SlideShare una empresa de Scribd logo
1 de 9
RISK IN THE USE OF SILVER NANOPARTICLES
ON HUMAIN: SILVER TOXICITY AND ITS
EFFECTS ON HEALTH
PIERRE BASMAJI

CENTRE FOR RESEARCH AND DEVELOPMENT
BIOTECHNOLOGY - INNOVATECS , 9 ST JULY 1312,
SP 13560-042 SAO CARLOS –BRAZIL
Nanomaterials have many potential benefits to society with their development and
deployment in science, engineering and technology. Its benefits however, need to
be taken into account considering the potential risks to the public health and to the
environment.
Nanotechnology a nanoparticle is defined as a small object or particle that behaves as
a whole unit in terms of transport and properties. Nanotechnology takes advantage of
the fact that when a solid material becomes too small, increasing its specific surface
area, which leads to an increase in surface reactivity and is related quantum effects.
The physical and chemical properties of nanomaterials can be very different from
those of the same material as a larger mass. Nanomaterials (such as nanotubes and
nanorods) and Nanoparticles are particles that have at least one dimension in the
range 1 to 100nm. Nanoparticles are classified only on the basis of its size and may or
may not exhibit size-related properties that differ significantly from those observed in
bulk materials (ASTM 2006; Buzea et al, 2007). Due to the properties of nanoscale
silver, nanosilver is now used in an increasing number of consumer products and
medicaldevices, medicines, etc
Nanomaterials are nanoparticles that have special physicochemical properties as a
result of their small size (Buzea et al, 2007) .
Silver has been known to be an antibacterial, antifungal and a powerful antiviral agent
. But in recent years, the use of silver as a biocide solution, suspension and especially
in the form of nano-particles has experienced a dramatic revival. Due to the properties
of silver in nanolevels , nanosilver is currently used in an increasing number of
consumer products and medicines . The remarkably strong antimicrobial activity is a
major reason for the recent increase in the development of products containing
nanosilver. Examples of consumer products containing nanosilver include food
packaging, food supplements, textiles, electronics, appliances, cosmetics, medical
devices, disinfectants, water sprays , environmental materials , etc . There is a need for
the development of methods for measuring the nanosilver concentration, size, shape,
surface charge, the crystal structure, and surface chemistry transformations. Some
important questions to answer :
Nanosilver is toxic?
What are the mechanisms of toxicity?
Which conditions those occur in the mechanisms?
There is evidence that silver and nanosilver in particular, is toxic to aquatic and
terrestrial organisms, a variety of mammalian cells in vitro and can be harmful to
human health.
While undoubtedly nanosilver and silver have useful applications in the medical field
(for example, as coatings for medical devices such as wound healing or for the Victims
of severe burns), their use may need to be strictly controlled. Bacterial resistance to
antibiotics is a growing problem in the world and indiscriminate use of biocidal silver in
countless consumer products is not only unnecessary but may further increase
bacterial resistance to a dangerous level (Mühling et al . , 2009). There are preliminary
indications that in the form of nanoparticles, the toxicity of ionic silver increases or
that the nanoparticles can exert their own toxicity.
Nano silver can dissociate to form silver ions in the presence of moisture.
It is Also possible that nanoparticles of silver ions from shielding such interactions by
delivering silver ions to the membranes which are free of organisms or cells. In this
case, anaccentuation of the health risks would be expected apart from being
associated with a similar mass of silver itself.
The most common health effects associated with chronic exposure to silver are
apermanent gray or blue-gray discoloration of the skin (argyria; .1 and Figure 2) and
other organs (ATSDR, 1990; Drake & Hazelwood 2005;. White et al, 2003 . Lower level
of exposure also results in the silver to be deposited on the skin and other parts of
body such as liver, brain, muscle and kidneys and may cause changes in blood
cells (Fung and Bowen, 1996; Venugopal & Luckey, 1978). Exposure to high levels of
silver in the air can result in breathing problems, lung and throat irritation and
stomach pain. Skin contact with silver can cause mild allergic reactions including rash,
swelling and inflammation in some people.
Figure 1 : Systemic argyria of the skin by drinking colloidal silver (underside) when
compared with normal pigmentation (upper side) (Wadhera & Fung , 2010) .
Figure 2 Paul Karason Blue Men
Even though silver is generally not available in high enough concentrations to pose a
risk to human health and the environment ; nanosilver in contrast has physical and
surface properties that could pose a threat to human and environmental health (Lee
et al, 2007). Due to the different physico-chemical properties and biological activities
of nanosilver when compared with normal metal , it cannot be excluded that the
increase in reactivity of nanosilver (due to the large surface area) leads to increased
toxicity due to the activity of the silver ions released very easily by the nanoparticles.
Some nanoparticles can penetrate the lungs or skin and enter the circulatory and
lymphatic systems of humans and animals, reaching the tissues and organs of the body
and potentially disrupting cellular processes , cause diseased cells and cause disease.
Silver nanoparticles were found in blood of patients suffering from the diseases of
the blood and in the colon of patients with colon cancer (Gatti, 2004; Gatti et al,
2004). Silver is known to have a lethal effect on bacteria but the same property that
makes it an antibacterial makes it toxic to human cells as well . The silver
concentration that is lethal to the bacterium is also lethal to both keratinocytes and
fibroblasts (Poon & Burd, 2004). In vitro studies have shown that nanosilver effects
reproduction & development and has an effect on DNA, among others. A recent
survey of 12nm silver nanoparticles in highly purified zebra - fish showed that the early
development of fish embryos was affected (Lee et al, 2007). Silver nanoparticles have
the potential to cause chromosomal aberrations and DNA damage and are capable of
inducing proliferation arrest in cell lines of zebra -fish (Asharani et al . 2007).
In addition, toxicity studies were performed in mammalian species have shown that
silver nanoparticles are able to enter cells and cause cellular damage (Hussain et al,
2005; Ji et al, 2007). The toxicity of nanosilver causes oxidative stress induction or cell
dysfunction) or a mixture of both (El- Ansary & Al - Daihan, 2009; Oberdörster et al,
2005b). The nanoparticles were found to be distributed to the colon, lung, bone
marrow, liver, spleen and lymph after intravenous injection (Hagens et al. , 2007).
Distribution in the human body is usually followed by a fast clearance from the
systemic circulation predominantly by the action of the liver and spleen macrophages
(Moghimi et al, 2005) to causegastrointestinal problems. Some systems of
nanoparticles may accumulate in the liver during first-pass metabolism (El- Ansary
Daihan & al, 2009; Oberdörster et al, 2005a).
A case study was published regarding liver enzymes after topical use of nanosilver
preparation for a young burn victim (Trop et al, 2006). Six days after treatment, the
patient developed blue-gray discoloration on lips (argyia).
Respiratory Tract Toxicity:
Human exposure to inhalation of environmental particle including nanosilver, may
have adverse effects on health (Buzea et al, 2007 effects; Dockery, 2005; Donaldson
et al, 2004; Lippmann et al, 2003; Shah, 2007; Vermylen et al 2005).Cardiovascular and
pulmonary diseases can result when inhaled particles interfere with the normal
function of bodily systems (Peters et al, 1997, 2001 and 2005).
Dermal Toxicity: Although based on nanosilver , dressings and surgical sutures have
received approval for clinical application ; it is important to make a good control of
infection of the wound, it's skin toxicity . And that is still a topic of concern. Despite
clinical and laboratory studies confirm the biocompatibility of dermal dressings based
nanosilver, several other researchers demonstrated cytotoxicity of these materials
(Chen et al , 2006 & El- El- Ansary Daihan 2009; Limbach et al, 2007; Muangman et al,
2006. Oberdörster et al, 2005b. Supp et al, 2005; Wright et al, 2002). Shovel-Ledinek et
al. (2006). Acticoat ® is a dressing consists of a polyethylene mesh coated with nanosilver (average size 15 nm). There is one case of silver poisoning after the use of
Acticoat ® for the treatment of severe burns to the legs (Trop et al, 2006. Wijnhoven et
al, 2009). On day 6 of post-injury, the patient developed a grayish color in the treated
area, complained of being tired and had no appetite. On the day 7, silver levels in
urine and blood were found to be elevated (28 and 107 mg/kg, respectively).
Kidney toxicity :
Kim et al. (2008 ) reported gender differences in the accumulation of silver
nanoparticles in rat kidneys. In a study by Kim et al. ( 2009), the tissue distribution of
silver nanoparticles showed a dose-dependent accumulation of silver in all tissues
examined, including the testis, kidney, liver, brain, lungs and blood. The gender
difference in the accumulation of silver was observed in the kidneys, with
a largest concentration in female and male kidneys compared after subacute exposure
of silver nanoparticles through inhalation or oral ingestion. Silver nanoparticles were
detected in the cytoplasm and nucleus of interstitial cells in the inner medulla of
kidney.
Conclusions on nanosilver toxicity:
Silver nanoparticles are used because of the antibacterial activity of silver. It has been
suggested that the main mechanism of action is the death of cells due to uncoupling of
oxidative phosphorylation (Holt & Bard, 2005) or inducing the formation of free
radicals (Kim et al, 2007). Interference with the respiratory chain, cytochrome c levels,
and/or components of microbial electrons transport system has also been reported
(Muangman et al, 2006). Interactions with membrane bound enzymes and thiol groups
of proteins that may result in compromised integrity of the cell wall have been
postulated (Bragg & Rainnie, 1974, Lok et al, 2006. Silver, 2003; Wijnhoven et al,
2007;et Zeiri. al, 2004). It has also been suggested that the silver ions bind to DNA and
