
       energy sources. This does not serve any purpose. Especially in the Non-Conventional Energy data,
       you will never find the percentage (or) proportion of electricity produced by Solar / Wind. However,
       they will disclose big percentages like 10%, 20%, etc. in terms of Installed capacities! This is in a way
       misguiding the general public.
For example, there was big headline news that in Germany 50% of energy needs at midday on
    26.05.12 was met by Solar Power only. What they failed to highlight was that it was only for few
    hours. Since solar power was not available on the same day evening (of course every day evening!),
    they had to depend on the 9 old Nuclear Reactors which are still operating and the good old coal
    power plants which were condemned as polluters few years back!        Also Germany boasts that they
    have 30% installed capacity from Solar PV. But they fail to highlight the fact that the contribution of
    Solar Power produced is just 4% of the total units produced in Germany and that too during the non
    peak period!


b) Peak Load: The peak load period is the highest electricity demand period in terms of MW in 24
    hours of a day. A typical Load Curve for 24 hours is given in Figure – 9. As can be seen from this
    Figure, there is Peak demand from 7 PM to Midnight. This is true for almost all regions of India. We
    must have installed capacity to meet this Peak Load and we must also have cushions for outages /
    lower production due to unforeseen circumstances. Obviously PV based Solar Power will not be
    available during this period of Peak Load. So, even if we have any amount of PV based Solar Power
    Plant, we must have that much equivalent capacity in Coal or Nuclear or Hydel also to meet the peak
    load.


    Refer the Figure – 7 for the Wind and Solar power Installed capacities required for peak load saving.
    We need to keep the Nuclear / Coal / Hydel Power Plants idle during day time when Solar Power is
    available. This makes no economic sense. This is one of the major impediments for Solar Power.


    We can install stand alone Solar Power Plants in remote areas where power is required only during
    day time. That is a better option rather than going for Grid connected Solar Power.


    Similar is the case with Wind Power. It is available only during few months in a year.         For the
    remaining months how do we manage without having alternate power source?


c) Availability Factor: This is a measure of availability of the Power Plant at any point of time in a year
    irrespective of how much it produces. It is obviously poor for Solar and Wind Power, compared to other
    energy sources. Also, Solar and Wind Power can not be so easily moderated to meet the varying load
    requirements.


d) Waste Management: In Wind and Solar Power there are no major wastes excepting certain chemical
    wastes produced during the Solar Cells manufacture and the Wind Turbine Blade manufacture.


    In the case of Coal, there is waste generation at several stages of the Fuel cycle. Starting with the
    poisonous gases in Coal mines, there are several wastes generated like, Coal washeries waste, Coal
    dust generation during loading / transport / unloading, Flue Gas pollution (SOx, NOx, COx, Ash
    Particles, etc), Fly Ash, etc.


    Moreover, there is one important set of wastes which goes almost unnoticed. That is the presence of
    toxic substances like Arsenic, Lead, Mercury, etc. and radioactive substances present in coal. These
    are not present in every Coal mine at every layer. Hence these are not measured as a routine and
hence go unnoticed. Naturally there is do data on the health effects of these wastes and hence are
    not even considered while evaluating the Waste Management of Coal Power Plants.


    Waste generation in Nuclear energy is well known and hence well studied. The implications of the
    Nuclear Waste if they come to the public domain are substantially higher compared to the other
    wastes. Naturally the safety features and factors of safety are proportionately higher. The invisibility
    of radiation adds another dimension to the nuclear waste. Hence the safety features are made all the
    more stringent.


    Waste generation in Nuclear industry takes place in four areas. First the chemical waste in the
    Uranium mines. Since these wastes are associated with radioactive substances, these are made
    chemically inert and put back into the mines. There is no scope for any health / environment effect.


    The second is the waste generation in Nuclear Reactors during their normal operation. Since the Fuel
    is handled in hermetically sealed fuel pins, there is no scope for any radioactive fission product
    escape. The only radioactive substance coming out of Nuclear Reactors is Tritium which has very low
    half life and is harmless in small quantities / concentrations. The other wastes are sampling wastes
    and maintenance wastes which are low level liquid wastes.            These are treated by appropriate
    processes and disposed.


    The third is the waste generated or rather separated from the Spent Nuclear Fuel in Fuel
    Reprocessing Plants. Here, the useful Nuclides like U – 235, U – 233, Pu – 239, Am – 241, Co –
    90, etc. are separated and used in Nuclear Reactors, Nuclear Medicine application, Industrial
    applications, etc. The residual fission products which contain almost all the radioactivity contained in
    the Spent Fuel is separated and stored in liquid form. There are only two fission products which
    escape to the atmosphere from the Reprocessing Plants. They are the entire Kr-85 atoms and a small
    fraction of I – 129 atoms which are contained in the Spent Fuel. Both of these do not get into the
    biological cycle and hence do not pose any health hazards.


    The Fourth area is the Waste Immobilization Plant where the Fission Products separated in the Fuel
    Reprocessing Plant are concentrated, vitrified and made into glass for ultimate disposal in deep
    abandoned mines. Hence there are no wastes which escape into the public domain.


As can be seen from the above discussions on Waste Management in various energy sources, the
wastes from Coal Power are left as it is in public domain with direct and indirect health effects. Not
much is spent on managing these wastes. Hence there is no Waste Management cost is added to
Coal Power.     But in case of Nuclear Power, Waste Management is a well known factor and is a
substantial part of the Nuclear Power cost.


Contrary to the general media disclosures and opt repeated by antinuke lobbyists, Waste
Management cost and Reactor Decommissioning costs are very much factored into the per unit cost
of Nuclear Power. In fact, if we take into account of the fuel value of Pu-239 and U – 233, the
Reprocessing and Waste Management cost are more than offset. But, still it is not accounted that way
since many countries do not recycle this Pu – 239 at present. In future, they will surely recycle it.
Energy options for india
Energy options for india
Energy options for india
Energy options for india
Energy options for india
Energy options for india
Energy options for india
Energy options for india
Energy options for india
Energy options for india
Energy options for india
Energy options for india
Energy options for india
Energy options for india
Energy options for india
Energy options for india
Energy options for india
Energy options for india

Más contenido relacionado

Similar a Energy options for india

Gapminder World Chart 2006
Gapminder World Chart 2006Gapminder World Chart 2006
Gapminder World Chart 2006Jose A Moran
 
Health Sector in the 12th Plan (2012-2017)
Health Sector in the 12th Plan (2012-2017)Health Sector in the 12th Plan (2012-2017)
Health Sector in the 12th Plan (2012-2017)NITI Aayog
 
Finnish Lessons Webinar PDK/EF
Finnish Lessons Webinar PDK/EFFinnish Lessons Webinar PDK/EF
Finnish Lessons Webinar PDK/EFKristoffer Kohl
 
Insights from Nordic results in IALS and ALL
Insights from Nordic results in  IALS and ALLInsights from Nordic results in  IALS and ALL
Insights from Nordic results in IALS and ALLEduSkills OECD
 
Marc-Andre Gagnon - Pharmacare in Canada Today
Marc-Andre Gagnon - Pharmacare in Canada TodayMarc-Andre Gagnon - Pharmacare in Canada Today
Marc-Andre Gagnon - Pharmacare in Canada TodayPharmacare 2020
 
1 armstrong presentation on price and tariff setting v2
1 armstrong presentation on price and tariff setting v21 armstrong presentation on price and tariff setting v2
1 armstrong presentation on price and tariff setting v2Oliver O'Connor
 
Rde after barcelona2
Rde after barcelona2Rde after barcelona2
Rde after barcelona2Rolf Brandrud
 
Utmaningar med internationella hjälpinsatser efter jordbävningar och tsunamis...
Utmaningar med internationella hjälpinsatser efter jordbävningar och tsunamis...Utmaningar med internationella hjälpinsatser efter jordbävningar och tsunamis...
Utmaningar med internationella hjälpinsatser efter jordbävningar och tsunamis...Geological Survey of Sweden
 
1 dubois
1 dubois1 dubois
1 duboisifa2012
 
Eoin Gahan 03-04-09
Eoin Gahan 03-04-09Eoin Gahan 03-04-09
Eoin Gahan 03-04-09dpalcic
 
Edelman Trust In Entertainment Industry 2009
Edelman Trust In Entertainment Industry 2009Edelman Trust In Entertainment Industry 2009
Edelman Trust In Entertainment Industry 2009Edelman
 
M&L 2012 - Social media networks in schools and in teachers’ lives - by Riina...
M&L 2012 - Social media networks in schools and in teachers’ lives - by Riina...M&L 2012 - Social media networks in schools and in teachers’ lives - by Riina...
M&L 2012 - Social media networks in schools and in teachers’ lives - by Riina...Media & Learning Conference
 
Layna Mosley UNC-CH 20121026
Layna Mosley UNC-CH 20121026Layna Mosley UNC-CH 20121026
Layna Mosley UNC-CH 20121026UNCEurope
 

Similar a Energy options for india (20)

Gapminder World Chart 2006
Gapminder World Chart 2006Gapminder World Chart 2006
Gapminder World Chart 2006
 
Gwm2010
Gwm2010Gwm2010
Gwm2010
 
Health Sector in the 12th Plan (2012-2017)
Health Sector in the 12th Plan (2012-2017)Health Sector in the 12th Plan (2012-2017)
Health Sector in the 12th Plan (2012-2017)
 
