SlideShare una empresa de Scribd logo
1 de 55
CONSTRUCTION AND CALIBRATION
OF A FRACTURED TIGHT RESERVOIR
MODEL
Speaker: J. Marin
AAPG YP - 2016
 Introduction
 Objectives
 Available data
 Identifying fractures
 Geomechanical model
 Modeling natural fracture networks
 Validation of the reservoir model
 Optimal well orientation
 Conclusions
Introduction
Cuenca
Tumbes-Progreso
Cuenca
Talara
Cuenca
Lancones
Cuenca
Sechura
 Located in the Talara Basin on Peru’s northern coast, with a total extension of 470 km2 and 3,226
active wells out of over 5,000 total drilled to date.
 Sedimentary fill of Talara Basin is roughly 9,000 meters thick with main productive intervals of the
Eocene period.
 Structural and Stratigraphic Complexity
 Low porosity and low permeability
 Deep reservoirs with natural fracturing
 Hidraulic Fracturing needed
 Commingled production
 Solution gas Mechanism
 Limited información of electric logs, PVT y pressure
CRONOESTRATIGRAFIA LITOESTRATIGRAFIA
PLEISTOCENO
Disc
Disc
SUPERIOR PRIABONIANO
Disc
Disc
HELICO
LOBITOS
TEREBRATULA
Disc
BALLENA
CONSTANCIA
SOMATITO
VERDE
CABO BLANCO
CLAVEL
Disc
LAGOON
PEÑA NEGRA
OSTREA "C"
OSTREA "D"
OSTREA "E"
Disc
MOGOLLON MED
MOGOLLON INF
ZAMBO
TUNEL
NEGRITOS
PTA. ARENAS
Disc
Disc
Disc
Disc
Disc
BASAL SALINA
LA DRAGA
LUTITAS
TALARA
MONTE
INFERIOR
YPRESIANO
SALINAS
ECHINO
SENONIANOGALICO
THANETIANO
LUTETIANO
CAMPANIANO
PETACAS
MALPASO
MAESTRICHTIANO
PENSILVANIANO
INF.
MUERTO
PANANGA
ALBIANO
APTIANO
CARBONIFERO
PALEOZOICO
PERMICO
AMOTAPE
PALAUS
CERRO PRIETO
MESOZOICO
CRETACEO
SUPERIOR
ANCHA
REDONDO
TABLONES
COPA SOMBREROSANTONIANO
PALEOCENO
SUP.
BALCONES
INF.
MESA
OSTREA
MOGOLLON
MOGOLLON SUP
SAN
CRISTOBAL
ARENISCAS TALARA
CARPITAS
MIRADOR
CHIRA
VERDUN
LAGUNITOS
BARTONIANO
OLIGOCENO
RUPELIANO
INFERIORMEDIO
EOCENO
TALARA
POZO
UNIDAD
PRODUCTIVA
CENOZOICO
CUATERNARIO TABLAZO
PALEOGENO
MANCORA
GRUPO
FORMACION MIEMBRO LITOLOGIA
ERA
SISTEMA
SERIE
PISO
Calizasmicrít
Conglomerad
Areniscasgri
Lutitasgrisos
Disc
CERRO NEGRO
PENSILVANIANO
MISSISSIPIANO
CARBONIFERO
PALEOZOICO
PERMICO
AMOTAPE
PALAUS
CERRO PRIETO
CHALECO DE
PAÑO
DEVONICO
Stratigrraphic column – Talara Basin (Modified by G. Pozo, 2008)
Talara basin location, tectonic elements and block X (Daudt, 2009)
ECHINO
MOGOLLON
AMOTAPE
BASAL SALINA
ECHINOCYAMUS
MOGOLLON
BASAL SALINA
AMOPATE
• High structural complexity (faults and fractures)
• Normal faulting in a mainly extensional regime
• Compartmentalized reservoirs
• Horst and graben configuration
Introduction
 Identify the natural fractures that contributes to the flow
and their distribution in Mogollon formation
 Construction of a fractured tight reservoir model
 Calibration of the 3D fracture network model with
historical production
Objectives
 Field observations (25 km to
the southeast)
 Stratigraphic model
 Structural features:
Interpreted cross sections
based on well logs
 Cores analysis (stratigraphic
and petrophysical studies)
 Geomechanical data
 Well logs (borehole images)
 Dynamic data (well testing,
production, mud losses)
Available data – Mogollon Fm
Well testing data Production data
Outcrops of Mogollon Fm.
Cross section based on well logs Core and borehole imaga information
Paleocurrents direction (from Carozzi
& Palomino, 1993)
Secondary paleocurrent direction
(from Daudt et al (2003))
1. Fluvial Domain
2. Upper Fan (fluvial/delta plain transition?)
3. Middle Fan (delta plain)
4. Lower Fan (delta front)
5. Delta front/Prodelta transition
6. Prodelta
7. Proximal Alluvial Fans
Mogollon Fm: Depositional model
Chorro
Superior
Fm. San Cristobal
Fuente
Chorro
Inferior
FormaciónMogollón
Litoestratigrafía
Perfil
de pozo
Ciclos
T/R
Contexto
depositacional
Superior
FSST/LST
Continental
Transicional
Secuencias Supercicies
Medio
Inferior
Fm. Ostrea
SECCION
ESTRUCTURAL
EA7944 7944
TD=6030
Correlation Depth
Oil
Resistivity
Lt.Gray
Oil
-3500 -3500
-4000 -4000
-4500 -4500
-5000 -5000
MO_mrs
SC_MO_unc
MO_IM_mfs
MO_MS_unc
CHORRO SUP.
CHORRO INF.
FUENTE
MOGOLLON MEDIO
MOGOLLON INF.
MOGOLLON
5665 1762 7913 7944 1340 2394 1132 5898 6583 1590 1886 1857 1892
MOGOLLON Fm. : STRATIGRAPHIC SECTION NESW
Thickness map of reservoir facies – Mogollon formation –
Alluvial fan deposits – Coast Area
Mogollon Fm: Stratigraphic model
Interpreted structural section based on well logs
EC1825EC1822
EC1114 EC1820
EC1388EC2201
EC1954EC1096
-500
-1000
-1500
-2000
-2500
-3000
-3500
-4000
-4500
-5000
-5500
-6000
-6500
-7000
-7500
-8000
-8500
-9000
-9500
1000
500
0
-500
-1000
-1500
-2000
-2500
-3000
-3500
-4000
-4500
-5000
-5500
-6000
-6500
-7000
-7500
-8000
-8500
-9000
-9500
1000
500
0
EC2203
V E R D U N
C H I R A
A M O T A P E
M O G O L L O N S U P.
T A B L A Z O
P E N A N E G R A
E C H I N O R E P . II
H E L I C O R E P.
O S T R E A R E P.
M O G O L L O N M E D I O
NW SE
Mogollon Fm: Structural features
• Medium to coarse grained
sandstones and conglomerates
• Thickness of fm of 1800 to 2000 ft
• Low matrix porosities (4-6%)
• Low matrix permeabilities (0.01 –
0.1md)
• Production comes from fractured
Low-permeabilitiy sandstones
Mogollon Fm: Reservoir features
Conglomerate
Identifying fractures – Field observations
Fractures (dashed black lines) related to normal fault (red line) with azimuth/dip: N340°/50° in Qda.
Salado (25 km to the southeast of Block X), Mogollon Formation.
Identifying fractures – Core analysis
Matrix properties
Identifying fractures – Core analysis
Identifying fractures – Core analysis
Identifying fractures – Borehole image log
Identifying fractures – Dynamic data
Data for tested interval
Hn = 60
Phi = 0.063
Sw = 0.581
K = 0.051
KH from well test interpretations (md.ft) 114
KH from logs (md.ft) 3.1
FCI: Fracture capacity index (Narr et al., 2006) 37.3
Escobedo, 2012
Identifying fractures – Dynamic data
Data for tested interval
Hn = 20
Phi = 0.051
Sw = 0.593
K = 0.035
KH from well test interpretations (md.ft) 15
KH from logs (md.ft) 0.70
FCI: Fracture capacity index (Narr et al., 2006) 21.4
Escobedo, 2012
Identifying fractures – Dynamic data
Oil, bbl/d
Total fluid, bbl/d
Water cut, %
Figure from Jolley et al, 2008
Type II (Pozo, 2008)
0
200
400
600
800
1000
1200
0 100 200 300 400 500
CaudalbrutO(bbls/d)
# de fracturas abiertas
Relación Fracturas abiertas y Caudal
Inicial Bruto
8063D
8031
8052
8062D
8067D
Benito & Pozo, 2008
Identifying fractures – Fractures and production
B
A
C
D
E
Geomechanical model– source of information
Sv
Shmax
ShminPp, E,v,UCS
Sv: Vertical stress (Overburden) – Density logs / cuttings
Shmin: least principal stress – Minifrac tests / leak-off tests
/ Vp-Vs / drilling data
Shmax: Maximum horizontal stress – borehole image logs
(stress polygon) / correlations (Pp-Shmin-UCS)
Pp: Pore pressure – DST / MDT / Seismic
data
Stress orientation: Caliper logs (multiple arms), Borehole
image logs, velocity anisotropy, structural maps, 3D
seismica data, focal plane mechanism
Young (E) modulus, poisson’s ratio (v): Vp-Vs-Density /
laboratory test on cores
Unconfined compressive strength (UCS), friction angle (Ф):
Vp-Vs-Density / laboratory test on cores
Source: Pozo, 2008
Geomechanical model: Elastic modulus
Source: Petrobras, 2009
G: Shear modulus
E: Young’s modulus
K: Bulk modulus
Vp: Compressional waveus
Vs: Shear waves
A partir del Perfil Sónico de Onda Completa se
obtienen los módulos dinámicos, los cuales deben
ser ajustados con los datos de laboratorio para
obtener los estáticos para diseñar. Es necesario
disponer de las curvas de tiempo de tránsito
compresional y de cizalla obtenidas del tren de ondas
completo registrado por la Herramienta Sónica,
)/1(*
)/34(*
10*34,1 222
22
10
tctsts
tctsRhob
Ed



