SlideShare una empresa de Scribd logo
1 de 7
Descargar para leer sin conexión
Recurrent implantation failure:
gamete and embryo factors
Mausumi Das, M.D., and Hananel E. G. Holzer, M.D.
Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec,
Canada




Chromosomal abnormalities, sperm DNA damage, zona hardening, inadequate culture conditions, and suboptimal embryo development all play a sig-
nificant role in the etiology of recurrent implantation failure. Evidence suggests that preimplantation genetic screening does not increase implantation or
live birth rates. Comparative genomic hybridization array and analysis of single nucleotide polymorphisms could enable a more comprehensive screening
of chromosomes. Assisted hatching may help to overcome zona hardening in selected cases. Optimal culture conditions and blastocyst transfer could
contribute toward improving implantation and pregnancy rates. Novel embryo assessment and selection procedures, such as time-lapse imaging and
metabolomics, may help in better evaluation of embryo quality and viability and help in selecting embryos with the highest implantation potential.
The safety and efficacy of emerging treatment modalities should be evaluated in prospective randomized clinical trials before being applied in routine
clinical practice. (Fertil SterilÒ 2012;97:1021–7. Ó2012 by American Society for Reproductive Medicine.)
Key Words: Implantation failure, IVF, embryo, oocyte, sperm, chromosome




D
         espite the immense strides that             depends on the synchronization of var-               inversions, and deletions, have been
         have been made in the field of               ious factors such as the quality of the              demonstrated in women with high-
         IVF many patients still experi-             embryo, optimal culture conditions,                  order RIF (3). In support of these find-
ence recurrent implantation failure.                 the receptivity of the endometrium,                  ings, Stern et al. (4) observed an overall
Besides causing immense distress to                  and the maternal immune system. The                  chromosomal abnormality rate of 2.5%
couples who require multiple cycles of               aim of this article is to review the estab-          (13/514) in patients with RIF. Most
treatment, it significantly increases the             lished etiologies affecting embryo de-               of these abnormalities were chromo-
cost of the procedure. Recurrent implan-             velopment in patients with RIF and to                somal translocations (reciprocal and
tation failure (RIF) may be defined as the            evaluate recent advances in oocyte                   Robertsonian). They proposed that bal-
repeated transfer of morphologically                 and embryo selection, as well as current             anced parental translocations may be
good embryos to a normal uterus with-                recommended management strategies.                   implicated in the pathogenesis of im-
out achieving successful implantation                                                                     plantation failure in IVF, and that ge-
and a clinical pregnancy. Traditionally,             ETIOLOGY                                             netic evaluation should be considered
failure to achieve a pregnancy after two             Chromosomal abnormalities, inade-                    as part of the investigation of these cou-
to six IVF cycles, in which more than                quate culture conditions, suboptimal                 ples (4).
10 high-grade embryos were transferred               embryo development, zona hardening,                       Aneuploid embryos have decreased
to the uterus was defined as RIF (1).                 and improper ET technique all play an                ability to undergo successful implanta-
However, in most IVF programs, failure               important role in the etiology of RIF.               tion and result in a viable pregnancy,
of three cycles in which reasonably                                                                       but cannot be distinguished from nor-
good embryos were transferred would                                                                       mal embryos using standard morpho-
warrant investigation (2). In spite of op-           Chromosomal Abnormality                              logical criteria. Data obtained from
timization of treatment protocols and                It is now well established that a major              embryos and oocytes of patients under-
huge advancements in laboratory tech-                cause of repeated implantation failure               going preimplantation genetic screen-
nologies, the management of RIF poses                after IVF is a high frequency of chromo-             ing (PGS) because of advanced age,
a major challenge to clinicians and em-              somal aneuploidy. An increased inci-                 recurrent pregnancy losses, or multiple
bryologists universally. The process of              dence of chromosomal abnormalities,                  failed IVF cycles, support the concept
embryo implantation in the uterus                    such as translocations, mosaicism,                   that many embryos and eggs obtained
                                                                                                          during IVF are intrinsically abnormal
Received February 2, 2012; accepted February 21, 2012; published online March 15, 2012.
                                                                                                          and thus fail to implant (5). Using fluo-
M.D. has nothing to disclose. H.E.G.H. has nothing to disclose.                                           rescence in-situ hybridization (FISH) on
Reprint requests: Hananel E. G. Holzer, M.D., Department of Ob & Gyn, McGill University Heath Cen-        blastomeres from biopsied day 3 em-
     ter, McGill Reproductive center, 687 Pine Avenue West, Montreal, Quebec H4W 2A6, Canada
     (E-mail: hananel.holzer@muhc.mcgill.ca).                                                             bryos for chromosomes 13, 16, 18, 21,
                                                                                                          22, X, and Y, Pehlivan et al. (6) found
Fertility and Sterility® Vol. 97, No. 5, May 2012 0015-0282/$36.00
Copyright ©2012 American Society for Reproductive Medicine, Published by Elsevier Inc.
                                                                                                          that there was a significantly higher
doi:10.1016/j.fertnstert.2012.02.029                                                                      rate of chromosomal abnormalities

VOL. 97 NO. 5 / MAY 2012                                                                                                                            1021
VIEWS AND REVIEWS


(67%) compared with controls (36%) in patients with three or       suboptimal components of a culture system that could
more failed IVF attempts. In another study, using comparative      lead to impaired embryo development have been described
genomic hybridization (CGH), Voullaire et al. (7) detected         (20). These include osmolality testing, pH measurements,
chromosomal abnormalities in 76/126 (60%) single blasto-           and sperm bioassay (20). In some instances of RIF, individ-
meres biopsied from embryos before implantation in 20              ualized specific culture conditions may be required for opti-
women with RIF after IVF. The abnormalities detected in their      mal embryo development.
study included aneuploidy for one or two chromosomes as                 Implantation rates and PRs after ET depend on the quality
well as complex chromosomal abnormality. They suggested            and developmental potential of embryos selected for transfer.
that the disruption of the normal sequence of chromosome           Suboptimal embryo quality has an adverse effect on implan-
replication and segregation in early human embryos, caused         tation and PRs. Evidence suggests that ET technique can
either by maternal cytoplasmic factors or mutations in cell        influence the success or failure of embryo implantation. Uter-
cycle control genes, may be a common cause of RIF.                 ine contractions, blood or mucous on the catheter tip, endo-
    A higher incidence of sperm chromosomal abnormalities          metrial trauma, and expulsion of embryos have all been
in patients with normal karyotype and RIF has also been            associated with unsuccessful ETs (21).
reported. Pregnancy rates (PR) and implantation rates were re-
ported to be significantly lower in patients with teratozoosper-    MANAGEMENT OPTIONS
mia. Rubio et al. (8) analyzed sperm aneuploidy and diploidy
                                                                   Various management options have been proposed to over-
rates for chromosomes 13, 18, 21, X, and Y in patients with nor-
                                                                   come the challenges of chromosomal abnormality and subop-
mal karyotypes using dual and triple-color FISH techniques.
                                                                   timal embryo development. Table 1 shows the various
They reported an increased incidence of sex chromosome dis-
                                                                   etiological factors contributing toward defective embryo de-
omies in couples with RIF after intracytoplasmic sperm injec-
                                                                   velopment and their proposed management strategies.
tion (ICSI). In addition, centrosome anomalies resulting in
chaotic mosaics were most likely of paternal origin (9, 10).
    Evidence suggests that sperm DNA damage is associated          Chromosomal Abnormality
with lower PRs after IUI and IVF (11). In addition, increased      In view of the higher incidence of chromosomal anomalies,
levels of sperm DNA damage have been linked with an                parental karyotype is recommended as part of the work-up
increased risk of pregnancy loss after IVF and ICSI (12). There-   in RIF (4). Preimplantation genetic screening has also been in-
fore there is considerable evidence to suggest that chromo-        creasingly used in the past decade, the rationale being that an
somal abnormalities, both maternal and paternal, play a key        increased PR could be achieved by selecting only chromoso-
role in the etiology of repeated implantation failure in IVF.      mally normal embryos for transfer. The main biopsy methods
                                                                   used for PGS include removal of one or two polar bodies from
                                                                   the unfertilized oocyte or the zygote, removal of one or two
Zona Hardening
                                                                   blastomeres at the cleavage stage, or removal of several cells
The mammalian oocyte is surrounded by an acellular matrix,         at the blastocyst stage (22). Polar body biopsy analyses mater-
the zona pellucida (ZP), which is composed of glycoproteins,       nal causes of chromosomal abnormality and is an indirect
carbohydrates, and ZP-specific proteins (13). It plays a role in    method of screening for aneuploid embryos. It has, however,
sperm binding, induction of the acrosome reaction, and pro-
motes sperm–egg fusion (14). The zona hardens naturally af-
ter fertilization to prevent polyspermic fertilization, protects
the integrity of the preimplantation embryo, and facilitates        TABLE 1
oviductal transport (15). The zona is required during early
                                                                    Management options for factors affecting embryo development and
cleavage stages to maintain the integrity of the inner cell         implantation in recurrent implantation failure.
mass (ICM), but it is usually shed during expansion of the
blastocyst, allowing implantation to occur (16). Upon reach-        Management options
ing the blastocyst stage, physical expansion of the embryonic       Chromosomal abnormality
mass along with the action of lysins produced by the cleaved          Preimplantation genetic screening
                                                                      Comparative genomic hybridization array
embryo and/or the uterus, all play a role in zona hatching            Single nucleotide polymorphisms
(17–19). Failure of the ZP to rupture after blastocyst              Zona hardening
expansion, resulting in impaired hatching, could contribute           Assisted hatching
to RIF (15). Prolonged exposure of oocytes and embryos to           Suboptimal culture
                                                                      Optimal culture media
artificial culture conditions may also adversely affect the            Blastocyst transfer
embryo's ability to undergo normal hatching and could                 Coculture
impair successful implantation (15).                                  ZIFT
                                                                    Assessment of embryo quality and viability
                                                                      Time-lapse imaging—EmbryoScope
                                                                      Metabolomics
Embryo Culture and ET Technique                                       Proteomics
The use of high quality, standardized culture media is funda-       Improving ET technique
                                                                    Note: ZIFT ¼ zygote intrafallopian transfer.
mental to the success of any IVF program. Inadequate cul-
                                                                    Das. Recurrent implantation failure. Fertil Steril 2012.
ture conditions could play a role in RIF. Assays to identify