Finnish Lessons Webinar PDK/EF
Finnish Lessons Webinar PDK/EFFinnish Lessons Webinar PDK/EF
Finnish Lessons Webinar PDK/EF
 
Insights from Nordic results in IALS and ALL
Insights from Nordic results in  IALS and ALLInsights from Nordic results in  IALS and ALL
Insights from Nordic results in IALS and ALL
 
Finnish Lessons WA NMI
Finnish Lessons WA NMIFinnish Lessons WA NMI
Finnish Lessons WA NMI
 
Lorenzoni Almacube
Lorenzoni   AlmacubeLorenzoni   Almacube
Lorenzoni Almacube
 
Global Hunger Chart
Global Hunger ChartGlobal Hunger Chart
Global Hunger Chart
 
Marc-Andre Gagnon - Pharmacare in Canada Today
Marc-Andre Gagnon - Pharmacare in Canada TodayMarc-Andre Gagnon - Pharmacare in Canada Today
Marc-Andre Gagnon - Pharmacare in Canada Today
 
1 armstrong presentation on price and tariff setting v2
1 armstrong presentation on price and tariff setting v21 armstrong presentation on price and tariff setting v2
1 armstrong presentation on price and tariff setting v2
 
Rde after barcelona2
Rde after barcelona2Rde after barcelona2
Rde after barcelona2
 
Utmaningar med internationella hjälpinsatser efter jordbävningar och tsunamis...
Utmaningar med internationella hjälpinsatser efter jordbävningar och tsunamis...Utmaningar med internationella hjälpinsatser efter jordbävningar och tsunamis...
Utmaningar med internationella hjälpinsatser efter jordbävningar och tsunamis...
 
1 dubois
1 dubois1 dubois
1 dubois
 
Towards an EU-Strategy on Mental Health
Towards an EU-Strategy on Mental HealthTowards an EU-Strategy on Mental Health
Towards an EU-Strategy on Mental Health
 
Eoin Gahan 03-04-09
Eoin Gahan 03-04-09Eoin Gahan 03-04-09
Eoin Gahan 03-04-09
 
Technical and environmental characteristics of EU cars and vans
Technical and environmental characteristics of EU cars and vansTechnical and environmental characteristics of EU cars and vans
Technical and environmental characteristics of EU cars and vans
 
Edelman Trust In Entertainment Industry 2009
Edelman Trust In Entertainment Industry 2009Edelman Trust In Entertainment Industry 2009
Edelman Trust In Entertainment Industry 2009
 
Lmc shea 2013 - updated march 3
Lmc   shea 2013 - updated march 3Lmc   shea 2013 - updated march 3
Lmc shea 2013 - updated march 3
 
M&L 2012 - Social media networks in schools and in teachers’ lives - by Riina...
M&L 2012 - Social media networks in schools and in teachers’ lives - by Riina...M&L 2012 - Social media networks in schools and in teachers’ lives - by Riina...
M&L 2012 - Social media networks in schools and in teachers’ lives - by Riina...
 
Layna Mosley UNC-CH 20121026
Layna Mosley UNC-CH 20121026Layna Mosley UNC-CH 20121026
Layna Mosley UNC-CH 20121026
 

Más de Periasamy K

1.top 10 agenda population control (1)
1.top 10 agenda   population control (1)1.top 10 agenda   population control (1)
1.top 10 agenda population control (1)Periasamy K
 
Saudi energy options
Saudi   energy optionsSaudi   energy options
Saudi energy optionsPeriasamy K
 
Manifesto Parliament Elections - 2014
Manifesto Parliament Elections - 2014Manifesto Parliament Elections - 2014
Manifesto Parliament Elections - 2014Periasamy K
 
Per capita food production upa-nda-upa
Per capita food production   upa-nda-upaPer capita food production   upa-nda-upa
Per capita food production upa-nda-upaPeriasamy K
 
Inflation upa-nda-upa
Inflation      upa-nda-upaInflation      upa-nda-upa
Inflation upa-nda-upaPeriasamy K
 
Gdp growth rate upa-nda-upa
Gdp growth rate upa-nda-upaGdp growth rate upa-nda-upa
Gdp growth rate upa-nda-upaPeriasamy K
 
River inter linking is it really a mirage
River inter linking   is it really a mirageRiver inter linking   is it really a mirage
River inter linking is it really a miragePeriasamy K
 
Indian gdp growth story what to expect
Indian gdp growth story   what to expectIndian gdp growth story   what to expect
Indian gdp growth story what to expectPeriasamy K
 
FDI in India - An Analysis
FDI in India - An AnalysisFDI in India - An Analysis
FDI in India - An AnalysisPeriasamy K
 
Germany india comparison
Germany   india comparisonGermany   india comparison
Germany india comparisonPeriasamy K
 
Germany : India - Energy Comparison
Germany : India - Energy ComparisonGermany : India - Energy Comparison
Germany : India - Energy ComparisonPeriasamy K
 
Indian gdp growth story what to expect
Indian gdp growth story   what to expectIndian gdp growth story   what to expect
Indian gdp growth story what to expectPeriasamy K
 
India Economic data
India Economic dataIndia Economic data
India Economic dataPeriasamy K
 
Indian Agricultural Data Analysis
Indian Agricultural Data AnalysisIndian Agricultural Data Analysis
Indian Agricultural Data AnalysisPeriasamy K
 

Más de Periasamy K (16)

1.top 10 agenda population control (1)
1.top 10 agenda   population control (1)1.top 10 agenda   population control (1)
1.top 10 agenda population control (1)
 
Saudi energy options
Saudi   energy optionsSaudi   energy options
Saudi energy options
 
Manifesto Parliament Elections - 2014
Manifesto Parliament Elections - 2014Manifesto Parliament Elections - 2014
Manifesto Parliament Elections - 2014
 
Per capita food production upa-nda-upa
Per capita food production   upa-nda-upaPer capita food production   upa-nda-upa
Per capita food production upa-nda-upa
 
Inflation upa-nda-upa
Inflation      upa-nda-upaInflation      upa-nda-upa
Inflation upa-nda-upa
 
Gdp growth rate upa-nda-upa
Gdp growth rate upa-nda-upaGdp growth rate upa-nda-upa
Gdp growth rate upa-nda-upa
 
River inter linking is it really a mirage
River inter linking   is it really a mirageRiver inter linking   is it really a mirage
River inter linking is it really a mirage
 
Indian gdp growth story what to expect
Indian gdp growth story   what to expectIndian gdp growth story   what to expect
Indian gdp growth story what to expect
 
Organic farming
Organic farmingOrganic farming
Organic farming
 
FDI in India - An Analysis
FDI in India - An AnalysisFDI in India - An Analysis
FDI in India - An Analysis
 
Germany india comparison
Germany   india comparisonGermany   india comparison
Germany india comparison
 
Germany : India - Energy Comparison
Germany : India - Energy ComparisonGermany : India - Energy Comparison
Germany : India - Energy Comparison
 
Energy data
Energy dataEnergy data
Energy data
 
Indian gdp growth story what to expect
Indian gdp growth story   what to expectIndian gdp growth story   what to expect
Indian gdp growth story what to expect
 
India Economic data
India Economic dataIndia Economic data
India Economic data
 
Indian Agricultural Data Analysis
Indian Agricultural Data AnalysisIndian Agricultural Data Analysis
Indian Agricultural Data Analysis
 