)/1(*2
/2
22
22
tcts
tcts
d



Rhob: Curva Perfil Densidad [gr/cc]
tcTiempo de tránsito compresional [ s/ft]
tsTiempo de tránsito de cizalla [  s/ft]
Geomechanical model: Elastic modulus
Geomechanical model: Cohesion-UCS
Zoback, 2007
Source: Petrobras, 2009
Geomechanical model: Pore pressure
0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000
0 500 1000 1500 2000 2500 3000 3500
Pressure (psi)
Depth(ss-ft)
DEPLETION
Gi= 0.58 psi/ft
Pore pressure gradient – Mogollon fm.
Zoback, 2007
Pressure History
0
500
1000
1500
2000
2500
3000
3500
Oct-54 Mar-60 Sep-65 Mar-71 Ago-76 Feb-82 Ago-87 Ene-93 Jul-98 Ene-04 Jul-09
Date
Pressure(psi)
Geomechanical model – Stress Orientation
Breakout analisys Fracture system – Upper Mogollon
Source: E. Bustamante, 2013
Azimuth of Shmax: 56°
Geomechanical model – Sv
; Jaeger and cook, 1971
Average density in sedimantary rocks: 23 Mpa /Km (aprox 1 psi/ft)
Pp (psi/ft): 0.38
Sv(psi/ft): 1.089
Overburden gradient for the area:
Geomechanical model – Shmin
Minifrac test
Well – Mogollon Fm.
Depth (ft): 6501
ISIP (psi): 3860.9
Smin (psi/ft):0.594
K (md):0.69
Depth (ft): 6212
ISIP (psi): 3670
Smin (psi/ft): 0.591
K (md): 1.27
Source: Guisado, L.
0.50
1.00
1.50
2.00
2.50
3.00
0.50 1.00 1.50 2.00 2.50 3.00
Shmax(PSI/Foot
Sh min (PSI/Foot)
RF
SS
NF
Geomechanical model: Constraining Shmax from Wellbore Failure
Tensile fractures
Breakouts for
given UCS
Shmin from minifrac
Pp : 0.380 psi/ft
Azimuth of Shmax: 56°
Shmin: 0.591 psi/ft
Sv: 1.089 psi/ft
Biot coefficient=1
Posson’s ratio=0.23
Breakout width = 0°
Diff. Mud pressure=0.08 psi/ft
Ceff=2.5 psi/ft
Sliding friction: 0.65
Failure criterion = Mohr-Coulomb
Tensional stregth =0 psi/ft
0.593 psi/ft
0.962 psi/ft
Smax=0.75
Geomechanical model: Fault mechanism
Anderson´s classification scheme for relative stress magnitudes in
normal faulting regions. Earthquake focal mechanisms (right).
Normal fault
on borehole
image log in
a vertical
well
0
1000
2000
3000
4000
5000
6000
7000
8000
0 2000 4000 6000 8000 10000
Depth(ft) Stress (psi)
Hydrostatic Pp
Shmin (MiniFrac)
Pore Pressure (Model)
Shmax
Sv
Modeling natural fracture networks: Peña Negra
Peña Negra Model
Source: Pozo, 2008
Source: Petrobras, 2008
Loss of circulation and fracture gradients
1957 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 01 03 05 07 09 11 13 15
0.1
0.5
1
5
10
50
100
500
1000
FECHA
LX.PetMOdc
Completion EA1505
Completion EA1547
Completion EA1607
Completion EA1659
Completion EA1678
Completion EA1719
Completion EA1722
Completion EA1737
Completion EA1738
Completion EA1748
Completion EA1762
Completion EA1763
Completion EA1764
Completion EA1831
Completion EA1867
Completion EA1887
Completion EA1948
Completion EA2493
Completion EA5653D
Completion EA5778
Completion EA5997
Completion EA6006
Completion EA6747
Completion EA7571EA1505
EA1547
EA1607
EA1659
EA1678
EA1719
EA1722
EA1737
EA1738
EA1748
EA1762
EA1763
EA1764
EA1831
EA1867
EA1887
EA1948
EA2493
EA5633
EA5653D
EA5778
EA5997
EA6006
EA6747 EA7571
Abandonado
Bombeo Mecanico
Cerrado Temporario
Suab por Csg
Source: Escobedo, D.
Connectivity of fractures - Peña Negra area
EA1618
EA1626
EA1647
EA1658
EA1674EA1718
EA1722
EA1748
EA1762
EA5651
EA5665
EA5782
EA8096D
Bombeo Mecanico
Suab por Tbg
1959 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 01 03 05 07 09 11 13 15
0.1
0.5
1
5
10
50
100
500
1000
FECHA
LX.PetMOdc
Completion EA1618
Completion EA1626
Completion EA1647
Completion EA1658
Completion EA1674
Completion EA1718
Completion EA1722
Completion EA1748
Completion EA1762
Completion EA5651
Completion EA5665
Completion EA5782
Completion EA8096D
Connectivity of fractures - Peña Negra area
Source: Escobedo, D.
-5000
-5000
CB-044CB-048
1505
1607
1659
1678
1719
1722
1737
17381748
1763
1764
1831
1867
1887
5633
5653D
5679
57785997
6006
6747 17627571
2493
1948
800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4600 4800 5000
800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4600 4800 5000
-9600-8800-8000-7200-6400-5600-4800
-9600-8800-8000-7200-6400-5600-4800
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
PHIEQ [ft3/ft3]
0 200 400 600m
472000 474000
472000 474000
952600095280009530000
952600095280009530000-5000
-5000
CB-044CB-048
1505
1607
1659
1678
1719
1722
1737
17381748
1763
1764
1831
1867
1887
5633
5653D
5679
57785997
6006
6747 17627571
2493
1948
800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4600 4800
800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4600 4800
-8800-8000-7200-6400-5600-4800-4000
-7500.000000
-7250.000000
-7000.000000
-6750.000000
-6500.000000
-6250.000000
-6000.000000
-5750.000000
-5500.000000
vation depth [ft]
0 200 400 600m
F_Flood
S/F_Distal_fan
S_Mid_fan
C_Proximal_fan
Alluvial Facies
472000 474000
472000 474000
952600095280009530000
952600095280009530000
A
Modelo estratigráfico - Estructural
Modelo de electrofacies Modelo de porosidad
A A’
Armazón estratigráfico-estructural 3D
800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3
800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3
-8800-8000-7200-6400-5600-4800-4000
-7500.000000
-7250.000000
-7000.000000
-6750.000000
-6500.000000
-6250.000000
-6000.000000
-5750.000000
-5500.000000
Elevation depth [ft]
0 200 400 60
Chorro Sup.
Chorro Inf.
Fuente
Medio
Inferior
Zonas
-5000
CB-044CB-048
1505
1607
1659
1678
1719
1722
1737
17381748
1764
1831
1867
1887
5653D
5679
6006
6747 7571
2493
1948
800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4600 4800 5000
800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4600 4800 5000
-9600-8800-8000-7200-6400-5600-4800
-9600-8800-8000-7200-6400-5600-4800
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
PHIEQ [ft3/ft3]
0 200 400 600m
472000 474000
95280009530000
95280009530000
-5000
CB-044CB-048
1505
16591719
1722
1737
17381748
1764
1831
1867
1887
5653D
5679
6006
2493
1948
1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4600 4800
1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4600 4800
-8800-8000-7200-6400-5600-4800-4000
00000
00000
00000
00000
00000
00000
00000
00000
00000
depth [ft]
0 200 400 600m
F_Flood
S/F_Distal_fan
S_Mid_fan
C_Proximal_fan
Alluvial Facies
472000 474000
95280009530000
95280009530000
A’
A
A’
A A’ A A’
A
A’
-5000
-5000
CB-044CB-048
1505
1607
1659
1678
1719
1722
1737
17381748
1763
1764
1831
1867
1887
5633
5653D
5679
57785997
6006
6747 17627571
2493
1948
800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4600 4800 5000
800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4600 4800 5000
-9600-8800-8000-7200-6400-5600-4800
-9600-8800-8000-7200-6400-5600-4800
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Water saturation
0 200 400 600m
472000 474000
472000 474000
952600095280009530000
952600095280009530000
Modelo de Saturación
A A’
A
A’
-500
6
800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 42
800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 42
-9600-8800-8000-7200-6400-5600-4800
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Water saturation
0 200 400 600m
4
95280009530000
Geological Model for Peña Negra area
Fracture sets characterization – Fractures in lithofacies
Fracture sets characterization – Fracture type classification
Fracture sets characterization – Fracture type classification
Fracture sets characterization – Fracture type & Intensity
Fracture sets characterization – Fracture type & Intensity
Fracture sets characterization – Geometry
 Lenght of fractures were determined from
outcrops in Qda Salado. Fractures with
great extent are mainly vertical to sub
vertical. A power law was assumed.
Mogollon Fm. in Qda Salado showing the geometry of the natural fractures
Fracture sets characterization – Aperture
 Apertures were measured in outcrops, cores and image logs. A log-normal distribution was given to the model.
Fracture sets characterization – Fracture Orientation
Modeling natural fracture networks
Main Strike N50°E
Main Dip angle 65°
Main Strike N°50°E
Main Dip angle 70°
1.83 mm
80
80
Moderate
High
Fracture parameter for modeling natural fracture networks
0.61 mm
Fracture type model Characteristics
Mean fracture density
(#Fract/ft)
Orientation
Mean Length
(m)
Mean Aperture
(mm)
Facies with partially open fracture
and moderate fracture density
Facies with Open fractures and
high fracture density
0.78
1.32
Modeling natural fracture networks
Modeling natural fracture networks - Upscaling
General Information:
Fracture Sigma
• Black-Oil Simulator Eclipse 100
• Cells = 30 x 52 x 46
• Average Dimensions = 100 m x 100 m x 50 ft
• Total Cells = 68 850
• No Gas-Oil Contact
• Water-Oil Contact = -7600 ft
FRACTURE PARAMETERS
• Aperture : 0.02 inches
• Density: 0.2 frac per foot
• Lenght : <25-180> foot
• Orientation: 50° azimuth
65° dip
Source: Escobedo, 2012
Numerical Reservoir Simulation
Validation of the reservoir model – History match for the whole model
Initial history matching results for the Peña Negra model
Initial Pressure, psi 3150
Current Pressure, psi 400
Cumulative Oil, MMBls 6.5275
Original Oil In Place, MMbls 18.65
Recovery Factor m+f, % 35%
Validation of the reservoir model – History match for one well in the model
Validation of the reservoir model – Oil left behind
The optimal well orientation – Critically stressed fractures
Zoback, 2007
Nelson et.al. (2000)
Discrete fracture
network
The optimal well orientation – Critically stressed fractures
Shmax
Data: 6100 ft – 7000ft
N°_fractures: 210
Azimuth: 55.4°
Average Dip: 53.5°
τ>μσ
Fractures close to failure are most
likely to maintain permeability!!!
The optimal well orientation
This methodology is being extrapolated to other parts of the block X, as in the field of Somatito where new
drilling strategies are being proposed.
Oriented well
Fracture type zones model
Discrete fracture
network
Peña Negra Model
q - 2015 q - 2024 q - 2035 cum - 2015 cum - 2024 cum - 2035
vertical 4,578 1,100 514 4,578 5,451,870 8,399,643
horizontal 7,141 1,063 349 7,141 6,600,234 9,065,511
ratio h/v 1.56 0.97 0.68 1.56 1.21 1.08
pozos vertical 3 3 3 3 3 3
pozos equiv 4.68 2.90 2.04 4.68 3.63 3.24
-
2.00
4.00
6.00
1 2 3
Series1
Numerical Reservoir Simulation – Horizontal well
Conclusions
 The construction of the natural fracture network model was
validated by the simulation model.
 Fluid flows come mainly from natural fracture networks in
Mogollon formation (Tight Sand Reservoir).
 Fractures are open in the direction of the least principal stress
and align with the direction of the maximun horizontal stress.
 It is still possible to find undrained sets of fractures in the
direction of the least principal stress and establish new
development strategies.
 Possibility of drilling additional wells in order to obtain a larger
contact area in these sets of fractures and to increase efficiency
in the recovery within the reservoir.
THANK YOU FOR
YOUR ATTENTION

