ÁNGULO TRIGONOMÉTRICO EN POSICIÓN NORMAL, ESTANDAR O REGULAR Es un ángulo trigonométrico generado en un plano cartesiano e...
CLASIFICACIÓN Los ángulos en posición normal pueden clasificarse de acuerdo a la posición de sus lados finales o lados ter...
Pertenece al segundo cuadrante    Є  IIC Pertenece al tercer cuadrante β   Є  IIIC Pertenece al primer cuadrante    Є  I...
Pertenece al cuarto cuadrante    Є  IVC Es un ángulo trigonométrico pero no está en posición normal. Ángulo cuadrantal Án...
DEFINICIÓN DE RAZONES TRIGONOMÉTRICAS DE ÁNGULO TRIGONOMÉTRICO EN POSICIÓN NORMAL, ESTANDAR O REGULAR Sea P(x;y) ≠ Q(0;0) ...
Ejemplo 1: En la figura calcule los valores de las razones trigonométricas de     SOLUCIÓN: Cálculo del radio vector de P...
Ejemplo 2: En la figura calcule los valores de las razones trigonométricas de     SOLUCIÓN: Cálculo del radio vector de P...
Próxima SlideShare
Cargando en...5
×

ÁNGULOS EN POSICIÓN NORMAL

90,691

Published on

Published in: Educación
1 Comment
3 Me gusta
Estadísticas
Notas
Sin descargas
reproducciones
reproducciones totales
90,691
En SlideShare
0
De insertados
0
Número de insertados
0
Acciones
Compartido
0
Descargas
180
Comentarios
1
Me gusta
3
Insertados 0
No embeds

No notes for slide

ÁNGULOS EN POSICIÓN NORMAL

  1. 1. ÁNGULO TRIGONOMÉTRICO EN POSICIÓN NORMAL, ESTANDAR O REGULAR Es un ángulo trigonométrico generado en un plano cartesiano en el origen de coordenadas y cuyo lado inicial coincide con el eje positivo de las abscisas. El lado final puede ubicarse en cualquier cuadrante o semieje del plano cartesiano. X Y Lado inicial Lado final Vértice O 
  2. 2. CLASIFICACIÓN Los ángulos en posición normal pueden clasificarse de acuerdo a la posición de sus lados finales o lados terminales de la siguiente manera: ÁNGULOS QUE PERTENECEN A ALGÚN CUADRANTE ÁNGULOS CUADRANTALES Un ángulo pertenece al IC, IIC, IIIC o IVC si solo si dichos ángulos se encuentran en posición normal y su lado final se ubica en el IC, IIC, IIIC o IVC respectivamente. Son aquellos ángulos en posición normal cuyo lado final coinciden con algún eje del plano cartesiano.
  3. 3. Pertenece al segundo cuadrante  Є IIC Pertenece al tercer cuadrante β Є IIIC Pertenece al primer cuadrante  Є IC Ángulo cuadrantal Ángulo cuadrantal Ángulo cuadrantal X Y  X Y β X Y  β X Y X Y   X Y
  4. 4. Pertenece al cuarto cuadrante  Є IVC Es un ángulo trigonométrico pero no está en posición normal. Ángulo cuadrantal Ángulo cuadrantal Es un ángulo trigonométrico pero no está en posición normal. Es un ángulo trigonométrico pero no está en posición normal. X Y  θ X Y X Y   X Y X Y β X Y 
  5. 5. DEFINICIÓN DE RAZONES TRIGONOMÉTRICAS DE ÁNGULO TRIGONOMÉTRICO EN POSICIÓN NORMAL, ESTANDAR O REGULAR Sea P(x;y) ≠ Q(0;0) y θ es un ángulo en posición normal. Si P es un punto perteneciente al lado final del ángulo θ , entonces las razones trigonométricas de θ se definen de la siguiente manera: Donde “r” es el radio vector de P, entonces: Sen θ = y r Csc θ = r y Cos θ = x r Sec θ = r x Tg θ = y x Ctg θ = x y r = x 2 + y 2
  6. 6. Ejemplo 1: En la figura calcule los valores de las razones trigonométricas de  SOLUCIÓN: Cálculo del radio vector de P: ( x ; y ) r = 5 Luego, aplicando definición tenemos: X Y  P( –4 ; –3 ) r = x 2 + y 2 = ( –4 ) 2 + ( –3 ) 2 = 16+ 9 = 25 y r Sen θ = x r Cos θ = y x Tg θ = x y Ctg θ = r x Sec θ = r y Csc θ = 5 – 3 Sen θ = – 4 5 Cos θ = 5 Csc θ = – 3 Tg θ = – 4 – 3 = – 3 5 = – 4 5 = 4 3 Ctg θ = – 4 – 3 = 3 4 5 Sec θ = – 4 = – 5 4 = – 5 3
  7. 7. Ejemplo 2: En la figura calcule los valores de las razones trigonométricas de  SOLUCIÓN: Cálculo del radio vector de P: ( x ; y ) r = 13 Luego, aplicando definición tenemos:  P( 5 ; –12 ) X Y r = x 2 + y 2 = ( 5 ) 2 + ( –12 ) 2 = 25 + 144 = 169 y r Sen θ = x r Cos θ = y x Tg θ = x y Ctg θ = r x Sec θ = r y Csc θ = 13 – 12 Sen θ = 5 13 Cos θ = = 12 13 – 5 – 12 Tg θ = = 12 5 – 5 – 12 Ctg θ = = 5 12 – 13 5 Sec θ = – 12 13 Csc θ = = 13 12 –
  1. ¿Le ha llamado la atención una diapositiva en particular?

    Recortar diapositivas es una manera útil de recopilar información importante para consultarla más tarde.

×