SlideShare una empresa de Scribd logo
1 de 9
Descargar para leer sin conexiΓ³n
VIII
Kinetic Theory of Gas
Kinetic Theory of Gas
Gas
Microscopic [ 𝐾𝐸 ]
Macroscopic [𝑃, 𝑇, 𝑉]
Assumptions of Ideal gas
I. The molecules in the gas can be
considered small hard spheres.
II. All collisions between gas
molecules are elastic and all
motion is frictionless (no energy is
lost in collisions or in motion).
III. Newton’s laws apply .
IV. The distance between molecules
on average is much larger than the
size of the molecules.
V. The gas molecules are constantly
moving in random directions with
a distribution of speeds.
VI. There are no attractive or
repulsive forces between the
molecules or the surroundings
(no intermolecular forces).
Pressure – Average KE
𝑃 =
𝐹
𝐴
Firstly, find F
𝐹π‘₯ =
βˆ†π‘ π‘₯
βˆ†π‘‘
=
βˆ†(π‘šπ‘£ π‘₯)
βˆ†π‘‘
𝑣 π‘₯
βˆ’π‘£ π‘₯
Since, βˆ†π‘ π‘₯ = 2π‘šπ‘£ π‘₯ ; same mass
𝐹π‘₯ =
2π‘šπ‘£ π‘₯
βˆ†π‘‘
βˆ†π‘‘ =
2𝑑
𝑣 π‘₯
𝐹π‘₯ =
2π‘šπ‘£ π‘₯
(2𝑑/𝑣 π‘₯)
=
π‘šπ‘£ π‘₯
2
𝑑
Suppose there are N molecules of the gas
𝐹π‘₯ =
π‘π‘š
𝑑
𝑣 π‘₯
2
𝑣 π‘₯
2
=
𝑣 π‘₯1
2
+ 𝑣 π‘₯2
2
+ 𝑣 π‘₯3
2
+ β‹― + 𝑣 π‘₯ 𝑛
2
𝑛
𝑃 =
π‘π‘š
𝐴𝑑
𝑣 π‘₯
2
=
π‘π‘š
𝑉
𝑣 π‘₯
2
𝐾𝐸 =
1
2
π‘šπ‘£2
Since, 𝑣 = 𝑣 π‘₯ 𝑖 + 𝑣 𝑦 𝑗 + 𝑣𝑧 π‘˜
𝑣 = 𝑣 = 𝑣 π‘₯
2 + 𝑣 𝑦
2 + 𝑣𝑧
2
𝑣2
= 𝑣 π‘₯
2
+ 𝑣 𝑦
2
+ 𝑣𝑧
2
𝐾𝐸 =
1
2
π‘š 𝑣 π‘₯
2
+ 𝑣 𝑦
2
+ 𝑣𝑧
2
Assume, 𝑣 π‘₯
2
= 𝑣 𝑦
2
= 𝑣𝑧
2
𝐾𝐸 =
3
2
π‘š 𝑣 π‘₯
2
𝑑
𝑣 π‘₯
𝐾𝐸 =
3
2
π‘š 𝑣 π‘₯
2
π‘š 𝑣 π‘₯
2
=
2
3
𝐾𝐸
𝑃 =
π‘π‘š
𝑉
𝑣 π‘₯
2
***The reference point of 𝑣 π‘₯ is CG
𝑝 =
1
3
π‘π‘š 𝑐2
𝑉
***This equation has not considered the
Degree Of Freedom, DOF
Equipartition Theorem
Mode of motions
1. Translational motion
2. Rotational motion
3. Oscillation motion (vibration)
𝑃 =
2
3
𝑁
𝑉
𝐾𝐸
𝐾𝐸 =
1
2
π‘˜π‘‡
Gas molecule U total
Monatomic π‘ˆ =
3
2
π‘π‘˜π‘‡
Linear π‘ˆ =
5
2
π‘π‘˜π‘‡
Non-linear π‘ˆ = 3π‘π‘˜π‘‡
Monatomic molecules
*** The rotation of the molecule
releases very small energy as
𝐾𝐸 =
1
2
πΌπœ”2
Translational motion (π‘₯, 𝑦, 𝑧)
Degree Of Freedom, DOF = 3
Linear molecule
Translational motion (π‘₯, 𝑦, 𝑧)
Rotational motion (πœ” π‘₯, πœ” 𝑦)
Degree Of Freedom, DOF = 5
***If include Oscillation motion,
DOF = 5+2(KE+PE) =7
Translational motion
Rotational motion
𝑧
π‘₯
π‘¦π‘ˆπ‘‘π‘œπ‘‘π‘Žπ‘™ =
𝐷𝑂𝐹
2
π‘π‘˜π‘‡
Non-linear molecule
Translational motion (π‘₯, 𝑦, 𝑧)
Rotational motion (πœ” π‘₯, πœ” 𝑦, πœ” 𝑧)
Degree Of Freedom, DOF = 6
***For oscillation motion or vibration, it
is usually not used to calculate as it has
a large impact only at very high
temperature.
Root mean square velocity, π‘£π‘Ÿπ‘šπ‘ 
π‘£π‘Ÿπ‘šπ‘  = 𝑣2
𝑧
π‘₯
𝑦
𝐾𝐸 =
1
2
π‘š 𝑣2
𝑣2 =
𝑣1
2
+ 𝑣2
2
+ β‹― + 𝑣 𝑛
2
𝑛
𝐾𝐸 =
1
2
π‘šπ‘£π‘Ÿπ‘šπ‘ 
2
Specific Heat Capacity of gas
𝑄 = π‘šπ‘βˆ†π‘‡
𝑐 = 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 β„Žπ‘’π‘Žπ‘‘ π‘π‘Žπ‘π‘Žπ‘π‘–π‘‘π‘¦
𝐽
π‘˜π‘”β„ƒ
Molar Specific Heat Capacity
𝑄 = 𝑛𝑐 π‘šβˆ†π‘‡
𝑛 = π‘›π‘’π‘šπ‘π‘’π‘Ÿ π‘œπ‘“ π‘šπ‘œπ‘™π‘’
𝑐 π‘š = π‘šπ‘œπ‘™π‘Žπ‘Ÿ 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 β„Žπ‘’π‘Žπ‘‘ π‘π‘Žπ‘π‘Žπ‘π‘–π‘‘π‘¦
𝐽
π‘šπ‘œπ‘™π‘’β„ƒ
When volume is constant, 𝑄 = βˆ†π‘ˆ
***When energy is inserted to a system,
the system will do work.
***However, Q inserted in is not equal to
the Work (w) done
***The remained energy is βˆ†U
π‘Šπ‘π‘¦ = π‘€π‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’ 𝑏𝑦 π‘”π‘Žπ‘ 
When volume is constant, W=pβˆ†V=0
𝑄 = βˆ†π‘ˆ
βˆ΄βˆ†π‘ˆ = 𝑀𝑐 π‘£βˆ†π‘‡
𝐢𝑣 = 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 β„Žπ‘’π‘Žπ‘‘ π‘π‘Žπ‘π‘Žπ‘π‘–π‘‘π‘¦ π‘€β„Žπ‘’π‘› 𝑉 = 0
𝑐 𝑣 =
1
𝑀
βˆ†π‘ˆ
βˆ†π‘‡
=
1
𝑀
π‘‘π‘ˆ
𝑑𝑇
βˆ†π‘ˆ = 𝑄 βˆ’ π‘Šπ‘π‘¦
𝑐 𝑣 =
1
𝑀
πœ•π‘ˆ
πœ•π‘‡
𝑀 = π‘šπ‘
For Ideal Gas
∴ 𝑃 =
2
3
𝑁
𝑉
3
2
π‘˜π‘‡
P-V graph
***Isotherm line; same temperature
P-T graph
***Isovolumetric; same volume
Monatomic molecule
When v=0,
π‘ˆ =
3
2
π‘π‘˜π‘‡
𝑐 𝑣 =
1
𝑀
πœ•π‘ˆ
πœ•π‘‡
= 𝑐 𝑣 =
1
𝑀
πœ•
πœ•π‘‡
3
2
π‘π‘˜π‘‡
𝑐 𝑣 =
3
2
π‘π‘˜
𝑀
Since 𝑀 = π‘šπ‘,
𝑐 𝑣 =
3
2
π‘π‘˜
π‘šπ‘
=
3
2
π‘˜
π‘š
Linear molecule
Non-linear molecule
***When v=0 and not consider the
vibration motion
𝒄 𝒗- 𝑻 graph of Hydrogen gas
Hydrogen gas is a linear molecule
(diatomic molecule)
𝑐 𝑣 =
3
2
π‘˜
π‘š
𝑐 𝑣 =
5
2
π‘˜
π‘š
𝑐 𝑣 =
3 π‘˜
π‘š
𝒄 𝒗
𝑻
πŸ‘
𝟐
πŸ“
𝟐
πŸ•
𝟐
π‘‡π‘Ÿπ‘Žπ‘›π‘ π‘™π‘Žπ‘‘π‘–π‘œπ‘›
π‘‡π‘Ÿπ‘Žπ‘›π‘ π‘™π‘Žπ‘‘π‘–π‘œπ‘›
+π‘…π‘œπ‘‘π‘Žπ‘‘π‘–π‘œπ‘›
π‘‡π‘Ÿπ‘Žπ‘›π‘ π‘™π‘Žπ‘‘π‘–π‘œπ‘›
π‘…π‘œπ‘‘π‘Žπ‘‘π‘–π‘œπ‘›
+Oscillation
𝑃 =
2
3
𝑁
𝑉
𝐾𝐸
𝐾𝐸 =
3
2
π‘˜π‘‡
𝒑𝑽 = π‘΅π’Œπ‘»
𝑷
𝑽
πŸ‘πŸŽπŸŽπ‘²
πŸ‘πŸπŸŽπ‘²
πŸ‘πŸ‘πŸŽπ‘²
π‘»π’†π’Žπ’‘π’†π’“π’‚π’•π’–π’“π’†
π’Šπ’π’„π’“π’†π’‚π’”π’†π’”
𝑷
𝑻
𝑽 𝟏
𝑽 𝟐 > 𝑽 𝟏
Since 𝑝𝑉 = π‘π‘˜π‘‡ and n =