can cause DNA strand breaks in DNA replication and (ATSDR, 1990. Russell & Hugo
1994 toxicity of silver nanoparticles is mainly determined in vitro with particles ranging
in size from 1-100nm. potential target organs for nanosilver toxicity may involve the
liver, kidneys and the immune system. Accumulation and histopathological effects
were observed in the liver of mice systemically exposed to silver nanoparticles 10-15
nm (Ji et al, 2007), whereas an effect on the liver enzymes was observed in a study of
the case of human dermal exposure to an average particle size of the same (Trop et al,
2006). More studies are needed to better characterize the risk of the use of silver
nanoparticles on humans
.
References
1. ASTM E2456 - Standard . 2006. Standard terminology Relating to Nnaotechnology .
ASTM International, West Conshohocken , PA , 2006 DOI : 10.1520/E2456-06 .
2. ATSDR . Agency for Toxic Substances and Disease Registry . 1990. Toxicological profile
for silver . Atlanta , GA : U.S. Department of Health and Human Services , Public Health
Service , Agency for Toxic Substances and Disease Registry ( TP - 9024 ) .
3. Buzea , C. , Pacheco , Î.I. , Robbie , K. Nanomaterials and nanoparticles : Sources and
toxicity , Biointerphases , 2 ( 4) : MR17 , MR71 , 2007.
4. Mühling , M. , Bradford , A. , Readman , JW , Somerfield , PJ , Handy , RD An
investigation into the effects of silver nanoparticles on antibiotic resistance of naturally
occurring bacteria in an estuarine sediment , Marine Environ . Res 2009 , 68 (5) :278283 .
5. P. L. Drake , Hazelwood K. J. 2005. Exposure - related health effects of silver and silver
compounds : A review. Ann . Occup . Hyg . , 49:575-585 .
6. White , JML , Powell AM , Brady , K. , Russell - Jones , R. 2003. Severe generalized
argryia secondary ingestion of colloidal silver protein . Clin. Experim . Dermatol. ,
28:354-256 .
7. Fung , M. C. , Bowen , D. L. 1996. Silver products for medical indication : Risk benefit
assessment . Clin. Toxicol . 34:119-126 .
8. Venugopal , B. , Luckey , T.D.1978 . Metal toxicity in mammals . In: Chemical toxicology
of metals and metalloids , Venugopal , B. , Luckey , TD (Eds.), New York: Academic
Press. pp. 32-36.
9. Wadhera
,
A.
,
Fung
,
M.http://dermatology.cdlib.org/111/case_reports/argyria/c11.jpg
10. Lee HJ , Yeo , S.Y. , Jeong , S. H. 2003. Antibacterial effect of nanosized silver colloidal
solution on textile fabrics , J. Mater . Sci , 38:2199-2204 .
11. Lee , K. J. , Lee , Y. , Shim , I. , Joung , J. , Oh , Y.S. Direct synthesis and bonding origins
of monolayer - protected silver nanocrystals from silver nitrate through in situ ligand
exchange. J. Colloid Inter . Sci 2006 , 304, 92-97 .
12. Lee , KJ , Lee , Y. , Shim , I. , Jun , BH , Cho , HJ , Joung , J. Large- scale synthesis of
polymer -stabilized silver nanoparticles . Sol St. Phen . 2007 , 124-126 , 1189-1192 .
13. Lee , KJ , Nallathamby , PD , Browning , LM , Osgood , CJ , Xu , XN 2007. In vivo imaging
of transport and biocompatibility of single silver nanoparticles in early development of
zebrafish embryos , Am Chem . Soc 1 (2) :133 -143 .
14. Lee , KJ , Park , JT , Goh , JH , Kim , JH Synthesis of amphiphilic graft copolymer and its
brush use the template film for the preparation of silver nanoparticles . J. Polym . Sci A.
2008, 46 , 3911-3918 .
15. Gatti , AM Biocompatibility of micro -and nano - particles in the colon . Part II ,
Biomaterials 25 , 385-392 , 2004.
16. Gatti AM , Montanari , S. , Monari , E. , Gambarelli , A. , Capitani , F. , Parisini , B.
Detection of micro -and nano - sized biocompatible particles in the blood . J. Mater .
Sci : Mater . Med 15 (4) , 469-472 , 2004.
17. Poon , V.K. , Burd , A. 2004. In vitro cytotoxity of silver : Implication for clinical wound
care . Burns 30:140-147 .
18. Asharani , P.V. , Nair , G. , Zhiyuan , H. , Manoor . P., Valiyaveettil , S. 2007. Potential
health impacts of silver nanoparticles . Abstracts of Papers , 234th ACS National
Meeting , Boston , MA , USA , August 19-23, 2007. pp : TOXI - 099 .
19. Braydich - Stolle , L. , Hussain , S. , Schlager , J. J. , Hofmann , M. C. In vitro cytotoxicity
of nanoparticles in mammalian germline stem cells . Toxicol . Sci , 2005, 88, 412-419 .
20. Ji , JH , Jung , JH , Kim , SS , Yoon , JU , Park , JD , Choi , BS , Chung , YH , Kwon , IH ,
Jeong , J. , Han , BS , Shin , JH , Sung , JH , Song , KS , Yu , IJ 2007.
21. El - Ansary , A. , Al - Daihan , S. On the toxicity of therapeutically used nanoparticles :
An overview , J. Toxicol . , Volume 2009 , 9 pages . doi : 10.1155/2009/754810
22. Oberdörster , G. , Oberdörster , E. Oberdörster , J. , 2005a . Nanotoxicology : an
emerging discipline evolving from studies of ultrafine particles . Environ. Health
Perspect . 113 (7) , 823-839 .
23. Oberdörster , G. , Maynard , A. , Donaldson , K. , Castranova , V. , Fitzpatrick , J. ,
Ausman , K. , Carter , J. , Karn , B. , Kreyling , W. , Lai , D. , Olin , S. , Monteiro - Riviere ,
N. , Warheit , D. , Yang , H. 2005b . Principles for Characterizing the potential human
health effects from exposure to nanomaterials : elements of a screening strategy .
Particle Fibre Toxicol . , 2:8-43 .
24. Oberdörster , G. , Sharp , Z. , Atudorei , V. , Elder , A. , Gelein , R. , Kreyling , W. , Cox ,
25. C. Translocation of inhaled ultrafine particles to the brain , Inhalation Toxicol . 16 (67) ,
437-445 , 2004.
26. Oberdörster , G. , Stone , V. , Donaldson , K. Toxicology of nanoparticles : a historical
perspective . Nanotoxicology 1 : 2-25 , 2007.
27. Hagens , WI , Oomen , AG , de Jong , WH , Cassee , FR , Sips , AJAM What do we (need
to) know about the kinetic properties of nanoparticles in the body ? , Regulatory
Toxicology and Pharmacology , vol . 49 , no. 3 , p. 217-229 , 2007.
28. Moghimi , SM , Hunter , AC , Murray , JC Nanomedicine : current status and future
prospects, FASEB Journal, vol . 19 , no. 3 , p. 311-330 , 2005.
29. Trop , M. , Novak , M. , Rodl , S. , Hellbom , B. , Kroell , W. Goessler , W. 2006. Silver coated dressing Acticoat casued raised liver enzymes and argyria -like symptoms in
burn patient . J. Trauma 60 , 648-652 .
30. Dockery , DW , Luttmann - Gibson , H. , Rich , DQ , Link , MS , Mittleman , MA , Gold ,
DR , Koutrakis , P., Schwartz , JD , Verrier , RL Association of air pollution with Increased
incidence of ventricular tachyarrhythmias recorded by implanted cardioverter
defillibrators , Environ . Health Perspect . , 113 ( 6) , 670 to 674.2005 .
31. Donaldson , K. , Stone , V. , Tran , C. , Kreyling , W. , Borm , PJA Nanotoxicology , Occup
. Environ. Med 61 (9) :727-728 , 2004.
32. Lippmann , M. Effects of fiber characteristics on lung deposition , retention , and
disease , Environ . Health Perspect . 88, 311-317 , 1990.
33. Shah CP Public Health and preventive medicine in Canada , University of Toronto Press
, Toronto , Canada . 2007.
34. Vermylen , J. Nemmar , A. Nemery , B., Hoylaerts , F. Ambient air pollution and acute
myocardial infarction , J. Thromb . Haemost . 3 , 1955-1961 , 2005.
35. Peters , A. Particulate matter and heart disease : evidence from epidemiological
studies , Toxicol . Appl. Pharmacol . , 207 ( Suppl 2 ) , S477 - S482 , 2005.
36. Chen , HW , Su , SF , Chien , CT , Lin , WH , Yu , SL , Chou , CC , Chen , JJ , Yang , PC
Titanium dioxide nanoparticles induce emphysema -like lung injury in mice , The FASEB
Journal, vol . 20 , no. 13 , p. 2393-2395 , 2006.
37. Chen , J. , Tan , M. , Nemmar , A. , Song , W. , Dong , M. , Zhang , G. , Li , Y.
Quantification of extrapulmonary translocation of intratracheal - instilled particles in
vivo in rats : effect of lipopolysaccharide , Toxicol 2006 , 222 (3) :195-201 . .
38. Supp , AP , Neely , AN, Supp , DM , Warden , GD , Boyce , ST Evaluation of cytotoxicity
and antimicrobial activity of Acticoat ® burn dressing for management of microbial
contamination in cultured skin substitutes grafted to athymic mice , Journal of Burn
Care & Rehabilitation , vol . 26 , no. 3 , p. 238-246 , 2005.
39. Wright , JB , Lam , K. , Buret AG , Olson , ME , Burrell , RE 2002. Early healing events in a
porcine model contaminated wounds : effects of nanocrystalline silver on matrix
metalloproteinases , cell apoptosis , and healing . Wound Repair Regen . 10 , 141-151 .
40. Paddle - Ledinek , JE , Nasa , Z. , Cleland , HJ Effect of different wound dressings on cell
viability and proliferation , Plastic and Reconstructive Surgery , vol . 117, supplement 7
, p. 110S - 118S , 2006.
41. Final Report dated 07/15/2010178
42. Wijnhoven , SWP , Peijnenburg , WJGM , Herberts , CA , Hagens , WI , Oomen , AG ,
Heugens , EHW , Roszek , B. , Bisschops , J. , Gosens , I. , van Meent , D. , Dekkers , S. ,
de Jong , WH , van Zijverden , M. , Sips , AJAM , Geertsma , RE Nanosilver - a review of
available data and knowledge gaps in human and environmental risk assessment ,
Nanotoxicology 2009 , 3 ( 2 ) : 109-138 .
43. Kim , W.-Y. , K., Kim , J., Park JD, Ryu, HY, Yu, IJ Histological Study of Gender Differences
in Accumulation of Silver Nanoparticles in Kidneys of Fischer 344 Rats . J. Toxicol .
Environ. Health, Part A. 72 : 21-22 , 2009 , 1279-1284 .
44. Kim , Y. S. , Kim , J. S. , Cho , H. S. , Rha , D. S. , Kim , J. M., Park, J. D., Choi , B. S. , Lim ,
R. , Chang , H. K. , Chung , Y. H. , Kwon , I. H. , Jeong , J. , Han , B. S. , Yu, I. J. Oral
Twenty - eight-day toxicity , genotoxicity , and gender - related tissue distribution of
silver nanoparticles in Sprague - Dawley rats . Inhalation Toxicol . 2008 , 20 , 575-583 .
45. Holt, K. B. , Bard , A. J. 2005. Interaction of silver ( I) ions with the respiratory chain of
Escherichia coli : An electrochemical and scanning electrochemical microscopy study of
the antimicrobial mechanism of micromolar Ag + . Biochemistry 44, 1321413223 .
46. Muangman , P., Chuntrasakul , C. , Silthram , S. , Suvanchote , S. , Benjathanung , R. ,
Kittidacha , S. , Rueksomtawin , S. Comparison of efficacy of 1 % silver sulfadiazine and
Acticoat ™ for treatment of partial- thickness burn wounds , Journal of the Medical
Association of Thailand , vol . 89 , no. 7 , p. 953-958 , 2006.
47. Bragg, P. D. , Rainnie , D.J. 1974. The effect of silver ions on the respiratory chain of
Escherichia coli . Can. J. Microbiol. 20 , 883-889 .
48. Lok , C.-N. Ho , C.-M. , Chen , R. , He, Q.-Y. , Yu , W.-Y. , Sun , H. , Tam , PK - H . , Chiu ,
J.-F. , Che , C.-M. 2006. Proteomic analysis of the mode of antibacterial action of silver
nanoparticles . J. Proteome Res 5, 916-924 .
49. Zeiri , I. , Bronk , BV , Shabtai , Y. , Eichler , J. , Efrima , S. 2004. Surface enhanced
Raman spectroscopy as a tool for probing specific biochemical components in bacteria
. Appl. Spectroscopy 58, 33-40 .