1022                                                                                                                           VOL. 97 NO. 5 / MAY 2012
Fertility and Sterility®


been suggested that if oocyte maturation to the metaphase II        producing a unique DNA fingerprint for each embryo tested
stage is completed just before the polar body biopsy, it may        (33). However, a disadvantage of SNP microarrays is a lack
result in damage to the meiotic spindle of the oocyte (23).         of diagnostic accuracy at individual SNP loci as well as
Cleavage stage biopsy is the most commonly used method              high cost of microarrays and labeling techniques (33). In the
for screening preimplantation embryos for aneuploidy (24).          future, PGS-FISH may be replaced by comprehensive proce-
However, cleavage stage embryos have an increased inci-             dures such as array CGH and SNP microarrays. However,
dence of mosaicism (22). Biopsy at the blastocyst stage may         the efficacy and practicality of these procedures in improving
have a smaller risk of aneuploidy than embryo biopsy at the         implantation and live birth rates in patients with RIF will have
cleavage stage, because mosaic embryos have a higher pro-           to be determined in well-designed prospective randomized
portion of aneuploid cells on day 2/3 and will not develop          controlled trials before they can be widely applied in clinical
to the blastocyst stage (23).                                       practice.
     Although initial studies suggested that PGS with FISH
could be used to achieve favorable implantation and PRs in
patients with RIF (6, 25), evidence from recent randomized          Assisted Hatching
controlled trials does not support these findings (26, 27). In       Elasticity and thinning of the ZP are essential prerequisites for
a prospective randomized controlled trial, Blockeel et al.          successful embryo hatching and implantation (15, 37). It has
(26) observed that PGS did not increase the implantation            been observed that cleaved embryos with a good prognosis for
rates after IVF-ICSI in women with RIF. In this study, the in-      implantation have reduced zona thickness (38). It has been
vestigators analyzed chromosomes 13, 16, 18, 21, 22, X, and         suggested that an artificial opening made in the ZP may
Y using FISH on blastomeres of day 3 cleavage stage embryos         facilitate the hatching process (39). Cohen et al. (40)
in the study group. There was a significant difference in live       observed a higher implantation rate per ET after partial
birth rate between the PGS group (21%) and the control group        zona dissection. The implantation window occurs 1–2 days
(39%). The miscarriage rate did not differ between the two          earlier in women undergoing ovarian stimulation than in
groups (26, 27). A recent meta-analysis of randomized               natural cycles (41). Embryos with artificial gaps in the zona
controlled trials demonstrated that in women with advanced          initiate hatching earlier than zona intact embryos,
maternal age as well as women with repeated implantation            compensating for the reduced development rate in vitro
failure, PGS significantly lowered live birth rates after            (42). It has also been proposed that breaching the integrity
IVF (27).                                                           of the zona could enhance the transport of nutrients from
     The reasons that have been proposed for the inefficiency        the incubating media, which in turn would augment
of PGS are possible damage from the biopsy procedure, failure       embryo development and blastocyst formation (43). It could
rate from the technique, limitations of the FISH analysis, and      also serve as a channel for a two-way exchange across the
embryo mosaicism (27, 28). In addition, the efficacy of FISH is      ZP of metabolites and growth factors (42).
limited because only a few chromosomes can be detected                   The artificial rupture of the ZP is known as assisted hatch-
simultaneously in a single biopsied cell. The lack of               ing and aims to improve implantation and clinical PRs. Var-
usefulness of PGS may be because the tested blastomere is           ious techniques have been used to aid zona hatching. These
not representative for the whole embryo (29). The American          involve the creation of an opening in the ZP either by me-
Society of Reproductive Medicine (ASRM), the European               chanical partial zona dissection (39), chemically by zona dril-
Society of Human Reproduction and Embryology (ESHRE),               ling with acid Tyrode (42), chemical zona thinning (44),
and the British Fertility Society have concluded that PGS           enzymatic treatment (45), laser-assisted hatching (46, 47),
does not improve the live birth rates in patients with RIF,         or by using a piezo-micromanipulator (48).
advanced maternal age, or recurrent pregnancy loss (30–32).              The clinical relevance of assisted hatching procedures in
     Alternative approaches have been proposed to overcome          the management of RIF is controversial. Although some stud-
the limitations of FISH for PGS. These include CGH or the           ies have reported that assisted zona hatching improves PRs
analysis of single nucleotide polymorphisms (SNPs) (33, 34).        and implantation rates in patients with RIF (49, 50), other
Comparative genomic hybridization is a DNA-based method,            investigators have not reported any advantage (46). Recent
which is applicable to cells in any phase of the cell cycle (33).   studies seem to suggest that assisted hatching may be of
The CGH microarray enables a more comprehensive screening           benefit in selected patients. In a prospective randomized
of chromosomes. Many chromosomal aneuploidies identified             study, comparing chemical removal of ZP from day 5
using CGH would not have been detected using FISH for five           in vitro cultured human embryos by using acidic Tyrode's
or nine chromosomes (35). Microarrays have an advantage             solution versus no removal, the implantation rate per ET
over conventional CGH because the evaluation of fluores-             and the clinical PR were significantly higher in the ZP-free
cence ratios is simple, rapid, and easily automated (33). A         group (51). Stein et al. (52) reported that assisted hatching
proof-of-principle study concluded that chromosomal aneu-           by partial zona dissection resulted in a significant increase
ploidy of the oocyte can be accurately predicted by array           in the implantation and clinical PRs in women older than
CGH analysis of both polar bodies (36).                             38 years with RIF. Similarly, Petersen et al. (53) observed
     Single nucleotide polymorphisms are common polymor-            that for patients with repeated implantation failures, the im-
phic DNA sequences found throughout the genome. The                 plantation rate in those who received laser-thinned embryos
probes used for SNP microarrays provide genotype data in            was significantly higher than in those whose embryos were
addition to chromosome copy number information, thereby             not laser thinned. Interestingly, this difference was not

VOL. 97 NO. 5 / MAY 2012                                                                                                        1023
VIEWS AND REVIEWS


observed in patients with a history of only one previous im-       patients, selecting the best embryos by culturing to the blas-
plantation failure. In support of these findings, in a recent       tocyst stage assumes even greater significance. In a prospec-
meta-analysis of randomized control trials (five trials with        tive randomized study, Levitas et al. (63) reported that in
761 participants), assisted hatching was reported to be associ-    patients with RIF with an adequate ovarian response, transfer
ated with a significant improvement in clinical pregnancy           of blastocyst stage embryos carries a significantly higher im-
when performed in fresh embryos transferred to women               plantation rate compared with ET on days 2–3. The multiple
with RIF (relative risk [RR] ¼ 1.73; 95% confidence interval        PR was not significantly different between the two groups
[CI] ¼ 1.37–2.17) (54). No increase was observed in clinical       (63). In another study, Guerif et al. (64) also observed that
PRs when performed in fresh embryos transferred to unse-           the live birth rates and implantation rates per cycle were
lected or nonpoor prognosis women or to women of advanced          higher after blastocyst transfer compared with day 2 ET.
age. Assisted hatching was also related to increased multiple      They suggested that improved embryo selection and uterine
PRs in women with previous repeated implantation failure.          receptivity may explain the additional benefit of ET at the
However, due to the small sample size of the included studies,     blastocyst stage for couples with RIF (64). However, it should
this meta-analysis was not able to draw any conclusions re-        be noted that a percentage of fertilized eggs will never reach
garding live birth or miscarriage rates (54).                      the blastocyst stage. Proper selection of cases suitable for
                                                                   blastocyst transfer is therefore critical to reduce the number
                                                                   of cycle cancellations (63).
Embryo Culture
Optimum culture conditions are a prerequisite for satisfactory     Stimulation Protocols
embryonic development and lack of these conditions may
contribute to RIF. Various coculture systems have been devel-      Variations in ovarian stimulation protocols have been sug-
oped as a means of improving embryo culture conditions. The        gested in some studies as a means of improving embryo devel-
main aim is to increase the metabolic chances of the human         opment and quality. The use of GnRH antagonist protocols in
embryo to achieve the blastocyst stage because this leads to       controlled ovarian hyperstimulation (COH) has been shown to
a high implantation rate and PR. The suggested favorable ef-       improve pregnancy outcome in patients with a history of RIF
fects of cocultures include the secretion of embryotrophic fac-    with GnRH agonist protocols. The investigators proposed that
tors, such as nutrients and substrates, growth factors and         this was most likely due to improvement of the quality of the
cytokines, and the removal of free radicals and potentially        blastocysts generated (65). Natural cycle IVF has also been
harmful substances (55). Although multiple cell types have         proposed as a means of improving implantation rates in pa-
been used for coculturing embryos, ranging from human re-          tients with RIF (66). Despite some personal experience with
productive tissues, such as oviducts (56), endometrium (57),       natural cycle IVF and in vitro maturation of oocytes in pa-
sequential oviduct-endometrial coculture (58), and cumulus-        tients with RIF, the lack of randomized clinical studies in
granulosa cells (GC) (59–61), homologous endometrial cells         this field does not allow any recommendations to be made
appear to be the most promising coculture system (57).             with regard to their efficacy.
Using coculture of embryos on homologous endometrial
cells in patients with RIF, Jayot et al. (57) reported an          Zygote Intrafallopian Transfer
overall PR of 21% per transfer versus 8% in previous IVF-ET        Zygote intrafallopian transfer (ZIFT) allows the early embryo
cycles. Similarly, using autologous endometrial coculture in       to grow in the natural tubal environment and physiological
patients with RIF, Spandorfer et al. (62) reported a significant    transport of the embryos into the uterine cavity. It also over-
improvement in embryo quality and clinical PRs. However,           comes the problem of technically difficult ET because of cer-
the advantage of coculture systems remains controversial. In       vical stenosis (2). Although initial nonrandomized studies
addition, most IVF units do not have the necessary personnel       implied that ZIFT may be of value in RIF (67), a subsequent
or facilities to perform coculture on a regular basis.             meta-analysis of randomized controlled trials failed to dem-
                                                                   onstrate any benefit for ZIFT (68). In fact, there was a trend
Blastocyst Transfer                                                toward increased risk of ectopic pregnancy (EP) with ZIFT
                                                                   (68). These findings led to the procedure being abandoned
Embryo transfer at the blastocyst stage has been proposed as       by most units.
a strategy to improve implantation rates and PRs in patients
with RIF. Blastocyst transfer is a more physiological approach
as the human embryos usually enter the endometrial cavity 5        ET Technique
days after fertilization, at the morula-blastocyst stage in nat-   A meticulous ET technique is of utmost importance in achiev-
ural conception cycles (2). Better embryo selection for transfer   ing a successful pregnancy outcome. Studies show that avoid-
and improved endometrial receptivity are obvious advantages        ance of blood (69), mucus (70), bacterial contamination,
of this approach. Some clinicians transfer several embryos         trauma to the endometrium, touching the fundus, and exces-
after RIF. Culturing embryos to the blastocyst stage helps in      sive uterine contractions (71) are all associated with better
selecting embryos with the best implantation potential.            PRs and implantation rates after ET. Several techniques
Therefore fewer embryos have to be transferred to achieve          have been proposed to optimize the technique of ET. Methods,
a successful pregnancy, thereby decreasing the risk of multi-      such as a trial transfer (72), filled bladder (73), ultrasono-
ple pregnancy. With single ET becoming the norm in younger         graphic guidance (74), and use of soft catheters, all appear