Más contenido relacionado

La actualidad más candente

Class 8 Triaxial Test ( Geotechnical Engineering )
Class 8    Triaxial Test ( Geotechnical Engineering )Class 8    Triaxial Test ( Geotechnical Engineering )
Class 8 Triaxial Test ( Geotechnical Engineering )Hossam Shafiq I
 
Subterra Projects - Slope Stability in Cobre Las Cruces Mine (Spain)
Subterra Projects - Slope Stability in Cobre Las Cruces Mine (Spain)Subterra Projects - Slope Stability in Cobre Las Cruces Mine (Spain)
Subterra Projects - Slope Stability in Cobre Las Cruces Mine (Spain)Subterra Ingenieria S.L.
 
Drained or Undrained :Is That the Question
Drained or Undrained :Is That the QuestionDrained or Undrained :Is That the Question
Drained or Undrained :Is That the QuestionAmin Rismanchian
 
Physical model for coastal inlet
Physical model for coastal inletPhysical model for coastal inlet
Physical model for coastal inletNguyen Thanh Luan
 
Estimation of initial stresses
Estimation of initial stressesEstimation of initial stresses
Estimation of initial stressesSaad Raja
 
Triaxial shear test
Triaxial shear testTriaxial shear test
Triaxial shear testShah Naseer
 
Consolidation sivakugan (Complete Soil Mech. Undestanding Pakage: ABHAY)
Consolidation sivakugan (Complete Soil Mech. Undestanding Pakage: ABHAY)Consolidation sivakugan (Complete Soil Mech. Undestanding Pakage: ABHAY)
Consolidation sivakugan (Complete Soil Mech. Undestanding Pakage: ABHAY)Abhay Kumar
 
Nurek rockfill dam (300 m). Problem of seismic safety of dam (4 p.)
Nurek rockfill dam (300 m). Problem of seismic safety of dam (4 p.)Nurek rockfill dam (300 m). Problem of seismic safety of dam (4 p.)
Nurek rockfill dam (300 m). Problem of seismic safety of dam (4 p.)Yury Lyapichev
 
Geotechnical Engineering-II [Lec #3: Direct Shear Test)
Geotechnical Engineering-II [Lec #3: Direct Shear Test)Geotechnical Engineering-II [Lec #3: Direct Shear Test)
Geotechnical Engineering-II [Lec #3: Direct Shear Test)Muhammad Irfan
 
Rock quality determination, rock structure rating
Rock quality determination, rock structure ratingRock quality determination, rock structure rating
Rock quality determination, rock structure ratingPrashant Katti
 
Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]
Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]
Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]Muhammad Irfan
 
Avo ppt (Amplitude Variation with Offset)
Avo ppt (Amplitude Variation with Offset)Avo ppt (Amplitude Variation with Offset)
Avo ppt (Amplitude Variation with Offset)Haseeb Ahmed
 
Techniques for measuring insitu stresses
Techniques for measuring insitu stressesTechniques for measuring insitu stresses
Techniques for measuring insitu stressesZeeshan Afzal
 
Class 7 Consolidation Test ( Geotechnical Engineering )
Class 7    Consolidation Test ( Geotechnical Engineering )Class 7    Consolidation Test ( Geotechnical Engineering )
Class 7 Consolidation Test ( Geotechnical Engineering )Hossam Shafiq I
 

La actualidad más candente (20)

Class 8 Triaxial Test ( Geotechnical Engineering )
Class 8    Triaxial Test ( Geotechnical Engineering )Class 8    Triaxial Test ( Geotechnical Engineering )
Class 8 Triaxial Test ( Geotechnical Engineering )
 
Rock Mass Classification
Rock Mass ClassificationRock Mass Classification
Rock Mass Classification
 
Strength nalin
Strength nalinStrength nalin
Strength nalin
 
Subterra Projects - Slope Stability in Cobre Las Cruces Mine (Spain)
Subterra Projects - Slope Stability in Cobre Las Cruces Mine (Spain)Subterra Projects - Slope Stability in Cobre Las Cruces Mine (Spain)
Subterra Projects - Slope Stability in Cobre Las Cruces Mine (Spain)
 
Soil strength
Soil strengthSoil strength
Soil strength
 
Drained or Undrained :Is That the Question
Drained or Undrained :Is That the QuestionDrained or Undrained :Is That the Question
Drained or Undrained :Is That the Question
 
Physical model for coastal inlet
Physical model for coastal inletPhysical model for coastal inlet
Physical model for coastal inlet
 
Estimation of initial stresses
Estimation of initial stressesEstimation of initial stresses
Estimation of initial stresses
 
Triaxial shear test
Triaxial shear testTriaxial shear test
Triaxial shear test
 
Consolidation sivakugan (Complete Soil Mech. Undestanding Pakage: ABHAY)
Consolidation sivakugan (Complete Soil Mech. Undestanding Pakage: ABHAY)Consolidation sivakugan (Complete Soil Mech. Undestanding Pakage: ABHAY)
Consolidation sivakugan (Complete Soil Mech. Undestanding Pakage: ABHAY)
 
Nurek rockfill dam (300 m). Problem of seismic safety of dam (4 p.)
Nurek rockfill dam (300 m). Problem of seismic safety of dam (4 p.)Nurek rockfill dam (300 m). Problem of seismic safety of dam (4 p.)
Nurek rockfill dam (300 m). Problem of seismic safety of dam (4 p.)
 