Más contenido relacionado

La actualidad más candente

A Toxicologic Review Of Quantum Dots
A Toxicologic Review Of Quantum DotsA Toxicologic Review Of Quantum Dots
A Toxicologic Review Of Quantum Dotsronchardman
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Scienceresearchinventy
 
Ironing Out Life's First Breaths
Ironing Out Life's First BreathsIroning Out Life's First Breaths
Ironing Out Life's First BreathsJennifer Glass
 
Ceramic International 2016
Ceramic International 2016Ceramic International 2016
Ceramic International 2016Kulwinder Kaur
 
Edri And Regev 2009 “Shaken, Not Stable”: Dispersion Mechanism and Dynami...
Edri And Regev   2009   “Shaken, Not Stable”: Dispersion Mechanism and Dynami...Edri And Regev   2009   “Shaken, Not Stable”: Dispersion Mechanism and Dynami...
Edri And Regev 2009 “Shaken, Not Stable”: Dispersion Mechanism and Dynami...edrier
 
Biominerals and waxes of Calamagrostis epigejos and Phragmites australis leav...
Biominerals and waxes of Calamagrostis epigejos and Phragmites australis leav...Biominerals and waxes of Calamagrostis epigejos and Phragmites australis leav...
Biominerals and waxes of Calamagrostis epigejos and Phragmites australis leav...EdytaSierka
 
Tissue reactions to spinal implants
Tissue reactions to spinal implantsTissue reactions to spinal implants
Tissue reactions to spinal implantsAlexander Bardis
 
pH effects on the adsorption of saxitoxin by powdered activated carbon
pH effects on the adsorption of saxitoxin by powdered activated carbonpH effects on the adsorption of saxitoxin by powdered activated carbon
pH effects on the adsorption of saxitoxin by powdered activated carbonhbuarque
 
Complete List of Publications
Complete List of PublicationsComplete List of Publications
Complete List of Publicationszhangyx99
 
Shilling_NanoparticleReactivity_2015_Final
Shilling_NanoparticleReactivity_2015_FinalShilling_NanoparticleReactivity_2015_Final
Shilling_NanoparticleReactivity_2015_FinalBrock Shilling
 
Lead Acetate Induced histopathological Changes in Kidney Tissue of Rat
Lead Acetate Induced histopathological Changes in Kidney Tissue of RatLead Acetate Induced histopathological Changes in Kidney Tissue of Rat
Lead Acetate Induced histopathological Changes in Kidney Tissue of RatIOSRJAVS
 
Trace metals concentration determination in domestic water
Trace metals concentration determination in domestic waterTrace metals concentration determination in domestic water
Trace metals concentration determination in domestic waterAlexander Decker
 
Distribution of polychlorinated biphenyls in surface waters of various source...
Distribution of polychlorinated biphenyls in surface waters of various source...Distribution of polychlorinated biphenyls in surface waters of various source...
Distribution of polychlorinated biphenyls in surface waters of various source...Alexander Decker
 
11.distribution of polychlorinated biphenyls in surface waters of various sou...
11.distribution of polychlorinated biphenyls in surface waters of various sou...11.distribution of polychlorinated biphenyls in surface waters of various sou...
11.distribution of polychlorinated biphenyls in surface waters of various sou...Alexander Decker
 
Selected Publications & Presentations
Selected Publications & PresentationsSelected Publications & Presentations
Selected Publications & PresentationsDilushan Jayasundara
 

La actualidad más candente (20)

Biofilm Formation asignment
Biofilm Formation asignmentBiofilm Formation asignment
Biofilm Formation asignment
 
A Toxicologic Review Of Quantum Dots
A Toxicologic Review Of Quantum DotsA Toxicologic Review Of Quantum Dots
A Toxicologic Review Of Quantum Dots
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
 
3
33
3
 
Ironing Out Life's First Breaths
Ironing Out Life's First BreathsIroning Out Life's First Breaths
Ironing Out Life's First Breaths
 
Ceramic International 2016
Ceramic International 2016Ceramic International 2016
Ceramic International 2016
 
Edri And Regev 2009 “Shaken, Not Stable”: Dispersion Mechanism and Dynami...
Edri And Regev   2009   “Shaken, Not Stable”: Dispersion Mechanism and Dynami...Edri And Regev   2009   “Shaken, Not Stable”: Dispersion Mechanism and Dynami...
Edri And Regev 2009 “Shaken, Not Stable”: Dispersion Mechanism and Dynami...
 
Biominerals and waxes of Calamagrostis epigejos and Phragmites australis leav...
Biominerals and waxes of Calamagrostis epigejos and Phragmites australis leav...Biominerals and waxes of Calamagrostis epigejos and Phragmites australis leav...
Biominerals and waxes of Calamagrostis epigejos and Phragmites australis leav...
 
Tissue reactions to spinal implants
Tissue reactions to spinal implantsTissue reactions to spinal implants
Tissue reactions to spinal implants
 
pH effects on the adsorption of saxitoxin by powdered activated carbon
pH effects on the adsorption of saxitoxin by powdered activated carbonpH effects on the adsorption of saxitoxin by powdered activated carbon
pH effects on the adsorption of saxitoxin by powdered activated carbon
 
[IJET-V1I4P16] Authors : Mr. Pankaj Shende , Syed Tanveer , A. Nagesh
[IJET-V1I4P16] Authors : Mr. Pankaj Shende , Syed Tanveer , A. Nagesh [IJET-V1I4P16] Authors : Mr. Pankaj Shende , Syed Tanveer , A. Nagesh
[IJET-V1I4P16] Authors : Mr. Pankaj Shende , Syed Tanveer , A. Nagesh
 
Complete List of Publications
Complete List of PublicationsComplete List of Publications
Complete List of Publications
 
Shilling_NanoparticleReactivity_2015_Final
Shilling_NanoparticleReactivity_2015_FinalShilling_NanoparticleReactivity_2015_Final
Shilling_NanoparticleReactivity_2015_Final
 
Lead Acetate Induced histopathological Changes in Kidney Tissue of Rat
Lead Acetate Induced histopathological Changes in Kidney Tissue of RatLead Acetate Induced histopathological Changes in Kidney Tissue of Rat
Lead Acetate Induced histopathological Changes in Kidney Tissue of Rat
 
Trace metals concentration determination in domestic water
Trace metals concentration determination in domestic waterTrace metals concentration determination in domestic water
Trace metals concentration determination in domestic water
 
Distribution of polychlorinated biphenyls in surface waters of various source...
Distribution of polychlorinated biphenyls in surface waters of various source...Distribution of polychlorinated biphenyls in surface waters of various source...
Distribution of polychlorinated biphenyls in surface waters of various source...
 