Energy options for india

  • 1. ENERGY OPTIONS FOR INDIA BY K. PERIASAMY M.Tech (Chemical Engg), Chennai - 600 096.
  • 2. ENERGY OPTIONS FOR INDIA K. Periasamy, M.Tech (Chem. Engg), Chennai - 600 096. 1. INTRODUCTION India is the second largest populist Country in the world with a total electricity generation of 892 Billion Units with a per capita electricity consumption of just about 735 units during the financial year 2011-12. This per capita consumption is far less compared to that of China and the world average. There is no comparison if we look at the values of developed countries like USA, France, Germany, etc. as can be seen from Figure-1. If India has to improve the standard of living of its teaming millions atleast to the level of China, then the per capita GDP has to triple to catch up with that of China. This is because the Average Life Expectancy, which is the most important parameter of Human Development Index has a direct correlation with per capita GDP as can be seen from Figure - 2. Of course correction for Inequitably Index needs to be given for a still better correlation. Also, it is a well known fact that GDP growth rate is directly proportional to Energy Consumption and it is called as Energy intensity. In India, the energy intensity for the electricity part in the past several decades has been hovering at about 0.01 units for every Rupee of GDP. It is likely to soften to some extent, with the steady increase of service sector contribution to GDP. But it will not fall very drastically. In fact this will be offset to some extent by the increase in electricity demand due to lifestyle changes. So, there is no magic wand to improve the standard of living of the Indians other than substantially increasing the per capita electricity availability. All other talks of Socialism Vs Capitalism, Globalization Vs Protectionism, Centralization Vs Decentralization, etc. have no relevance if we do not increase the Energy production leaps and bounds. 2. POWER RESOURCES AVAILABLE IN INDIA India has sunshine throughout the year and is bestowed with reasonably high level of average rainfall. With the result, the human fertility and population growth has always been on the higher side in our Subcontinent. With the welfare measures initiated by the British Raj and the impetuous given by the subsequent Governments of Independent India, the population grew steadily. After independence, with marked decline in infant mortality rate and eradication of several epidemics in the last 6 decades, the population of India has more than tripled from 35 crores to 121 crores. Unfortunately, to keep pace with this population growth and to improve the standard of living of our people, atleast to match with that of our contemporaries like, China and Brazil, we do not have sufficient quantities of two important resources. These Two resources are Energy and Water. Atleast the later is sufficiently available in terms of total quantity. It is only the question of storage, diversion and distribution from areas and periods of surplus to deficit. The Government is embarking on the River Interlinking Schemes to solve this problem. But Energy resources available are limited except Thorium.
  • 3.
  • 4. Low–income countries Middle–income countries High–income countries 85 Japan France LIFE EXPECTANCY Vs PER CAPITA GDP Germany Spain Italy Sweden Iceland Hong Kong Andorra Switzerland Australia Singa- Israel Canada pore Norway 1 New Zealand Finland Liechten- 80 Puerto Malta Netherlands stein Healthy 3 2 Cuba Costa Chile Rico South UK Bel- Ireland Lux- embourg Rica Korea Greece gium Austria USA China Portugal Slovenia Denmark Albania Mexico Barbados Taiwan UAE Kuwait Belize Uruguay Croatia Czech Rep. Brunei Grenada Panama Argen- Oman Vietnam Bosnia & H. Dominica tina Poland Bahrain Qatar 75 Poor Rich Kosovo Syria Venezuela Ecuador Macedonia4 Serbia Slovakia Malaysia Antigua & Barbuda Sri Lanka Tunisia Colo-5 Libya Bahamas Armenia Bulgaria Hungary Nicaragua Palestine Algeria Peru mbia St Kitts & N. Estonia Saudi Arabia Micronesia Honduras Paraguay Jordan DR Brazil Romania Latvia Seychelles Philippines Cape Tonga Leba- 1. San Marino El Jamaica Mauritiusnon Lithuania Maldives 6 Verde Samoa Georgia Sick Marshall Isl. Morocco Salvador Palau Iran Turkey 2. Monaco Indonesia Guate- Vanuatu 3. Cyprus 70 mala Egypt Azerbaijan Trinidad & 4. Montenegro Tuvalu Fiji Suriname Belarus Tobago 5. Saint Lucia Moldova Kyrgyzstan Ukraine 6. St Vincent & Uzbe- Iraq Thailand Nepal North kistan Grenadines Korea Paki- Solo-Isl. Guyana Health Life expectancy at birth (years) Comoros Tajikistan stan mon Mongolia Bolivia Bhutan Russia Laos Bangladesh India São Tomé Kazakhstan 65 & P. Turkmenistan Nauru Yemen Kiribati Togo Colour by region: Myanmar Benin Cambodia Namibia Timor- Madagascar Haiti Papua Leste Gabon 60 Eritrea New Guinea Liberia Sudan Guinea Côte d'Ivoire Ghana Mauritania Tanzania Gam- Size by population: Ethiopia bia Senegal Djibouti 55 Kenya Botswana Malawi Uganda Burkina Faso Congo, Rep. 3 100 1000 or less 10 millions Gapminder World Chart 2010 Version May 2010b Niger South Africa Burundi Rwanda Cameroon Equatorial Guinea 50 Somalia Data are for 2009 for all 192 UN member states and the other 5 countries and territories with more than 1 million people Mozambique Mali Chad (Hong Kong, Taiwan, Palestine, Puerto Rico and Kosovo). Congo, DR Sierra Leone Guinea-Bissau Nigeria Angola Free to copy, share and remix but attribute Gapminder. For sources see: Central African Rep. www.gapminder.org Zambia Swaziland http://www.gapminder.org/worldmap Zimbabwe Afghanistan Lesotho 45 500 1 000 2 000 5 000 10 000 20 000 50 000 Money GDP per person in US dollars (purchasing power adjusted) (log scale) FIGURE - 2
  • 5. The various Energy Resources available in India and their usage options are given in the following Table: TABLE – 1 S.No. Energy Resource Usage options Remarks 1 Crude Oil Road / Rail Transport Fuel, Chemicals, LPG, ATF, 1 etc. 2 Gas (Associated Gas, Fertilizer Feed Stock, Fuel for Power Plant, 2 Liquified Natural Gas, Coal Chemicals, Plastics, Fuel for Cooking, Transport, Bed Methane, LPG, etc.) Etc. 3 Coal, Lignite Fuel for Power Plant, Fuel / Reagent for Steel and 3 Cement Plants, Chemicals, etc. 4 Hydel Electricity 4 5 Wind Electricity, Water Pumping 6 Solar Electricity, Heat 7 Biomass Manure, Fuel Remarks: 1. The Crude oil on distillation produces various products like, LPG, Petrol, Kerosene, Diesel, Naptha, Aviation Turbine Fuel, Lube Oil, Low Sulphur Heavy Stock (LSHS), Coal Tar, etc. Most of these have specific uses, except Naptha and LSHS which can be used either as Fuel for Power (or) Feed stock / Fuel in Fertilizer Plants. It is always better to avoid the use of petroleum products for power generation, since there are no other resources, which can replace petroleum products for their other needs. The Crude Oil reserves throughout the world are finite. In the last about 60 years there has been continuous growth in petroleum products consumption. There was matching production with new oil fields adding up. But in the last 10 years or so, there is slow down in the discovery of new oil fields. This has resulted in a situation called “Oil Peaking” whereby oil production is just matching the requirement with no room for further growth in production. This is clearly seen from Figure – 3. So, as a country with heavy dependence on imported petroleum, we must plan our alternative transport fuel on priority. Ethanol is an obvious choice as being followed in Brazil. It is unfortunate that we are having a very casual approach on this matter. There is an urgent need for producing more sugarcane for increasing the ethanol production. For this we need to bring more area under irrigation. From this perspective also River Inter Linking needs to be taken up on top priority. 2. There are several Gas resources. The Associated Gas comes along with Crude oil in some Oil wells. Some Wells produce only Gas and it is called Natural Gas. Gas can be produced by in-situ Gasification of Coal, called Coal Bed Methane (CBM). These Gases contain mainly Methane (CH4 – one Carbon atom) Propane (C3H8 – 3 Carbon atoms) and Butane (C4 H10). Liquefied Petroleum Gas (LPG) is mainly Propane & Butane. It is either obtained during crude oil distillation in Refineries or by extracting the Propane and Butane from the Natural Gas or Associated Gas received from the Oil wells.
  • 6.
  • 7. The LPG part of these Gases has a distinct use as domestic fuel. But the Methane, which is the major part of Natural Gas has two options. One as Fertilizer Feed Stock and the other as Fuel for Power generation. Gas is a better feed stock for fertilizer production. For a Country like India, which needs lot of fertilizers to produce enough food from limited land resources, using this Methane Gas for fertilizer production shall take precedence over Power generation. This is because, for producing urea, the most important fertilizer (Urea), we need lot of Hydrogen. Methane has the highest Hydrogen to Carbon ratio (4 : 1) and it is easy to handle. 3. Coal has a low Hydrogen to Carbon ratio of 0.7: 1 compared to that of Methane Gas (4 :1) and typical Crude oil (1.5 : 1). Moreover it has lot of inert like Silica and impurities like Sulphur. Hence, it is better to use it directly as fuel for power. 4. Hydel Power is direct electricity. In some locations, we can build a lower Dam for storing the water so that it can be pumped back to the higher dam during Non Peak hours using surplus power from Coal / Nuclear Plants. This can be used to generate power during peak period. The Generator itself will work both as Generator and Pump. This is called Pumped Storage Scheme and this is the only way of storing electricity in high capacities. There will be a net loss of about 10 - 15% during pumping and regeneration. Out of these various energy usage options, in this Article, let us discuss about Electrical Energy, which is the key for the development of any society. The present Installed capacity, Units generated, Total additional resources available, etc. for various Electrical Energy sources in India is given in Table - 2. For a country like India with such a large population, looking at imported resources, like Iran Gas, Turkmanistan Gas, LNG, Indonesian Coal, Oil Wells in Africa, etc., as part of long term energy security plan is ridiculous. These resources are finite and are expected to last for just 20 years. There are always technical / political / commercial risks. What happened to Indonesian Coal import price in the last 3 years is a typical example. Also, when an individual considers 10 to 20 years as long term, should a Country not plan for atleast 100 years as part of its long term energy security plan? If we do not understand the long term energy options of India properly and plan accordingly, at some stage it will create chaos in the society. Let us analyze the various energy resources available with us and evolve the right long term energy security plan. A. Hydroelectric Power: This is one of the cheapest and cleanest forms of energies and it is renewable as well. This is produced by water flowing from the Dams which store water at higher elevations. Thus, Dams serve by providing both Water and Electricity, the lifelines for the society. Hence, we need to exploit this resource fully by building more dams which have a total capacity to produce 100000 MW and by completing the 29 Inter Link Canals already identified and approved by the Central Water Commission. These Inter Link Canals are expected to provide a net surplus of 30,000 MW after deducting the pumping needs for pumping in certain areas like Vindhyas. With this 30,000 MW, the total hydel potential yet to be exploited works out to 1,30,000 MW (1,00,000 + 30,000).