𝑁
𝑁 𝐴
π‘˜ =
𝑅
𝑁𝐴
Real Gas VS Ideal Gas
Because the real gas has intermolecular
forces,
π‘ƒπΌπ‘‘π‘’π‘Žπ‘™ > π‘ƒπ‘Ÿπ‘’π‘Žπ‘™
P’ = pressure of Ideal gas
P = pressure of real gas
(by Van der Waal)
***When we observe the volume of the
real gas, it is the volume of the
container.
*** But because the real gas has
molecular size, the volume of Ideal gas
is only the space that is not occupied by
the real gas molecules.
π‘‰πΌπ‘‘π‘’π‘Žπ‘™ < π‘‰π‘Ÿπ‘’π‘Žπ‘™
V’ = volume of Ideal gas
V = volume of real gas
(by Clausius)
𝑝𝑉 = π‘π‘˜π‘‡ = 𝑛𝑅𝑇
π‘ˆπ‘‘π‘œπ‘‘π‘Žπ‘™ =
𝐷𝑂𝐹
2
π‘π‘˜π‘‡ =
𝐷𝑂𝐹
2
𝑛𝑅𝑇
𝑃′
= 𝑃 + π‘Ž
𝑁
𝑉
2
𝑉′ = 𝑉 βˆ’ 𝑛𝑏
𝑷′
𝑽′
= 𝑷 + 𝒂
𝑡
𝑽
𝟐
𝑽 βˆ’ 𝒏𝒃 = π‘΅π’Œπ‘» = 𝒏𝑹𝑻
Real Gas equation
Van der Waals equation
a and b are Van der Waals constants.
a and b are vary for different gases
How to determine a and b values?
***Van der Waals Curves
***Choose the isotherm line that first
not curve down (Critical temperature)
***Choose the stationary point of
inflexion (Critical point), 𝑻 𝒄
***We can derive Critical volume and
Critical Pressure
At 𝑻 𝒄, when 𝑽 = 𝑽 𝒄
πœ•π‘ƒ
πœ•π‘‰ 𝑇
= 0
and
πœ•2
𝑃
πœ•π‘‰2
𝑇
= 0
𝑻 𝒄 is the stationary point of inflexion
𝑽 𝒄
𝑷
𝑽
𝑷 𝒄
𝑻 𝒄
𝑷′
𝑽′
= 𝑷 + 𝒂
𝑡
𝑽
𝟐
𝑽 βˆ’ 𝒏𝒃 = π‘΅π’Œπ‘» = 𝒏𝑹𝑻
At 𝑻 𝒄, when 𝑽 = 𝑽 𝒄
πœ•π‘ƒ
πœ•π‘‰ 𝑇
= 0
and
πœ•2
𝑃
πœ•π‘‰2
𝑇
= 0
From Van der Waals equation,
𝑃 + π‘Ž
𝑁
𝑉
2
𝑉 βˆ’ 𝑛𝑏 = π‘π‘˜π‘‡
𝑃 =
π‘π‘˜π‘‡
𝑉 βˆ’ 𝑛𝑏
βˆ’ π‘Ž
𝑁
𝑉
2
πœ•π‘ƒ
πœ•π‘‰
= βˆ’
π‘π‘˜π‘‡
𝑉 βˆ’ 𝑛𝑏 2
+
2π‘Žπ‘2
𝑉3
= 0 β‹― (1)
πœ•2
𝑃
πœ•π‘‰2
=
2π‘π‘˜π‘‡
𝑉 βˆ’ 𝑛𝑏 3
βˆ’
6π‘Žπ‘2
𝑉4
= 0 β‹― (2)
(1)
(2)
;
𝑉 βˆ’ 𝑁𝑏 =
2𝑉
3
𝑏 =
𝑉
3𝑁
=
𝑉𝑐
3𝑁
Sub 𝑏 =
𝑉
3𝑁
into (1) and (2)
𝑇 =
9π‘‰π‘˜π‘‡
8𝑁
𝑃 =
π‘Ž
27𝑏2
Hence,
π‘Ž =
9π‘‰π‘˜π‘‡
8𝑁
𝑏 =
𝑉
3𝑁
***To find a and b, an experiment is
conducted
𝒂 =
πŸ—π‘½ 𝒄 π’Œπ‘» 𝒄
πŸ–π‘΅
, 𝒃 =
𝑽 𝒄
πŸ‘π‘΅
Speed/Velocity of gas molecule
1. Average speed, 𝑣 π‘Žπ‘£
𝑣 π‘Žπ‘£ =
𝑣1 + 𝑣2 + 𝑣3 + β‹― + 𝑣 𝑛
𝑛
2. Root mean square velocity, π‘£π‘Ÿπ‘šπ‘ 
π‘£π‘Ÿπ‘šπ‘  = 𝑣2
=
𝑣1
2 + 𝑣2
2 + 𝑣3
2 + β‹― + 𝑣 𝑛
2
𝑛
3. Most probable velocity, 𝑣 π‘šπ‘
𝑣 π‘šπ‘ = π‘šπ‘œπ‘‘π‘’
Distribute of Molecular Speeds
Maxwell speed distribution
𝑒π‘₯𝑝 βˆ’
π‘šπ‘£2
2π‘˜π‘‡
= π‘’βˆ’
π‘šπ‘£2
2π‘˜π‘‡
***m = mass of 1 molecule
Probability density function, 𝑷(𝒗)
𝑝 = π‘π‘Ÿπ‘œπ‘π‘Žπ‘π‘–π‘™π‘–π‘‘π‘¦
𝑃 𝑣 =
4
πœ‹
π‘š
2π‘˜π‘‡
3
2
𝑣2
𝑒π‘₯𝑝 βˆ’
π‘šπ‘£2
2π‘˜π‘‡
𝑣
π‘π‘’π‘šπ‘π‘’π‘Ÿπ‘œπ‘“π‘šπ‘œπ‘™π‘’π‘π‘’π‘™π‘’
𝑉
𝑣 + βˆ†π‘₯
βˆ†π‘₯
𝑃 𝑣 =
𝑝 𝑣 + βˆ†π‘£ βˆ’ 𝑝(𝑣)
βˆ†π‘£
Use Integrate by part
𝑝 𝑣1 β†’ 𝑣2 = 𝑃 𝑣 𝑑𝑣
𝑣2
𝑣1
Speed/Velocity of gas molecule
1. Average speed, 𝑣 π‘Žπ‘£
𝑣 π‘Žπ‘£ = 𝑣𝑃 𝑣 𝑑𝑣
∞
0
𝒗 𝒂𝒗
= 𝑣
4
πœ‹
π‘š
2π‘˜π‘‡
3
2
𝑣2
𝑒π‘₯𝑝 βˆ’
π‘šπ‘£2
2π‘˜π‘‡
𝑑𝑣
∞
0
=
4
πœ‹
π‘š
2π‘˜π‘‡
3
2
𝑣3
𝑒π‘₯𝑝 βˆ’
π‘šπ‘£2
2π‘˜π‘‡
𝑑𝑣
∞
0
From formula, π‘₯3
π‘’βˆ’π‘Žπ‘₯2
𝑑π‘₯
∞
0
=
1
2π‘Ž2
𝑀 = π‘šπ‘œπ‘™π‘’π‘π‘’π‘™π‘Žπ‘Ÿ π‘šπ‘Žπ‘ π‘  (π‘˜π‘”)
2. Root mean square velocity, π‘£π‘Ÿπ‘šπ‘ 
π‘£π‘Ÿπ‘šπ‘  = 𝑣2 = 𝑣2 𝑃 𝑣 𝑑𝑣
∞
0
With formula, π‘₯4
π‘’βˆ’π‘Žπ‘₯2
𝑑π‘₯
∞
0
=
3
8
πœ‹
π‘Ž3
3. Most probable velocity, 𝑣 π‘šπ‘
𝑣 = 𝑣 π‘šπ‘,
𝑑𝑃
𝑑𝑣 𝑣=𝑣 π‘šπ‘
= 0
Probability density function, 𝑷(𝒗)
π‘ƒπ‘Ÿπ‘œπ‘π‘Žπ‘π‘–π‘™π‘–π‘‘π‘¦ π‘‘π‘œ 𝑓𝑖𝑛𝑑 π‘šπ‘œπ‘™π‘’π‘π‘’π‘™π‘’π‘ 
π‘€π‘–π‘‘β„Ž π‘£π‘’π‘™π‘œπ‘π‘–π‘‘π‘¦ 𝑣1 β†’ 𝑣2
***the areas under 3 graphs of the same
gas but different temperature is the
SAME
***π‘š = π‘€π‘Ÿ Γ— 1.66 Γ— 10βˆ’27
***π‘˜ = 1.38 Γ— 10βˆ’23
***𝑇 𝑖𝑠 𝑖𝑛 𝐾𝑒𝑙𝑣𝑖𝑛
𝑣1
𝑃(𝑣)
𝑉
𝑣2
𝑝 𝑣1 β†’ 𝑣2 = 𝑃 𝑣 𝑑𝑣
𝑣2
𝑣1
𝑃 𝑣 𝑑𝑣
∞
0
= 1
𝑣 π‘šπ‘1
𝑃(𝑣)
𝑉
𝑣 π‘šπ‘2
𝑣 π‘šπ‘3
𝑇3
𝑇2
𝑇1 𝑇1 < 𝑇2< 𝑇3
𝑣 π‘Žπ‘£ =
8π‘˜π‘‡
πœ‹π‘š
=
8𝑅𝑇
πœ‹π‘€
𝑣2
= 𝑣2 =
3π‘˜π‘‡
π‘š
π‘£π‘Ÿπ‘šπ‘  =
3π‘˜π‘‡
π‘š
𝑣 π‘šπ‘ =
2π‘˜π‘‡
π‘š
𝑣 π‘šπ‘ < 𝑣 π‘Žπ‘£ < π‘£π‘Ÿπ‘šπ‘ 
= 1: 1.128: 1.224
Mean Free Path, πœ† [π‘š]
free path
***1 assumption is that the other
molecules are static
When 2 molecules of 𝑑 diameter collide,
we use a cross section of 2𝑑 to calculate
as it is more convenient.
𝑑
2𝑑
The collision occurs in βˆ†π‘‘ second(s)
Thus, the volume which the collision
takes place is
βˆ†π‘‰ = (πœ‹π‘‘2
)(π‘£βˆ†π‘‘)
The number of the collisions between
gas molecules is approximately equal to
the number of molecules inside the
volume which the collision takes place
(βˆ†π‘‰)
Suppose in 𝑉 volume, there are 𝑁
numbers of gas molecules
Therefore, in βˆ†π‘‰, there will be
𝑁
𝑉
Γ— βˆ†π‘‰
=
𝑁
𝑉
(πœ‹π‘‘2
)(π‘£βˆ†π‘‘)
Ξ» =
π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ 𝑖𝑛 βˆ†π‘‘
number of the collisions
=
π‘£βˆ†π‘‘
𝑁
𝑉
(πœ‹π‘‘2)(π‘£βˆ†π‘‘)
=
1
𝑁
𝑉
(πœ‹π‘‘2)
However, in reality, every molecule
moves randomly all the time. Thus, from
the experiments.
2𝑑
βˆ†π‘‰π‘‘
Ξ» =
1
2 πœ‹π‘‘2 𝑁
𝑉