11.distribution of polychlorinated biphenyls in surface waters of various sou...
11.distribution of polychlorinated biphenyls in surface waters of various sou...11.distribution of polychlorinated biphenyls in surface waters of various sou...
11.distribution of polychlorinated biphenyls in surface waters of various sou...
 
Heavy Metal Concentrations in Feathers of Critically Endangered Long-Billed V...
Heavy Metal Concentrations in Feathers of Critically Endangered Long-Billed V...Heavy Metal Concentrations in Feathers of Critically Endangered Long-Billed V...
Heavy Metal Concentrations in Feathers of Critically Endangered Long-Billed V...
 
Rabbit paper
Rabbit paperRabbit paper
Rabbit paper
 
Selected Publications & Presentations
Selected Publications & PresentationsSelected Publications & Presentations
Selected Publications & Presentations
 

Destacado

Nanotoxicology and Nanosafety
Nanotoxicology and NanosafetyNanotoxicology and Nanosafety
Nanotoxicology and NanosafetyMobiliuz
 
Amnion & Umbilical Cord (General Embryology)
Amnion & Umbilical Cord (General Embryology)Amnion & Umbilical Cord (General Embryology)
Amnion & Umbilical Cord (General Embryology)Dr. Sherif Fahmy
 
Nanotechnology for the Environment
Nanotechnology for the EnvironmentNanotechnology for the Environment
Nanotechnology for the EnvironmentAJAL A J
 
Nanotechnology Tools for Life Sciences
Nanotechnology Tools for Life SciencesNanotechnology Tools for Life Sciences
Nanotechnology Tools for Life SciencesInLiveTox
 
Human Exposure to Nanosized Materials
Human Exposure to Nanosized MaterialsHuman Exposure to Nanosized Materials
Human Exposure to Nanosized MaterialsRIJU CHANDRAN.R
 
Relative Morphology of Extraembryonic Membranes in Mammals: Their Roles in Hi...
Relative Morphology of Extraembryonic Membranes in Mammals: Their Roles in Hi...Relative Morphology of Extraembryonic Membranes in Mammals: Their Roles in Hi...
Relative Morphology of Extraembryonic Membranes in Mammals: Their Roles in Hi...Joseph Holson
 
TOXICITY AND ECOTOXICITY OF NANOMATERIALS
TOXICITY AND ECOTOXICITY OF NANOMATERIALSTOXICITY AND ECOTOXICITY OF NANOMATERIALS
TOXICITY AND ECOTOXICITY OF NANOMATERIALSOeko-Institut
 
3 plasentasi, amnion, embrio dan uk
3 plasentasi, amnion, embrio dan uk3 plasentasi, amnion, embrio dan uk
3 plasentasi, amnion, embrio dan ukharry christama
 
Placenta & Amnion (General Embryology)
Placenta & Amnion (General Embryology)Placenta & Amnion (General Embryology)
Placenta & Amnion (General Embryology)Dr. Sherif Fahmy
 
Spions in cancer treatment riyas bc new
Spions in cancer treatment   riyas bc  newSpions in cancer treatment   riyas bc  new
Spions in cancer treatment riyas bc newRiyas BC
 
Nanoparticle drug-delivery-systems-for-cancer-treatment
Nanoparticle drug-delivery-systems-for-cancer-treatmentNanoparticle drug-delivery-systems-for-cancer-treatment
Nanoparticle drug-delivery-systems-for-cancer-treatmentAranca
 
Physiology Selection book helps a student make his study exam oriented
 Physiology Selection book helps a student make his study exam oriented Physiology Selection book helps a student make his study exam oriented
Physiology Selection book helps a student make his study exam orientedRaghu Veer
 

Destacado (20)

Nanotoxicology
NanotoxicologyNanotoxicology
Nanotoxicology
 
Fetal membranes
Fetal membranesFetal membranes
Fetal membranes
 
Nanotoxicology and Nanosafety
Nanotoxicology and NanosafetyNanotoxicology and Nanosafety
Nanotoxicology and Nanosafety
 
Amnion & Umbilical Cord (General Embryology)
Amnion & Umbilical Cord (General Embryology)Amnion & Umbilical Cord (General Embryology)
Amnion & Umbilical Cord (General Embryology)
 
Nanotechnology for the Environment
Nanotechnology for the EnvironmentNanotechnology for the Environment
Nanotechnology for the Environment
 
Nanoskin®plus
Nanoskin®plusNanoskin®plus
Nanoskin®plus
 
Cases Nanoskin
Cases  NanoskinCases  Nanoskin
Cases Nanoskin
 
Nanoskin Brochure
Nanoskin BrochureNanoskin Brochure
Nanoskin Brochure
 
Nanotechnology Tools for Life Sciences
Nanotechnology Tools for Life SciencesNanotechnology Tools for Life Sciences
Nanotechnology Tools for Life Sciences
 
Human Exposure to Nanosized Materials
Human Exposure to Nanosized MaterialsHuman Exposure to Nanosized Materials
Human Exposure to Nanosized Materials
 
7 imaging
7 imaging7 imaging
7 imaging
 
Relative Morphology of Extraembryonic Membranes in Mammals: Their Roles in Hi...
Relative Morphology of Extraembryonic Membranes in Mammals: Their Roles in Hi...Relative Morphology of Extraembryonic Membranes in Mammals: Their Roles in Hi...
Relative Morphology of Extraembryonic Membranes in Mammals: Their Roles in Hi...
 
TOXICITY AND ECOTOXICITY OF NANOMATERIALS
TOXICITY AND ECOTOXICITY OF NANOMATERIALSTOXICITY AND ECOTOXICITY OF NANOMATERIALS
TOXICITY AND ECOTOXICITY OF NANOMATERIALS
 
3 plasentasi, amnion, embrio dan uk
3 plasentasi, amnion, embrio dan uk3 plasentasi, amnion, embrio dan uk
3 plasentasi, amnion, embrio dan uk
 
10. Ethical issues
10. Ethical issues10. Ethical issues
10. Ethical issues
 
Placenta & Amnion (General Embryology)
Placenta & Amnion (General Embryology)Placenta & Amnion (General Embryology)
Placenta & Amnion (General Embryology)
 
Spions in cancer treatment riyas bc new
Spions in cancer treatment   riyas bc  newSpions in cancer treatment   riyas bc  new
Spions in cancer treatment riyas bc new
 
Nanoparticle drug-delivery-systems-for-cancer-treatment
Nanoparticle drug-delivery-systems-for-cancer-treatmentNanoparticle drug-delivery-systems-for-cancer-treatment
Nanoparticle drug-delivery-systems-for-cancer-treatment
 
Physiology Selection book helps a student make his study exam oriented
 Physiology Selection book helps a student make his study exam oriented Physiology Selection book helps a student make his study exam oriented
Physiology Selection book helps a student make his study exam oriented
 
amniotic fluid analysis
amniotic fluid analysisamniotic fluid analysis
amniotic fluid analysis
 

Similar a Risk in the use of silver nanoparticles on humain

Effects of Nano-Technology on Human Health in Textile Industry
Effects of Nano-Technology on Human Health in Textile IndustryEffects of Nano-Technology on Human Health in Textile Industry
Effects of Nano-Technology on Human Health in Textile IndustryOrhan Oğuz Durgun
 
Nanoparticles, pharmaceutical and personal care products in sewage sludge
Nanoparticles, pharmaceutical and personal care products in sewage sludgeNanoparticles, pharmaceutical and personal care products in sewage sludge
Nanoparticles, pharmaceutical and personal care products in sewage sludgePravash Chandra Moharana
 
Nanotechnology – safety concerns
Nanotechnology – safety concernsNanotechnology – safety concerns
Nanotechnology – safety concernsassadkn
 
Biodegradable Nanoparticles For Drug Delivery
Biodegradable Nanoparticles For Drug DeliveryBiodegradable Nanoparticles For Drug Delivery
Biodegradable Nanoparticles For Drug DeliveryAmber Wheeler
 
Application of Nanomaterials in Medicine: Drug delivery, Diagnostics and Ther...
Application of Nanomaterials in Medicine: Drug delivery, Diagnostics and Ther...Application of Nanomaterials in Medicine: Drug delivery, Diagnostics and Ther...
Application of Nanomaterials in Medicine: Drug delivery, Diagnostics and Ther...Premier Publishers
 
Nanomaterials & Nanoparticles - Sources & Toxicity
Nanomaterials & Nanoparticles - Sources & Toxicity Nanomaterials & Nanoparticles - Sources & Toxicity
Nanomaterials & Nanoparticles - Sources & Toxicity v2zq
 