  • 8. Table -2 INDIA - ENERGY RESOURCES SOURCE INSTALLED UNITS PRODUCED AVERAGE PERCENTAGE UNITS TOTAL ADDITIONAL MW WITH LONGEVITY, REMARKS CAPACITY AS ON FROM APRIL'11 TO PLF, % PRODUCED BY AVAILABLE / SUSTAINABLE RESOURCE YEARS MARCH'12, MW MARCH'12, EACH RESOURCE, % Bn KWHr MW RESOURCE COAL 112,022 709 80 78.9 2,00,000 284 Bn Ton 150 1 GAS 18,131 75 0 1500 Bn M^3 10 OIL 1,200 75 0 0.757 Bn Ton 15 NUCLEAR - 4,780 32 80 3.6 20,000 60,000 Ton of Natural 80 2 Uranium Uranium NUCLEAR - 0 0 0 4,00,000 4,00,000 MW with 400 3 Thorium 4,00,000 Tons of Natural Thorium HYDRO 38,990 130 35 14.5 1,30,000 RENEWABLE NO LIMIT 4 BHUTAN IMPORT 5 0.6 SMALL HYDRO 3,200 16 25 1.8 8,000 RENEWABLE NO LIMIT WIND 15,700 15 50,000 RENEWABLE NO LIMIT 5 SOLAR 482 15 20,000 RENEWABLE NO LIMIT 5 COGENERATION 2000 5 30 0.6 5,000 RENEWABLE NO LIMIT 6 BIOMASS 1325 2 20 0.2 15,000 RENEWABLE NO LIMIT 7 TOTAL 197,830 899 100 1 Includes 113 Bn tons of Proven reserves, 137 Bn Tons of Indicated Reserves and 33.5 Bn tons of Inferred Reserves. 2 If we consider imported Uranium, there is no limit, since there are huge Uranium resources available in the world. 3 We have about 1/3 rd of world known resources of Thorium and it is estimated between 3,60,000 tons to 5,18,000 tons. 4 It includes 30,000 MW of net surplus that is possible with River Inter Linking schemes. 5 The Wind and Solar power plant capacity additions are limited by the huge investments required for every unit of electricity produced ( about 10 times) due to their very low PLF, which is 5 times lower. 6 Cogeneration is mainly from Sugar plants, which generate bagasse a bye-product, which is used for power generation. 7 The Bio mass potential is assumed as if all Agriwastes are treated as wastes and given for burning, which is not true.
  • 9. We must exploit the entire hydroelectric potential on top priority, since these projects are multipurpose and the investment is shared between various benefits like Drinking water, Irrigation water, Flood Control, Navigation, Saving on health care, Carbon fixation, Saving on electricity consumption in agriculture pump sets, etc. All the talks of environmental damages due to large dams need to be bulldozed as we know that the one time damage to flora and fauna due to submergence of few thousand acres is much less compared to the destruction caused by annual flood and draught, year after year. Also, we can always create forests equal to double the area submerged by any dam. Moreover, with the advent of large Tunnel Boring Machines, we can minimize destruction of forests by avoiding open canals in those areas. The Tunnel concept has many other advantages like, need for lesser land acquisition, lesser human displacements, eliminating bridges, eliminating the pumping needs across hills, minimizes the pilferage, etc. The arguments that the Dams and Inter Link Canals hardly store and divert few percentage of the flood water and hence does not help in flood mitigation is totally false. Since the Dams store the water mostly during the peak flow periods, they eliminate the peaking flood flow, even though the storage is less compared to the yearly total flow. Every inch reduction in water flow level in rivers is important during flood times. B. Coal: As can be seen from Table – 2, this source contributes the maximum electricity production, and it continues to be given top priority in the on going power projects also. With the present installed capacity, the Coal resources are expected to last for about 200 years. But with the tripling of Coal based power plants in the next 15 years, the resources will last only for 80 years. Already we are importing about 100 million tons to meet the total coal requirement of 800 million tons. International coal prices have doubled in the recent 3 years from USD 60 to USD 120 per ton. It will continue to rise since China, Japan, India, etc need to import large quantities of coal if they continue to rely on coal for major part of their energy needs. One of the major issues with Coal resource in India is that much of the Coal is at a depth of 1200 meters. But it is technically and commercially feasible to mine coals available upto a depth of 300 meters only. Hence, it is absolutely necessary for us to slowly reduce our dependence on coal as part of our long term energy security. C. Nuclear: Nuclear Power is the second best in terms of clean, safe, environmentally benign and cheap power, next to Hydel Power. There are two nuclear fuels–Uranium and Thorium. Natural Uranium has 0.72% of U – 235 and balance U-238. Only U – 235 can be used directly as fuel. U – 238, can be used as fuel only by converting it into Plutonium – 239 (Pu–239). Natural Thorium ore has only Thorium – 132 which can be used as fuel only by converting it into U – 233. As can be seen from Table – 2, we have only 60,000 Tons of Uranium. But we have 3,60,000 to 5,18,000 Tons of Thorium. With this Thorium we can generate 2,00,000 MW of Power for next 800 years or 4,00,000 MW for 400 years. Hence, for our long term energy security, we shall rely on Thorium based nuclear energy.
  • 10. As mentioned above, Thorium – 232 can not be directly used as fuel. For converting this Th – 232 to U – 233, we need Pu – 239. For producing sufficient quantity of Pu – 239 and U – 233, we need to have a Three Phase Nuclear Power Program, as shown in Figure – 4. In the First Phase, we operate Natural Uranium based reactors to get electricity and simultaneously produce Pu -239 from the U – 238 present in Natural Uranium. This Pu-239 is separated from the Spent Nuclear Fuel by Reprocessing. In the Second Phase, this Pu-239 is mixed with U–238 and used in Fast Breeder Reactors to get electricity and produce more Pu – 239. The specialty of Fast Breeder Reactors is that for every Atom of Pu- 239 consumed, about 1.4 Atoms of Pu-239 are produced from U – 238. Simultaneously, some part of Th–232 kept as Blankets around the core gets converted into U–233. This Pu-239 and U–233 are separated by reprocessing. In the Third phase which starts when we have sufficient quantity of U – 233, we switch over to the U–133. Here U – 233 is mixed with Thorium – 232 and used as fuel in the U – 133 based Fast Breeder Reactors. Here again these Fast Breeder Reactors produce about 1.3 Atoms of U – 233 from Th–232 for every Atom of U – 233 consumed. If Thermal Breeder Reactors are used, then 1.4 to 1.5 Atoms of U-233 are produced. We have the complete technology for the Design, Construction and Operation of Nuclear Reactors. Contrary to the general belief, we also have the complete Technology for the Fuel Enrichment, Reprocessing and Waste Management. What is not available with us is the collective political will and the priority for funds allocation. For example, we have invested Rs. 51,000 Crores to build 6,300 MW Wind Mills in Tamil Nadu. With the same amount we could have built 6000 MW of Nuclear Power Plant, which would produce 4 times that of Wind Mills Of course there are some limitations in the Indian industry in manufacturing certain large components required for Nuclear Reactors. Slowly our industries are gearing up. In the meanwhile, we shall import those components. Nothing wrong or unusual about it, since the scale of operation now does not justify the investments required to be made. Hence, we need to give priority for Nuclear Energy by getting sufficient funds by way of Foreign Direct Investment (FDI) and also by encouraging import of Reactors from foreign suppliers at favorable credit terms. Please note, presently the foreign companies do not have sufficient orders and hence they will offer attractive price and payment terms. It is a win – win situation for all. Talks like American MNCs want to exploit us, they want to dump outdated technology on us, etc are all childish. The fact is that, we have Russian, French, Canadian, Korean and Japanese Companies who are already in dialogue with us. American Companies are lagging behind. All companies offer the latest Reactors. In Jaitapur some people oppose Nuclear Power because AREVA offers the latest technology !
  • 11.
  • 12. One important dimension to the whole Energy scenario is the Nuclear Fusion Energy. The Nuclear energy presently in vogue is based on Nuclear Fission. That is, when a larger atom, like U–235 or Pu – 239 or U – 233, is split into two smaller atoms, there is energy release. In the same way, if two smaller atoms (like Hydrogen) are fused together to form a bigger atom (Helium), then also there is energy release. This is called Fusion Energy. Fusion Energy is almost 200 times higher in intensity compared to Fission Energy. The newly formed bigger atom (Helium) is also harmless. Hence, Fusion Energy is the best form of energy. Sun gets its energy by this fusion reaction only. Fusion Energy is likely to be commercialized in the next 50 to 100 years. The Technology is conceptually proved. For commercialization of the Technology, the major impediment is the development of some metal alloy, which can have super conductivity near room temperature. Once such an alloy is developed, Fusion Reactors will be commercially feasible. Till then Fission based Nuclear energy is an obvious choice. D. Wind: India has some wind potential, thanks to the monsoon winds and some narrow Mountain Passes. Wind Energy potential in the various windy regions of India is given in the Wind Power Density Map (Figure - 5). The wind energy potential with a wind velocity of 9 m/sec at 80 m hub height has been estimated to be 65,000 MW. Out of this, 15700 MW is already installed. The main driving force for the fast growth of wind energy in India have been the 80% Depreciation benefit allowed in the first year itself and the permission to set up Wind Mills under TUF Scheme. The accelerated depreciation benefit provides about 25% Income Tax saving, which is almost the promoters margin money required for installing Wind Mills. The TUF scheme offered loan at just 4% interest. But with effect from April 2012, the Depreciation benefit has been withdrawn. We have to see how much this is going to affect the Wind Mill industry. As wind is seasonal, the Wind Power will be available only during the few months in a year. During these few months also, the capacity utilization will be hardly 40 to 50%, even in the best wind sites. E. Solar: Being some what close to the Equator, most part of India has good sunshine throughout the year. In some parts of India, which are close to Tropic of Cancer, the solar irradiance, a measure of solar power intensity is substantially higher. But still due to the low average energy intensity per unit area, the land requirement is substantially higher. Each MW of installed capacity requires about 6 Acres of land. Hence, Solar Power can be installed in large capacities only in areas like Rajasthan and Gujarat where large tracts of unused land is available. Due to the combination of humidity and dust, most of the fallow lands of other regions of India are not suitable for Solar Power. The accompanying Map provides information on the Solar Intensity across India (Figure – 6). Major limiting factors of Solar Power are non-availability during Peak hours and the high investment cost required per MW. It costs about Rs. 10 – 12 Crores per MW. Based on the land availability and high cost, it has been planned to install about 20,000 MW of Solar Power using about 1,20,000 acres at an investment of Rs. 2,00,000 Crores over the next 10 years. But, it is to be noted that this 20,000 MW is equal to only 4000 MW of Coal / Nuclear Power Plant in terms of electricity produced (Units) and that too it will not be available during the peak load period of 6.00 P.M. to 10.00 P.M.