1024                                                                                                        VOL. 97 NO. 5 / MAY 2012
Fertility and Sterility®


to facilitate a successful ET (21), whereas bed rest after ET has   viability (83). Newer methods, such as vibrational spectros-
not been shown to be of any benefit (75).                            copy, both Raman and near infrared, have been used to ana-
                                                                    lyze spent culture medium from human embryos, measuring
                                                                    bonds within functional groups of molecules at specific wave-
Cytoplasmic Transfer                                                lengths. Results from initial studies indicate that spectral pro-
Ooplasmic factors play a role in the continued development          files reflective of oxidative stress appear to have a good
of the zygote, especially during the early cleavage stage. Co-      correlation with pregnancy outcome (84).
hen et al. (76) transferred ooplasm from donor eggs at meta-
phase II stage into developmentally compromised metaphase
II oocytes in patients with multiple implantation failure (76).     CONCLUSION
They noted that this led to an improvement in embryo mor-           Regardless of the considerable improvement in treatment pro-
phology. Cytoplasmic transfer from fertile donor oocytes or         tocols and laboratory technologies, RIF still poses a significant
zygotes into developmentally compromised oocytes from pa-           challenge to clinicians and embryologists. Chromosomal ab-
tients with RIF has led to the birth of several healthy babies      normalities and suboptimal embryo development play a major
worldwide (77). It has been suggested that this procedure           role in the etiology of RIF. Emerging technologies, such as
may correct an imbalance between anti- and pro-apoptotic            CGH array and analysis of SNPs could enable a more compre-
factors and/or correction of defective mitochondrial mem-           hensive screening of chromosomes. Assisted hatching may
brane potential (78). However, the transferred cytoplasm            help to overcome zona hardening in selected patients. Opti-
could contain messenger RNAs, proteins. and mitochondria            mal culture conditions and blastocyst transfer may contribute
(77). In addition, it is not known whether the physiology of        toward improving the implantation rates and PRs in RIF.
the early embryo is affected. The procedure is still experimen-     Novel embryo assessment and selection procedures, such as
tal and will require assessment of ooplasmic anomalies and          time-lapse imaging and metabolomics, may help in better
optimization of techniques before it can be applied in clinical     evaluation of embryo quality and viability and help in select-
practice.                                                           ing embryos with the highest implantation potential. It should
                                                                    be noted that only those treatment options that are evidence
                                                                    based should be offered to patients. The safety, efficacy, and
New Methods of Embryo Assessment                                    practicality of new, emerging methods of treatment should
Assessment of embryo quality is critical in selecting the best      be evaluated in prospective randomized clinical trials before
embryo(s) to transfer or cryopreserve. As visual assessment         being accepted in clinical practice.
of embryo quality using morphological criteria can be subjec-
tive and requires considerable expertise, newer methods of as-
sessing embryo quality and viability are being developed.           REFERENCES
Emerging techniques such as time-lapse imaging may lead              1.   Tan BK, Vandekerckhove P, Kennedy R, Keay SD. Investigation and current
to better assessment of embryo quality and help in selecting              management of recurrent IVF treatment failure in the UK. BJOG 2005;112:
                                                                          773–80.
embryos with the highest implantation potential. It has
                                                                     2.   Margalioth EJ, Ben-Chetrit A, Gal M, Eldar-Geva T. Investigation and treat-
been suggested that time-lapse observations using an incuba-              ment of repeated implantation failure following IVF-ET. Hum Reprod 2006;
tor with an integrated optical microscope may minimize the                21:3036–43.
changes in the culturing environment by integrating the cul-         3.   Raziel A, Friedler S, Schachter M, Kasterstein E, Strassburger D, Ron-El R. In-
ture, observation, and time-lapse recording of cells into one             creased frequency of female partner chromosomal abnormalities in patients
system. The removal of embryos from the incubator for inter-              with high-order implantation failure after in vitro fertilization. Fertil Steril
mittent observation can therefore be avoided while enabling               2002;78:515–9.
                                                                     4.   Stern C, Pertile M, Norris H, Hale L, Baker HWG. Chromosome translocations
the continuous monitoring of embryo development (79).
                                                                          in couples with in-vitro fertilization implantation failure. Hum Reprod 1999;
There is evidence that time-lapse monitoring in the Embryo-               14:2097–101.
Scope (Unisense FertiliTech) does not impair embryo quality          5.   Patrizio P, Bianchi V, Lalioti MD, Gerasimova T, Sakkas D. High rate of bio-
while allowing for morphological and spatial analysis of em-              logical loss in assisted reproduction: it is in the seed, not in the soil. Reprod
bryo development (80). However, besides being more expen-                 Biomed Online 2007;14(Spec No 1):23–6.
sive than standard incubators, the culture preparation               6.   Pehlivan T, Rubio C, Rodrigo L, Romero J, Remohi J, Simon C, et al. Impact of
                                                                          preimplantation genetic diagnosis on IVF outcome in implantation failure
procedure is more time consuming compared with conven-
                                                                          patients. Reprod Biomed Online 2003;6:232–7.
tional culture methods (81).
                                                                     7.   Voullaire L, Wilton L, McBain J, Callaghan T, Williamson R. Chromosome ab-
     Different approaches are also being developed to test the            normalities identified by comparative genomic hybridization in embryos
culture environment of a developing embryo to gain impor-                 from women with repeated implantation failure. Mol Hum Reprod 2002;
tant information regarding its viability. Metabolomic analysis            8:1035–41.
of follicular fluid (FF) can provide valuable information about       8.                                 
                                                                          Rubio C, Gil-Salom M, Simon C, Vidal F, Rodrigo L, Mínguez Y, et al. Inci-
individual oocyte maturation and developmental potential.                 dence of sperm chromosomal abnormalities in a risk population: relation-
                                                                          ship with sperm quality and ICSI outcome. Hum Reprod 2001;16:2084–92.
Various methods have been described, which include mea-
                                                                     9.   Delhanty JD. Mechanisms of aneuploidy induction in human oogenesis and
surement of oxygen (81), pyruvate, and glucose consumption                early embryogenesis. Cytogenet Genome Res 2005;111:237–44.
by the embryo in the culture medium (82). Amino acid                10.   Obasaju M, Kadam A, Sultan K, Fateh M, Munn S. Sperm quality may
                                                                                                                                 e
turnover, which appears to be correlated to blastocyst                    adversely affect the chromosome constitution of embryos that result from
development, can be measured as an indication of embryo                   intracytoplasmic sperm injection. Fertil Steril 1999;72:1113–5.

VOL. 97 NO. 5 / MAY 2012                                                                                                                            1025
VIEWS AND REVIEWS