MΓ‘s contenido relacionado

La actualidad mΓ‘s candente

Phy351 ch 1 ideal law, gas law, condensed, triple point, van der waals eq
Phy351 ch 1 ideal law, gas law, condensed, triple point, van der waals eqPhy351 ch 1 ideal law, gas law, condensed, triple point, van der waals eq
Phy351 ch 1 ideal law, gas law, condensed, triple point, van der waals eqMiza Kamaruzzaman
Β 
Equation of state2
Equation of state2Equation of state2
Equation of state2Mehtab Rai
Β 
Ideal gases
Ideal gasesIdeal gases
Ideal gasesSiyavula
Β 
Kinetic Theory Of Gas
Kinetic Theory Of GasKinetic Theory Of Gas
Kinetic Theory Of Gasmurtabak daging
Β 
Unit 10 ideal gaslaw final
Unit 10 ideal gaslaw finalUnit 10 ideal gaslaw final
Unit 10 ideal gaslaw finalLumen Learning
Β 
Lecture 14.3- The Ideal Gas Law
Lecture 14.3- The Ideal Gas LawLecture 14.3- The Ideal Gas Law
Lecture 14.3- The Ideal Gas LawMary Beth Smith
Β 
Chemistry: Ideal & non-ideal gas law
Chemistry: Ideal & non-ideal gas lawChemistry: Ideal & non-ideal gas law
Chemistry: Ideal & non-ideal gas lawHaruki Riio
Β 
13.4 Up Up And Away (Calculations Practice)
13.4   Up Up And Away (Calculations Practice)13.4   Up Up And Away (Calculations Practice)
13.4 Up Up And Away (Calculations Practice)PhysicsJackson
Β 
AP Physics - Chapter 14 Powerpoint
AP Physics - Chapter 14 PowerpointAP Physics - Chapter 14 Powerpoint
AP Physics - Chapter 14 PowerpointMrreynon
Β 
Properties of Gases
Properties of GasesProperties of Gases
Properties of GasesKevin Cram
Β 

La actualidad mΓ‘s candente (19)