  • 13.
  • 14.
  • 15. 3. HEALTH, SAFETY & ENVIRONMENT IMPACT OF ENERGY SOURCES (HSE) There has been lot of debates on these issues. The debates are taking place in two distinctly different platforms. One is the well informed, scientifically substantiated debates with facts and figures, taking place in AC Halls among the experts concerned and the officials involved. The other is the ill informed, emotionally surcharged discussions often supported by “some experts” or “some eminent citizens” or “ former scientists” or “former officials” with limited data, taking place in street corners. These street corner discussions are always conducted in the guise of support of the project affected persons, who will always have genuine grievances, which are nothing to do with HSE. The participants of these two discussions seldom meet. If at all they meet, they meet at Courts, which is the wrong place for any meaningful discussion of this nature to take place. After all this discussion is more to do with science, engineering, economics, social development, etc. and less of legalities. The Political Bosses who are supposed to be the bridge between the two platforms do not have time and inclination to do the bridging. The lack of inclination on their part stems mainly from the media response, which in most cases, is biased towards the emotionally surcharged street corner revelations rather than the scientifically supported discussions. For the media, street corner meetings are sensational and have better news value. The Politicians do not want them to be identified on the “wrong side” by the media. So, as far as possible, they keep off or they side with those project affected people who are invariably there in any project. Keeping this in mind, now let us analyze the HSE issues in detail with some techno-economic data in the context of Power Options for India for the five major options – Hydel, Coal, Nuclear, Wind and Solar. A) HYDEL 1. Health: Hydel Power Plants do not cause any health hazards to human beings or animals. But actually they help in improving the health by providing adequate water for irrigation and drinking water. With the increase in population there is more and more dependence on ground water for drinking, by way of deep bore wells. As we go down deeper into the earth, the temperature increases. This results in higher solubility of salts. If we drink this water the salts overload the organs in our body resulting in health problems. Presently this problem has been completely ignored by the Planners of India. This problem is solved by the Hydel power projects which are always built as multipurpose projects with Irrigation, Drinking Water, Power, Flood mitigation, Water Transport, Fishing, etc. as part of the overall scheme. The dams minimize the diseases caused by flood and also mitigate the effects of draught. Hence, the Hydel Power Plant Projects help in improving the health of humans and animals, in many ways.
  • 16. 2. Safety: The Hydel projects have some safety issues during construction and during operation. During construction of Dams there are possibilities for accidental damages for the temporary structures / Tunnels built to divert the regular water flow. Sometimes the accidents are caused by unprecedented rain during construction causing landslides / excess flooding. These are rare accidents happening despite precautions. During operation of the Hydel projects the accidents can happen by way of Struck Sluice Gates resulting in damage of dams, damages due to earthquake, etc. Failures of Turbine Blades, Generator Fires, Transformer Fire, etc. are some of the other freak accidents. In the past there were quite a few dam failures, some of which due to earthquakes. But with the advent of technology the new major dams built in recent 50 years have not been damaged in earthquake or any other natural causes. The details of Dam failures and the number of deaths in each case are given in Table – 3. According to International Commission on Large Dams (ICOLD), as of 2011, there are 37,640 large dams (>30 m Height for China and > 15 M for others). If China dams > 15M height are also included, the total number is about 52,000. Though there were about 300 accidents in these large dams, the accident rates have come down drastically in recent decades. Out of these 52,000 large dams in operation, more than half of them were built in the second half th of 20 Century. It is important to note that if these Dams had not been built there would have been lot of human / animal casualties due to draught and flooding each year. This aspect needs to be added to the credit of the Dams when we evaluate the Hydel project for their safety. . 3. Environment: This is one of the important factors which is put forth against the Hydel Power Projects. There is some truth in it. But it is always exaggerated. More importantly the positive effect of these projects on the environment is always overlooked. There are several environmental aspects. Let us discuss each of them in detail. a) Damage to Flora and Fauna due to the one time submergence of land when the Dam gets filled up for the first time. Mostly these lands happen to be forests. Yes, it is true that there is disturbance to humans and animals due to this. Most of the animals can be saved. Only the insects, bacteria, the trees and other plants in these forests, will die. However, these forests can always be grown in double of the submerged area and it can be set as a precondition for project clearance. Most of the insects and bacteria can also be more or less reestablished in this new forest. It is not fair to insist that we need to get back the same insects. We forget the fact that these insects die every season and new insects are born again.
  • 17. Table – 3 DAM ACCIDENTS Failure Dam Reservoir No. of Dam type* Country Height, m Volume,106 m 3 Date built Date Type deaths Vega de Tera CMB Spain 34 8 1957 1959 SF 144 Malpasset CA France 66 22 1954 1959 FF 421 Babii Yar Emb Ukraine 1961 OF 145 Vaiont CA Italy 265 150 1960 1963 LA 2600 Baldwin Hills Emb USA 71 1951 1963 IE 5 Frias Emb Argentina 15 0·2 1940 1970 OF >42 Banqiao Emb China 118 492 1953 1975 OF t Teton Emb USA 93 308 1975 1976 IE 11 Machhu II Emb India 26 100 1972 1979 OF 2000 Bagauda Emb Nigeria 20 1 1970 1988 OF 50 Belci Emb Romania 18 13 1962 1991 OF 25 Gouhou Emb China 71 3 1989 1993 IE 400 Zeizoun Emb Syria 42 71 1996 2002 OF 20 Camara RCC Brazil 50 27 2002 2004 5 Shakidor Emb Pakistan 2003 2005 OF >135 Situ Gintung Emb Indonesia 16 2 2009 IE 100 *CMB, Concrete and masonry buttress; CA, Concrete arch; Emb, Embankment; RCC, Roller compacted concrete SF, structural failure on first filling; FF, foundation failure; OF, overtopping during flood; LA, Land slide (270 x I 06 m 3 landslide into the reservoir caused overtopping of the dam by a wave 125m high, but remarkably the dam survived); IE, Internal erosion t-It has been reported that tens of thousands died in this disaster, which involved the failure of a number of dams, of which Banqiao was the largest.
  • 18. There could be permanent destruction of certain species (both flora and fauna) which are specific to that forest. We need not be unduly apologetic about it. After all they were neither there time immemorial nor they are going to be there for ever in future also irrespective of what human beings did or going to do. Also with passage of time, the type of insects also keeps changing by natural evolution. Whether we like it or not, this is part and parcel of nature. Our intervention is only minimal and incidental. It is very much justifiable, as long as the street corner meetings do not address the population growth on this Planet, especially in Countries like India. It is quite natural for “Experts” and “Green activists” from those Countries which have sparse population density, and from those Countries which have declining population, to ignore the population growth issue. As long as we are unable to control the population growth, the survival competition between man and other species in our country can not be avoided. This is the ground reality. We can keep making abstract statements like “Sustainable Development”, “Green Economy”, etc. b) The Dams cause earthquake is another argument put forth against Hydel Power Projects. This is a myth. How many of us know that there are atleast a dozen earthquakes taking place everyday in some part of this planet? Some occur on the land and some others on the sea bed. What relations these earthquakes have with dams? It was postulated that once Tehri Dam fills up there will be earthquake the very next year. Nothing of that sort has happened till date, even after several years. Contrary to general perception, the environmental destruction caused by natural disturbances are much severe and irrevocable compared to the manmade disturbances like Dams, Canals, Factories, etc. For example, the dust thrown into the atmosphere by a typical Volcano in few days is higher than the dust thrown by all Steel Plants in this world put together in one year. The environmental destruction caused by the river floods year after year is much higher compared to the one time destruction caused by the Dam submergence. Time and again we worry about silting of dam or sand quarrying in river beds. Supposing both are not happening. What will happen? The river will continue to erode the hills, generate silt / sand and disburse in the delta. If the silt / sand is not removed, the river bed in the delta area will get filled up and the river will take new course every year. This will destroy the flora and fauna in new areas every year, apart from destroying crops and flooding human habitats along the river. Forest fires destroy thousands of acres of forests every year. They do not destroy only the trees. But they destroy the complete flora and fauna as well. With human intervention using advanced technologies, we are able to control the forest fires to some extent. This is not an argument against the protection of environment and nature. This is not an argument against regulation of sand quarrying in river beds. This is not against preserving forests. But this is only to make it clear that certain things happening on this Planet are “natural”, including the growth of certain species in certain periods and destruction of the same at some other time by nature. May be it is the turn of the human species! With certain efforts of scientists we are trying to sustain our growth and simultaneously we may