Christian Mueller ABIO 399 paper 12 16 15
Christian Mueller ABIO 399 paper 12 16 15Christian Mueller ABIO 399 paper 12 16 15
Christian Mueller ABIO 399 paper 12 16 15Christian Mueller
 
Interaction of nanomaterials with tissues [Autosaved].pptx
Interaction of nanomaterials with tissues [Autosaved].pptxInteraction of nanomaterials with tissues [Autosaved].pptx
Interaction of nanomaterials with tissues [Autosaved].pptxnehalabosamra91
 
Nanotechnology scope and application in plant pathology
Nanotechnology scope and application in plant pathologyNanotechnology scope and application in plant pathology
Nanotechnology scope and application in plant pathologyEr. Ahmad Ali
 
2006 asse teleweb presentation
2006 asse teleweb presentation2006 asse teleweb presentation
2006 asse teleweb presentationAhmad Rashwan
 
Application of nanotechnology in agriculture
Application of nanotechnology in agricultureApplication of nanotechnology in agriculture
Application of nanotechnology in agricultureAmit Bishnoi
 
3_2022_05_23!07_21_12_PM.ppt
3_2022_05_23!07_21_12_PM.ppt3_2022_05_23!07_21_12_PM.ppt
3_2022_05_23!07_21_12_PM.pptamrawaad2
 

Similar a Risk in the use of silver nanoparticles on humain (20)

M.Sc Thesis
M.Sc ThesisM.Sc Thesis
M.Sc Thesis
 
9 safety
9 safety9 safety
9 safety
 
Effects of Nano-Technology on Human Health in Textile Industry
Effects of Nano-Technology on Human Health in Textile IndustryEffects of Nano-Technology on Human Health in Textile Industry
Effects of Nano-Technology on Human Health in Textile Industry
 
Environmental Toxicity of Nanoparticles Environmental Toxicity of Nanoparticles
Environmental Toxicity of Nanoparticles Environmental Toxicity of NanoparticlesEnvironmental Toxicity of Nanoparticles Environmental Toxicity of Nanoparticles
Environmental Toxicity of Nanoparticles Environmental Toxicity of Nanoparticles
 
9 safety
9 safety9 safety
9 safety
 
Nanotechnology in aquaculture
Nanotechnology in aquacultureNanotechnology in aquaculture
Nanotechnology in aquaculture
 
Nanoparticles, pharmaceutical and personal care products in sewage sludge
Nanoparticles, pharmaceutical and personal care products in sewage sludgeNanoparticles, pharmaceutical and personal care products in sewage sludge
Nanoparticles, pharmaceutical and personal care products in sewage sludge
 
Nanotechnology – safety concerns
Nanotechnology – safety concernsNanotechnology – safety concerns
Nanotechnology – safety concerns
 
Biodegradable Nanoparticles For Drug Delivery
Biodegradable Nanoparticles For Drug DeliveryBiodegradable Nanoparticles For Drug Delivery
Biodegradable Nanoparticles For Drug Delivery
 
Application of Nanomaterials in Medicine: Drug delivery, Diagnostics and Ther...
Application of Nanomaterials in Medicine: Drug delivery, Diagnostics and Ther...Application of Nanomaterials in Medicine: Drug delivery, Diagnostics and Ther...
Application of Nanomaterials in Medicine: Drug delivery, Diagnostics and Ther...
 
9 safety
9 safety9 safety
9 safety
 
Nanomaterials & Nanoparticles - Sources & Toxicity
Nanomaterials & Nanoparticles - Sources & Toxicity Nanomaterials & Nanoparticles - Sources & Toxicity
Nanomaterials & Nanoparticles - Sources & Toxicity
 
Nanotech.pdf
Nanotech.pdfNanotech.pdf
Nanotech.pdf
 
Christian Mueller ABIO 399 paper 12 16 15
Christian Mueller ABIO 399 paper 12 16 15Christian Mueller ABIO 399 paper 12 16 15
Christian Mueller ABIO 399 paper 12 16 15
 
Interaction of nanomaterials with tissues [Autosaved].pptx
Interaction of nanomaterials with tissues [Autosaved].pptxInteraction of nanomaterials with tissues [Autosaved].pptx
Interaction of nanomaterials with tissues [Autosaved].pptx
 
9 safety
9 safety9 safety
9 safety
 
Nanotechnology scope and application in plant pathology
Nanotechnology scope and application in plant pathologyNanotechnology scope and application in plant pathology
Nanotechnology scope and application in plant pathology
 
2006 asse teleweb presentation
2006 asse teleweb presentation2006 asse teleweb presentation
2006 asse teleweb presentation
 
Application of nanotechnology in agriculture
Application of nanotechnology in agricultureApplication of nanotechnology in agriculture
Application of nanotechnology in agriculture
 
3_2022_05_23!07_21_12_PM.ppt
3_2022_05_23!07_21_12_PM.ppt3_2022_05_23!07_21_12_PM.ppt
3_2022_05_23!07_21_12_PM.ppt
 

Más de Pierre Basmaji

Más de Pierre Basmaji (6)

Bc
BcBc
Bc
 
Nanolux
NanoluxNanolux
Nanolux
 
Stem cell2
Stem cell2Stem cell2
Stem cell2
 
Nanotubo gabriel artigo
Nanotubo gabriel artigoNanotubo gabriel artigo
Nanotubo gabriel artigo
 
Stemcell
StemcellStemcell
Stemcell
 
Pierre artigo sobre o risco de prata
Pierre artigo sobre o risco de prataPierre artigo sobre o risco de prata
Pierre artigo sobre o risco de prata
 

Último

METHODS OF ACQUIRING KNOWLEDGE IN NURSING.pptx by navdeep kaur
METHODS OF ACQUIRING KNOWLEDGE IN NURSING.pptx by navdeep kaurMETHODS OF ACQUIRING KNOWLEDGE IN NURSING.pptx by navdeep kaur
METHODS OF ACQUIRING KNOWLEDGE IN NURSING.pptx by navdeep kaurNavdeep Kaur
 
COVID-19 (NOVEL CORONA VIRUS DISEASE PANDEMIC ).pptx
COVID-19  (NOVEL CORONA  VIRUS DISEASE PANDEMIC ).pptxCOVID-19  (NOVEL CORONA  VIRUS DISEASE PANDEMIC ).pptx
COVID-19 (NOVEL CORONA VIRUS DISEASE PANDEMIC ).pptxBibekananda shah
 
call girls in Dwarka Sector 21 Metro DELHI 🔝 >༒9540349809 🔝 genuine Escort Se...
call girls in Dwarka Sector 21 Metro DELHI 🔝 >༒9540349809 🔝 genuine Escort Se...call girls in Dwarka Sector 21 Metro DELHI 🔝 >༒9540349809 🔝 genuine Escort Se...
call girls in Dwarka Sector 21 Metro DELHI 🔝 >༒9540349809 🔝 genuine Escort Se...saminamagar
 
Lippincott Microcards_ Microbiology Flash Cards-LWW (2015).pdf
Lippincott Microcards_ Microbiology Flash Cards-LWW (2015).pdfLippincott Microcards_ Microbiology Flash Cards-LWW (2015).pdf
Lippincott Microcards_ Microbiology Flash Cards-LWW (2015).pdfSreeja Cherukuru
 
epilepsy and status epilepticus for undergraduate.pptx
epilepsy and status epilepticus  for undergraduate.pptxepilepsy and status epilepticus  for undergraduate.pptx
epilepsy and status epilepticus for undergraduate.pptxMohamed Rizk Khodair
 
Wessex Health Partners Wessex Integrated Care, Population Health, Research & ...
Wessex Health Partners Wessex Integrated Care, Population Health, Research & ...Wessex Health Partners Wessex Integrated Care, Population Health, Research & ...
Wessex Health Partners Wessex Integrated Care, Population Health, Research & ...Wessex Health Partners
 
POST NATAL EXERCISES AND ITS IMPACT.pptx
POST NATAL EXERCISES AND ITS IMPACT.pptxPOST NATAL EXERCISES AND ITS IMPACT.pptx
POST NATAL EXERCISES AND ITS IMPACT.pptxvirengeeta
 
97111 47426 Call Girls In Delhi MUNIRKAA
97111 47426 Call Girls In Delhi MUNIRKAA97111 47426 Call Girls In Delhi MUNIRKAA
97111 47426 Call Girls In Delhi MUNIRKAAjennyeacort
 
call girls in aerocity DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in aerocity DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️call girls in aerocity DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in aerocity DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️saminamagar
 
Report Back from SGO: What’s New in Uterine Cancer?.pptx
Report Back from SGO: What’s New in Uterine Cancer?.pptxReport Back from SGO: What’s New in Uterine Cancer?.pptx
Report Back from SGO: What’s New in Uterine Cancer?.pptxbkling
 
Presentation on General Anesthetics pdf.
Presentation on General Anesthetics pdf.Presentation on General Anesthetics pdf.
Presentation on General Anesthetics pdf.Prerana Jadhav
 
PULMONARY EDEMA AND ITS MANAGEMENT.pdf
PULMONARY EDEMA AND  ITS  MANAGEMENT.pdfPULMONARY EDEMA AND  ITS  MANAGEMENT.pdf
PULMONARY EDEMA AND ITS MANAGEMENT.pdfDolisha Warbi
 