Slope mass rating (SMR)
Slope mass rating (SMR)Slope mass rating (SMR)
Slope mass rating (SMR)
 
Geotechnical Engineering-II [Lec #3: Direct Shear Test)
Geotechnical Engineering-II [Lec #3: Direct Shear Test)Geotechnical Engineering-II [Lec #3: Direct Shear Test)
Geotechnical Engineering-II [Lec #3: Direct Shear Test)
 
Rock quality determination, rock structure rating
Rock quality determination, rock structure ratingRock quality determination, rock structure rating
Rock quality determination, rock structure rating
 
Viga benkelman
Viga benkelmanViga benkelman
Viga benkelman
 
Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]
Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]
Geotechnical Engineering-II [Lec #5: Triaxial Compression Test]
 
Avo ppt (Amplitude Variation with Offset)
Avo ppt (Amplitude Variation with Offset)Avo ppt (Amplitude Variation with Offset)
Avo ppt (Amplitude Variation with Offset)
 
Techniques for measuring insitu stresses
Techniques for measuring insitu stressesTechniques for measuring insitu stresses
Techniques for measuring insitu stresses
 
Triaxial
TriaxialTriaxial
Triaxial
 
Class 7 Consolidation Test ( Geotechnical Engineering )
Class 7    Consolidation Test ( Geotechnical Engineering )Class 7    Consolidation Test ( Geotechnical Engineering )
Class 7 Consolidation Test ( Geotechnical Engineering )
 

Similar a Construction and calibration of a fractured tight reservoir model

Centennial Talk Hydrates
Centennial Talk HydratesCentennial Talk Hydrates
Centennial Talk Hydratesstalnaker
 
Lacpec_ProductionGeology_Ven
Lacpec_ProductionGeology_VenLacpec_ProductionGeology_Ven
Lacpec_ProductionGeology_Venapicarelli
 
PetroTeach Free Webinar by Dr. Andrew Ross on Seismic Reservoir Characterization
PetroTeach Free Webinar by Dr. Andrew Ross on Seismic Reservoir CharacterizationPetroTeach Free Webinar by Dr. Andrew Ross on Seismic Reservoir Characterization
PetroTeach Free Webinar by Dr. Andrew Ross on Seismic Reservoir CharacterizationPetro Teach
 
PetroTeach Free Webinar on Seismic Reservoir Characterization
PetroTeach Free Webinar on Seismic Reservoir CharacterizationPetroTeach Free Webinar on Seismic Reservoir Characterization
PetroTeach Free Webinar on Seismic Reservoir CharacterizationPetroTeach1
 
Delineation of Hydrocarbon Bearing Reservoirs from Surface Seismic and Well L...
Delineation of Hydrocarbon Bearing Reservoirs from Surface Seismic and Well L...Delineation of Hydrocarbon Bearing Reservoirs from Surface Seismic and Well L...
Delineation of Hydrocarbon Bearing Reservoirs from Surface Seismic and Well L...IOSR Journals
 
Reassessing the Hydrocarbon Potential of Bornu Basin through Electrofacies an...
Reassessing the Hydrocarbon Potential of Bornu Basin through Electrofacies an...Reassessing the Hydrocarbon Potential of Bornu Basin through Electrofacies an...
Reassessing the Hydrocarbon Potential of Bornu Basin through Electrofacies an...Associate Professor in VSB Coimbatore
 
DSD-INT 2016 Hydrodynamic modeling and resource-device suitability analysis o...
DSD-INT 2016 Hydrodynamic modeling and resource-device suitability analysis o...DSD-INT 2016 Hydrodynamic modeling and resource-device suitability analysis o...
DSD-INT 2016 Hydrodynamic modeling and resource-device suitability analysis o...Deltares
 
Dedus scada gis case study zagreb
Dedus scada gis case study zagrebDedus scada gis case study zagreb
Dedus scada gis case study zagrebDeda4Proning
 
Characterization and evaluation of riparian buffers on sediment load
Characterization and evaluation of riparian buffers on sediment loadCharacterization and evaluation of riparian buffers on sediment load
Characterization and evaluation of riparian buffers on sediment loadSoil and Water Conservation Society
 
326074628-FDP-Presentation-Slide.pptx
326074628-FDP-Presentation-Slide.pptx326074628-FDP-Presentation-Slide.pptx
326074628-FDP-Presentation-Slide.pptxmohdsuriamohdsuhaimi
 
OMONIYI_2008_B.TECH_PROJECT
OMONIYI_2008_B.TECH_PROJECTOMONIYI_2008_B.TECH_PROJECT
OMONIYI_2008_B.TECH_PROJECTOmoniyi Itamuko
 
Multipay Well Completion in Argentina: A Versatile Pinpoint Completion Techno...
Multipay Well Completion in Argentina: A Versatile Pinpoint Completion Techno...Multipay Well Completion in Argentina: A Versatile Pinpoint Completion Techno...
Multipay Well Completion in Argentina: A Versatile Pinpoint Completion Techno...Juan Carlos Bonapace
 
12 Week Subsurface Mapping And Interpretation Technique Building
12 Week Subsurface Mapping And Interpretation Technique Building12 Week Subsurface Mapping And Interpretation Technique Building
12 Week Subsurface Mapping And Interpretation Technique Buildingjoedumesnil
 
Vs30 measurements for Seismic Site Classification
Vs30 measurements for Seismic Site ClassificationVs30 measurements for Seismic Site Classification
Vs30 measurements for Seismic Site ClassificationAli Osman Öncel
 

Similar a Construction and calibration of a fractured tight reservoir model (20)

Centennial Talk Hydrates
Centennial Talk HydratesCentennial Talk Hydrates
Centennial Talk Hydrates
 
Lacpec_ProductionGeology_Ven
Lacpec_ProductionGeology_VenLacpec_ProductionGeology_Ven
Lacpec_ProductionGeology_Ven
 
PetroTeach Free Webinar by Dr. Andrew Ross on Seismic Reservoir Characterization
PetroTeach Free Webinar by Dr. Andrew Ross on Seismic Reservoir CharacterizationPetroTeach Free Webinar by Dr. Andrew Ross on Seismic Reservoir Characterization
PetroTeach Free Webinar by Dr. Andrew Ross on Seismic Reservoir Characterization
 
PetroTeach Free Webinar on Seismic Reservoir Characterization
PetroTeach Free Webinar on Seismic Reservoir CharacterizationPetroTeach Free Webinar on Seismic Reservoir Characterization
PetroTeach Free Webinar on Seismic Reservoir Characterization
 
Delineation of Hydrocarbon Bearing Reservoirs from Surface Seismic and Well L...
Delineation of Hydrocarbon Bearing Reservoirs from Surface Seismic and Well L...Delineation of Hydrocarbon Bearing Reservoirs from Surface Seismic and Well L...
Delineation of Hydrocarbon Bearing Reservoirs from Surface Seismic and Well L...
 
Spe 121557-ms
Spe 121557-msSpe 121557-ms
Spe 121557-ms
 
Reassessing the Hydrocarbon Potential of Bornu Basin through Electrofacies an...
Reassessing the Hydrocarbon Potential of Bornu Basin through Electrofacies an...Reassessing the Hydrocarbon Potential of Bornu Basin through Electrofacies an...
Reassessing the Hydrocarbon Potential of Bornu Basin through Electrofacies an...
 
DSD-INT 2016 Hydrodynamic modeling and resource-device suitability analysis o...
DSD-INT 2016 Hydrodynamic modeling and resource-device suitability analysis o...DSD-INT 2016 Hydrodynamic modeling and resource-device suitability analysis o...
DSD-INT 2016 Hydrodynamic modeling and resource-device suitability analysis o...
 