Equations of State
Equations of StateEquations of State
Equations of State
Β 
Ideal Gas Law
Ideal Gas LawIdeal Gas Law
Ideal Gas Law
Β 
Gases
GasesGases
Gases
Β 
Gases
GasesGases
Gases
Β 
Phy351 ch 1 ideal law, gas law, condensed, triple point, van der waals eq
Phy351 ch 1 ideal law, gas law, condensed, triple point, van der waals eqPhy351 ch 1 ideal law, gas law, condensed, triple point, van der waals eq
Phy351 ch 1 ideal law, gas law, condensed, triple point, van der waals eq
Β 
Equation of state2
Equation of state2Equation of state2
Equation of state2
Β 
Ideal gases
Ideal gasesIdeal gases
Ideal gases
Β 
01 part1-ideal-gas
01 part1-ideal-gas01 part1-ideal-gas
01 part1-ideal-gas
Β 
Kinetic Theory Of Gas
Kinetic Theory Of GasKinetic Theory Of Gas
Kinetic Theory Of Gas
Β 
Gas
GasGas
Gas
Β 
Unit 10 ideal gaslaw final
Unit 10 ideal gaslaw finalUnit 10 ideal gaslaw final
Unit 10 ideal gaslaw final
Β 
Lecture 14.3- The Ideal Gas Law
Lecture 14.3- The Ideal Gas LawLecture 14.3- The Ideal Gas Law
Lecture 14.3- The Ideal Gas Law
Β 
Chemistry: Ideal & non-ideal gas law
Chemistry: Ideal & non-ideal gas lawChemistry: Ideal & non-ideal gas law
Chemistry: Ideal & non-ideal gas law
Β 
Gas Laws
Gas LawsGas Laws
Gas Laws
Β 
Ideal gas law
Ideal gas lawIdeal gas law
Ideal gas law
Β 
13.4 Up Up And Away (Calculations Practice)
13.4   Up Up And Away (Calculations Practice)13.4   Up Up And Away (Calculations Practice)
13.4 Up Up And Away (Calculations Practice)
Β 
Unit 6 Kinetic Theory of Gases
Unit 6 Kinetic Theory of GasesUnit 6 Kinetic Theory of Gases
Unit 6 Kinetic Theory of Gases
Β 
AP Physics - Chapter 14 Powerpoint
AP Physics - Chapter 14 PowerpointAP Physics - Chapter 14 Powerpoint
AP Physics - Chapter 14 Powerpoint
Β 
Properties of Gases
Properties of GasesProperties of Gases
Properties of Gases
Β 

Similar a 8). kinetic theory of gas (finished)

PHYSICS CLASS XII Chapter 3 - Kinetic theory of gases and radiation
PHYSICS CLASS XII Chapter 3 - Kinetic theory of gases and radiationPHYSICS CLASS XII Chapter 3 - Kinetic theory of gases and radiation
PHYSICS CLASS XII Chapter 3 - Kinetic theory of gases and radiationPooja M
Β 
CLASS XII PHYSICS Chapter 13 - Kinetic theory of gases and radiation
CLASS XII PHYSICS Chapter 13 - Kinetic theory of gases and radiationCLASS XII PHYSICS Chapter 13 - Kinetic theory of gases and radiation
CLASS XII PHYSICS Chapter 13 - Kinetic theory of gases and radiationPoojaKMore
Β 
10). thermodynamics (finished)
10). thermodynamics (finished)10). thermodynamics (finished)
10). thermodynamics (finished)PhysicsLover
Β 
Chem-1101.pptx
Chem-1101.pptxChem-1101.pptx
Chem-1101.pptxthuzar29
Β 
Spherical accretion in black hole
Spherical accretion in black holeSpherical accretion in black hole
Spherical accretion in black holePujita Das
Β 
7). mechanical waves (finished)
7). mechanical waves (finished)7). mechanical waves (finished)
7). mechanical waves (finished)PhysicsLover
Β 
Methods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenserMethods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenserTony Yen
Β 
Small amplitude oscillations
Small amplitude oscillationsSmall amplitude oscillations
Small amplitude oscillationsharshsharma5537
Β 
Quantized and finite reference of frame
Quantized and finite reference of frame Quantized and finite reference of frame
Quantized and finite reference of frame Eran Sinbar
Β 
The Harmonic Oscillator/ Why do we need to study harmonic oscillator model?.pptx
The Harmonic Oscillator/ Why do we need to study harmonic oscillator model?.pptxThe Harmonic Oscillator/ Why do we need to study harmonic oscillator model?.pptx
The Harmonic Oscillator/ Why do we need to study harmonic oscillator model?.pptxtsdalmutairi
Β 
6). oscillatory motion (finished)
6). oscillatory motion (finished)6). oscillatory motion (finished)
6). oscillatory motion (finished)PhysicsLover
Β 
3). work & energy (finished)
3). work & energy (finished)3). work & energy (finished)
3). work & energy (finished)PhysicsLover
Β 
Saqib aeroelasticity cw
Saqib aeroelasticity cwSaqib aeroelasticity cw
Saqib aeroelasticity cwSagar Chawla
Β 
HEAT CONDUCTION DEMYSTIFIED.pdf
HEAT CONDUCTION DEMYSTIFIED.pdfHEAT CONDUCTION DEMYSTIFIED.pdf
HEAT CONDUCTION DEMYSTIFIED.pdfWasswaderrick3
Β 
FUNDAMENTALS OF HEAT TRANSFER .pdf
FUNDAMENTALS OF HEAT TRANSFER .pdfFUNDAMENTALS OF HEAT TRANSFER .pdf
FUNDAMENTALS OF HEAT TRANSFER .pdfWasswaderrick3
Β 
Application of Integration
Application of IntegrationApplication of Integration
Application of IntegrationRaymundo Raymund
Β 
Higgs inflation
Higgs inflationHiggs inflation
Higgs inflationOUSEPHCJ
Β 
Kinetics of gases
Kinetics of gases Kinetics of gases
Kinetics of gases K. Shahzad Baig
Β 
2nd Edition FLUID MECHANICS DEMYSTIFIED.pdf
2nd Edition FLUID MECHANICS DEMYSTIFIED.pdf2nd Edition FLUID MECHANICS DEMYSTIFIED.pdf
2nd Edition FLUID MECHANICS DEMYSTIFIED.pdfWasswaderrick3
Β 

Similar a 8). kinetic theory of gas (finished) (20)

PHYSICS CLASS XII Chapter 3 - Kinetic theory of gases and radiation
PHYSICS CLASS XII Chapter 3 - Kinetic theory of gases and radiationPHYSICS CLASS XII Chapter 3 - Kinetic theory of gases and radiation
PHYSICS CLASS XII Chapter 3 - Kinetic theory of gases and radiation
Β 
CLASS XII PHYSICS Chapter 13 - Kinetic theory of gases and radiation
CLASS XII PHYSICS Chapter 13 - Kinetic theory of gases and radiationCLASS XII PHYSICS Chapter 13 - Kinetic theory of gases and radiation
CLASS XII PHYSICS Chapter 13 - Kinetic theory of gases and radiation
Β 
10). thermodynamics (finished)
10). thermodynamics (finished)10). thermodynamics (finished)
10). thermodynamics (finished)
Β 
Chem-1101.pptx
Chem-1101.pptxChem-1101.pptx
Chem-1101.pptx
Β 
Spherical accretion in black hole
Spherical accretion in black holeSpherical accretion in black hole
Spherical accretion in black hole
Β 
7). mechanical waves (finished)
7). mechanical waves (finished)7). mechanical waves (finished)
7). mechanical waves (finished)
Β 
Methods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenserMethods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenser
Β 
Small amplitude oscillations
Small amplitude oscillationsSmall amplitude oscillations
Small amplitude oscillations
Β 
Fluid mechanics
Fluid mechanicsFluid mechanics
Fluid mechanics
Β 
Quantized and finite reference of frame
Quantized and finite reference of frame Quantized and finite reference of frame
Quantized and finite reference of frame
Β 
The Harmonic Oscillator/ Why do we need to study harmonic oscillator model?.pptx
The Harmonic Oscillator/ Why do we need to study harmonic oscillator model?.pptxThe Harmonic Oscillator/ Why do we need to study harmonic oscillator model?.pptx
The Harmonic Oscillator/ Why do we need to study harmonic oscillator model?.pptx
Β 
6). oscillatory motion (finished)
6). oscillatory motion (finished)6). oscillatory motion (finished)
6). oscillatory motion (finished)
Β 
3). work & energy (finished)
3). work & energy (finished)3). work & energy (finished)
3). work & energy (finished)
Β 
Saqib aeroelasticity cw
Saqib aeroelasticity cwSaqib aeroelasticity cw
Saqib aeroelasticity cw
Β 
HEAT CONDUCTION DEMYSTIFIED.pdf
HEAT CONDUCTION DEMYSTIFIED.pdfHEAT CONDUCTION DEMYSTIFIED.pdf
HEAT CONDUCTION DEMYSTIFIED.pdf
Β 
FUNDAMENTALS OF HEAT TRANSFER .pdf
FUNDAMENTALS OF HEAT TRANSFER .pdfFUNDAMENTALS OF HEAT TRANSFER .pdf
FUNDAMENTALS OF HEAT TRANSFER .pdf
Β 
Application of Integration
Application of IntegrationApplication of Integration
Application of Integration
Β 
Higgs inflation
Higgs inflationHiggs inflation
Higgs inflation
Β 
Kinetics of gases
Kinetics of gases Kinetics of gases
Kinetics of gases
Β 
2nd Edition FLUID MECHANICS DEMYSTIFIED.pdf
2nd Edition FLUID MECHANICS DEMYSTIFIED.pdf2nd Edition FLUID MECHANICS DEMYSTIFIED.pdf
2nd Edition FLUID MECHANICS DEMYSTIFIED.pdf
Β 