11.   Bungum M, Humaidan P, Axmon A, Spano M, Bungum L, Erenpreiss J, et al.            32.   The Practice Committee of the Society for Assisted Reproductive Technol-
      Sperm DNA integrity assessment in prediction of assisted reproduction tech-             ogy, Practice Committee of the American Society for Reproductive Medi-
      nology outcome. Hum Reprod 2007;22:174–9.                                               cine. Preimplantation genetic testing: a Practice Committee opinion. Fertil
12.   Zini A, Boman JM, Belzile E, Ciampi A. Sperm DNA damage is associated                   Steril 2008;90:S136–43.
      with an increased risk of pregnancy loss after IVF and ICSI: systematic review    33.   Wells D, Alfarawati S, Fragouli E. Use of comprehensive chromosomal
      and meta-analysis. Hum Reprod 2008;23:2663–8.                                           screening for embryo assessment: microarrays and CGH. Mol Hum Reprod
13.   Bleil JD, Wassarman PM. Structure and function of the zona pellucida: iden-             2008;14:703–10.
      tification and characterization of the proteins of the mouse oocyte's zona         34.   Wilton L. Preimplantation genetic diagnosis and chromosome analysis of
      pellucida. Dev Biol 1980;76:185–202.                                                    blastomeres using comparative genomic hybridization. Hum Reprod Update
14.   van Duin M, Polman JE, De Breet IT, van Ginneken K, Bunschoten H,                       2005;11:33–41.
      Grootenhuis A, et al. Recombinant human zona pellucida protein ZP3 pro-           35.   Wilton L, Voullaire L, Sargeant P, Williamson R, McBain J. Preimplantation
      duced by Chinese hamster ovary cells induces the human sperm acrosome                   aneuploidy screening using comparative genomic hybridization or fluores-
      reaction and promotes sperm-egg fusion. Biol Reprod 1994;51:607–17.                     cence in situ hybridization of embryos from patients with recurrent implan-
15.   De Vos A, Van Steirteghem A. Zona hardening, zona drilling and assisted                 tation failure. Fertil Steril 2003;80:860–8.
      hatching: new achievements in assisted reproduction. Cells Tissues Organs         36.   Geraedts J, Montag M, Magli MC, Repping S, Handyside A, Staessen C, et al.
      2000;166:220–7.                                                                         Polar body array CGH for prediction of the status of the corresponding oo-
16.   Trounson AO, Moore NW. The survival and development of sheep eggs fol-                  cyte. Part I: clinical results. Hum Reprod 2011;26:3173–80.
      lowing complete or partial removal of the zona pellucida. J Reprod Fertil         37.   Cohen J. Assisted hatching of human embryos. J Assist Reprod Genet 1991;
      1974;41:97–105.                                                                         8:179–90.
17.   Schiewe M, Araujo E, Asch R, Balmaceda J. Enzymatic characterization of           38.   Cohen J, Inge KL, Suzman M, Wiker SR, Wright G. Videocinematography of
      zona pellucida hardening in human eggs and embryos. J Assist Reprod                     fresh and cryopreserved embryos: a retrospective analysis of embryonic mor-
      Genet 1995;12:2–7.                                                                      phology and implantation. Fertil Steril 1989;51:820–7.
18.   Gordon JW, Dapunt U. A new mouse model for embryos with a hatching                39.   Malter HE, Cohen J. Blastocyst formation and hatching in vitro following
      deficiency and its use to elucidate the mechanism of blastocyst hatching.                zona drilling of mouse and human embryos. Gamete Res 1989;24:67–80.
      Fertil Steril 1993;59:1296–301.                                                   40.   Cohen J, Alikani M, Malter HE, Adler A, Talansky BE, Rosenwaks Z. Partial
19.   Hammadeh M, Fischer-Hammadeh C, Ali K. Assisted hatching in assisted re-                zona dissection or subzonal sperm insertion: microsurgical fertilization alter-
      production: a state of the art. J Assist Reprod Genet 2011;28:119–28.                   natives based on evaluation of sperm and embryo morphology. Fertil Steril
20.   Gardner DK, Reed L, Linck D, Sheehan C, Lane M. Quality control in human                1991;56:696–706.
      in vitro fertilization. Semin Reprod Med 2005;23:319–24.                          41.   Nikas G, Develioglu OH, Toner JP, Jones HW. Endometrial pinopodes indicate
21.   Schoolcraft WB, Surrey ES, Gardner DK. Embryo transfer: techniques and                  a shift in the window of receptivity in IVF cycles. Hum Reprod 1999;14:787–92.
      variables affecting success. Fertil Steril 2001;76:863–70.                        42.   Cohen J, Alikani M, Trowbridge J, Rosenwaks Z. Implantation enhancement
22.   Harton GL, Magli MC, Lundin K, Montag M, Lemmen J, Harper JC. ESHRE                     by selective assisted hatching using zona drilling of human embryos with
      PGD Consortium/Embryology Special Interest Group—best practice guide-                   poor prognosis. Hum Reprod 1992;7:685–91.
      lines for polar body and embryo biopsy for preimplantation genetic diagno-        43.   Hershlag A, Feng HL. Effect of prefreeze assisted hatching on postthaw sur-
      sis/screening (PGD/PGS). Hum Reprod 2011;26:41–6.                                       vival of mouse embryos. Fertil Steril 2005;84:1752–4.
23.   Ly KD, Agarwal A, Nagy ZP. Preimplantation genetic screening: does it help        44.   Khalifa EA, Tucker MJ, Hunt P. Cruciate thinning of the zona pellucida for
      or hinder IVF treatment and what is the role of the embryo? J Assist Reprod             more successful enhancement of blastocyst hatching in the mouse. Hum Re-
      Genet 2011;28:833–49.                                                                   prod 1992;7:532–6.
24.   Goossens V, Harton G, Moutou C, Traeger-Synodinos J, Van Rij M,                   45.   Fong CY, Bongso A, Ng SC, Kumar J, Trounson A, Ratnam S. Blastocyst trans-
      Harper JC. ESHRE PGD Consortium data collection IX: cycles from January                 fer after enzymatic treatment of the zona pellucida: improving in-vitro fertil-
      to December 2006 with pregnancy follow-up to October 2007. Hum Reprod                   ization and understanding implantation. Hum Reprod 1998;13:2926–32.
      2009;24:1786–810.                                                                 46.   Valojerdi MR, Eftekhari-Yazdi P, Karimian L, Ashtiani SK. Effect of laser zona
25.   Wilding M, Forman R, Hogewind G, Di Matteo L, Zullo F, Cappiello F, et al.              pellucida opening on clinical outcome of assisted reproduction technology
      Preimplantation genetic diagnosis for the treatment of failed in vitro                  in patients with advanced female age, recurrent implantation failure, or
      fertilization-embryo transfer and habitual abortion. Fertil Steril 2004;81:             frozen-thawed embryos. Fertil Steril 2008;90:84–91.
      1302–7.                                                                           47.   Laufer N, Palanker D, Shufaro Y, Safran A, Simon A, Lewis A. The efficacy
26.   Blockeel C, Schutyser V, De Vos A, Verpoest W, De Vos M, Staessen C, et al.             and safety of zona pellucida drilling by a 193-nm excimer laser. Fertil Steril
      Prospectively randomized controlled trial of PGS in IVF/ICSI patients with              1993;59:889–95.
      poor implantation. Reprod Biomed Online 2008;17:848–54.                           48.   Nakayama T, Fujiwara H, Yamada S, Tastumi K, Honda T, Fujii S. Clinical ap-
27.   Mastenbroek S, Twisk M, van der Veen F, Repping S. Preimplantation ge-                  plication of a new assisted hatching method using a piezo-micromanipulator
      netic screening: a systematic review and meta-analysis of RCTs. Hum Reprod              for morphologically low-quality embryos in poor-prognosis infertile patients.
      Update 2011;17:454–66.                                                                  Fertil Steril 1999;71:1014–8.
28.   Harper JC, Coonen E, Handyside AH, Winston RM, Hopman AH,                         49.   Antinori S, Selman HA, Caffa B, Panci C, Dani GL, Versaci C. Fertilization and
      Delhanty JD. Mosaicism of autosomes and sex chromosomes in morpholog-                   early embryology: zona opening of human embryos using a non-contact UV
      ically normal, monospermic preimplantation human embryos. Prenat Diagn                  laser for assisted hatching in patients with poor prognosis of pregnancy.
      1995;15:41–9.                                                                           Hum Reprod 1996;11:2488–92.
29.   Vanneste E, Voet T, Melotte C, Debrock S, Sermon K, Staessen C, et al. What       50.   Chao K-H, Chen S-U, Chen H-F, Wu M-Y, Yang Y-S, Ho H-N. Assisted hatch-
      next for preimplantation genetic screening? High mitotic chromosome in-                 ing increases the implantation and pregnancy rate of in vitro fertilization
      stability rate provides the biological basis for the low success rate. Hum Re-          (IVF)-embryo transfer (ET), but not that of IVF-tubal ET in patients with re-
      prod 2009;24:2679–82.                                                                   peated IVF failures. Fertil Steril 1997;67:904–8.
30.   Harper J, Coonen E, De Rycke M, Fiorentino F, Geraedts J, Goossens V, et al.      51.   Jelinkova L, Pavelkova J, Strehler E, Paulus W, Zivny J, Sterzik K. Improved im-
      What next for preimplantation genetic screening (PGS)? A position state-                plantation rate after chemical removal of the zona pellucida. Fertil Steril
      ment from the ESHRE PGD Consortium steering committee. Hum Reprod                       2003;79:1299–303.
      2010;25:821–3.                                                                    52.   Stein A, Rufas O, Amit S, Avrech O, Pinkas H, Ovadia J, et al. Assisted hatch-
31.   Anderson RA, Pickering S. The current status of preimplantation genetic                 ing by partial zona dissection of human pre-embryos in patients with recur-
      screening: British Fertility Society Policy and Practice Guidelines. Hum Fertil         rent implantation failure after in vitro fertilization. Fertil Steril 1995;63:
      (Camb) 2008;11:71–5.                                                                    838–41.



1026                                                                                                                                            VOL. 97 NO. 5 / MAY 2012
Fertility and Sterility®