PULMONARY EMBOLISM AND ITS MANAGEMENTS.pdf
PULMONARY EMBOLISM AND ITS MANAGEMENTS.pdfPULMONARY EMBOLISM AND ITS MANAGEMENTS.pdf
PULMONARY EMBOLISM AND ITS MANAGEMENTS.pdfDolisha Warbi
 
Apiculture Chapter 1. Introduction 2.ppt
Apiculture Chapter 1. Introduction 2.pptApiculture Chapter 1. Introduction 2.ppt
Apiculture Chapter 1. Introduction 2.pptkedirjemalharun
 
Primary headache and facial pain. (2024)
Primary headache and facial pain. (2024)Primary headache and facial pain. (2024)
Primary headache and facial pain. (2024)Mohamed Rizk Khodair
 
call girls in green park DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in green park  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️call girls in green park  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in green park DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️saminamagar
 
Hematology and Immunology - Leukocytes Functions
Hematology and Immunology - Leukocytes FunctionsHematology and Immunology - Leukocytes Functions
Hematology and Immunology - Leukocytes FunctionsMedicoseAcademics
 
call girls in paharganj DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in paharganj DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️call girls in paharganj DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in paharganj DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️saminamagar
 
Radiation Dosimetry Parameters and Isodose Curves.pptx
Radiation Dosimetry Parameters and Isodose Curves.pptxRadiation Dosimetry Parameters and Isodose Curves.pptx
Radiation Dosimetry Parameters and Isodose Curves.pptxDr. Dheeraj Kumar
 

Último (20)

METHODS OF ACQUIRING KNOWLEDGE IN NURSING.pptx by navdeep kaur
METHODS OF ACQUIRING KNOWLEDGE IN NURSING.pptx by navdeep kaurMETHODS OF ACQUIRING KNOWLEDGE IN NURSING.pptx by navdeep kaur
METHODS OF ACQUIRING KNOWLEDGE IN NURSING.pptx by navdeep kaur
 
COVID-19 (NOVEL CORONA VIRUS DISEASE PANDEMIC ).pptx
COVID-19  (NOVEL CORONA  VIRUS DISEASE PANDEMIC ).pptxCOVID-19  (NOVEL CORONA  VIRUS DISEASE PANDEMIC ).pptx
COVID-19 (NOVEL CORONA VIRUS DISEASE PANDEMIC ).pptx
 
Epilepsy
EpilepsyEpilepsy
Epilepsy
 
call girls in Dwarka Sector 21 Metro DELHI 🔝 >༒9540349809 🔝 genuine Escort Se...
call girls in Dwarka Sector 21 Metro DELHI 🔝 >༒9540349809 🔝 genuine Escort Se...call girls in Dwarka Sector 21 Metro DELHI 🔝 >༒9540349809 🔝 genuine Escort Se...
call girls in Dwarka Sector 21 Metro DELHI 🔝 >༒9540349809 🔝 genuine Escort Se...
 
Lippincott Microcards_ Microbiology Flash Cards-LWW (2015).pdf
Lippincott Microcards_ Microbiology Flash Cards-LWW (2015).pdfLippincott Microcards_ Microbiology Flash Cards-LWW (2015).pdf
Lippincott Microcards_ Microbiology Flash Cards-LWW (2015).pdf
 
epilepsy and status epilepticus for undergraduate.pptx
epilepsy and status epilepticus  for undergraduate.pptxepilepsy and status epilepticus  for undergraduate.pptx
epilepsy and status epilepticus for undergraduate.pptx
 
Wessex Health Partners Wessex Integrated Care, Population Health, Research & ...
Wessex Health Partners Wessex Integrated Care, Population Health, Research & ...Wessex Health Partners Wessex Integrated Care, Population Health, Research & ...
Wessex Health Partners Wessex Integrated Care, Population Health, Research & ...
 
POST NATAL EXERCISES AND ITS IMPACT.pptx
POST NATAL EXERCISES AND ITS IMPACT.pptxPOST NATAL EXERCISES AND ITS IMPACT.pptx
POST NATAL EXERCISES AND ITS IMPACT.pptx
 
97111 47426 Call Girls In Delhi MUNIRKAA
97111 47426 Call Girls In Delhi MUNIRKAA97111 47426 Call Girls In Delhi MUNIRKAA
97111 47426 Call Girls In Delhi MUNIRKAA
 
call girls in aerocity DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in aerocity DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️call girls in aerocity DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in aerocity DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
 
Report Back from SGO: What’s New in Uterine Cancer?.pptx
Report Back from SGO: What’s New in Uterine Cancer?.pptxReport Back from SGO: What’s New in Uterine Cancer?.pptx
Report Back from SGO: What’s New in Uterine Cancer?.pptx
 
Presentation on General Anesthetics pdf.
Presentation on General Anesthetics pdf.Presentation on General Anesthetics pdf.
Presentation on General Anesthetics pdf.
 
PULMONARY EDEMA AND ITS MANAGEMENT.pdf
PULMONARY EDEMA AND  ITS  MANAGEMENT.pdfPULMONARY EDEMA AND  ITS  MANAGEMENT.pdf
PULMONARY EDEMA AND ITS MANAGEMENT.pdf
 
PULMONARY EMBOLISM AND ITS MANAGEMENTS.pdf
PULMONARY EMBOLISM AND ITS MANAGEMENTS.pdfPULMONARY EMBOLISM AND ITS MANAGEMENTS.pdf
PULMONARY EMBOLISM AND ITS MANAGEMENTS.pdf
 
Apiculture Chapter 1. Introduction 2.ppt
Apiculture Chapter 1. Introduction 2.pptApiculture Chapter 1. Introduction 2.ppt
Apiculture Chapter 1. Introduction 2.ppt
 
Primary headache and facial pain. (2024)
Primary headache and facial pain. (2024)Primary headache and facial pain. (2024)
Primary headache and facial pain. (2024)
 
call girls in green park DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in green park  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️call girls in green park  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in green park DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
 
Hematology and Immunology - Leukocytes Functions
Hematology and Immunology - Leukocytes FunctionsHematology and Immunology - Leukocytes Functions
Hematology and Immunology - Leukocytes Functions
 
call girls in paharganj DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in paharganj DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️call girls in paharganj DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in paharganj DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
 
Radiation Dosimetry Parameters and Isodose Curves.pptx
Radiation Dosimetry Parameters and Isodose Curves.pptxRadiation Dosimetry Parameters and Isodose Curves.pptx
Radiation Dosimetry Parameters and Isodose Curves.pptx
 