  • 19. retard the growth of certain others. In that process unknowingly we may also be making the life easy for the nature to do its duty of destroying the humans! But the anticlimax is that the human beings learn from their mistakes and make amends to the natural disturbances made by them now and then. This game is going on for millions of years. This is also part of nature! Let us accept this reality and let us not over react to the changes brought by humans. After all change is the only thing which is not changeable and human beings are also part and parcel of nature! B) COAL : 1. Health: Among the various Energy Sources, Coal has the highest health hazards. Starting with Coal mining, the working environment in underground mines or even in open cast mines is very tough. The workers have no choice but to inhale the dust laden air. They are exposed to high temperatures prevailing in underground mine shafts. It is a well known fact that the average life expectancy of coal mine workers is reduced by several years depending upon their service in coal mines. The general public must understand and appreciate the sacrifices made by these workers while enjoying the electricity. At the same time the public must also support the initiatives of the Scientists when they try to find alternatives to coal. They shall not over react based on just one or two incidents where the scientists / engineers might have failed or natural calamities might have created trouble beyond expectations. Otherwise, we may have to live with old problems of Coal, which we all know is much larger in magnitude. Moreover Coal is also a finite resource and we need to firm up the right alternate for Coal before it is too late. The same problems of coal dust are encountered while loading in the Ship / Train and unloading from Ship / Train. Recently the Madras High Court has taken a sue motto petition against Chennai Port Trust on this issue of coal dust coming to the Court premises and ordered the shifting of Coal Terminal to Ennore Port. The health hazards posed by the flue gases coming out of Coal Power Plant boilers are the most severe one. It contains all sorts of chemicals harmful to the life on earth like SO2, SO, NO, Unburnt Hydrocarbons, etc. It also contains particulate matter which causes Silicosis and several other respiratory and gastric disorders. There are certain other substances which are more harmful to the health. They are toxic substances like Arsenic, Lead, Mercury, etc. These are mostly confined to fly ash. But a small fraction does go with flue gas and pollute the Air.
  • 20. The Fly ash which is the residue left out of Coal burning contain all the inerts like Silica, Calcium, Potassium, Phosphorus, etc. It also contains all heavy metals like Lead, Mercury, Antimony, etc. Some coals may contain radioactive substances like Uranium. Since the presence of Uranium is rare, it is not measured as a routine. Hence, it may go unnoticed and get into the public domain. This is more dangerous. The quantity of Fly Ash is so much that the disposal is a real challenge for the coal power plants. The Indian coal has close to 40% ash content thereby making both the transportation of coal and fly ash handling as formidable tasks. The health hazards of fly ash being very slow, it goes unnoticed. Typically a 1000 MW Coal Power Plant needs about 14,000 Tons of Coal every day (7 Trains!) and it discharges about 6000 Tons of Fly Ash. We can imagine the magnitude of the problem. In the power plant, the Boiler operators are also subjected to air pollution and hot working environments. 2. Safety: The most striking safety issue is the coal mine accidents. The nature of coal mining is such there are innumerable causes for unexpected accidents like, Gas explosions, Coal Dust explosions, Mine collapse, Flooding, Poisonous Gas eruptions, Fire, etc. Due to this, despite the best mining safety precautions, about 4,41,000 persons have died in coal mine accidents in the world in the past 60 years. This is the single largest cause of industrial accident deaths in the world. It has also caused 6,78,275 disabilities in USA alone in the same period. Coal mine accidents are so common that they hardly make news ! Even now, on an average atleast one person dies every alternate day in Indian Coal mines! Since it is so common, it has no news value for the Print media and Television channels. But, if one person dies in Uranium mine or a Nuclear Power Plant or even a Road accident near a Nuclear Power Plant, it will be a Breaking News, since it is uncommon. There are other accidents in Coal Power Plants like Boiler explosions, Electrical accidents, coal handling accidents, pipeline ruptures, etc. These are also some what frequent though not as common as Coal mine accidents, and cause human loss and innumerable disabilities. 3. Environment: Like the single largest industrial activity which has caused the maximum deaths, Coal is also the single largest cause for the climate change which is looming large. For every unit of electricity generated, about 1.0 Kg. of CO2 is released into atmosphere. CO2 which is getting accumulated in the atmosphere absorbs part of the infrared radiation emitted by the earth into the space and reemits back to the earth causing an effect called, Green House Effect. This results in continuous increase in the average temperature of earth. In the last 100 years, the CO2 concentration in atmosphere has increased from 280 ppm to 390 ppm. Currently it is increasing at about 2 ppm per year and it is rapidly increasing year after year due to increasing trend in fossil fuel dependence for energy. India and China are going to increase this rate by almost 30 to 40% in the next 10 years.
  • 21. The Acid rain caused by the SO2, SO3 released into the atmosphere by the Sulphur bearing coal is another major environmental hazard. Flue Gas, Dust, Soot, etc. coming out of coal power plants cause enormous environmental damages in the vicinity of the power plants. The environmental damages caused by Fly Ash dumping is another area of concern. The shear volume of Coal / Ash handled in power plants brings in related environmental issues in Loading / Unloading, Transportation, Storage, etc. C) NUCLEAR: 1. Health : The effect of radiation on health of human beings has been extensively studied for so many decades. Due to the hidden nature of radiation risk, there is always a fear psychosis and stigma attached to the health effects of radiation. A detailed analysis on this subject is given in a separate Article titled “Fission Products Radioactivity and their Effects” attached herewith As can be understood from the above Article, though there is risk of higher cancer incidence due to high radiation doses, it is not a monster as depicted by mass media and believed so, by the gullible public. Having known about the risks involved, the Nuclear Industry throughout the world has always been extra cautious and has always been kept on toes. With the result, the health effects from Nuclear Industry, either to the public or to the Nuclear Industry personal, have almost been nil. In the early years of Uranium mining and Reprocessing, there were lapses, like in any other polluting industry. But due to the radioactivity associated with it, it has been quickly corrected unlike in other industries. 2. Safety: Safety in Nuclear industries is one subject which has been analyzed thread bare by everyone, right from the common man on the street to the highest political head in every country. In the 60 years history of Nuclear Industry there have been only 3 major accidents in Nuclear Installations. They are: (a) Three Mile Island Accident (1979) - USA (b) Chernobyl Accident ( 1986) – Russia (c) Fukushima Accident (2011) – Japan Let us analyze these accidents in detail since there is complete misinformation and confusion among the Public.
  • 22. (a) Three Mile Island Accident: This accident took place when a Safety Relief Valve got struck in open position and this was misjudged by the operators. They overruled all the automatic safety systems which came online as per design basis to cool the reactor with additional water injection. So the water level was not maintained and dropped due to the continuous escaping of steam through the struck open valve. Due to this, there was partial melt down of Nuclear Reactor Core. But there was not a single fatality. There was no major release of radioactivity except the release of short lived radioactive gases like Krypton-85, Xenon-133, etc. and about 15 Curies of I-131 into the air. It was classified as level – 5 in the IAEA accident scale of 1 to 7. There was almost negligible radiation effect for the human beings or for the environment. But still it became a world famous accident! Based on the lessons learnt from this accident, “Fail-safe” concept was reinforced in design and operation. That is, when some Equipment / Instrument / Valve fails to operate due to power problem or leakage or malfunction, the Reactor can only lead to shut down and not increase in power production. Also, the “Hands off” concept on safety systems was introduced. That is, when some safety system comes on line, no one can interfere in it. It can only be strengthened. For example, if one emergency coolant pump automatically starts, even by a spurious signal, it can not be stopped by the operator. At the maximum he can start one more pump. This way safety of the plant is completely taken out of human error / judgment. (b) Chernobyl Accident: This accident happened when some operators wanted to do Turbine Run Down Test when the Reactor was about to be shut down. In fact some of the Control Rods had been removed as part of shut down procedure. Reactor had been restarted at this stage bye passing all rules and regulations in order to conduct this unauthorized test. The chronology of the accident is – Overheating of Reactor core where Control Rods had been removed – Rupture of a Coolant Header – Reaction of coolant water with Graphite Moderator – Generation of Hydrogen during this Reaction – Accumulation of Hydrogen – Auto explosion of Hydrogen – Opening of Reactor Roof Slab – Eventual exposure of Nuclear Reactor core to the atmosphere – Continued burning of Graphite in Air – Escape of Radioactive Fission Products to environment. This is the worst accident that can ever happen to a Nuclear Reactor, and it is classified as Level – 7 in IAEA Scale. Within one week of the accident, 28 persons died. All of them were among the 134 fire fighting and army personal who were employed to drop Lead sheets over the exposed nuclear reactor core to stop the fire and radiation. Out of about 5000 Thyroid cancer cases detected after few years, only 15 died due to cancer. Rest all have responded well to the Thyroid treatment and are completely out of danger.