Presentation_final1
Presentation_final1Presentation_final1
Presentation_final1
 
Briaud2001
Briaud2001Briaud2001
Briaud2001
 
Dedus scada gis case study zagreb
Dedus scada gis case study zagrebDedus scada gis case study zagreb
Dedus scada gis case study zagreb
 
Characterization and evaluation of riparian buffers on sediment load
Characterization and evaluation of riparian buffers on sediment loadCharacterization and evaluation of riparian buffers on sediment load
Characterization and evaluation of riparian buffers on sediment load
 
326074628-FDP-Presentation-Slide.pptx
326074628-FDP-Presentation-Slide.pptx326074628-FDP-Presentation-Slide.pptx
326074628-FDP-Presentation-Slide.pptx
 
OMONIYI_2008_B.TECH_PROJECT
OMONIYI_2008_B.TECH_PROJECTOMONIYI_2008_B.TECH_PROJECT
OMONIYI_2008_B.TECH_PROJECT
 
Expl 2-jb-57-e
Expl 2-jb-57-eExpl 2-jb-57-e
Expl 2-jb-57-e
 
Multipay Well Completion in Argentina: A Versatile Pinpoint Completion Techno...
Multipay Well Completion in Argentina: A Versatile Pinpoint Completion Techno...Multipay Well Completion in Argentina: A Versatile Pinpoint Completion Techno...
Multipay Well Completion in Argentina: A Versatile Pinpoint Completion Techno...
 
subsurface[1].pptx
subsurface[1].pptxsubsurface[1].pptx
subsurface[1].pptx
 
ExampleCarbModeling
ExampleCarbModelingExampleCarbModeling
ExampleCarbModeling
 
12 Week Subsurface Mapping And Interpretation Technique Building
12 Week Subsurface Mapping And Interpretation Technique Building12 Week Subsurface Mapping And Interpretation Technique Building
12 Week Subsurface Mapping And Interpretation Technique Building
 
Vs30 measurements for Seismic Site Classification
Vs30 measurements for Seismic Site ClassificationVs30 measurements for Seismic Site Classification
Vs30 measurements for Seismic Site Classification
 

Más de Portal de Ingeniería /SlideShare

Rosa Romero - Industrialización en la construcción de viviendas
Rosa Romero - Industrialización en la construcción de viviendasRosa Romero - Industrialización en la construcción de viviendas
Rosa Romero - Industrialización en la construcción de viviendasPortal de Ingeniería /SlideShare
 
Aplicación del sistema neumático, mediante asistencia de pozos de alta presió...
Aplicación del sistema neumático, mediante asistencia de pozos de alta presió...Aplicación del sistema neumático, mediante asistencia de pozos de alta presió...
Aplicación del sistema neumático, mediante asistencia de pozos de alta presió...Portal de Ingeniería /SlideShare
 
Planteamiento de un sistema de alerta temprana para la protección de campamen...
Planteamiento de un sistema de alerta temprana para la protección de campamen...Planteamiento de un sistema de alerta temprana para la protección de campamen...
Planteamiento de un sistema de alerta temprana para la protección de campamen...Portal de Ingeniería /SlideShare
 
Claudia Lizbet Eduardo Palomino/Luisa Elí Zegarra Lazo-Tesis Universitaria
Claudia Lizbet Eduardo Palomino/Luisa Elí Zegarra Lazo-Tesis UniversitariaClaudia Lizbet Eduardo Palomino/Luisa Elí Zegarra Lazo-Tesis Universitaria
Claudia Lizbet Eduardo Palomino/Luisa Elí Zegarra Lazo-Tesis UniversitariaPortal de Ingeniería /SlideShare
 
Geomodelamiento 3D de las formaciones palegreda - Pariñas en el yacimiento Br...
Geomodelamiento 3D de las formaciones palegreda - Pariñas en el yacimiento Br...Geomodelamiento 3D de las formaciones palegreda - Pariñas en el yacimiento Br...
Geomodelamiento 3D de las formaciones palegreda - Pariñas en el yacimiento Br...Portal de Ingeniería /SlideShare
 
Consideraciones para el Diseño Básico de Rompeolas (Enrocados)
Consideraciones para el Diseño Básico de Rompeolas (Enrocados)Consideraciones para el Diseño Básico de Rompeolas (Enrocados)
Consideraciones para el Diseño Básico de Rompeolas (Enrocados)Portal de Ingeniería /SlideShare
 
Introducción e importancia de pruebas mecánicas de laboratorio en rocas
Introducción e importancia de pruebas mecánicas de laboratorio en rocasIntroducción e importancia de pruebas mecánicas de laboratorio en rocas
Introducción e importancia de pruebas mecánicas de laboratorio en rocasPortal de Ingeniería /SlideShare
 

Más de Portal de Ingeniería /SlideShare (15)

Paper
PaperPaper
Paper
 
Rosa Romero - Industrialización en la construcción de viviendas
Rosa Romero - Industrialización en la construcción de viviendasRosa Romero - Industrialización en la construcción de viviendas
Rosa Romero - Industrialización en la construcción de viviendas
 
Aplicación del sistema neumático, mediante asistencia de pozos de alta presió...
Aplicación del sistema neumático, mediante asistencia de pozos de alta presió...Aplicación del sistema neumático, mediante asistencia de pozos de alta presió...
Aplicación del sistema neumático, mediante asistencia de pozos de alta presió...
 
Planteamiento de un sistema de alerta temprana para la protección de campamen...
Planteamiento de un sistema de alerta temprana para la protección de campamen...Planteamiento de un sistema de alerta temprana para la protección de campamen...
Planteamiento de un sistema de alerta temprana para la protección de campamen...
 
Lucía Gabriela Chávez Quiroga-Tesis Universitaria
Lucía Gabriela Chávez Quiroga-Tesis UniversitariaLucía Gabriela Chávez Quiroga-Tesis Universitaria
Lucía Gabriela Chávez Quiroga-Tesis Universitaria
 
Pierre Richard Farfán Raymundo-Tesis Universitaria
Pierre Richard Farfán Raymundo-Tesis UniversitariaPierre Richard Farfán Raymundo-Tesis Universitaria
Pierre Richard Farfán Raymundo-Tesis Universitaria
 
Liliana Milagros Villaorduña Vergra-Tesis Universitaria
Liliana Milagros Villaorduña Vergra-Tesis UniversitariaLiliana Milagros Villaorduña Vergra-Tesis Universitaria
Liliana Milagros Villaorduña Vergra-Tesis Universitaria
 
Joseph Michael Flores Cuba-Tesis Universitaria
Joseph Michael Flores Cuba-Tesis UniversitariaJoseph Michael Flores Cuba-Tesis Universitaria
Joseph Michael Flores Cuba-Tesis Universitaria
 
Claudia Lizbet Eduardo Palomino/Luisa Elí Zegarra Lazo-Tesis Universitaria
Claudia Lizbet Eduardo Palomino/Luisa Elí Zegarra Lazo-Tesis UniversitariaClaudia Lizbet Eduardo Palomino/Luisa Elí Zegarra Lazo-Tesis Universitaria
Claudia Lizbet Eduardo Palomino/Luisa Elí Zegarra Lazo-Tesis Universitaria
 
José Enrique Lazo Quevedo-Tesis Universitario
José Enrique Lazo Quevedo-Tesis UniversitarioJosé Enrique Lazo Quevedo-Tesis Universitario
José Enrique Lazo Quevedo-Tesis Universitario
 
Geomecánica Aplicado a Perforación
Geomecánica Aplicado a PerforaciónGeomecánica Aplicado a Perforación
Geomecánica Aplicado a Perforación
 
Geomodelamiento 3D de las formaciones palegreda - Pariñas en el yacimiento Br...
Geomodelamiento 3D de las formaciones palegreda - Pariñas en el yacimiento Br...Geomodelamiento 3D de las formaciones palegreda - Pariñas en el yacimiento Br...
Geomodelamiento 3D de las formaciones palegreda - Pariñas en el yacimiento Br...
 
Consideraciones para el Diseño Básico de Rompeolas (Enrocados)
Consideraciones para el Diseño Básico de Rompeolas (Enrocados)Consideraciones para el Diseño Básico de Rompeolas (Enrocados)
Consideraciones para el Diseño Básico de Rompeolas (Enrocados)
 
Fundamentos de la geomecánica de petróleo
Fundamentos de la geomecánica de petróleoFundamentos de la geomecánica de petróleo
Fundamentos de la geomecánica de petróleo
 
Introducción e importancia de pruebas mecánicas de laboratorio en rocas
Introducción e importancia de pruebas mecánicas de laboratorio en rocasIntroducción e importancia de pruebas mecánicas de laboratorio en rocas
Introducción e importancia de pruebas mecánicas de laboratorio en rocas
 

Último

Mythology Quiz-4th April 2024, Quiz Club NITW
Mythology Quiz-4th April 2024, Quiz Club NITWMythology Quiz-4th April 2024, Quiz Club NITW
Mythology Quiz-4th April 2024, Quiz Club NITWQuiz Club NITW
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfVanessa Camilleri
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfPatidar M
 
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...Association for Project Management
 
Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4JOYLYNSAMANIEGO
 
ICS 2208 Lecture Slide Notes for Topic 6
ICS 2208 Lecture Slide Notes for Topic 6ICS 2208 Lecture Slide Notes for Topic 6
ICS 2208 Lecture Slide Notes for Topic 6Vanessa Camilleri
 