53.   Petersen CG, Mauri AL, Baruffi RL, Oliveira JBA, Massaro FC, Elder K, et al.       68.   Habana AE, Palter SF. Is tubal embryo transfer of any value? A meta-analysis
      Implantation failures: success of assisted hatching with quarter-laser zona             and comparison with the Society for Assisted Reproductive Technology da-
      thinning. Reprod BioMed Online 2005;10:224–9.                                           tabase. Fertil Steril 2001;76:286–93.
54.   Martins WP, Rocha IA, Ferriani RA, Nastri CO. Assisted hatching of human          69.   Goudas VT, Hammitt DG, Damario MA, Session DR, Singh AP, Dumesic DA.
      embryos: a systematic review and meta-analysis of randomized controlled                 Blood on the embryo transfer catheter is associated with decreased rates of
      trials. Hum Reprod Update 2011;17:438–53.                                               embryo implantation and clinical pregnancy with the use of in vitro fertiliza-
55.        
      Simon C, Mercader A, Garcia-Velasco J, Nikas G, Moreno C, Remohí J, et al.              tion–embryo transfer. Fertil Steril 1998;70:878–82.
      Coculture of human embryos with autologous human endometrial epithe-              70.   Egbase PE, al-Sharhan M, al-Othman S, al-Mutawa M, Udo EE, Grudzinskas JG.
      lial cells in patients with implantation failure. J Clin Endocrinol Metab               Incidence of microbial growth from the tip of the embryo transfer catheter
      1999;84:2638–46.                                                                        after embryo transfer in relation to clinical pregnancy rate following in-vitro
56.   Yeung WSB, Ho PC, Lau EYL, Chan STH. Improved development of human                      fertilization and embryo transfer. Hum Reprod 1996;11:1687–9.
      embryos in vitro by a human oviductal cell co-culture system. Hum Reprod          71.   Lesny P, Killick SR, Tetlow RL, Robinson J, Maguiness SD. Embryo transfer—
      1992;7:1144–9.                                                                          can we learn anything new from the observation of junctional zone contrac-
57.   Jayot S, Parneix I, Verdaguer S, Discamps G, Audebert A, Emperaire JC.                  tions? Hum Reprod 1998;13:1540–6.
      Coculture of embryos on homologous endometrial cells in patients with             72.   Mansour R, Aboulghar M, Serour G. Dummy embryo transfer: a technique
      repeated failures of implantation. Fertil Steril 1995;63:109–14.                        that minimizes the problems of embryo transfer and improves the pregnancy
58.   Bongso A, Fong CY, Ng SC, Ratnam S. Human embryonic behavior in a se-                   rate in human in vitro fertilization. Fertil Steril 1990;54:678–81.
      quential human oviduct-endometrial coculture system. Fertil Steril 1994;61:       73.   Sundstrom P, Wramsby H, Persson PH, Liedholm P. Filled bladder simplifies
      976–8.                                                                                  human embryo transfer. Br J Obstet Gynaecol 1984;91:506–7.
59.   Plachot M, Antoine JM, Alvarez S, Firmin C, Pfister A, Mandelbaum J, et al.        74.   Hurley VA, Osborn JC, Leoni MA, Leeton J. Ultrasound-guided embryo trans-
      Fertilization and early embryology: granulosa cells improve human embryo                fer: a controlled trial. Fertil Steril 1991;55:559–62.
      development in vitro. Hum Reprod 1993;8:2133–40.                                  75.   Botta G, Grudzinskas G. Is a prolonged bed rest following embryo transfer
60.   Quinn P, Margalit R. Beneficial effects of coculture with cumulus cells on               useful? Hum Reprod 1997;12:2489–92.
      blastocyst formation in a prospective trial with supernumerary human              76.   Cohen J, Scott R, Alikani M, Schimmel T, Munn S, Levron J, et al. Ooplasmic
                                                                                                                                                  e
      embryos. J Assist Reprod Genet 1996;13:9–14.                                            transfer in mature human oocytes. Mol Hum Reprod 1998;4:269–80.
61.   Freeman MR, Whitworth CM, Hill GA. Fertilization and early embryology:            77.   Barritt JA, Willadsen S, Brenner C, Cohen J. Cytoplasmic transfer in assisted
      granulosa cell co-culture enhances human embryo development and                         reproduction. Hum Reprod Update 2001;7:428–35.
      pregnancy rate following in-vitro fertilization. Hum Reprod 1995;10:              78.   Levy R, Elder K, Mnzo Y. Cytoplasmic transfer in oocytes: biochemical
                                                                                                                     e e
      408–14.                                                                                 aspects. Hum Reprod Update 2004;10:241–50.
62.   Spandorfer SD, Pascal P, Parks J, Clark R, Veeck L, Davis OK, et al. Autolo-      79.   Nakahara T, Iwase A, Goto M, Harata T, Suzuki M, Ienaga M, et al. Evalua-
      gous endometrial coculture in patients with IVF failure: outcome of the first            tion of the safety of time-lapse observations for human embryos. J Assist
      1,030 cases. J Reprod Med 2004;49:463–7.                                                Reprod Genet 2010;27:93–6.
63.   Levitas E, Lunenfeld E, Har-Vardi I, Albotiano S, Sonin Y, Hackmon-Ram R,         80.   Cruz M, Gadea B, Garrido N, Pedersen KS, Martinez M, Perez-Cano I, et al.
      et al. Blastocyst-stage embryo transfer in patients who failed to conceive              Embryo quality, blastocyst and ongoing pregnancy rates in oocyte donation
      in three or more day 2–3 embryo transfer cycles: a prospective, randomized              patients whose embryos were monitored by time-lapse imaging. J Assist
      study. Fertil Steril 2004;81:567–71.                                                    Reprod Genet 2011;28:569–73.
64.   Guerif F, Bidault R, Gasnier O, Couet ML, Gervereau O, Lansac J, et al. Effi-      81.   Nel-Themaat L, Nagy ZP. A review of the promises and pitfalls of oocyte and
      cacy of blastocyst transfer after implantation failure. Reprod Biomed Online            embryo metabolomics. Placenta 2011;32(Suppl 3):S257–63.
      2004;9:630–6.                                                                     82.   Gardner DK, Lane M, Stevens J, Schoolcraft WB. Noninvasive assessment of
65.   Takahashi K, Mukaida T, Tomiyama T, Goto T, Oka C. GnRH antagonist im-                  human embryo nutrient consumption as a measure of developmental po-
      proved blastocyst quality and pregnancy outcome after multiple failures of              tential. Fertil Steril 2001;76:1175–80.
      IVF/ICSI–ET with a GnRH agonist protocol. J Assist Reprod Genet 2004;21:          83.   Houghton FD, Hawkhead JA, Humpherson PG, Hogg JE, Balen AH,
      317–22.                                                                                 Rutherford AJ, et al. Non-invasive amino acid turnover predicts human em-
66.   Kadoch IJ. [Natural cycle IVF (nIVF) in women with implantation failure]. J Gy-         bryo developmental capacity. Hum Reprod 2002;17:999–1005.
      necol Obstet Biol Reprod (Paris) 2004;33:S33–5.                                   84.   Seli E, Sakkas D, Scott R, Kwok SC, Rosendahl SM, Burns DH. Noninvasive
67.   Levran D, Mashiach S, Dor J, Levron J, Farhi J. Zygote intrafallopian transfer          metabolomic profiling of embryo culture media using Raman and near-
      may improve pregnancy rate in patients with repeated failure of implanta-               infrared spectroscopy correlates with reproductive potential of embryos in
      tion. Fertil Steril 1998;69:26–30.                                                      women undergoing in vitro fertilization. Fertil Steril 2007;88:1350–7.




VOL. 97 NO. 5 / MAY 2012                                                                                                                                              1027

Más contenido relacionado

La actualidad más candente

Blastocyst Culture Benefit and Harms
Blastocyst Culture  Benefit and HarmsBlastocyst Culture  Benefit and Harms
Blastocyst Culture Benefit and HarmsDr. Jyoti Malik
 
Identifying the Signs for Implantation Failure and Miscarriage
Identifying the Signs for Implantation Failure and MiscarriageIdentifying the Signs for Implantation Failure and Miscarriage
Identifying the Signs for Implantation Failure and MiscarriageNEW LIFE- IVF CLINIC INDIA
 
Factors affecting success of embryo transfer
Factors affecting success of embryo transferFactors affecting success of embryo transfer
Factors affecting success of embryo transferAboubakr Elnashar
 
Reproductive Immunology
Reproductive ImmunologyReproductive Immunology
Reproductive ImmunologySujoy Dasgupta
 
Repeated implantation failure.warda full
Repeated implantation failure.warda fullRepeated implantation failure.warda full
Repeated implantation failure.warda fullOsama Warda
 
Fertility preservation Egg freezing
Fertility preservation  Egg freezing   Fertility preservation  Egg freezing
Fertility preservation Egg freezing NikosFVlahosMDPhD
 
1. recurrent pregnancy loss
1. recurrent pregnancy loss  1. recurrent pregnancy loss
1. recurrent pregnancy loss DrRokeyaBegum
 
Seed, Soil and Beyond in Infertility Treatment
Seed, Soil and Beyond in Infertility TreatmentSeed, Soil and Beyond in Infertility Treatment
Seed, Soil and Beyond in Infertility TreatmentKaberi Banerjee
 
Recurrent pregnancy loss
Recurrent pregnancy lossRecurrent pregnancy loss
Recurrent pregnancy lossfaheta
 
Role of IUI in the era of IVF
Role of IUI in the era of IVFRole of IUI in the era of IVF
Role of IUI in the era of IVFSujoy Dasgupta
 
Genetic factors in rpl
Genetic factors in rplGenetic factors in rpl
Genetic factors in rpldrrajusahetya
 

La actualidad más candente (20)

Blastocyst Culture Benefit and Harms
Blastocyst Culture  Benefit and HarmsBlastocyst Culture  Benefit and Harms
Blastocyst Culture Benefit and Harms
 
Intrauterine Insemination
Intrauterine  InseminationIntrauterine  Insemination
Intrauterine Insemination
 
Recurrent implantation failure
Recurrent implantation failureRecurrent implantation failure
Recurrent implantation failure
 
Identifying the Signs for Implantation Failure and Miscarriage
Identifying the Signs for Implantation Failure and MiscarriageIdentifying the Signs for Implantation Failure and Miscarriage
Identifying the Signs for Implantation Failure and Miscarriage
 
Icsi preparation
Icsi preparationIcsi preparation
Icsi preparation
 
ICSI for all
ICSI for allICSI for all
ICSI for all
 
Factors affecting success of embryo transfer
Factors affecting success of embryo transferFactors affecting success of embryo transfer
Factors affecting success of embryo transfer
 
Reproductive Immunology
Reproductive ImmunologyReproductive Immunology
Reproductive Immunology
 
Repeated implantation failure.warda full
Repeated implantation failure.warda fullRepeated implantation failure.warda full
Repeated implantation failure.warda full
 
Fertility preservation Egg freezing
Fertility preservation  Egg freezing   Fertility preservation  Egg freezing
Fertility preservation Egg freezing
 
Letrozol & reproduction
Letrozol & reproductionLetrozol & reproduction
Letrozol & reproduction
 
ICSI
ICSIICSI
ICSI
 
1. recurrent pregnancy loss
1. recurrent pregnancy loss  1. recurrent pregnancy loss
1. recurrent pregnancy loss
 
Seed, Soil and Beyond in Infertility Treatment
Seed, Soil and Beyond in Infertility TreatmentSeed, Soil and Beyond in Infertility Treatment
Seed, Soil and Beyond in Infertility Treatment
 
Era protocol 2017
Era protocol 2017Era protocol 2017
Era protocol 2017
 
Recurrent pregnancy loss
Recurrent pregnancy lossRecurrent pregnancy loss
Recurrent pregnancy loss
 
Role of IUI in the era of IVF
Role of IUI in the era of IVFRole of IUI in the era of IVF
Role of IUI in the era of IVF
 
Endometriosis
EndometriosisEndometriosis
Endometriosis
 
Genetic factors in rpl
Genetic factors in rplGenetic factors in rpl
Genetic factors in rpl
 
Multiple pregnancy after art
Multiple pregnancy after artMultiple pregnancy after art
Multiple pregnancy after art
 

Similar a Implantation Failure in IVF

Journal.pgen.1003025
Journal.pgen.1003025Journal.pgen.1003025
Journal.pgen.1003025t7260678
 
pgs Journal.pgen.1003025
pgs     Journal.pgen.1003025pgs     Journal.pgen.1003025
pgs Journal.pgen.1003025鋒博 蔡
 
Journal.pgen.1003025
Journal.pgen.1003025Journal.pgen.1003025
Journal.pgen.1003025鋒博 蔡
 
1 s2.0-s0929664613000958-main
1 s2.0-s0929664613000958-main1 s2.0-s0929664613000958-main
1 s2.0-s0929664613000958-main鋒博 蔡
 
Snp microarray based 24 chromosome
Snp microarray based 24 chromosomeSnp microarray based 24 chromosome
Snp microarray based 24 chromosomet7260678
 
Luis Velasquez Cumplido (Differences in the Endometrial)
Luis Velasquez Cumplido (Differences in the Endometrial)Luis Velasquez Cumplido (Differences in the Endometrial)
Luis Velasquez Cumplido (Differences in the Endometrial)Luis Alberto Velasquez Cumplido
 