  • 23. What about the long term effects? Now that 25 years have elapsed since the accident. Totally only 43 ( 28 + 15 ) people have died of cancer caused by the accident. The next question is, how many more will die of cancer due to the effect of radiation caused by this accident ? It has been estimated that there will be about 5000 people among the 626,000 people living in the vicinity, who may eventually die of cancer caused by this accident. It represents about 3-4% increase over the normal cancer death. That is, out of the 626,000 people, about 1,30,000 are expected to die at old age due to cancer. If this accident had not happened, about 1,25,000 would have died of cancer in normal course. Among the 5 million people who were living in Belarus region which had Cesium deposition of 37 KBq per square meter due to wind direction, an additional cancer death of about 5000 had been predicted based on scientific model. This represents an increase of 0.6% over the normal value. The effect in all other areas including Europe and Russian Federation will naturally be much smaller due to very low levels of radiation dose received. Please note, these are only probabilities and not conclusive. However there is absolutely no possibility for upward revision of these numbers (5000+ 5000) as evidenced from the fact that there is no radiation effect on the remaining 106 (134 – 28) people who were acutely exposed. Chernobyl Reactor is one of the earliest reactors built with primitive design concepts with not much of redundant safety features. Moreover it is built with positive reactivity coefficient, as opposed to the negative reactivity coefficient concept followed in most reactors. Negative reactivity coefficient makes the reactor to bring down the nuclear reaction rate whenever the temperature increases (or) there is steam formation. This makes the Reactors inherently safe. ( c ) Fukushima Accident: Firstly, it is not equal to the Chernobyl accident, even though the Japanese have declared it as Level - 7, the most severe accident that can happen to any reactor, with widespread contamination with serious health and environmental effects. Actually, Fukushima accident qualifies for Level – 5 or at the max 6 only. Since the accident was unfolding slowly, with increasing severity day by day and it was a cumulative effect of three reactor accidents, the Japanese probably thought that it is better to anticipate the worst and declare the worst level upfront. That is how they would have skipped the Level-6 while upgrading the levels one by one. So far there is not a single casualty due to this nuclear accident. But more than 20,000 have died due to tsunami triggered by a strong earth quake, about 150 KM away from the Reactor site. Many of the common people have mixed up both tsunami effect and Fukushima Nuclear accident due to the media hype on the nuclear incident. For example, when the Nuclear accident is discussed, the tsunami death number of about 20,000 is always referred in very ambiguous manner that ordinary people can not distinguish as to what caused the death, the tsunami or the nuclear accident !
  • 24. The media has completely ignored the real disaster associated with the tsunami and blown the nuclear accident out of proportions. Due to this, there was very little attention on the relief activities required for the tsunami affected people, unlike in the tsunami caused by the Indonesian earth quake in 2004. In Fukusima nuclear accident, so far no major Thyroid exposures have been identified. The fact is that the quantity of I -131 which has been released into the air is much less, about 6 to 9% only, compared to that of Chernobyl. In Chernobyl the fuel was completely exposed to atmosphere and literally spewed radioactive material into the air for few days. Chernobyl was a 1000 MWe reactor and the capacity of all the three reactors of Fukushima put together was almost same at 1317 MWe (439 *3). Even the much talked about Hydrogen explosion in Fukushima needs to be proved beyond doubt, since the quantity of Hydrogen can not be so much that even after dilution with so much steam, it could have reached above the 4% concentration level for auto ignition to take place. Moreover, for auto ignition to take place, we need sufficient Oxygen. Temperature also has to be above 5000C. Where was so much Oxygen? The explosion of the outside reactor buildings in all the three Units of Fukushima could be possibly due to the simple steam pressure build up also. Since the Reactor vessels were in tact at the top, the reaction rate of Zircoalloy Fuel clad with the near stagnant steam would have been much lower compared to the total exposure of the fuel / graphite to air (Oxygen) in case of Chernobyl, which was like "free for all" ! Moreover, in Fukushima the I-131 and small quantities of Caesium-137 were mixed completely with steam cloud unlike in Chernobyl, where it was all air. Once the steam cloud condenses, majority of this I-131 and possibly all Caesium-137 would have settled in few KM vicinity of the Reactors only. Now, everyone knows about all that hype created by the media as if USA, Europe, India, China, everyone on this Planet is going to be affected by the fall out of Fukushima accident! Today, absolutely there is no media to explain what happened to those “radiation clouds” carrying “so much “of radioactive substances threatening every country including India! They didn’t know, it was a simple water vapour cloud with small quantities of I-131 and Cs – 137. . But the fact remains that due to heavy pumping / pouring of Sea Water into the Reactors in unusual manners, there was lot of low level radioactive contaminated water which was discharged into the sea. Some water also directly seeped into the soil through the cracked trenches. However, owing to the very low quantities of radioactive nuclides involved (primarily due to the fact that not much of fuel was outside the reactor domain), and due to the slow development over several days (Read: I-131 half life is only 8 days), the effect of sea discharge also would have been very low only. Only if there had been substantial damage to Reactor No.2 at the bottom, and the fuel pellets / particles were lying loose due to the damaged Zircoalloy clad, then there is possibility that these pellets / particles could have been carried out of the reactor. But still the possibility of the particles reaching the sea is remote. If it were really “core melt” as confirmed by almost everyone, and not mere damage to the fuel pins due to Zircoalloy clad rupture, then this possibility of loose pellets / particles is also ruled out. The fused / melted / sintered fuel will be in tact in the reactor only. It could not have been carried away by the water. This will be known in due course of time.
  • 25. The fuel Pond heating up also did not cause any radiation leaks, as feared during the course of the accident. So, in Fukushima there were no casualties. There were no Iodine effects on children. No major contamination of Air. There was some contamination of soil and sea water in the vicinity only. The present Exclusion Zones which have been maintained as a matter of caution, will be progressively removed over the years with proper identification and decontamination of hot spots. The facts and figures given above for the 3 Nuclear accidents are all based on scientifically studied Reports. These are neutral Reports which are based on authentic studies conducted by World Health Organisation and United Nations experts on the entire population in the vicinity. These are Reports which are written without any prejudice to prove or disprove that Nuclear Energy is safe or not. There are thousands of other Reports quoted by the media which are subjective studies conducted to highlight the " ill effects" of Nuclear Energy and to prove that nuclear energy is unsafe, as they have been fearing from childhood or as told by their parents. Now, of late there are “experts” who come out with the concept of “Internal” and “External” radiation as if it is not known to the Nuclear experts. They say, the damage due to the continuous irradiation of tissues by radioactive particles which are inside the body is more and it should not be compared with the radiation dose received by gamma rays externally. It is perfectly correct and that is how the cancer probability based on the Iodine and Cesium intake are estimated. These two are the two main radioactive elements which will come out in the event of breach in the fuel clad. Rest all elements like Plutonium, Uranium, Neptunium, etc, which when go into the body stay long and give appreciable dose to the body, do not come out to atmosphere as they are heavy elements. Without knowing these fundamentals many argue that Uranium and Plutonium, if they go into the body will emit radiation for 240,000 years ( as if he is going to live for 240,000 years !), and hence it also needs to be accounted, while estimating the accident scenarios. The three Nuclear Reactor accidents (in 2 of which no one died, and in one, only 43 have died and only about 10000 are expected to develop cancer in old age), have dispelled the myth that the Nuclear Reactor Accidents will kill several thousand people immediately and create cancer among millions of people. Also, the rebuilding of Hiroshima and Nagasaki cities within about few decades of Atom Bombs and the healthy living of people there without any effect on the background radiation is a proof that the radiation can be cleaned to a great extent and low levels of radiation do not cause any effect. Moreover, with the lapse of 70 years of Atom Bombs, among the few lakhs of acutely affected people, there is second and third generation population of about 50,000. They do not have any symptoms of cancer / deformation dispelling another myth about the genetic effects of radiation. 3. Environment: In the Nuclear Fuel cycle the environmental effects are there in two areas. One is the Uranium Mining activity. The second is the disposal of radioactive fission products.