Reading and Writing Skills 11 quarter 4 melc 1
Reading and Writing Skills 11 quarter 4 melc 1Reading and Writing Skills 11 quarter 4 melc 1
Reading and Writing Skills 11 quarter 4 melc 1GloryAnnCastre1
 
Congestive Cardiac Failure..presentation
Congestive Cardiac Failure..presentationCongestive Cardiac Failure..presentation
Congestive Cardiac Failure..presentationdeepaannamalai16
 
How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17Celine George
 
Tree View Decoration Attribute in the Odoo 17
Tree View Decoration Attribute in the Odoo 17Tree View Decoration Attribute in the Odoo 17
Tree View Decoration Attribute in the Odoo 17Celine George
 
ARTERIAL BLOOD GAS ANALYSIS........pptx
ARTERIAL BLOOD  GAS ANALYSIS........pptxARTERIAL BLOOD  GAS ANALYSIS........pptx
ARTERIAL BLOOD GAS ANALYSIS........pptxAneriPatwari
 
Expanded definition: technical and operational
Expanded definition: technical and operationalExpanded definition: technical and operational
Expanded definition: technical and operationalssuser3e220a
 
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptx
Unraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptxUnraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptx
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptxDhatriParmar
 
4.9.24 School Desegregation in Boston.pptx
4.9.24 School Desegregation in Boston.pptx4.9.24 School Desegregation in Boston.pptx
4.9.24 School Desegregation in Boston.pptxmary850239
 
Scientific Writing :Research Discourse
Scientific  Writing :Research  DiscourseScientific  Writing :Research  Discourse
Scientific Writing :Research DiscourseAnita GoswamiGiri
 
4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptx4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptxmary850239
 
Narcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdfNarcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdfPrerana Jadhav
 
Sulphonamides, mechanisms and their uses
Sulphonamides, mechanisms and their usesSulphonamides, mechanisms and their uses
Sulphonamides, mechanisms and their usesVijayaLaxmi84
 
How to Make a Duplicate of Your Odoo 17 Database
How to Make a Duplicate of Your Odoo 17 DatabaseHow to Make a Duplicate of Your Odoo 17 Database
How to Make a Duplicate of Your Odoo 17 DatabaseCeline George
 

Último (20)

Mythology Quiz-4th April 2024, Quiz Club NITW
Mythology Quiz-4th April 2024, Quiz Club NITWMythology Quiz-4th April 2024, Quiz Club NITW
Mythology Quiz-4th April 2024, Quiz Club NITW
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdf
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdf
 
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
 
Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4
 
ICS 2208 Lecture Slide Notes for Topic 6
ICS 2208 Lecture Slide Notes for Topic 6ICS 2208 Lecture Slide Notes for Topic 6
ICS 2208 Lecture Slide Notes for Topic 6
 
Reading and Writing Skills 11 quarter 4 melc 1
Reading and Writing Skills 11 quarter 4 melc 1Reading and Writing Skills 11 quarter 4 melc 1
Reading and Writing Skills 11 quarter 4 melc 1
 
Congestive Cardiac Failure..presentation
Congestive Cardiac Failure..presentationCongestive Cardiac Failure..presentation
Congestive Cardiac Failure..presentation
 
How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17
 
Tree View Decoration Attribute in the Odoo 17
Tree View Decoration Attribute in the Odoo 17Tree View Decoration Attribute in the Odoo 17
Tree View Decoration Attribute in the Odoo 17
 
Faculty Profile prashantha K EEE dept Sri Sairam college of Engineering
Faculty Profile prashantha K EEE dept Sri Sairam college of EngineeringFaculty Profile prashantha K EEE dept Sri Sairam college of Engineering
Faculty Profile prashantha K EEE dept Sri Sairam college of Engineering
 
ARTERIAL BLOOD GAS ANALYSIS........pptx
ARTERIAL BLOOD  GAS ANALYSIS........pptxARTERIAL BLOOD  GAS ANALYSIS........pptx
ARTERIAL BLOOD GAS ANALYSIS........pptx
 
Expanded definition: technical and operational
Expanded definition: technical and operationalExpanded definition: technical and operational
Expanded definition: technical and operational
 
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptx
Unraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptxUnraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptx
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptx
 
4.9.24 School Desegregation in Boston.pptx
4.9.24 School Desegregation in Boston.pptx4.9.24 School Desegregation in Boston.pptx
4.9.24 School Desegregation in Boston.pptx
 
Scientific Writing :Research Discourse
Scientific  Writing :Research  DiscourseScientific  Writing :Research  Discourse
Scientific Writing :Research Discourse
 
4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptx4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptx
 
Narcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdfNarcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdf
 
Sulphonamides, mechanisms and their uses
Sulphonamides, mechanisms and their usesSulphonamides, mechanisms and their uses
Sulphonamides, mechanisms and their uses
 
How to Make a Duplicate of Your Odoo 17 Database
How to Make a Duplicate of Your Odoo 17 DatabaseHow to Make a Duplicate of Your Odoo 17 Database
How to Make a Duplicate of Your Odoo 17 Database
 