Genetics preimplantation
Genetics preimplantationGenetics preimplantation
Genetics preimplantationt7260678
 
1 s2.0-s1472648313006366-main
1 s2.0-s1472648313006366-main1 s2.0-s1472648313006366-main
1 s2.0-s1472648313006366-main鋒博 蔡
 
Hatching status before embryo transfer is not correlatd with implantation rat...
Hatching status before embryo transfer is not correlatd with implantation rat...Hatching status before embryo transfer is not correlatd with implantation rat...
Hatching status before embryo transfer is not correlatd with implantation rat...Joe Lee
 
Art%3 a10.1007%2fs00439 013-1309-0
Art%3 a10.1007%2fs00439 013-1309-0Art%3 a10.1007%2fs00439 013-1309-0
Art%3 a10.1007%2fs00439 013-1309-0鋒博 蔡
 
Mol. hum. reprod. 2014-fragouli-117-26
Mol. hum. reprod. 2014-fragouli-117-26Mol. hum. reprod. 2014-fragouli-117-26
Mol. hum. reprod. 2014-fragouli-117-26鋒博 蔡
 
Mol. hum. reprod. 2014-fragouli-117-26
Mol. hum. reprod. 2014-fragouli-117-26Mol. hum. reprod. 2014-fragouli-117-26
Mol. hum. reprod. 2014-fragouli-117-26鋒博 蔡
 
Preimplantation genetic screening (pgs) current ppt
Preimplantation genetic screening (pgs)  current     pptPreimplantation genetic screening (pgs)  current     ppt
Preimplantation genetic screening (pgs) current ppt鋒博 蔡
 
Preimplantation genetic screening (pgs) current ppt
Preimplantation genetic screening (pgs)  current     pptPreimplantation genetic screening (pgs)  current     ppt
Preimplantation genetic screening (pgs) current ppt鋒博 蔡
 
Poster on clinical significance of sperm morphology assessment a lekshmi
Poster on clinical significance of sperm morphology assessment a lekshmiPoster on clinical significance of sperm morphology assessment a lekshmi
Poster on clinical significance of sperm morphology assessment a lekshmiAiswarya Lekshmi
 
Factors affecting fertilization in icsi
Factors affecting fertilization in icsiFactors affecting fertilization in icsi
Factors affecting fertilization in icsiWael Alhuleily
 

Similar a Implantation Failure in IVF (20)

Journal.pgen.1003025
Journal.pgen.1003025Journal.pgen.1003025
Journal.pgen.1003025
 
pgs Journal.pgen.1003025
pgs     Journal.pgen.1003025pgs     Journal.pgen.1003025
pgs Journal.pgen.1003025
 
Journal.pgen.1003025
Journal.pgen.1003025Journal.pgen.1003025
Journal.pgen.1003025
 
1 s2.0-s0929664613000958-main
1 s2.0-s0929664613000958-main1 s2.0-s0929664613000958-main
1 s2.0-s0929664613000958-main
 
Snp microarray based 24 chromosome
Snp microarray based 24 chromosomeSnp microarray based 24 chromosome
Snp microarray based 24 chromosome
 
Luis Velasquez Cumplido (Differences in the Endometrial)
Luis Velasquez Cumplido (Differences in the Endometrial)Luis Velasquez Cumplido (Differences in the Endometrial)
Luis Velasquez Cumplido (Differences in the Endometrial)
 
Genetics preimplantation
Genetics preimplantationGenetics preimplantation
Genetics preimplantation
 
1 s2.0-s1472648313006366-main
1 s2.0-s1472648313006366-main1 s2.0-s1472648313006366-main
1 s2.0-s1472648313006366-main
 
Hatching status before embryo transfer is not correlatd with implantation rat...
Hatching status before embryo transfer is not correlatd with implantation rat...Hatching status before embryo transfer is not correlatd with implantation rat...
Hatching status before embryo transfer is not correlatd with implantation rat...
 
pgs
pgs  pgs
pgs
 
Art%3 a10.1007%2fs00439 013-1309-0
Art%3 a10.1007%2fs00439 013-1309-0Art%3 a10.1007%2fs00439 013-1309-0
Art%3 a10.1007%2fs00439 013-1309-0
 
Mol. hum. reprod. 2014-fragouli-117-26
Mol. hum. reprod. 2014-fragouli-117-26Mol. hum. reprod. 2014-fragouli-117-26
Mol. hum. reprod. 2014-fragouli-117-26
 
Mol. hum. reprod. 2014-fragouli-117-26
Mol. hum. reprod. 2014-fragouli-117-26Mol. hum. reprod. 2014-fragouli-117-26
Mol. hum. reprod. 2014-fragouli-117-26
 
Preimplantation genetic screening (pgs) current ppt
Preimplantation genetic screening (pgs)  current     pptPreimplantation genetic screening (pgs)  current     ppt
Preimplantation genetic screening (pgs) current ppt
 
35170
3517035170
35170
 
35170
3517035170
35170
 
Preimplantation genetic screening (pgs) current ppt
Preimplantation genetic screening (pgs)  current     pptPreimplantation genetic screening (pgs)  current     ppt
Preimplantation genetic screening (pgs) current ppt
 
35170
3517035170
35170
 
Poster on clinical significance of sperm morphology assessment a lekshmi
Poster on clinical significance of sperm morphology assessment a lekshmiPoster on clinical significance of sperm morphology assessment a lekshmi
Poster on clinical significance of sperm morphology assessment a lekshmi
 
Factors affecting fertilization in icsi
Factors affecting fertilization in icsiFactors affecting fertilization in icsi
Factors affecting fertilization in icsi
 

Más de Asociatia SOS Infertilitatea - www.vremcopii.ro

Más de Asociatia SOS Infertilitatea - www.vremcopii.ro (20)

SOS Infertility Association Projects 2023.pdf
SOS Infertility Association Projects 2023.pdfSOS Infertility Association Projects 2023.pdf
SOS Infertility Association Projects 2023.pdf
 
Proiecte ale Asociatiei SOS Infertilitatea 2023.pdf
Proiecte ale Asociatiei SOS Infertilitatea 2023.pdfProiecte ale Asociatiei SOS Infertilitatea 2023.pdf
Proiecte ale Asociatiei SOS Infertilitatea 2023.pdf
 
Brosura OSPV 28 copii.pdf
Brosura OSPV 28 copii.pdfBrosura OSPV 28 copii.pdf
Brosura OSPV 28 copii.pdf
 
Brosura Acesti copii care altfel nu ar fi existat.pdf
Brosura Acesti copii care altfel nu ar fi existat.pdfBrosura Acesti copii care altfel nu ar fi existat.pdf
Brosura Acesti copii care altfel nu ar fi existat.pdf
 
Nr 4 Ce stii despre FERTULITATEA TA noiembrie 2021.pdf
Nr 4 Ce stii despre FERTULITATEA TA noiembrie 2021.pdfNr 4 Ce stii despre FERTULITATEA TA noiembrie 2021.pdf
Nr 4 Ce stii despre FERTULITATEA TA noiembrie 2021.pdf
 
Revista „Ce stii despre FERTILITATEA TA?” nr 5, June 2022
Revista „Ce stii despre FERTILITATEA TA?” nr 5, June 2022Revista „Ce stii despre FERTILITATEA TA?” nr 5, June 2022
Revista „Ce stii despre FERTILITATEA TA?” nr 5, June 2022
 
Partnership „What do you know about YOUR FERTILITY?” magazine
Partnership „What do you know about YOUR FERTILITY?” magazinePartnership „What do you know about YOUR FERTILITY?” magazine
Partnership „What do you know about YOUR FERTILITY?” magazine
 
Apel la parteneriat revista „Ce stii despre fertilitatea ta” nr. 4, 1 nov 2021
Apel la parteneriat revista „Ce stii despre fertilitatea ta” nr. 4, 1 nov 2021Apel la parteneriat revista „Ce stii despre fertilitatea ta” nr. 4, 1 nov 2021
Apel la parteneriat revista „Ce stii despre fertilitatea ta” nr. 4, 1 nov 2021
 
Ce stii despre FERTILITATEA TA nr 3, iunie 2021, high resolution
Ce stii despre FERTILITATEA TA nr 3, iunie 2021, high resolutionCe stii despre FERTILITATEA TA nr 3, iunie 2021, high resolution
Ce stii despre FERTILITATEA TA nr 3, iunie 2021, high resolution
 
Ce stii despre FERTILITATEA TA nr 3, iunie 2021, low resolution
Ce stii despre FERTILITATEA TA nr 3, iunie 2021, low resolutionCe stii despre FERTILITATEA TA nr 3, iunie 2021, low resolution
Ce stii despre FERTILITATEA TA nr 3, iunie 2021, low resolution
 
Presentation „What do you know about YOUR FERTILITY?” magazine, Romania
Presentation „What do you know about YOUR FERTILITY?” magazine, Romania Presentation „What do you know about YOUR FERTILITY?” magazine, Romania
Presentation „What do you know about YOUR FERTILITY?” magazine, Romania
 
Apel la parteneriat revista „Ce știi despre FERTILITATEA TA?” nr 3, iunie 2021
Apel la parteneriat revista „Ce știi despre FERTILITATEA TA?” nr 3, iunie 2021Apel la parteneriat revista „Ce știi despre FERTILITATEA TA?” nr 3, iunie 2021
Apel la parteneriat revista „Ce știi despre FERTILITATEA TA?” nr 3, iunie 2021
 
Articol infertilitate revista ELLE
Articol infertilitate revista ELLEArticol infertilitate revista ELLE
Articol infertilitate revista ELLE
 
Revista Ce stii despre FERTILITATEA TA?
Revista Ce stii despre FERTILITATEA TA?Revista Ce stii despre FERTILITATEA TA?
Revista Ce stii despre FERTILITATEA TA?
 