Risk in the use of silver nanoparticles on humain

  • 1. RISK IN THE USE OF SILVER NANOPARTICLES ON HUMAIN: SILVER TOXICITY AND ITS EFFECTS ON HEALTH PIERRE BASMAJI CENTRE FOR RESEARCH AND DEVELOPMENT BIOTECHNOLOGY - INNOVATECS , 9 ST JULY 1312, SP 13560-042 SAO CARLOS –BRAZIL Nanomaterials have many potential benefits to society with their development and deployment in science, engineering and technology. Its benefits however, need to be taken into account considering the potential risks to the public health and to the environment. Nanotechnology a nanoparticle is defined as a small object or particle that behaves as a whole unit in terms of transport and properties. Nanotechnology takes advantage of the fact that when a solid material becomes too small, increasing its specific surface area, which leads to an increase in surface reactivity and is related quantum effects. The physical and chemical properties of nanomaterials can be very different from those of the same material as a larger mass. Nanomaterials (such as nanotubes and nanorods) and Nanoparticles are particles that have at least one dimension in the range 1 to 100nm. Nanoparticles are classified only on the basis of its size and may or may not exhibit size-related properties that differ significantly from those observed in bulk materials (ASTM 2006; Buzea et al, 2007). Due to the properties of nanoscale silver, nanosilver is now used in an increasing number of consumer products and medicaldevices, medicines, etc Nanomaterials are nanoparticles that have special physicochemical properties as a result of their small size (Buzea et al, 2007) . Silver has been known to be an antibacterial, antifungal and a powerful antiviral agent . But in recent years, the use of silver as a biocide solution, suspension and especially in the form of nano-particles has experienced a dramatic revival. Due to the properties of silver in nanolevels , nanosilver is currently used in an increasing number of consumer products and medicines . The remarkably strong antimicrobial activity is a major reason for the recent increase in the development of products containing nanosilver. Examples of consumer products containing nanosilver include food packaging, food supplements, textiles, electronics, appliances, cosmetics, medical devices, disinfectants, water sprays , environmental materials , etc . There is a need for the development of methods for measuring the nanosilver concentration, size, shape, surface charge, the crystal structure, and surface chemistry transformations. Some important questions to answer : Nanosilver is toxic? What are the mechanisms of toxicity?
  • 2. Which conditions those occur in the mechanisms? There is evidence that silver and nanosilver in particular, is toxic to aquatic and terrestrial organisms, a variety of mammalian cells in vitro and can be harmful to human health. While undoubtedly nanosilver and silver have useful applications in the medical field (for example, as coatings for medical devices such as wound healing or for the Victims of severe burns), their use may need to be strictly controlled. Bacterial resistance to antibiotics is a growing problem in the world and indiscriminate use of biocidal silver in countless consumer products is not only unnecessary but may further increase bacterial resistance to a dangerous level (Mühling et al . , 2009). There are preliminary indications that in the form of nanoparticles, the toxicity of ionic silver increases or that the nanoparticles can exert their own toxicity. Nano silver can dissociate to form silver ions in the presence of moisture. It is Also possible that nanoparticles of silver ions from shielding such interactions by delivering silver ions to the membranes which are free of organisms or cells. In this case, anaccentuation of the health risks would be expected apart from being associated with a similar mass of silver itself. The most common health effects associated with chronic exposure to silver are apermanent gray or blue-gray discoloration of the skin (argyria; .1 and Figure 2) and other organs (ATSDR, 1990; Drake & Hazelwood 2005;. White et al, 2003 . Lower level of exposure also results in the silver to be deposited on the skin and other parts of body such as liver, brain, muscle and kidneys and may cause changes in blood cells (Fung and Bowen, 1996; Venugopal & Luckey, 1978). Exposure to high levels of silver in the air can result in breathing problems, lung and throat irritation and stomach pain. Skin contact with silver can cause mild allergic reactions including rash, swelling and inflammation in some people.
  • 3. Figure 1 : Systemic argyria of the skin by drinking colloidal silver (underside) when compared with normal pigmentation (upper side) (Wadhera & Fung , 2010) .
  • 4. Figure 2 Paul Karason Blue Men Even though silver is generally not available in high enough concentrations to pose a risk to human health and the environment ; nanosilver in contrast has physical and surface properties that could pose a threat to human and environmental health (Lee et al, 2007). Due to the different physico-chemical properties and biological activities of nanosilver when compared with normal metal , it cannot be excluded that the increase in reactivity of nanosilver (due to the large surface area) leads to increased toxicity due to the activity of the silver ions released very easily by the nanoparticles. Some nanoparticles can penetrate the lungs or skin and enter the circulatory and lymphatic systems of humans and animals, reaching the tissues and organs of the body and potentially disrupting cellular processes , cause diseased cells and cause disease. Silver nanoparticles were found in blood of patients suffering from the diseases of the blood and in the colon of patients with colon cancer (Gatti, 2004; Gatti et al, 2004). Silver is known to have a lethal effect on bacteria but the same property that makes it an antibacterial makes it toxic to human cells as well . The silver concentration that is lethal to the bacterium is also lethal to both keratinocytes and fibroblasts (Poon & Burd, 2004). In vitro studies have shown that nanosilver effects reproduction & development and has an effect on DNA, among others. A recent survey of 12nm silver nanoparticles in highly purified zebra - fish showed that the early development of fish embryos was affected (Lee et al, 2007). Silver nanoparticles have the potential to cause chromosomal aberrations and DNA damage and are capable of inducing proliferation arrest in cell lines of zebra -fish (Asharani et al . 2007). In addition, toxicity studies were performed in mammalian species have shown that silver nanoparticles are able to enter cells and cause cellular damage (Hussain et al, 2005; Ji et al, 2007). The toxicity of nanosilver causes oxidative stress induction or cell dysfunction) or a mixture of both (El- Ansary & Al - Daihan, 2009; Oberdörster et al, 2005b). The nanoparticles were found to be distributed to the colon, lung, bone marrow, liver, spleen and lymph after intravenous injection (Hagens et al. , 2007). Distribution in the human body is usually followed by a fast clearance from the systemic circulation predominantly by the action of the liver and spleen macrophages (Moghimi et al, 2005) to causegastrointestinal problems. Some systems of nanoparticles may accumulate in the liver during first-pass metabolism (El- Ansary Daihan & al, 2009; Oberdörster et al, 2005a).
  • 5. A case study was published regarding liver enzymes after topical use of nanosilver preparation for a young burn victim (Trop et al, 2006). Six days after treatment, the patient developed blue-gray discoloration on lips (argyia). Respiratory Tract Toxicity: Human exposure to inhalation of environmental particle including nanosilver, may have adverse effects on health (Buzea et al, 2007 effects; Dockery, 2005; Donaldson et al, 2004; Lippmann et al, 2003; Shah, 2007; Vermylen et al 2005).Cardiovascular and pulmonary diseases can result when inhaled particles interfere with the normal function of bodily systems (Peters et al, 1997, 2001 and 2005). Dermal Toxicity: Although based on nanosilver , dressings and surgical sutures have received approval for clinical application ; it is important to make a good control of infection of the wound, it's skin toxicity . And that is still a topic of concern. Despite clinical and laboratory studies confirm the biocompatibility of dermal dressings based nanosilver, several other researchers demonstrated cytotoxicity of these materials (Chen et al , 2006 & El- El- Ansary Daihan 2009; Limbach et al, 2007; Muangman et al, 2006. Oberdörster et al, 2005b. Supp et al, 2005; Wright et al, 2002). Shovel-Ledinek et al. (2006). Acticoat ® is a dressing consists of a polyethylene mesh coated with nanosilver (average size 15 nm). There is one case of silver poisoning after the use of Acticoat ® for the treatment of severe burns to the legs (Trop et al, 2006. Wijnhoven et al, 2009). On day 6 of post-injury, the patient developed a grayish color in the treated area, complained of being tired and had no appetite. On the day 7, silver levels in urine and blood were found to be elevated (28 and 107 mg/kg, respectively). Kidney toxicity : Kim et al. (2008 ) reported gender differences in the accumulation of silver nanoparticles in rat kidneys. In a study by Kim et al. ( 2009), the tissue distribution of silver nanoparticles showed a dose-dependent accumulation of silver in all tissues examined, including the testis, kidney, liver, brain, lungs and blood. The gender difference in the accumulation of silver was observed in the kidneys, with a largest concentration in female and male kidneys compared after subacute exposure of silver nanoparticles through inhalation or oral ingestion. Silver nanoparticles were detected in the cytoplasm and nucleus of interstitial cells in the inner medulla of kidney. Conclusions on nanosilver toxicity: Silver nanoparticles are used because of the antibacterial activity of silver. It has been suggested that the main mechanism of action is the death of cells due to uncoupling of oxidative phosphorylation (Holt & Bard, 2005) or inducing the formation of free radicals (Kim et al, 2007). Interference with the respiratory chain, cytochrome c levels, and/or components of microbial electrons transport system has also been reported (Muangman et al, 2006). Interactions with membrane bound enzymes and thiol groups of proteins that may result in compromised integrity of the cell wall have been postulated (Bragg & Rainnie, 1974, Lok et al, 2006. Silver, 2003; Wijnhoven et al,