Último

Lucknow πŸ’‹ Escorts in Lucknow - 450+ Call Girl Cash Payment 8923113531 Neha Th...
Lucknow πŸ’‹ Escorts in Lucknow - 450+ Call Girl Cash Payment 8923113531 Neha Th...Lucknow πŸ’‹ Escorts in Lucknow - 450+ Call Girl Cash Payment 8923113531 Neha Th...
Lucknow πŸ’‹ Escorts in Lucknow - 450+ Call Girl Cash Payment 8923113531 Neha Th...anilsa9823
Β 
Call Girls Jp Nagar Just Call πŸ‘— 7737669865 πŸ‘— Top Class Call Girl Service Bang...
Call Girls Jp Nagar Just Call πŸ‘— 7737669865 πŸ‘— Top Class Call Girl Service Bang...Call Girls Jp Nagar Just Call πŸ‘— 7737669865 πŸ‘— Top Class Call Girl Service Bang...
Call Girls Jp Nagar Just Call πŸ‘— 7737669865 πŸ‘— Top Class Call Girl Service Bang...amitlee9823
Β 
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRL
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRLMONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRL
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRLSeo
Β 
Call Girls in Gomti Nagar - 7388211116 - With room Service
Call Girls in Gomti Nagar - 7388211116  - With room ServiceCall Girls in Gomti Nagar - 7388211116  - With room Service
Call Girls in Gomti Nagar - 7388211116 - With room Servicediscovermytutordmt
Β 
Boost the utilization of your HCL environment by reevaluating use cases and f...
Boost the utilization of your HCL environment by reevaluating use cases and f...Boost the utilization of your HCL environment by reevaluating use cases and f...
Boost the utilization of your HCL environment by reevaluating use cases and f...Roland Driesen
Β 
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876dlhescort
Β 
Regression analysis: Simple Linear Regression Multiple Linear Regression
Regression analysis:  Simple Linear Regression Multiple Linear RegressionRegression analysis:  Simple Linear Regression Multiple Linear Regression
Regression analysis: Simple Linear Regression Multiple Linear RegressionRavindra Nath Shukla
Β 
Insurers' journeys to build a mastery in the IoT usage
Insurers' journeys to build a mastery in the IoT usageInsurers' journeys to build a mastery in the IoT usage
Insurers' journeys to build a mastery in the IoT usageMatteo Carbone
Β 
Famous Olympic Siblings from the 21st Century
Famous Olympic Siblings from the 21st CenturyFamous Olympic Siblings from the 21st Century
Famous Olympic Siblings from the 21st Centuryrwgiffor
Β 
Forklift Operations: Safety through Cartoons
Forklift Operations: Safety through CartoonsForklift Operations: Safety through Cartoons
Forklift Operations: Safety through CartoonsForklift Trucks in Minnesota
Β 
A DAY IN THE LIFE OF A SALESMAN / WOMAN
A DAY IN THE LIFE OF A  SALESMAN / WOMANA DAY IN THE LIFE OF A  SALESMAN / WOMAN
A DAY IN THE LIFE OF A SALESMAN / WOMANIlamathiKannappan
Β 
Pharma Works Profile of Karan Communications
Pharma Works Profile of Karan CommunicationsPharma Works Profile of Karan Communications
Pharma Works Profile of Karan Communicationskarancommunications
Β 
Unlocking the Secrets of Affiliate Marketing.pdf
Unlocking the Secrets of Affiliate Marketing.pdfUnlocking the Secrets of Affiliate Marketing.pdf
Unlocking the Secrets of Affiliate Marketing.pdfOnline Income Engine
Β 
The Path to Product Excellence: Avoiding Common Pitfalls and Enhancing Commun...
The Path to Product Excellence: Avoiding Common Pitfalls and Enhancing Commun...The Path to Product Excellence: Avoiding Common Pitfalls and Enhancing Commun...
The Path to Product Excellence: Avoiding Common Pitfalls and Enhancing Commun...Aggregage
Β 
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...Dave Litwiller
Β 
B.COM Unit – 4 ( CORPORATE SOCIAL RESPONSIBILITY ( CSR ).pptx
B.COM Unit – 4 ( CORPORATE SOCIAL RESPONSIBILITY ( CSR ).pptxB.COM Unit – 4 ( CORPORATE SOCIAL RESPONSIBILITY ( CSR ).pptx
B.COM Unit – 4 ( CORPORATE SOCIAL RESPONSIBILITY ( CSR ).pptxpriyanshujha201
Β 
HONOR Veterans Event Keynote by Michael Hawkins
HONOR Veterans Event Keynote by Michael HawkinsHONOR Veterans Event Keynote by Michael Hawkins
HONOR Veterans Event Keynote by Michael HawkinsMichael W. Hawkins
Β 
M.C Lodges -- Guest House in Jhang.
M.C Lodges --  Guest House in Jhang.M.C Lodges --  Guest House in Jhang.
M.C Lodges -- Guest House in Jhang.Aaiza Hassan
Β 

Último (20)