  • 26. As explained earlier, the Uranium Mining activity is done with utmost care unlike in other mining activities due to the involvement of radioactive substances. The wastes are recycled back into the mining area itself after proper treatment. Regarding the radioactive fission products disposal, it calls for a detailed technical discussion. It is given in a separate Article titled “Nuclear Waste Management” attached herewith. From this Article, we can understand that the Fission Products can be made into glass, embedded into concrete cubicles and disposed off inside deep abandoned mines. This is an absolutely benign and environmentally sound method. There is no short term or long term impacts on the environment due to the disposal of fission products. Except a few small countries, all those countries whose per capita GDP has grown more than 20,000 USD, have had ambitious nuclear program with Nuclear Energy contributing more than 20% of their total power production. Proportionately the life expectancy has also increased. This can be seen from Figure – 8. From this Figure it is obvious that Nuclear Power has provided the cheap, clean and environmentally safe power to these countries. D) SOLAR: 1. Health : Solar Power Plants, either Photovoltaic (PV) or Concentrated Solar Thermal Power (CSP) have no health hazards, except the health hazards associated with the manufacture of Glass, Steel, Polysilicon, etc used in Solar Power plants. 2. Safety : There are no safety issues with PV based Solar Power. The CSP based solar power involves handling of Chemicals (Thermic Fluid - Phenolic compounds) and steam at high pressures and high temperatures. In CSP with Thermal storage, molten salts at high temperatures are used. The other conventional accident probabilities related to Turbine / Generator / Pump / Piping exist in CSP. 3. Environment: There are no major environmental issues associated with Solar Power excepting the following: a) Chemical pollution and used chemical disposal in the manufacture of Polysilicon and Glass. b) At present the solar power installed capacity is not much and it is well spread out. But when there is large scale deployment of PV or CSP in a particular region, say Dhar desert in India, then it might have some implication on the climate by way of disturbance in the local atmospheric temperature / pressure, leading to disturbances in monsoon pattern. It need not be in that region or in India. It can have some effect anywhere in the world since the atmospheric changes are very complex and interlinked throughout the Planet. E) WIND: 1. Health: Wind Mills do not have any health effects on human beings. It may have some effect on the birds. But due to slow speeds associated with Wind Mills, the effect on birds is minimal, excepting that the birds are scared away from that region.
  • 27. NUCLEAR POWER - GDP - LIFE EXPECTANCY FIGURE 8
  • 28. 2. Safety: Excepting the accident probabilities during erection and maintenance, there are no major safety issues associated with Wind Mills. Lightning damage to the Wind Mills is an area of concern. 3. Environment: Wind Mills have to be installed in specific regions where Wind speeds are higher. Since the Kinetic Energy associated with the wind velocity only is converted into electrical energy in Wind Mills, there is proportionate reduction in Wind Velocity down stream of Wind Mills. The Wind Mills act as “obstructions” to normal flow of wind. As we all know, monsoon is associated with wind flow pattern. So, naturally the Wind Mills are bound to have some effect on the monsoon pattern. Today it may be insignificant and not yet mapped and correlated. But surely it will be known some day when there is further growth of Wind Mills in high / medium wind regions, especially in narrow mountain passes. 4. ECONOMICS FOR VARIOUS ENERGY OPTIONS There are lot of confusions, myths and qualitative statements floating around about the economic aspects of various power sources. Before going into the actual costing per unit of electricity produced from various sources, we have to understand certain techno – economic parameters and they are discussed below. a) Plant Load Factor (PLF): It is a measure of how many units a power plant actually produces in a year per MW of installed capacity, as against how many units it can produce if it operates at its full capacity for all 24 hours throughout the year. It is measured in terms of percentage as per following formula: Total number of units actually produced (KW.hr) PLF = ----------------------------------------------------------------- x 100 MW of Installed capacity x 1000 x 365 x 24 The following Table provides information on the average PLF of various Power Plants: S.No. POWER SOURCE PLF % 1 Coal 75 – 85 2 Hydel 30 – 50 3 Nuclear 80 – 90 4 Wind 15 – 25 5 Solar – PV 10 – 20 6 Solar – CSP 10 – 25 As can be seen from the above Table, Coal and Nuclear Power Plants have PLF of about 80%. Whereas other sources have much less. Which means, the installed capacity, in terms of MW of each Power source, can not produce the same number of units in a year. For example, a Solar PV or CSP th Power Plant with 1000MW installed capacity will produce only about 1/4 of what a 1000MW Nuclear Power Plant will produce. So, just comparing the installed capacities on one to one basis is meaningless. Most of the people do this mistake. Most of the times, comparisons are made based on Percentage share of Installed capacity of various energy sources. This does not serve any purpose. Especially in the Non-Conventional Energy data, you will never find the percentage (or) proportion of electricity produced by Solar / Wind. However, they will disclose big percentages like 10%, 20%, etc. in terms of Installed capacities! This is in a way misguiding the general public.
  • 29. For example, there was big headline news that in Germany 50% of energy needs at midday on 26.05.12 was met by Solar Power only. What they failed to highlight was that it was only for few hours. Since solar power was not available on the same day evening (of course every day evening!), they had to depend on the 9 old Nuclear Reactors which are still operating and the good old coal power plants which were condemned as polluters few years back! Also Germany boasts that they have 30% installed capacity from Solar PV. But they fail to highlight the fact that the contribution of Solar Power produced is just 4% of the total units produced in Germany and that too during the non peak period! b) Peak Load: The peak load period is the highest electricity demand period in terms of MW in 24 hours of a day. A typical Load Curve for 24 hours is given in Figure – 9. As can be seen from this Figure, there is Peak demand from 7 PM to Midnight. This is true for almost all regions of India. We must have installed capacity to meet this Peak Load and we must also have cushions for outages / lower production due to unforeseen circumstances. Obviously PV based Solar Power will not be available during this period of Peak Load. So, even if we have any amount of PV based Solar Power Plant, we must have that much equivalent capacity in Coal or Nuclear or Hydel also to meet the peak load. Refer the Figure – 7 for the Wind and Solar power Installed capacities required for peak load saving. We need to keep the Nuclear / Coal / Hydel Power Plants idle during day time when Solar Power is available. This makes no economic sense. This is one of the major impediments for Solar Power. We can install stand alone Solar Power Plants in remote areas where power is required only during day time. That is a better option rather than going for Grid connected Solar Power. Similar is the case with Wind Power. It is available only during few months in a year. For the remaining months how do we manage without having alternate power source? c) Availability Factor: This is a measure of availability of the Power Plant at any point of time in a year irrespective of how much it produces. It is obviously poor for Solar and Wind Power, compared to other energy sources. Also, Solar and Wind Power can not be so easily moderated to meet the varying load requirements. d) Waste Management: In Wind and Solar Power there are no major wastes excepting certain chemical wastes produced during the Solar Cells manufacture and the Wind Turbine Blade manufacture. In the case of Coal, there is waste generation at several stages of the Fuel cycle. Starting with the poisonous gases in Coal mines, there are several wastes generated like, Coal washeries waste, Coal dust generation during loading / transport / unloading, Flue Gas pollution (SOx, NOx, COx, Ash Particles, etc), Fly Ash, etc. Moreover, there is one important set of wastes which goes almost unnoticed. That is the presence of toxic substances like Arsenic, Lead, Mercury, etc. and radioactive substances present in coal. These are not present in every Coal mine at every layer. Hence these are not measured as a routine and
  • 30.
  • 31.
  • 32. hence go unnoticed. Naturally there is do data on the health effects of these wastes and hence are not even considered while evaluating the Waste Management of Coal Power Plants. Waste generation in Nuclear energy is well known and hence well studied. The implications of the Nuclear Waste if they come to the public domain are substantially higher compared to the other wastes. Naturally the safety features and factors of safety are proportionately higher. The invisibility of radiation adds another dimension to the nuclear waste. Hence the safety features are made all the more stringent. Waste generation in Nuclear industry takes place in four areas. First the chemical waste in the Uranium mines. Since these wastes are associated with radioactive substances, these are made chemically inert and put back into the mines. There is no scope for any health / environment effect. The second is the waste generation in Nuclear Reactors during their normal operation. Since the Fuel is handled in hermetically sealed fuel pins, there is no scope for any radioactive fission product escape. The only radioactive substance coming out of Nuclear Reactors is Tritium which has very low half life and is harmless in small quantities / concentrations. The other wastes are sampling wastes and maintenance wastes which are low level liquid wastes. These are treated by appropriate processes and disposed. The third is the waste generated or rather separated from the Spent Nuclear Fuel in Fuel Reprocessing Plants. Here, the useful Nuclides like U – 235, U – 233, Pu – 239, Am – 241, Co – 90, etc. are separated and used in Nuclear Reactors, Nuclear Medicine application, Industrial applications, etc. The residual fission products which contain almost all the radioactivity contained in the Spent Fuel is separated and stored in liquid form. There are only two fission products which escape to the atmosphere from the Reprocessing Plants. They are the entire Kr-85 atoms and a small fraction of I – 129 atoms which are contained in the Spent Fuel. Both of these do not get into the biological cycle and hence do not pose any health hazards. The Fourth area is the Waste Immobilization Plant where the Fission Products separated in the Fuel Reprocessing Plant are concentrated, vitrified and made into glass for ultimate disposal in deep abandoned mines. Hence there are no wastes which escape into the public domain. As can be seen from the above discussions on Waste Management in various energy sources, the wastes from Coal Power are left as it is in public domain with direct and indirect health effects. Not much is spent on managing these wastes. Hence there is no Waste Management cost is added to Coal Power. But in case of Nuclear Power, Waste Management is a well known factor and is a substantial part of the Nuclear Power cost. Contrary to the general media disclosures and opt repeated by antinuke lobbyists, Waste Management cost and Reactor Decommissioning costs are very much factored into the per unit cost of Nuclear Power. In fact, if we take into account of the fuel value of Pu-239 and U – 233, the Reprocessing and Waste Management cost are more than offset. But, still it is not accounted that way since many countries do not recycle this Pu – 239 at present. In future, they will surely recycle it.