  • 6. 2007;et Zeiri. al, 2004). It has also been suggested that the silver ions bind to DNA and can cause DNA strand breaks in DNA replication and (ATSDR, 1990. Russell & Hugo 1994 toxicity of silver nanoparticles is mainly determined in vitro with particles ranging in size from 1-100nm. potential target organs for nanosilver toxicity may involve the liver, kidneys and the immune system. Accumulation and histopathological effects were observed in the liver of mice systemically exposed to silver nanoparticles 10-15 nm (Ji et al, 2007), whereas an effect on the liver enzymes was observed in a study of the case of human dermal exposure to an average particle size of the same (Trop et al, 2006). More studies are needed to better characterize the risk of the use of silver nanoparticles on humans . References 1. ASTM E2456 - Standard . 2006. Standard terminology Relating to Nnaotechnology . ASTM International, West Conshohocken , PA , 2006 DOI : 10.1520/E2456-06 . 2. ATSDR . Agency for Toxic Substances and Disease Registry . 1990. Toxicological profile for silver . Atlanta , GA : U.S. Department of Health and Human Services , Public Health Service , Agency for Toxic Substances and Disease Registry ( TP - 9024 ) . 3. Buzea , C. , Pacheco , Î.I. , Robbie , K. Nanomaterials and nanoparticles : Sources and toxicity , Biointerphases , 2 ( 4) : MR17 , MR71 , 2007. 4. Mühling , M. , Bradford , A. , Readman , JW , Somerfield , PJ , Handy , RD An investigation into the effects of silver nanoparticles on antibiotic resistance of naturally occurring bacteria in an estuarine sediment , Marine Environ . Res 2009 , 68 (5) :278283 . 5. P. L. Drake , Hazelwood K. J. 2005. Exposure - related health effects of silver and silver compounds : A review. Ann . Occup . Hyg . , 49:575-585 . 6. White , JML , Powell AM , Brady , K. , Russell - Jones , R. 2003. Severe generalized argryia secondary ingestion of colloidal silver protein . Clin. Experim . Dermatol. , 28:354-256 . 7. Fung , M. C. , Bowen , D. L. 1996. Silver products for medical indication : Risk benefit assessment . Clin. Toxicol . 34:119-126 . 8. Venugopal , B. , Luckey , T.D.1978 . Metal toxicity in mammals . In: Chemical toxicology of metals and metalloids , Venugopal , B. , Luckey , TD (Eds.), New York: Academic Press. pp. 32-36. 9. Wadhera , A. , Fung , M.http://dermatology.cdlib.org/111/case_reports/argyria/c11.jpg 10. Lee HJ , Yeo , S.Y. , Jeong , S. H. 2003. Antibacterial effect of nanosized silver colloidal solution on textile fabrics , J. Mater . Sci , 38:2199-2204 . 11. Lee , K. J. , Lee , Y. , Shim , I. , Joung , J. , Oh , Y.S. Direct synthesis and bonding origins of monolayer - protected silver nanocrystals from silver nitrate through in situ ligand exchange. J. Colloid Inter . Sci 2006 , 304, 92-97 . 12. Lee , KJ , Lee , Y. , Shim , I. , Jun , BH , Cho , HJ , Joung , J. Large- scale synthesis of polymer -stabilized silver nanoparticles . Sol St. Phen . 2007 , 124-126 , 1189-1192 . 13. Lee , KJ , Nallathamby , PD , Browning , LM , Osgood , CJ , Xu , XN 2007. In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos , Am Chem . Soc 1 (2) :133 -143 .
  • 7. 14. Lee , KJ , Park , JT , Goh , JH , Kim , JH Synthesis of amphiphilic graft copolymer and its brush use the template film for the preparation of silver nanoparticles . J. Polym . Sci A. 2008, 46 , 3911-3918 . 15. Gatti , AM Biocompatibility of micro -and nano - particles in the colon . Part II , Biomaterials 25 , 385-392 , 2004. 16. Gatti AM , Montanari , S. , Monari , E. , Gambarelli , A. , Capitani , F. , Parisini , B. Detection of micro -and nano - sized biocompatible particles in the blood . J. Mater . Sci : Mater . Med 15 (4) , 469-472 , 2004. 17. Poon , V.K. , Burd , A. 2004. In vitro cytotoxity of silver : Implication for clinical wound care . Burns 30:140-147 . 18. Asharani , P.V. , Nair , G. , Zhiyuan , H. , Manoor . P., Valiyaveettil , S. 2007. Potential health impacts of silver nanoparticles . Abstracts of Papers , 234th ACS National Meeting , Boston , MA , USA , August 19-23, 2007. pp : TOXI - 099 . 19. Braydich - Stolle , L. , Hussain , S. , Schlager , J. J. , Hofmann , M. C. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells . Toxicol . Sci , 2005, 88, 412-419 . 20. Ji , JH , Jung , JH , Kim , SS , Yoon , JU , Park , JD , Choi , BS , Chung , YH , Kwon , IH , Jeong , J. , Han , BS , Shin , JH , Sung , JH , Song , KS , Yu , IJ 2007. 21. El - Ansary , A. , Al - Daihan , S. On the toxicity of therapeutically used nanoparticles : An overview , J. Toxicol . , Volume 2009 , 9 pages . doi : 10.1155/2009/754810 22. Oberdörster , G. , Oberdörster , E. Oberdörster , J. , 2005a . Nanotoxicology : an emerging discipline evolving from studies of ultrafine particles . Environ. Health Perspect . 113 (7) , 823-839 . 23. Oberdörster , G. , Maynard , A. , Donaldson , K. , Castranova , V. , Fitzpatrick , J. , Ausman , K. , Carter , J. , Karn , B. , Kreyling , W. , Lai , D. , Olin , S. , Monteiro - Riviere , N. , Warheit , D. , Yang , H. 2005b . Principles for Characterizing the potential human health effects from exposure to nanomaterials : elements of a screening strategy . Particle Fibre Toxicol . , 2:8-43 . 24. Oberdörster , G. , Sharp , Z. , Atudorei , V. , Elder , A. , Gelein , R. , Kreyling , W. , Cox , 25. C. Translocation of inhaled ultrafine particles to the brain , Inhalation Toxicol . 16 (67) , 437-445 , 2004. 26. Oberdörster , G. , Stone , V. , Donaldson , K. Toxicology of nanoparticles : a historical perspective . Nanotoxicology 1 : 2-25 , 2007. 27. Hagens , WI , Oomen , AG , de Jong , WH , Cassee , FR , Sips , AJAM What do we (need to) know about the kinetic properties of nanoparticles in the body ? , Regulatory Toxicology and Pharmacology , vol . 49 , no. 3 , p. 217-229 , 2007. 28. Moghimi , SM , Hunter , AC , Murray , JC Nanomedicine : current status and future prospects, FASEB Journal, vol . 19 , no. 3 , p. 311-330 , 2005. 29. Trop , M. , Novak , M. , Rodl , S. , Hellbom , B. , Kroell , W. Goessler , W. 2006. Silver coated dressing Acticoat casued raised liver enzymes and argyria -like symptoms in burn patient . J. Trauma 60 , 648-652 . 30. Dockery , DW , Luttmann - Gibson , H. , Rich , DQ , Link , MS , Mittleman , MA , Gold , DR , Koutrakis , P., Schwartz , JD , Verrier , RL Association of air pollution with Increased incidence of ventricular tachyarrhythmias recorded by implanted cardioverter defillibrators , Environ . Health Perspect . , 113 ( 6) , 670 to 674.2005 . 31. Donaldson , K. , Stone , V. , Tran , C. , Kreyling , W. , Borm , PJA Nanotoxicology , Occup . Environ. Med 61 (9) :727-728 , 2004.
  • 8. 32. Lippmann , M. Effects of fiber characteristics on lung deposition , retention , and disease , Environ . Health Perspect . 88, 311-317 , 1990. 33. Shah CP Public Health and preventive medicine in Canada , University of Toronto Press , Toronto , Canada . 2007. 34. Vermylen , J. Nemmar , A. Nemery , B., Hoylaerts , F. Ambient air pollution and acute myocardial infarction , J. Thromb . Haemost . 3 , 1955-1961 , 2005. 35. Peters , A. Particulate matter and heart disease : evidence from epidemiological studies , Toxicol . Appl. Pharmacol . , 207 ( Suppl 2 ) , S477 - S482 , 2005. 36. Chen , HW , Su , SF , Chien , CT , Lin , WH , Yu , SL , Chou , CC , Chen , JJ , Yang , PC Titanium dioxide nanoparticles induce emphysema -like lung injury in mice , The FASEB Journal, vol . 20 , no. 13 , p. 2393-2395 , 2006. 37. Chen , J. , Tan , M. , Nemmar , A. , Song , W. , Dong , M. , Zhang , G. , Li , Y. Quantification of extrapulmonary translocation of intratracheal - instilled particles in vivo in rats : effect of lipopolysaccharide , Toxicol 2006 , 222 (3) :195-201 . . 38. Supp , AP , Neely , AN, Supp , DM , Warden , GD , Boyce , ST Evaluation of cytotoxicity and antimicrobial activity of Acticoat ® burn dressing for management of microbial contamination in cultured skin substitutes grafted to athymic mice , Journal of Burn Care & Rehabilitation , vol . 26 , no. 3 , p. 238-246 , 2005. 39. Wright , JB , Lam , K. , Buret AG , Olson , ME , Burrell , RE 2002. Early healing events in a porcine model contaminated wounds : effects of nanocrystalline silver on matrix metalloproteinases , cell apoptosis , and healing . Wound Repair Regen . 10 , 141-151 . 40. Paddle - Ledinek , JE , Nasa , Z. , Cleland , HJ Effect of different wound dressings on cell viability and proliferation , Plastic and Reconstructive Surgery , vol . 117, supplement 7 , p. 110S - 118S , 2006. 41. Final Report dated 07/15/2010178 42. Wijnhoven , SWP , Peijnenburg , WJGM , Herberts , CA , Hagens , WI , Oomen , AG , Heugens , EHW , Roszek , B. , Bisschops , J. , Gosens , I. , van Meent , D. , Dekkers , S. , de Jong , WH , van Zijverden , M. , Sips , AJAM , Geertsma , RE Nanosilver - a review of available data and knowledge gaps in human and environmental risk assessment , Nanotoxicology 2009 , 3 ( 2 ) : 109-138 . 43. Kim , W.-Y. , K., Kim , J., Park JD, Ryu, HY, Yu, IJ Histological Study of Gender Differences in Accumulation of Silver Nanoparticles in Kidneys of Fischer 344 Rats . J. Toxicol . Environ. Health, Part A. 72 : 21-22 , 2009 , 1279-1284 . 44. Kim , Y. S. , Kim , J. S. , Cho , H. S. , Rha , D. S. , Kim , J. M., Park, J. D., Choi , B. S. , Lim , R. , Chang , H. K. , Chung , Y. H. , Kwon , I. H. , Jeong , J. , Han , B. S. , Yu, I. J. Oral Twenty - eight-day toxicity , genotoxicity , and gender - related tissue distribution of silver nanoparticles in Sprague - Dawley rats . Inhalation Toxicol . 2008 , 20 , 575-583 . 45. Holt, K. B. , Bard , A. J. 2005. Interaction of silver ( I) ions with the respiratory chain of Escherichia coli : An electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag + . Biochemistry 44, 1321413223 . 46. Muangman , P., Chuntrasakul , C. , Silthram , S. , Suvanchote , S. , Benjathanung , R. , Kittidacha , S. , Rueksomtawin , S. Comparison of efficacy of 1 % silver sulfadiazine and Acticoat ™ for treatment of partial- thickness burn wounds , Journal of the Medical Association of Thailand , vol . 89 , no. 7 , p. 953-958 , 2006. 47. Bragg, P. D. , Rainnie , D.J. 1974. The effect of silver ions on the respiratory chain of Escherichia coli . Can. J. Microbiol. 20 , 883-889 .
  • 9. 48. Lok , C.-N. Ho , C.-M. , Chen , R. , He, Q.-Y. , Yu , W.-Y. , Sun , H. , Tam , PK - H . , Chiu , J.-F. , Che , C.-M. 2006. Proteomic analysis of the mode of antibacterial action of silver nanoparticles . J. Proteome Res 5, 916-924 . 49. Zeiri , I. , Bronk , BV , Shabtai , Y. , Eichler , J. , Efrima , S. 2004. Surface enhanced Raman spectroscopy as a tool for probing specific biochemical components in bacteria . Appl. Spectroscopy 58, 33-40 .