Lucknow πŸ’‹ Escorts in Lucknow - 450+ Call Girl Cash Payment 8923113531 Neha Th...
Lucknow πŸ’‹ Escorts in Lucknow - 450+ Call Girl Cash Payment 8923113531 Neha Th...Lucknow πŸ’‹ Escorts in Lucknow - 450+ Call Girl Cash Payment 8923113531 Neha Th...
Lucknow πŸ’‹ Escorts in Lucknow - 450+ Call Girl Cash Payment 8923113531 Neha Th...
Β 
Call Girls Jp Nagar Just Call πŸ‘— 7737669865 πŸ‘— Top Class Call Girl Service Bang...
Call Girls Jp Nagar Just Call πŸ‘— 7737669865 πŸ‘— Top Class Call Girl Service Bang...Call Girls Jp Nagar Just Call πŸ‘— 7737669865 πŸ‘— Top Class Call Girl Service Bang...
Call Girls Jp Nagar Just Call πŸ‘— 7737669865 πŸ‘— Top Class Call Girl Service Bang...
Β 
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRL
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRLMONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRL
MONA 98765-12871 CALL GIRLS IN LUDHIANA LUDHIANA CALL GIRL
Β 
Call Girls in Gomti Nagar - 7388211116 - With room Service
Call Girls in Gomti Nagar - 7388211116  - With room ServiceCall Girls in Gomti Nagar - 7388211116  - With room Service
Call Girls in Gomti Nagar - 7388211116 - With room Service
Β 
Boost the utilization of your HCL environment by reevaluating use cases and f...
Boost the utilization of your HCL environment by reevaluating use cases and f...Boost the utilization of your HCL environment by reevaluating use cases and f...
Boost the utilization of your HCL environment by reevaluating use cases and f...
Β 
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
Β 
Regression analysis: Simple Linear Regression Multiple Linear Regression
Regression analysis:  Simple Linear Regression Multiple Linear RegressionRegression analysis:  Simple Linear Regression Multiple Linear Regression
Regression analysis: Simple Linear Regression Multiple Linear Regression
Β 
Insurers' journeys to build a mastery in the IoT usage
Insurers' journeys to build a mastery in the IoT usageInsurers' journeys to build a mastery in the IoT usage
Insurers' journeys to build a mastery in the IoT usage
Β 
Famous Olympic Siblings from the 21st Century
Famous Olympic Siblings from the 21st CenturyFamous Olympic Siblings from the 21st Century
Famous Olympic Siblings from the 21st Century
Β 
Forklift Operations: Safety through Cartoons
Forklift Operations: Safety through CartoonsForklift Operations: Safety through Cartoons
Forklift Operations: Safety through Cartoons
Β 
A DAY IN THE LIFE OF A SALESMAN / WOMAN
A DAY IN THE LIFE OF A  SALESMAN / WOMANA DAY IN THE LIFE OF A  SALESMAN / WOMAN
A DAY IN THE LIFE OF A SALESMAN / WOMAN
Β 
Pharma Works Profile of Karan Communications
Pharma Works Profile of Karan CommunicationsPharma Works Profile of Karan Communications
Pharma Works Profile of Karan Communications
Β 
VVVIP Call Girls In Greater Kailash ➑️ Delhi ➑️ 9999965857 πŸš€ No Advance 24HRS...
VVVIP Call Girls In Greater Kailash ➑️ Delhi ➑️ 9999965857 πŸš€ No Advance 24HRS...VVVIP Call Girls In Greater Kailash ➑️ Delhi ➑️ 9999965857 πŸš€ No Advance 24HRS...
VVVIP Call Girls In Greater Kailash ➑️ Delhi ➑️ 9999965857 πŸš€ No Advance 24HRS...
Β 
Unlocking the Secrets of Affiliate Marketing.pdf
Unlocking the Secrets of Affiliate Marketing.pdfUnlocking the Secrets of Affiliate Marketing.pdf
Unlocking the Secrets of Affiliate Marketing.pdf
Β 
The Path to Product Excellence: Avoiding Common Pitfalls and Enhancing Commun...
The Path to Product Excellence: Avoiding Common Pitfalls and Enhancing Commun...The Path to Product Excellence: Avoiding Common Pitfalls and Enhancing Commun...
The Path to Product Excellence: Avoiding Common Pitfalls and Enhancing Commun...
Β 
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...
Β 
B.COM Unit – 4 ( CORPORATE SOCIAL RESPONSIBILITY ( CSR ).pptx
B.COM Unit – 4 ( CORPORATE SOCIAL RESPONSIBILITY ( CSR ).pptxB.COM Unit – 4 ( CORPORATE SOCIAL RESPONSIBILITY ( CSR ).pptx
B.COM Unit – 4 ( CORPORATE SOCIAL RESPONSIBILITY ( CSR ).pptx
Β 
HONOR Veterans Event Keynote by Michael Hawkins
HONOR Veterans Event Keynote by Michael HawkinsHONOR Veterans Event Keynote by Michael Hawkins
HONOR Veterans Event Keynote by Michael Hawkins
Β 
unwanted pregnancy Kit [+918133066128] Abortion Pills IN Dubai UAE Abudhabi
unwanted pregnancy Kit [+918133066128] Abortion Pills IN Dubai UAE Abudhabiunwanted pregnancy Kit [+918133066128] Abortion Pills IN Dubai UAE Abudhabi
unwanted pregnancy Kit [+918133066128] Abortion Pills IN Dubai UAE Abudhabi
Β 
M.C Lodges -- Guest House in Jhang.
M.C Lodges --  Guest House in Jhang.M.C Lodges --  Guest House in Jhang.
M.C Lodges -- Guest House in Jhang.
Β 

8). kinetic theory of gas (finished)