Detalii Subprogram FIV MS 2018
Detalii Subprogram FIV MS 2018Detalii Subprogram FIV MS 2018
Detalii Subprogram FIV MS 2018
 
Statistici subprogram FIV 2019
Statistici subprogram FIV 2019Statistici subprogram FIV 2019
Statistici subprogram FIV 2019
 
Rate de succes Subprogram FIV MS 2011 - 2019
Rate de succes Subprogram FIV MS 2011 -  2019Rate de succes Subprogram FIV MS 2011 -  2019
Rate de succes Subprogram FIV MS 2011 - 2019
 
Cadru fiscal-sponsorizari-decembrie-2019-si-regimul-fiscal-al-veniturilor-ong
Cadru fiscal-sponsorizari-decembrie-2019-si-regimul-fiscal-al-veniturilor-ongCadru fiscal-sponsorizari-decembrie-2019-si-regimul-fiscal-al-veniturilor-ong
Cadru fiscal-sponsorizari-decembrie-2019-si-regimul-fiscal-al-veniturilor-ong
 
Nicoleta Cristea Brunel ESHRE Campus 2019 OHSS patients perspective
Nicoleta Cristea Brunel ESHRE Campus 2019 OHSS patients perspectiveNicoleta Cristea Brunel ESHRE Campus 2019 OHSS patients perspective
Nicoleta Cristea Brunel ESHRE Campus 2019 OHSS patients perspective
 
Globuri barza cuplu
Globuri barza cupluGloburi barza cuplu
Globuri barza cuplu
 

Último

Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore EscortsCall Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escortsvidya singh
 
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...astropune
 
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...indiancallgirl4rent
 
Call Girls Mumbai Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Mumbai Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Mumbai Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Mumbai Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋TANUJA PANDEY
 
Call Girls Bareilly Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Bareilly Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Bareilly Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Bareilly Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...Dipal Arora
 
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any TimeTop Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any TimeCall Girls Delhi
 
Top Rated Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...
Top Rated  Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...Top Rated  Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...
Top Rated Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...chandars293
 
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...Taniya Sharma
 
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Varanasi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Russian Escorts Girls Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
Russian Escorts Girls  Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls DelhiRussian Escorts Girls  Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
Russian Escorts Girls Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls DelhiAlinaDevecerski
 
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls Service Surat Samaira ❤️🍑 8250192130 👄 Independent Escort Service ...
Call Girls Service Surat Samaira ❤️🍑 8250192130 👄 Independent Escort Service ...Call Girls Service Surat Samaira ❤️🍑 8250192130 👄 Independent Escort Service ...
Call Girls Service Surat Samaira ❤️🍑 8250192130 👄 Independent Escort Service ...CALL GIRLS
 
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...aartirawatdelhi
 
Russian Call Girls in Jaipur Riya WhatsApp ❤8445551418 VIP Call Girls Jaipur
Russian Call Girls in Jaipur Riya WhatsApp ❤8445551418 VIP Call Girls JaipurRussian Call Girls in Jaipur Riya WhatsApp ❤8445551418 VIP Call Girls Jaipur
Russian Call Girls in Jaipur Riya WhatsApp ❤8445551418 VIP Call Girls Jaipurparulsinha
 
VIP Call Girls Indore Kirti 💚😋 9256729539 🚀 Indore Escorts
VIP Call Girls Indore Kirti 💚😋  9256729539 🚀 Indore EscortsVIP Call Girls Indore Kirti 💚😋  9256729539 🚀 Indore Escorts
VIP Call Girls Indore Kirti 💚😋 9256729539 🚀 Indore Escortsaditipandeya
 
Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...
Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...
Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...narwatsonia7
 
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...hotbabesbook
 

Último (20)

Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore EscortsCall Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
 
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service Available
 
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...
 
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
 
Call Girls Mumbai Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Mumbai Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Mumbai Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Mumbai Just Call 9907093804 Top Class Call Girl Service Available
 
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
 
Call Girls Bareilly Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Bareilly Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Bareilly Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Bareilly Just Call 9907093804 Top Class Call Girl Service Available
 
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
 
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any TimeTop Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
 
Top Rated Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...
Top Rated  Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...Top Rated  Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...
Top Rated Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...
 
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
 
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Varanasi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service Available
 
Russian Escorts Girls Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
Russian Escorts Girls  Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls DelhiRussian Escorts Girls  Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
Russian Escorts Girls Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
 
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls Service Surat Samaira ❤️🍑 8250192130 👄 Independent Escort Service ...
Call Girls Service Surat Samaira ❤️🍑 8250192130 👄 Independent Escort Service ...Call Girls Service Surat Samaira ❤️🍑 8250192130 👄 Independent Escort Service ...
Call Girls Service Surat Samaira ❤️🍑 8250192130 👄 Independent Escort Service ...
 
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
 
Russian Call Girls in Jaipur Riya WhatsApp ❤8445551418 VIP Call Girls Jaipur
Russian Call Girls in Jaipur Riya WhatsApp ❤8445551418 VIP Call Girls JaipurRussian Call Girls in Jaipur Riya WhatsApp ❤8445551418 VIP Call Girls Jaipur
Russian Call Girls in Jaipur Riya WhatsApp ❤8445551418 VIP Call Girls Jaipur
 
VIP Call Girls Indore Kirti 💚😋 9256729539 🚀 Indore Escorts
VIP Call Girls Indore Kirti 💚😋  9256729539 🚀 Indore EscortsVIP Call Girls Indore Kirti 💚😋  9256729539 🚀 Indore Escorts
VIP Call Girls Indore Kirti 💚😋 9256729539 🚀 Indore Escorts
 
Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...
Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...
Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...
 
