Se está descargando su SlideShare. ×
0
ÁNGULOS EN POSICIÓN NORMAL
ÁNGULOS EN POSICIÓN NORMAL
ÁNGULOS EN POSICIÓN NORMAL
ÁNGULOS EN POSICIÓN NORMAL
ÁNGULOS EN POSICIÓN NORMAL
ÁNGULOS EN POSICIÓN NORMAL
ÁNGULOS EN POSICIÓN NORMAL
Próxima SlideShare
Cargando en...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

ÁNGULOS EN POSICIÓN NORMAL

90,266

Published on

Published in: Educación
1 Comment
2 Me gusta
Estadísticas
Notas
Sin descargas
reproducciones
reproducciones totales
90,266
En SlideShare
0
De insertados
0
Número de insertados
0
Acciones
Compartido
0
Descargas
174
Comentarios
1
Me gusta
2
Insertados 0
No embeds

Denunciar contenido
Marcada como inapropiada Marcar como inapropiada
Marcar como inapropiada

Seleccione la razón para marcar esta presentación como inapropiada.

Cancelar
No notes for slide

Transcript

  • 1. ÁNGULO TRIGONOMÉTRICO EN POSICIÓN NORMAL, ESTANDAR O REGULAR Es un ángulo trigonométrico generado en un plano cartesiano en el origen de coordenadas y cuyo lado inicial coincide con el eje positivo de las abscisas. El lado final puede ubicarse en cualquier cuadrante o semieje del plano cartesiano. X Y Lado inicial Lado final Vértice O 
  • 2. CLASIFICACIÓN Los ángulos en posición normal pueden clasificarse de acuerdo a la posición de sus lados finales o lados terminales de la siguiente manera: ÁNGULOS QUE PERTENECEN A ALGÚN CUADRANTE ÁNGULOS CUADRANTALES Un ángulo pertenece al IC, IIC, IIIC o IVC si solo si dichos ángulos se encuentran en posición normal y su lado final se ubica en el IC, IIC, IIIC o IVC respectivamente. Son aquellos ángulos en posición normal cuyo lado final coinciden con algún eje del plano cartesiano.
  • 3. Pertenece al segundo cuadrante  Є IIC Pertenece al tercer cuadrante β Є IIIC Pertenece al primer cuadrante  Є IC Ángulo cuadrantal Ángulo cuadrantal Ángulo cuadrantal X Y  X Y β X Y  β X Y X Y   X Y
  • 4. Pertenece al cuarto cuadrante  Є IVC Es un ángulo trigonométrico pero no está en posición normal. Ángulo cuadrantal Ángulo cuadrantal Es un ángulo trigonométrico pero no está en posición normal. Es un ángulo trigonométrico pero no está en posición normal. X Y  θ X Y X Y   X Y X Y β X Y 
  • 5. DEFINICIÓN DE RAZONES TRIGONOMÉTRICAS DE ÁNGULO TRIGONOMÉTRICO EN POSICIÓN NORMAL, ESTANDAR O REGULAR Sea P(x;y) ≠ Q(0;0) y θ es un ángulo en posición normal. Si P es un punto perteneciente al lado final del ángulo θ , entonces las razones trigonométricas de θ se definen de la siguiente manera: Donde “r” es el radio vector de P, entonces: Sen θ = y r Csc θ = r y Cos θ = x r Sec θ = r x Tg θ = y x Ctg θ = x y r = x 2 + y 2
  • 6. Ejemplo 1: En la figura calcule los valores de las razones trigonométricas de  SOLUCIÓN: Cálculo del radio vector de P: ( x ; y ) r = 5 Luego, aplicando definición tenemos: X Y  P( –4 ; –3 ) r = x 2 + y 2 = ( –4 ) 2 + ( –3 ) 2 = 16+ 9 = 25 y r Sen θ = x r Cos θ = y x Tg θ = x y Ctg θ = r x Sec θ = r y Csc θ = 5 – 3 Sen θ = – 4 5 Cos θ = 5 Csc θ = – 3 Tg θ = – 4 – 3 = – 3 5 = – 4 5 = 4 3 Ctg θ = – 4 – 3 = 3 4 5 Sec θ = – 4 = – 5 4 = – 5 3
  • 7. Ejemplo 2: En la figura calcule los valores de las razones trigonométricas de  SOLUCIÓN: Cálculo del radio vector de P: ( x ; y ) r = 13 Luego, aplicando definición tenemos:  P( 5 ; –12 ) X Y r = x 2 + y 2 = ( 5 ) 2 + ( –12 ) 2 = 25 + 144 = 169 y r Sen θ = x r Cos θ = y x Tg θ = x y Ctg θ = r x Sec θ = r y Csc θ = 13 – 12 Sen θ = 5 13 Cos θ = = 12 13 – 5 – 12 Tg θ = = 12 5 – 5 – 12 Ctg θ = = 5 12 – 13 5 Sec θ = – 12 13 Csc θ = = 13 12 –

×