  • 2. Kinetic Theory of Gas Gas Microscopic [ 𝐾𝐸 ] Macroscopic [𝑃, 𝑇, 𝑉] Assumptions of Ideal gas I. The molecules in the gas can be considered small hard spheres. II. All collisions between gas molecules are elastic and all motion is frictionless (no energy is lost in collisions or in motion). III. Newton’s laws apply . IV. The distance between molecules on average is much larger than the size of the molecules. V. The gas molecules are constantly moving in random directions with a distribution of speeds. VI. There are no attractive or repulsive forces between the molecules or the surroundings (no intermolecular forces). Pressure – Average KE 𝑃 = 𝐹 𝐴 Firstly, find F 𝐹π‘₯ = βˆ†π‘ π‘₯ βˆ†π‘‘ = βˆ†(π‘šπ‘£ π‘₯) βˆ†π‘‘ 𝑣 π‘₯ βˆ’π‘£ π‘₯ Since, βˆ†π‘ π‘₯ = 2π‘šπ‘£ π‘₯ ; same mass 𝐹π‘₯ = 2π‘šπ‘£ π‘₯ βˆ†π‘‘ βˆ†π‘‘ = 2𝑑 𝑣 π‘₯ 𝐹π‘₯ = 2π‘šπ‘£ π‘₯ (2𝑑/𝑣 π‘₯) = π‘šπ‘£ π‘₯ 2 𝑑 Suppose there are N molecules of the gas 𝐹π‘₯ = π‘π‘š 𝑑 𝑣 π‘₯ 2 𝑣 π‘₯ 2 = 𝑣 π‘₯1 2 + 𝑣 π‘₯2 2 + 𝑣 π‘₯3 2 + β‹― + 𝑣 π‘₯ 𝑛 2 𝑛 𝑃 = π‘π‘š 𝐴𝑑 𝑣 π‘₯ 2 = π‘π‘š 𝑉 𝑣 π‘₯ 2 𝐾𝐸 = 1 2 π‘šπ‘£2 Since, 𝑣 = 𝑣 π‘₯ 𝑖 + 𝑣 𝑦 𝑗 + 𝑣𝑧 π‘˜ 𝑣 = 𝑣 = 𝑣 π‘₯ 2 + 𝑣 𝑦 2 + 𝑣𝑧 2 𝑣2 = 𝑣 π‘₯ 2 + 𝑣 𝑦 2 + 𝑣𝑧 2 𝐾𝐸 = 1 2 π‘š 𝑣 π‘₯ 2 + 𝑣 𝑦 2 + 𝑣𝑧 2 Assume, 𝑣 π‘₯ 2 = 𝑣 𝑦 2 = 𝑣𝑧 2 𝐾𝐸 = 3 2 π‘š 𝑣 π‘₯ 2 𝑑 𝑣 π‘₯
  • 3. 𝐾𝐸 = 3 2 π‘š 𝑣 π‘₯ 2 π‘š 𝑣 π‘₯ 2 = 2 3 𝐾𝐸 𝑃 = π‘π‘š 𝑉 𝑣 π‘₯ 2 ***The reference point of 𝑣 π‘₯ is CG 𝑝 = 1 3 π‘π‘š 𝑐2 𝑉 ***This equation has not considered the Degree Of Freedom, DOF Equipartition Theorem Mode of motions 1. Translational motion 2. Rotational motion 3. Oscillation motion (vibration) 𝑃 = 2 3 𝑁 𝑉 𝐾𝐸 𝐾𝐸 = 1 2 π‘˜π‘‡ Gas molecule U total Monatomic π‘ˆ = 3 2 π‘π‘˜π‘‡ Linear π‘ˆ = 5 2 π‘π‘˜π‘‡ Non-linear π‘ˆ = 3π‘π‘˜π‘‡ Monatomic molecules *** The rotation of the molecule releases very small energy as 𝐾𝐸 = 1 2 πΌπœ”2 Translational motion (π‘₯, 𝑦, 𝑧) Degree Of Freedom, DOF = 3 Linear molecule Translational motion (π‘₯, 𝑦, 𝑧) Rotational motion (πœ” π‘₯, πœ” 𝑦) Degree Of Freedom, DOF = 5 ***If include Oscillation motion, DOF = 5+2(KE+PE) =7 Translational motion Rotational motion 𝑧 π‘₯ π‘¦π‘ˆπ‘‘π‘œπ‘‘π‘Žπ‘™ = 𝐷𝑂𝐹 2 π‘π‘˜π‘‡
  • 4. Non-linear molecule Translational motion (π‘₯, 𝑦, 𝑧) Rotational motion (πœ” π‘₯, πœ” 𝑦, πœ” 𝑧) Degree Of Freedom, DOF = 6 ***For oscillation motion or vibration, it is usually not used to calculate as it has a large impact only at very high temperature. Root mean square velocity, π‘£π‘Ÿπ‘šπ‘  π‘£π‘Ÿπ‘šπ‘  = 𝑣2 𝑧 π‘₯ 𝑦 𝐾𝐸 = 1 2 π‘š 𝑣2 𝑣2 = 𝑣1 2 + 𝑣2 2 + β‹― + 𝑣 𝑛 2 𝑛 𝐾𝐸 = 1 2 π‘šπ‘£π‘Ÿπ‘šπ‘  2 Specific Heat Capacity of gas 𝑄 = π‘šπ‘βˆ†π‘‡ 𝑐 = 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 β„Žπ‘’π‘Žπ‘‘ π‘π‘Žπ‘π‘Žπ‘π‘–π‘‘π‘¦ 𝐽 π‘˜π‘”β„ƒ Molar Specific Heat Capacity 𝑄 = 𝑛𝑐 π‘šβˆ†π‘‡ 𝑛 = π‘›π‘’π‘šπ‘π‘’π‘Ÿ π‘œπ‘“ π‘šπ‘œπ‘™π‘’ 𝑐 π‘š = π‘šπ‘œπ‘™π‘Žπ‘Ÿ 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 β„Žπ‘’π‘Žπ‘‘ π‘π‘Žπ‘π‘Žπ‘π‘–π‘‘π‘¦ 𝐽 π‘šπ‘œπ‘™π‘’β„ƒ When volume is constant, 𝑄 = βˆ†π‘ˆ ***When energy is inserted to a system, the system will do work. ***However, Q inserted in is not equal to the Work (w) done ***The remained energy is βˆ†U π‘Šπ‘π‘¦ = π‘€π‘œπ‘Ÿπ‘˜ π‘‘π‘œπ‘›π‘’ 𝑏𝑦 π‘”π‘Žπ‘  When volume is constant, W=pβˆ†V=0 𝑄 = βˆ†π‘ˆ βˆ΄βˆ†π‘ˆ = 𝑀𝑐 π‘£βˆ†π‘‡ 𝐢𝑣 = 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 β„Žπ‘’π‘Žπ‘‘ π‘π‘Žπ‘π‘Žπ‘π‘–π‘‘π‘¦ π‘€β„Žπ‘’π‘› 𝑉 = 0 𝑐 𝑣 = 1 𝑀 βˆ†π‘ˆ βˆ†π‘‡ = 1 𝑀 π‘‘π‘ˆ 𝑑𝑇 βˆ†π‘ˆ = 𝑄 βˆ’ π‘Šπ‘π‘¦ 𝑐 𝑣 = 1 𝑀 πœ•π‘ˆ πœ•π‘‡ 𝑀 = π‘šπ‘
  • 5. For Ideal Gas ∴ 𝑃 = 2 3 𝑁 𝑉 3 2 π‘˜π‘‡ P-V graph ***Isotherm line; same temperature P-T graph ***Isovolumetric; same volume Monatomic molecule When v=0, π‘ˆ = 3 2 π‘π‘˜π‘‡ 𝑐 𝑣 = 1 𝑀 πœ•π‘ˆ πœ•π‘‡ = 𝑐 𝑣 = 1 𝑀 πœ• πœ•π‘‡ 3 2 π‘π‘˜π‘‡ 𝑐 𝑣 = 3 2 π‘π‘˜ 𝑀 Since 𝑀 = π‘šπ‘, 𝑐 𝑣 = 3 2 π‘π‘˜ π‘šπ‘ = 3 2 π‘˜ π‘š Linear molecule Non-linear molecule ***When v=0 and not consider the vibration motion 𝒄 𝒗- 𝑻 graph of Hydrogen gas Hydrogen gas is a linear molecule (diatomic molecule) 𝑐 𝑣 = 3 2 π‘˜ π‘š 𝑐 𝑣 = 5 2 π‘˜ π‘š 𝑐 𝑣 = 3 π‘˜ π‘š 𝒄 𝒗 𝑻 πŸ‘ 𝟐 πŸ“ 𝟐 πŸ• 𝟐 π‘‡π‘Ÿπ‘Žπ‘›π‘ π‘™π‘Žπ‘‘π‘–π‘œπ‘› π‘‡π‘Ÿπ‘Žπ‘›π‘ π‘™π‘Žπ‘‘π‘–π‘œπ‘› +π‘…π‘œπ‘‘π‘Žπ‘‘π‘–π‘œπ‘› π‘‡π‘Ÿπ‘Žπ‘›π‘ π‘™π‘Žπ‘‘π‘–π‘œπ‘› π‘…π‘œπ‘‘π‘Žπ‘‘π‘–π‘œπ‘› +Oscillation 𝑃 = 2 3 𝑁 𝑉 𝐾𝐸 𝐾𝐸 = 3 2 π‘˜π‘‡ 𝒑𝑽 = π‘΅π’Œπ‘» 𝑷 𝑽 πŸ‘πŸŽπŸŽπ‘² πŸ‘πŸπŸŽπ‘² πŸ‘πŸ‘πŸŽπ‘² π‘»π’†π’Žπ’‘π’†π’“π’‚π’•π’–π’“π’† π’Šπ’π’„π’“π’†π’‚π’”π’†π’” 𝑷 𝑻 𝑽 𝟏 𝑽 𝟐 > 𝑽 𝟏