Construction and calibration of a fractured tight reservoir model

  • 1. CONSTRUCTION AND CALIBRATION OF A FRACTURED TIGHT RESERVOIR MODEL Speaker: J. Marin AAPG YP - 2016
  • 2.  Introduction  Objectives  Available data  Identifying fractures  Geomechanical model  Modeling natural fracture networks  Validation of the reservoir model  Optimal well orientation  Conclusions
  • 3. Introduction Cuenca Tumbes-Progreso Cuenca Talara Cuenca Lancones Cuenca Sechura  Located in the Talara Basin on Peru’s northern coast, with a total extension of 470 km2 and 3,226 active wells out of over 5,000 total drilled to date.  Sedimentary fill of Talara Basin is roughly 9,000 meters thick with main productive intervals of the Eocene period.  Structural and Stratigraphic Complexity  Low porosity and low permeability  Deep reservoirs with natural fracturing  Hidraulic Fracturing needed  Commingled production  Solution gas Mechanism  Limited información of electric logs, PVT y pressure CRONOESTRATIGRAFIA LITOESTRATIGRAFIA PLEISTOCENO Disc Disc SUPERIOR PRIABONIANO Disc Disc HELICO LOBITOS TEREBRATULA Disc BALLENA CONSTANCIA SOMATITO VERDE CABO BLANCO CLAVEL Disc LAGOON PEÑA NEGRA OSTREA "C" OSTREA "D" OSTREA "E" Disc MOGOLLON MED MOGOLLON INF ZAMBO TUNEL NEGRITOS PTA. ARENAS Disc Disc Disc Disc Disc BASAL SALINA LA DRAGA LUTITAS TALARA MONTE INFERIOR YPRESIANO SALINAS ECHINO SENONIANOGALICO THANETIANO LUTETIANO CAMPANIANO PETACAS MALPASO MAESTRICHTIANO PENSILVANIANO INF. MUERTO PANANGA ALBIANO APTIANO CARBONIFERO PALEOZOICO PERMICO AMOTAPE PALAUS CERRO PRIETO MESOZOICO CRETACEO SUPERIOR ANCHA REDONDO TABLONES COPA SOMBREROSANTONIANO PALEOCENO SUP. BALCONES INF. MESA OSTREA MOGOLLON MOGOLLON SUP SAN CRISTOBAL ARENISCAS TALARA CARPITAS MIRADOR CHIRA VERDUN LAGUNITOS BARTONIANO OLIGOCENO RUPELIANO INFERIORMEDIO EOCENO TALARA POZO UNIDAD PRODUCTIVA CENOZOICO CUATERNARIO TABLAZO PALEOGENO MANCORA GRUPO FORMACION MIEMBRO LITOLOGIA ERA SISTEMA SERIE PISO Calizasmicrít Conglomerad Areniscasgri Lutitasgrisos Disc CERRO NEGRO PENSILVANIANO MISSISSIPIANO CARBONIFERO PALEOZOICO PERMICO AMOTAPE PALAUS CERRO PRIETO CHALECO DE PAÑO DEVONICO Stratigrraphic column – Talara Basin (Modified by G. Pozo, 2008) Talara basin location, tectonic elements and block X (Daudt, 2009)
  • 4. ECHINO MOGOLLON AMOTAPE BASAL SALINA ECHINOCYAMUS MOGOLLON BASAL SALINA AMOPATE • High structural complexity (faults and fractures) • Normal faulting in a mainly extensional regime • Compartmentalized reservoirs • Horst and graben configuration Introduction
  • 5.  Identify the natural fractures that contributes to the flow and their distribution in Mogollon formation  Construction of a fractured tight reservoir model  Calibration of the 3D fracture network model with historical production Objectives
  • 6.  Field observations (25 km to the southeast)  Stratigraphic model  Structural features: Interpreted cross sections based on well logs  Cores analysis (stratigraphic and petrophysical studies)  Geomechanical data  Well logs (borehole images)  Dynamic data (well testing, production, mud losses) Available data – Mogollon Fm Well testing data Production data Outcrops of Mogollon Fm. Cross section based on well logs Core and borehole imaga information
  • 7. Paleocurrents direction (from Carozzi & Palomino, 1993) Secondary paleocurrent direction (from Daudt et al (2003)) 1. Fluvial Domain 2. Upper Fan (fluvial/delta plain transition?) 3. Middle Fan (delta plain) 4. Lower Fan (delta front) 5. Delta front/Prodelta transition 6. Prodelta 7. Proximal Alluvial Fans Mogollon Fm: Depositional model
  • 8. Chorro Superior Fm. San Cristobal Fuente Chorro Inferior FormaciónMogollón Litoestratigrafía Perfil de pozo Ciclos T/R Contexto depositacional Superior FSST/LST Continental Transicional Secuencias Supercicies Medio Inferior Fm. Ostrea SECCION ESTRUCTURAL EA7944 7944 TD=6030 Correlation Depth Oil Resistivity Lt.Gray Oil -3500 -3500 -4000 -4000 -4500 -4500 -5000 -5000 MO_mrs SC_MO_unc MO_IM_mfs MO_MS_unc CHORRO SUP. CHORRO INF. FUENTE MOGOLLON MEDIO MOGOLLON INF. MOGOLLON 5665 1762 7913 7944 1340 2394 1132 5898 6583 1590 1886 1857 1892 MOGOLLON Fm. : STRATIGRAPHIC SECTION NESW Thickness map of reservoir facies – Mogollon formation – Alluvial fan deposits – Coast Area Mogollon Fm: Stratigraphic model
  • 9. Interpreted structural section based on well logs EC1825EC1822 EC1114 EC1820 EC1388EC2201 EC1954EC1096 -500 -1000 -1500 -2000 -2500 -3000 -3500 -4000 -4500 -5000 -5500 -6000 -6500 -7000 -7500 -8000 -8500 -9000 -9500 1000 500 0 -500 -1000 -1500 -2000 -2500 -3000 -3500 -4000 -4500 -5000 -5500 -6000 -6500 -7000 -7500 -8000 -8500 -9000 -9500 1000 500 0 EC2203 V E R D U N C H I R A A M O T A P E M O G O L L O N S U P. T A B L A Z O P E N A N E G R A E C H I N O R E P . II H E L I C O R E P. O S T R E A R E P. M O G O L L O N M E D I O NW SE Mogollon Fm: Structural features
  • 10. • Medium to coarse grained sandstones and conglomerates • Thickness of fm of 1800 to 2000 ft • Low matrix porosities (4-6%) • Low matrix permeabilities (0.01 – 0.1md) • Production comes from fractured Low-permeabilitiy sandstones Mogollon Fm: Reservoir features Conglomerate
  • 11. Identifying fractures – Field observations Fractures (dashed black lines) related to normal fault (red line) with azimuth/dip: N340°/50° in Qda. Salado (25 km to the southeast of Block X), Mogollon Formation.
  • 12. Identifying fractures – Core analysis Matrix properties
  • 13. Identifying fractures – Core analysis
  • 14. Identifying fractures – Core analysis
  • 15. Identifying fractures – Borehole image log
  • 16. Identifying fractures – Dynamic data Data for tested interval Hn = 60 Phi = 0.063 Sw = 0.581 K = 0.051 KH from well test interpretations (md.ft) 114 KH from logs (md.ft) 3.1 FCI: Fracture capacity index (Narr et al., 2006) 37.3 Escobedo, 2012
  • 17. Identifying fractures – Dynamic data Data for tested interval Hn = 20 Phi = 0.051 Sw = 0.593 K = 0.035 KH from well test interpretations (md.ft) 15 KH from logs (md.ft) 0.70 FCI: Fracture capacity index (Narr et al., 2006) 21.4 Escobedo, 2012
  • 18. Identifying fractures – Dynamic data Oil, bbl/d Total fluid, bbl/d Water cut, % Figure from Jolley et al, 2008 Type II (Pozo, 2008)
  • 19. 0 200 400 600 800 1000 1200 0 100 200 300 400 500 CaudalbrutO(bbls/d) # de fracturas abiertas Relación Fracturas abiertas y Caudal Inicial Bruto 8063D 8031 8052 8062D 8067D Benito & Pozo, 2008 Identifying fractures – Fractures and production B A C D E
  • 20. Geomechanical model– source of information Sv Shmax ShminPp, E,v,UCS Sv: Vertical stress (Overburden) – Density logs / cuttings Shmin: least principal stress – Minifrac tests / leak-off tests / Vp-Vs / drilling data Shmax: Maximum horizontal stress – borehole image logs (stress polygon) / correlations (Pp-Shmin-UCS) Pp: Pore pressure – DST / MDT / Seismic data Stress orientation: Caliper logs (multiple arms), Borehole image logs, velocity anisotropy, structural maps, 3D seismica data, focal plane mechanism Young (E) modulus, poisson’s ratio (v): Vp-Vs-Density / laboratory test on cores Unconfined compressive strength (UCS), friction angle (Ф): Vp-Vs-Density / laboratory test on cores
  • 21. Source: Pozo, 2008 Geomechanical model: Elastic modulus Source: Petrobras, 2009 G: Shear modulus E: Young’s modulus K: Bulk modulus Vp: Compressional waveus Vs: Shear waves
  • 22. A partir del Perfil Sónico de Onda Completa se obtienen los módulos dinámicos, los cuales deben ser ajustados con los datos de laboratorio para obtener los estáticos para diseñar. Es necesario disponer de las curvas de tiempo de tránsito compresional y de cizalla obtenidas del tren de ondas completo registrado por la Herramienta Sónica, )/1(* )/34(* 10*34,1 222 22 10 tctsts tctsRhob Ed    )/1(*2 /2 22 22 tcts tcts d    Rhob: Curva Perfil Densidad [gr/cc] tcTiempo de tránsito compresional [ s/ft] tsTiempo de tránsito de cizalla [  s/ft] Geomechanical model: Elastic modulus
  • 23. Geomechanical model: Cohesion-UCS Zoback, 2007 Source: Petrobras, 2009
  • 24. Geomechanical model: Pore pressure 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 0 500 1000 1500 2000 2500 3000 3500 Pressure (psi) Depth(ss-ft) DEPLETION Gi= 0.58 psi/ft Pore pressure gradient – Mogollon fm. Zoback, 2007 Pressure History 0 500 1000 1500 2000 2500 3000 3500 Oct-54 Mar-60 Sep-65 Mar-71 Ago-76 Feb-82 Ago-87 Ene-93 Jul-98 Ene-04 Jul-09 Date Pressure(psi)
  • 25. Geomechanical model – Stress Orientation Breakout analisys Fracture system – Upper Mogollon Source: E. Bustamante, 2013 Azimuth of Shmax: 56°
  • 26. Geomechanical model – Sv ; Jaeger and cook, 1971 Average density in sedimantary rocks: 23 Mpa /Km (aprox 1 psi/ft) Pp (psi/ft): 0.38 Sv(psi/ft): 1.089 Overburden gradient for the area:
  • 27. Geomechanical model – Shmin Minifrac test Well – Mogollon Fm. Depth (ft): 6501 ISIP (psi): 3860.9 Smin (psi/ft):0.594 K (md):0.69 Depth (ft): 6212 ISIP (psi): 3670 Smin (psi/ft): 0.591 K (md): 1.27 Source: Guisado, L.
  • 28. 0.50 1.00 1.50 2.00 2.50 3.00 0.50 1.00 1.50 2.00 2.50 3.00 Shmax(PSI/Foot Sh min (PSI/Foot) RF SS NF Geomechanical model: Constraining Shmax from Wellbore Failure Tensile fractures Breakouts for given UCS Shmin from minifrac Pp : 0.380 psi/ft Azimuth of Shmax: 56° Shmin: 0.591 psi/ft Sv: 1.089 psi/ft Biot coefficient=1 Posson’s ratio=0.23 Breakout width = 0° Diff. Mud pressure=0.08 psi/ft Ceff=2.5 psi/ft Sliding friction: 0.65 Failure criterion = Mohr-Coulomb Tensional stregth =0 psi/ft 0.593 psi/ft 0.962 psi/ft Smax=0.75