  • 6. Since 𝑝𝑉 = π‘π‘˜π‘‡ and n = 𝑁 𝑁 𝐴 π‘˜ = 𝑅 𝑁𝐴 Real Gas VS Ideal Gas Because the real gas has intermolecular forces, π‘ƒπΌπ‘‘π‘’π‘Žπ‘™ > π‘ƒπ‘Ÿπ‘’π‘Žπ‘™ P’ = pressure of Ideal gas P = pressure of real gas (by Van der Waal) ***When we observe the volume of the real gas, it is the volume of the container. *** But because the real gas has molecular size, the volume of Ideal gas is only the space that is not occupied by the real gas molecules. π‘‰πΌπ‘‘π‘’π‘Žπ‘™ < π‘‰π‘Ÿπ‘’π‘Žπ‘™ V’ = volume of Ideal gas V = volume of real gas (by Clausius) 𝑝𝑉 = π‘π‘˜π‘‡ = 𝑛𝑅𝑇 π‘ˆπ‘‘π‘œπ‘‘π‘Žπ‘™ = 𝐷𝑂𝐹 2 π‘π‘˜π‘‡ = 𝐷𝑂𝐹 2 𝑛𝑅𝑇 𝑃′ = 𝑃 + π‘Ž 𝑁 𝑉 2 𝑉′ = 𝑉 βˆ’ 𝑛𝑏 𝑷′ 𝑽′ = 𝑷 + 𝒂 𝑡 𝑽 𝟐 𝑽 βˆ’ 𝒏𝒃 = π‘΅π’Œπ‘» = 𝒏𝑹𝑻 Real Gas equation Van der Waals equation a and b are Van der Waals constants. a and b are vary for different gases How to determine a and b values? ***Van der Waals Curves ***Choose the isotherm line that first not curve down (Critical temperature) ***Choose the stationary point of inflexion (Critical point), 𝑻 𝒄 ***We can derive Critical volume and Critical Pressure At 𝑻 𝒄, when 𝑽 = 𝑽 𝒄 πœ•π‘ƒ πœ•π‘‰ 𝑇 = 0 and πœ•2 𝑃 πœ•π‘‰2 𝑇 = 0 𝑻 𝒄 is the stationary point of inflexion 𝑽 𝒄 𝑷 𝑽 𝑷 𝒄 𝑻 𝒄
  • 7. 𝑷′ 𝑽′ = 𝑷 + 𝒂 𝑡 𝑽 𝟐 𝑽 βˆ’ 𝒏𝒃 = π‘΅π’Œπ‘» = 𝒏𝑹𝑻 At 𝑻 𝒄, when 𝑽 = 𝑽 𝒄 πœ•π‘ƒ πœ•π‘‰ 𝑇 = 0 and πœ•2 𝑃 πœ•π‘‰2 𝑇 = 0 From Van der Waals equation, 𝑃 + π‘Ž 𝑁 𝑉 2 𝑉 βˆ’ 𝑛𝑏 = π‘π‘˜π‘‡ 𝑃 = π‘π‘˜π‘‡ 𝑉 βˆ’ 𝑛𝑏 βˆ’ π‘Ž 𝑁 𝑉 2 πœ•π‘ƒ πœ•π‘‰ = βˆ’ π‘π‘˜π‘‡ 𝑉 βˆ’ 𝑛𝑏 2 + 2π‘Žπ‘2 𝑉3 = 0 β‹― (1) πœ•2 𝑃 πœ•π‘‰2 = 2π‘π‘˜π‘‡ 𝑉 βˆ’ 𝑛𝑏 3 βˆ’ 6π‘Žπ‘2 𝑉4 = 0 β‹― (2) (1) (2) ; 𝑉 βˆ’ 𝑁𝑏 = 2𝑉 3 𝑏 = 𝑉 3𝑁 = 𝑉𝑐 3𝑁 Sub 𝑏 = 𝑉 3𝑁 into (1) and (2) 𝑇 = 9π‘‰π‘˜π‘‡ 8𝑁 𝑃 = π‘Ž 27𝑏2 Hence, π‘Ž = 9π‘‰π‘˜π‘‡ 8𝑁 𝑏 = 𝑉 3𝑁 ***To find a and b, an experiment is conducted 𝒂 = πŸ—π‘½ 𝒄 π’Œπ‘» 𝒄 πŸ–π‘΅ , 𝒃 = 𝑽 𝒄 πŸ‘π‘΅ Speed/Velocity of gas molecule 1. Average speed, 𝑣 π‘Žπ‘£ 𝑣 π‘Žπ‘£ = 𝑣1 + 𝑣2 + 𝑣3 + β‹― + 𝑣 𝑛 𝑛 2. Root mean square velocity, π‘£π‘Ÿπ‘šπ‘  π‘£π‘Ÿπ‘šπ‘  = 𝑣2 = 𝑣1 2 + 𝑣2 2 + 𝑣3 2 + β‹― + 𝑣 𝑛 2 𝑛 3. Most probable velocity, 𝑣 π‘šπ‘ 𝑣 π‘šπ‘ = π‘šπ‘œπ‘‘π‘’ Distribute of Molecular Speeds Maxwell speed distribution 𝑒π‘₯𝑝 βˆ’ π‘šπ‘£2 2π‘˜π‘‡ = π‘’βˆ’ π‘šπ‘£2 2π‘˜π‘‡ ***m = mass of 1 molecule Probability density function, 𝑷(𝒗) 𝑝 = π‘π‘Ÿπ‘œπ‘π‘Žπ‘π‘–π‘™π‘–π‘‘π‘¦ 𝑃 𝑣 = 4 πœ‹ π‘š 2π‘˜π‘‡ 3 2 𝑣2 𝑒π‘₯𝑝 βˆ’ π‘šπ‘£2 2π‘˜π‘‡ 𝑣 π‘π‘’π‘šπ‘π‘’π‘Ÿπ‘œπ‘“π‘šπ‘œπ‘™π‘’π‘π‘’π‘™π‘’ 𝑉 𝑣 + βˆ†π‘₯ βˆ†π‘₯ 𝑃 𝑣 = 𝑝 𝑣 + βˆ†π‘£ βˆ’ 𝑝(𝑣) βˆ†π‘£
  • 8. Use Integrate by part 𝑝 𝑣1 β†’ 𝑣2 = 𝑃 𝑣 𝑑𝑣 𝑣2 𝑣1 Speed/Velocity of gas molecule 1. Average speed, 𝑣 π‘Žπ‘£ 𝑣 π‘Žπ‘£ = 𝑣𝑃 𝑣 𝑑𝑣 ∞ 0 𝒗 𝒂𝒗 = 𝑣 4 πœ‹ π‘š 2π‘˜π‘‡ 3 2 𝑣2 𝑒π‘₯𝑝 βˆ’ π‘šπ‘£2 2π‘˜π‘‡ 𝑑𝑣 ∞ 0 = 4 πœ‹ π‘š 2π‘˜π‘‡ 3 2 𝑣3 𝑒π‘₯𝑝 βˆ’ π‘šπ‘£2 2π‘˜π‘‡ 𝑑𝑣 ∞ 0 From formula, π‘₯3 π‘’βˆ’π‘Žπ‘₯2 𝑑π‘₯ ∞ 0 = 1 2π‘Ž2 𝑀 = π‘šπ‘œπ‘™π‘’π‘π‘’π‘™π‘Žπ‘Ÿ π‘šπ‘Žπ‘ π‘  (π‘˜π‘”) 2. Root mean square velocity, π‘£π‘Ÿπ‘šπ‘  π‘£π‘Ÿπ‘šπ‘  = 𝑣2 = 𝑣2 𝑃 𝑣 𝑑𝑣 ∞ 0 With formula, π‘₯4 π‘’βˆ’π‘Žπ‘₯2 𝑑π‘₯ ∞ 0 = 3 8 πœ‹ π‘Ž3 3. Most probable velocity, 𝑣 π‘šπ‘ 𝑣 = 𝑣 π‘šπ‘, 𝑑𝑃 𝑑𝑣 𝑣=𝑣 π‘šπ‘ = 0 Probability density function, 𝑷(𝒗) π‘ƒπ‘Ÿπ‘œπ‘π‘Žπ‘π‘–π‘™π‘–π‘‘π‘¦ π‘‘π‘œ 𝑓𝑖𝑛𝑑 π‘šπ‘œπ‘™π‘’π‘π‘’π‘™π‘’π‘  π‘€π‘–π‘‘β„Ž π‘£π‘’π‘™π‘œπ‘π‘–π‘‘π‘¦ 𝑣1 β†’ 𝑣2 ***the areas under 3 graphs of the same gas but different temperature is the SAME ***π‘š = π‘€π‘Ÿ Γ— 1.66 Γ— 10βˆ’27 ***π‘˜ = 1.38 Γ— 10βˆ’23 ***𝑇 𝑖𝑠 𝑖𝑛 𝐾𝑒𝑙𝑣𝑖𝑛 𝑣1 𝑃(𝑣) 𝑉 𝑣2 𝑝 𝑣1 β†’ 𝑣2 = 𝑃 𝑣 𝑑𝑣 𝑣2 𝑣1 𝑃 𝑣 𝑑𝑣 ∞ 0 = 1 𝑣 π‘šπ‘1 𝑃(𝑣) 𝑉 𝑣 π‘šπ‘2 𝑣 π‘šπ‘3 𝑇3 𝑇2 𝑇1 𝑇1 < 𝑇2< 𝑇3 𝑣 π‘Žπ‘£ = 8π‘˜π‘‡ πœ‹π‘š = 8𝑅𝑇 πœ‹π‘€ 𝑣2 = 𝑣2 = 3π‘˜π‘‡ π‘š π‘£π‘Ÿπ‘šπ‘  = 3π‘˜π‘‡ π‘š 𝑣 π‘šπ‘ = 2π‘˜π‘‡ π‘š
  • 9. 𝑣 π‘šπ‘ < 𝑣 π‘Žπ‘£ < π‘£π‘Ÿπ‘šπ‘  = 1: 1.128: 1.224 Mean Free Path, πœ† [π‘š] free path ***1 assumption is that the other molecules are static When 2 molecules of 𝑑 diameter collide, we use a cross section of 2𝑑 to calculate as it is more convenient. 𝑑 2𝑑 The collision occurs in βˆ†π‘‘ second(s) Thus, the volume which the collision takes place is βˆ†π‘‰ = (πœ‹π‘‘2 )(π‘£βˆ†π‘‘) The number of the collisions between gas molecules is approximately equal to the number of molecules inside the volume which the collision takes place (βˆ†π‘‰) Suppose in 𝑉 volume, there are 𝑁 numbers of gas molecules Therefore, in βˆ†π‘‰, there will be 𝑁 𝑉 Γ— βˆ†π‘‰ = 𝑁 𝑉 (πœ‹π‘‘2 )(π‘£βˆ†π‘‘) Ξ» = π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ 𝑖𝑛 βˆ†π‘‘ number of the collisions = π‘£βˆ†π‘‘ 𝑁 𝑉 (πœ‹π‘‘2)(π‘£βˆ†π‘‘) = 1 𝑁 𝑉 (πœ‹π‘‘2) However, in reality, every molecule moves randomly all the time. Thus, from the experiments. 2𝑑 βˆ†π‘‰π‘‘ Ξ» = 1 2 πœ‹π‘‘2 𝑁 𝑉