  • 29. Geomechanical model: Fault mechanism Anderson´s classification scheme for relative stress magnitudes in normal faulting regions. Earthquake focal mechanisms (right). Normal fault on borehole image log in a vertical well 0 1000 2000 3000 4000 5000 6000 7000 8000 0 2000 4000 6000 8000 10000 Depth(ft) Stress (psi) Hydrostatic Pp Shmin (MiniFrac) Pore Pressure (Model) Shmax Sv
  • 30. Modeling natural fracture networks: Peña Negra Peña Negra Model
  • 31. Source: Pozo, 2008 Source: Petrobras, 2008 Loss of circulation and fracture gradients
  • 32. 1957 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 01 03 05 07 09 11 13 15 0.1 0.5 1 5 10 50 100 500 1000 FECHA LX.PetMOdc Completion EA1505 Completion EA1547 Completion EA1607 Completion EA1659 Completion EA1678 Completion EA1719 Completion EA1722 Completion EA1737 Completion EA1738 Completion EA1748 Completion EA1762 Completion EA1763 Completion EA1764 Completion EA1831 Completion EA1867 Completion EA1887 Completion EA1948 Completion EA2493 Completion EA5653D Completion EA5778 Completion EA5997 Completion EA6006 Completion EA6747 Completion EA7571EA1505 EA1547 EA1607 EA1659 EA1678 EA1719 EA1722 EA1737 EA1738 EA1748 EA1762 EA1763 EA1764 EA1831 EA1867 EA1887 EA1948 EA2493 EA5633 EA5653D EA5778 EA5997 EA6006 EA6747 EA7571 Abandonado Bombeo Mecanico Cerrado Temporario Suab por Csg Source: Escobedo, D. Connectivity of fractures - Peña Negra area
  • 33. EA1618 EA1626 EA1647 EA1658 EA1674EA1718 EA1722 EA1748 EA1762 EA5651 EA5665 EA5782 EA8096D Bombeo Mecanico Suab por Tbg 1959 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 01 03 05 07 09 11 13 15 0.1 0.5 1 5 10 50 100 500 1000 FECHA LX.PetMOdc Completion EA1618 Completion EA1626 Completion EA1647 Completion EA1658 Completion EA1674 Completion EA1718 Completion EA1722 Completion EA1748 Completion EA1762 Completion EA5651 Completion EA5665 Completion EA5782 Completion EA8096D Connectivity of fractures - Peña Negra area Source: Escobedo, D.
  • 34. -5000 -5000 CB-044CB-048 1505 1607 1659 1678 1719 1722 1737 17381748 1763 1764 1831 1867 1887 5633 5653D 5679 57785997 6006 6747 17627571 2493 1948 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4600 4800 5000 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4600 4800 5000 -9600-8800-8000-7200-6400-5600-4800 -9600-8800-8000-7200-6400-5600-4800 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 PHIEQ [ft3/ft3] 0 200 400 600m 472000 474000 472000 474000 952600095280009530000 952600095280009530000-5000 -5000 CB-044CB-048 1505 1607 1659 1678 1719 1722 1737 17381748 1763 1764 1831 1867 1887 5633 5653D 5679 57785997 6006 6747 17627571 2493 1948 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4600 4800 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4600 4800 -8800-8000-7200-6400-5600-4800-4000 -7500.000000 -7250.000000 -7000.000000 -6750.000000 -6500.000000 -6250.000000 -6000.000000 -5750.000000 -5500.000000 vation depth [ft] 0 200 400 600m F_Flood S/F_Distal_fan S_Mid_fan C_Proximal_fan Alluvial Facies 472000 474000 472000 474000 952600095280009530000 952600095280009530000 A Modelo estratigráfico - Estructural Modelo de electrofacies Modelo de porosidad A A’ Armazón estratigráfico-estructural 3D 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3 -8800-8000-7200-6400-5600-4800-4000 -7500.000000 -7250.000000 -7000.000000 -6750.000000 -6500.000000 -6250.000000 -6000.000000 -5750.000000 -5500.000000 Elevation depth [ft] 0 200 400 60 Chorro Sup. Chorro Inf. Fuente Medio Inferior Zonas -5000 CB-044CB-048 1505 1607 1659 1678 1719 1722 1737 17381748 1764 1831 1867 1887 5653D 5679 6006 6747 7571 2493 1948 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4600 4800 5000 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4600 4800 5000 -9600-8800-8000-7200-6400-5600-4800 -9600-8800-8000-7200-6400-5600-4800 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 PHIEQ [ft3/ft3] 0 200 400 600m 472000 474000 95280009530000 95280009530000 -5000 CB-044CB-048 1505 16591719 1722 1737 17381748 1764 1831 1867 1887 5653D 5679 6006 2493 1948 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4600 4800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4600 4800 -8800-8000-7200-6400-5600-4800-4000 00000 00000 00000 00000 00000 00000 00000 00000 00000 depth [ft] 0 200 400 600m F_Flood S/F_Distal_fan S_Mid_fan C_Proximal_fan Alluvial Facies 472000 474000 95280009530000 95280009530000 A’ A A’ A A’ A A’ A A’ -5000 -5000 CB-044CB-048 1505 1607 1659 1678 1719 1722 1737 17381748 1763 1764 1831 1867 1887 5633 5653D 5679 57785997 6006 6747 17627571 2493 1948 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4600 4800 5000 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4600 4800 5000 -9600-8800-8000-7200-6400-5600-4800 -9600-8800-8000-7200-6400-5600-4800 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Water saturation 0 200 400 600m 472000 474000 472000 474000 952600095280009530000 952600095280009530000 Modelo de Saturación A A’ A A’ -500 6 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 42 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 42 -9600-8800-8000-7200-6400-5600-4800 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Water saturation 0 200 400 600m 4 95280009530000 Geological Model for Peña Negra area
  • 35. Fracture sets characterization – Fractures in lithofacies
  • 36. Fracture sets characterization – Fracture type classification
  • 37. Fracture sets characterization – Fracture type classification
  • 38. Fracture sets characterization – Fracture type & Intensity
  • 39. Fracture sets characterization – Fracture type & Intensity
  • 40. Fracture sets characterization – Geometry  Lenght of fractures were determined from outcrops in Qda Salado. Fractures with great extent are mainly vertical to sub vertical. A power law was assumed. Mogollon Fm. in Qda Salado showing the geometry of the natural fractures
  • 41. Fracture sets characterization – Aperture  Apertures were measured in outcrops, cores and image logs. A log-normal distribution was given to the model.
  • 42. Fracture sets characterization – Fracture Orientation
  • 43. Modeling natural fracture networks Main Strike N50°E Main Dip angle 65° Main Strike N°50°E Main Dip angle 70° 1.83 mm 80 80 Moderate High Fracture parameter for modeling natural fracture networks 0.61 mm Fracture type model Characteristics Mean fracture density (#Fract/ft) Orientation Mean Length (m) Mean Aperture (mm) Facies with partially open fracture and moderate fracture density Facies with Open fractures and high fracture density 0.78 1.32
  • 45. Modeling natural fracture networks - Upscaling
  • 46. General Information: Fracture Sigma • Black-Oil Simulator Eclipse 100 • Cells = 30 x 52 x 46 • Average Dimensions = 100 m x 100 m x 50 ft • Total Cells = 68 850 • No Gas-Oil Contact • Water-Oil Contact = -7600 ft FRACTURE PARAMETERS • Aperture : 0.02 inches • Density: 0.2 frac per foot • Lenght : <25-180> foot • Orientation: 50° azimuth 65° dip Source: Escobedo, 2012 Numerical Reservoir Simulation
  • 47. Validation of the reservoir model – History match for the whole model Initial history matching results for the Peña Negra model Initial Pressure, psi 3150 Current Pressure, psi 400 Cumulative Oil, MMBls 6.5275 Original Oil In Place, MMbls 18.65 Recovery Factor m+f, % 35%
  • 48. Validation of the reservoir model – History match for one well in the model
  • 49. Validation of the reservoir model – Oil left behind
  • 50. The optimal well orientation – Critically stressed fractures Zoback, 2007
  • 51. Nelson et.al. (2000) Discrete fracture network The optimal well orientation – Critically stressed fractures Shmax Data: 6100 ft – 7000ft N°_fractures: 210 Azimuth: 55.4° Average Dip: 53.5° τ>μσ Fractures close to failure are most likely to maintain permeability!!!
  • 52. The optimal well orientation This methodology is being extrapolated to other parts of the block X, as in the field of Somatito where new drilling strategies are being proposed. Oriented well Fracture type zones model Discrete fracture network Peña Negra Model
  • 53. q - 2015 q - 2024 q - 2035 cum - 2015 cum - 2024 cum - 2035 vertical 4,578 1,100 514 4,578 5,451,870 8,399,643 horizontal 7,141 1,063 349 7,141 6,600,234 9,065,511 ratio h/v 1.56 0.97 0.68 1.56 1.21 1.08 pozos vertical 3 3 3 3 3 3 pozos equiv 4.68 2.90 2.04 4.68 3.63 3.24 - 2.00 4.00 6.00 1 2 3 Series1 Numerical Reservoir Simulation – Horizontal well
  • 54. Conclusions  The construction of the natural fracture network model was validated by the simulation model.  Fluid flows come mainly from natural fracture networks in Mogollon formation (Tight Sand Reservoir).  Fractures are open in the direction of the least principal stress and align with the direction of the maximun horizontal stress.  It is still possible to find undrained sets of fractures in the direction of the least principal stress and establish new development strategies.  Possibility of drilling additional wells in order to obtain a larger contact area in these sets of fractures and to increase efficiency in the recovery within the reservoir.
  • 55. THANK YOU FOR YOUR ATTENTION

Notas del editor

  1. No hay contacto es capilaridad