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
 

Implantation Failure in IVF

  • 1. Recurrent implantation failure: gamete and embryo factors Mausumi Das, M.D., and Hananel E. G. Holzer, M.D. Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada Chromosomal abnormalities, sperm DNA damage, zona hardening, inadequate culture conditions, and suboptimal embryo development all play a sig- nificant role in the etiology of recurrent implantation failure. Evidence suggests that preimplantation genetic screening does not increase implantation or live birth rates. Comparative genomic hybridization array and analysis of single nucleotide polymorphisms could enable a more comprehensive screening of chromosomes. Assisted hatching may help to overcome zona hardening in selected cases. Optimal culture conditions and blastocyst transfer could contribute toward improving implantation and pregnancy rates. Novel embryo assessment and selection procedures, such as time-lapse imaging and metabolomics, may help in better evaluation of embryo quality and viability and help in selecting embryos with the highest implantation potential. The safety and efficacy of emerging treatment modalities should be evaluated in prospective randomized clinical trials before being applied in routine clinical practice. (Fertil SterilÒ 2012;97:1021–7. Ó2012 by American Society for Reproductive Medicine.) Key Words: Implantation failure, IVF, embryo, oocyte, sperm, chromosome D espite the immense strides that depends on the synchronization of var- inversions, and deletions, have been have been made in the field of ious factors such as the quality of the demonstrated in women with high- IVF many patients still experi- embryo, optimal culture conditions, order RIF (3). In support of these find- ence recurrent implantation failure. the receptivity of the endometrium, ings, Stern et al. (4) observed an overall Besides causing immense distress to and the maternal immune system. The chromosomal abnormality rate of 2.5% couples who require multiple cycles of aim of this article is to review the estab- (13/514) in patients with RIF. Most treatment, it significantly increases the lished etiologies affecting embryo de- of these abnormalities were chromo- cost of the procedure. Recurrent implan- velopment in patients with RIF and to somal translocations (reciprocal and tation failure (RIF) may be defined as the evaluate recent advances in oocyte Robertsonian). They proposed that bal- repeated transfer of morphologically and embryo selection, as well as current anced parental translocations may be good embryos to a normal uterus with- recommended management strategies. implicated in the pathogenesis of im- out achieving successful implantation plantation failure in IVF, and that ge- and a clinical pregnancy. Traditionally, ETIOLOGY netic evaluation should be considered failure to achieve a pregnancy after two Chromosomal abnormalities, inade- as part of the investigation of these cou- to six IVF cycles, in which more than quate culture conditions, suboptimal ples (4). 10 high-grade embryos were transferred embryo development, zona hardening, Aneuploid embryos have decreased to the uterus was defined as RIF (1). and improper ET technique all play an ability to undergo successful implanta- However, in most IVF programs, failure important role in the etiology of RIF. tion and result in a viable pregnancy, of three cycles in which reasonably but cannot be distinguished from nor- good embryos were transferred would mal embryos using standard morpho- warrant investigation (2). In spite of op- Chromosomal Abnormality logical criteria. Data obtained from timization of treatment protocols and It is now well established that a major embryos and oocytes of patients under- huge advancements in laboratory tech- cause of repeated implantation failure going preimplantation genetic screen- nologies, the management of RIF poses after IVF is a high frequency of chromo- ing (PGS) because of advanced age, a major challenge to clinicians and em- somal aneuploidy. An increased inci- recurrent pregnancy losses, or multiple bryologists universally. The process of dence of chromosomal abnormalities, failed IVF cycles, support the concept embryo implantation in the uterus such as translocations, mosaicism, that many embryos and eggs obtained during IVF are intrinsically abnormal Received February 2, 2012; accepted February 21, 2012; published online March 15, 2012. and thus fail to implant (5). Using fluo- M.D. has nothing to disclose. H.E.G.H. has nothing to disclose. rescence in-situ hybridization (FISH) on Reprint requests: Hananel E. G. Holzer, M.D., Department of Ob & Gyn, McGill University Heath Cen- blastomeres from biopsied day 3 em- ter, McGill Reproductive center, 687 Pine Avenue West, Montreal, Quebec H4W 2A6, Canada (E-mail: hananel.holzer@muhc.mcgill.ca). bryos for chromosomes 13, 16, 18, 21, 22, X, and Y, Pehlivan et al. (6) found Fertility and Sterility® Vol. 97, No. 5, May 2012 0015-0282/$36.00 Copyright ©2012 American Society for Reproductive Medicine, Published by Elsevier Inc. that there was a significantly higher doi:10.1016/j.fertnstert.2012.02.029 rate of chromosomal abnormalities VOL. 97 NO. 5 / MAY 2012 1021
  • 2. VIEWS AND REVIEWS (67%) compared with controls (36%) in patients with three or suboptimal components of a culture system that could more failed IVF attempts. In another study, using comparative lead to impaired embryo development have been described genomic hybridization (CGH), Voullaire et al. (7) detected (20). These include osmolality testing, pH measurements, chromosomal abnormalities in 76/126 (60%) single blasto- and sperm bioassay (20). In some instances of RIF, individ- meres biopsied from embryos before implantation in 20 ualized specific culture conditions may be required for opti- women with RIF after IVF. The abnormalities detected in their mal embryo development. study included aneuploidy for one or two chromosomes as Implantation rates and PRs after ET depend on the quality well as complex chromosomal abnormality. They suggested and developmental potential of embryos selected for transfer. that the disruption of the normal sequence of chromosome Suboptimal embryo quality has an adverse effect on implan- replication and segregation in early human embryos, caused tation and PRs. Evidence suggests that ET technique can either by maternal cytoplasmic factors or mutations in cell influence the success or failure of embryo implantation. Uter- cycle control genes, may be a common cause of RIF. ine contractions, blood or mucous on the catheter tip, endo- A higher incidence of sperm chromosomal abnormalities metrial trauma, and expulsion of embryos have all been in patients with normal karyotype and RIF has also been associated with unsuccessful ETs (21). reported. Pregnancy rates (PR) and implantation rates were re- ported to be significantly lower in patients with teratozoosper- MANAGEMENT OPTIONS mia. Rubio et al. (8) analyzed sperm aneuploidy and diploidy Various management options have been proposed to over- rates for chromosomes 13, 18, 21, X, and Y in patients with nor- come the challenges of chromosomal abnormality and subop- mal karyotypes using dual and triple-color FISH techniques. timal embryo development. Table 1 shows the various They reported an increased incidence of sex chromosome dis- etiological factors contributing toward defective embryo de- omies in couples with RIF after intracytoplasmic sperm injec- velopment and their proposed management strategies. tion (ICSI). In addition, centrosome anomalies resulting in chaotic mosaics were most likely of paternal origin (9, 10). Evidence suggests that sperm DNA damage is associated Chromosomal Abnormality with lower PRs after IUI and IVF (11). In addition, increased In view of the higher incidence of chromosomal anomalies, levels of sperm DNA damage have been linked with an parental karyotype is recommended as part of the work-up increased risk of pregnancy loss after IVF and ICSI (12). There- in RIF (4). Preimplantation genetic screening has also been in- fore there is considerable evidence to suggest that chromo- creasingly used in the past decade, the rationale being that an somal abnormalities, both maternal and paternal, play a key increased PR could be achieved by selecting only chromoso- role in the etiology of repeated implantation failure in IVF. mally normal embryos for transfer. The main biopsy methods used for PGS include removal of one or two polar bodies from the unfertilized oocyte or the zygote, removal of one or two Zona Hardening blastomeres at the cleavage stage, or removal of several cells The mammalian oocyte is surrounded by an acellular matrix, at the blastocyst stage (22). Polar body biopsy analyses mater- the zona pellucida (ZP), which is composed of glycoproteins, nal causes of chromosomal abnormality and is an indirect carbohydrates, and ZP-specific proteins (13). It plays a role in method of screening for aneuploid embryos. It has, however, sperm binding, induction of the acrosome reaction, and pro- motes sperm–egg fusion (14). The zona hardens naturally af- ter fertilization to prevent polyspermic fertilization, protects the integrity of the preimplantation embryo, and facilitates TABLE 1 oviductal transport (15). The zona is required during early Management options for factors affecting embryo development and cleavage stages to maintain the integrity of the inner cell implantation in recurrent implantation failure. mass (ICM), but it is usually shed during expansion of the blastocyst, allowing implantation to occur (16). Upon reach- Management options ing the blastocyst stage, physical expansion of the embryonic Chromosomal abnormality mass along with the action of lysins produced by the cleaved Preimplantation genetic screening Comparative genomic hybridization array embryo and/or the uterus, all play a role in zona hatching Single nucleotide polymorphisms (17–19). Failure of the ZP to rupture after blastocyst Zona hardening expansion, resulting in impaired hatching, could contribute Assisted hatching to RIF (15). Prolonged exposure of oocytes and embryos to Suboptimal culture Optimal culture media artificial culture conditions may also adversely affect the Blastocyst transfer embryo's ability to undergo normal hatching and could Coculture impair successful implantation (15). ZIFT Assessment of embryo quality and viability Time-lapse imaging—EmbryoScope Metabolomics Embryo Culture and ET Technique Proteomics The use of high quality, standardized culture media is funda- Improving ET technique Note: ZIFT ¼ zygote intrafallopian transfer. mental to the success of any IVF program. Inadequate cul- Das. Recurrent implantation failure. Fertil Steril 2012. ture conditions could play a role in RIF. Assays to identify 1022 VOL. 97 NO. 5 / MAY 2012
  • 3. Fertility and Sterility® been suggested that if oocyte maturation to the metaphase II producing a unique DNA fingerprint for each embryo tested stage is completed just before the polar body biopsy, it may (33). However, a disadvantage of SNP microarrays is a lack result in damage to the meiotic spindle of the oocyte (23). of diagnostic accuracy at individual SNP loci as well as Cleavage stage biopsy is the most commonly used method high cost of microarrays and labeling techniques (33). In the for screening preimplantation embryos for aneuploidy (24). future, PGS-FISH may be replaced by comprehensive proce- However, cleavage stage embryos have an increased inci- dures such as array CGH and SNP microarrays. However, dence of mosaicism (22). Biopsy at the blastocyst stage may the efficacy and practicality of these procedures in improving have a smaller risk of aneuploidy than embryo biopsy at the implantation and live birth rates in patients with RIF will have cleavage stage, because mosaic embryos have a higher pro- to be determined in well-designed prospective randomized portion of aneuploid cells on day 2/3 and will not develop controlled trials before they can be widely applied in clinical to the blastocyst stage (23). practice. Although initial studies suggested that PGS with FISH could be used to achieve favorable implantation and PRs in patients with RIF (6, 25), evidence from recent randomized Assisted Hatching controlled trials does not support these findings (26, 27). In Elasticity and thinning of the ZP are essential prerequisites for a prospective randomized controlled trial, Blockeel et al. successful embryo hatching and implantation (15, 37). It has (26) observed that PGS did not increase the implantation been observed that cleaved embryos with a good prognosis for rates after IVF-ICSI in women with RIF. In this study, the in- implantation have reduced zona thickness (38). It has been vestigators analyzed chromosomes 13, 16, 18, 21, 22, X, and suggested that an artificial opening made in the ZP may Y using FISH on blastomeres of day 3 cleavage stage embryos facilitate the hatching process (39). Cohen et al. (40) in the study group. There was a significant difference in live observed a higher implantation rate per ET after partial birth rate between the PGS group (21%) and the control group zona dissection. The implantation window occurs 1–2 days (39%). The miscarriage rate did not differ between the two earlier in women undergoing ovarian stimulation than in groups (26, 27). A recent meta-analysis of randomized natural cycles (41). Embryos with artificial gaps in the zona controlled trials demonstrated that in women with advanced initiate hatching earlier than zona intact embryos, maternal age as well as women with repeated implantation compensating for the reduced development rate in vitro failure, PGS significantly lowered live birth rates after (42). It has also been proposed that breaching the integrity IVF (27). of the zona could enhance the transport of nutrients from The reasons that have been proposed for the inefficiency the incubating media, which in turn would augment of PGS are possible damage from the biopsy procedure, failure embryo development and blastocyst formation (43). It could rate from the technique, limitations of the FISH analysis, and also serve as a channel for a two-way exchange across the embryo mosaicism (27, 28). In addition, the efficacy of FISH is ZP of metabolites and growth factors (42). limited because only a few chromosomes can be detected The artificial rupture of the ZP is known as assisted hatch- simultaneously in a single biopsied cell. The lack of ing and aims to improve implantation and clinical PRs. Var- usefulness of PGS may be because the tested blastomere is ious techniques have been used to aid zona hatching. These not representative for the whole embryo (29). The American involve the creation of an opening in the ZP either by me- Society of Reproductive Medicine (ASRM), the European chanical partial zona dissection (39), chemically by zona dril- Society of Human Reproduction and Embryology (ESHRE), ling with acid Tyrode (42), chemical zona thinning (44), and the British Fertility Society have concluded that PGS enzymatic treatment (45), laser-assisted hatching (46, 47), does not improve the live birth rates in patients with RIF, or by using a piezo-micromanipulator (48). advanced maternal age, or recurrent pregnancy loss (30–32). The clinical relevance of assisted hatching procedures in Alternative approaches have been proposed to overcome the management of RIF is controversial. Although some stud- the limitations of FISH for PGS. These include CGH or the ies have reported that assisted zona hatching improves PRs analysis of single nucleotide polymorphisms (SNPs) (33, 34). and implantation rates in patients with RIF (49, 50), other Comparative genomic hybridization is a DNA-based method, investigators have not reported any advantage (46). Recent which is applicable to cells in any phase of the cell cycle (33). studies seem to suggest that assisted hatching may be of The CGH microarray enables a more comprehensive screening benefit in selected patients. In a prospective randomized of chromosomes. Many chromosomal aneuploidies identified study, comparing chemical removal of ZP from day 5 using CGH would not have been detected using FISH for five in vitro cultured human embryos by using acidic Tyrode's or nine chromosomes (35). Microarrays have an advantage solution versus no removal, the implantation rate per ET over conventional CGH because the evaluation of fluores- and the clinical PR were significantly higher in the ZP-free cence ratios is simple, rapid, and easily automated (33). A group (51). Stein et al. (52) reported that assisted hatching proof-of-principle study concluded that chromosomal aneu- by partial zona dissection resulted in a significant increase ploidy of the oocyte can be accurately predicted by array in the implantation and clinical PRs in women older than CGH analysis of both polar bodies (36). 38 years with RIF. Similarly, Petersen et al. (53) observed Single nucleotide polymorphisms are common polymor- that for patients with repeated implantation failures, the im- phic DNA sequences found throughout the genome. The plantation rate in those who received laser-thinned embryos probes used for SNP microarrays provide genotype data in was significantly higher than in those whose embryos were addition to chromosome copy number information, thereby not laser thinned. Interestingly, this difference was not VOL. 97 NO. 5 / MAY 2012 1023
  • 4. VIEWS AND REVIEWS observed in patients with a history of only one previous im- patients, selecting the best embryos by culturing to the blas- plantation failure. In support of these findings, in a recent tocyst stage assumes even greater significance. In a prospec- meta-analysis of randomized control trials (five trials with tive randomized study, Levitas et al. (63) reported that in 761 participants), assisted hatching was reported to be associ- patients with RIF with an adequate ovarian response, transfer ated with a significant improvement in clinical pregnancy of blastocyst stage embryos carries a significantly higher im- when performed in fresh embryos transferred to women plantation rate compared with ET on days 2–3. The multiple with RIF (relative risk [RR] ¼ 1.73; 95% confidence interval PR was not significantly different between the two groups [CI] ¼ 1.37–2.17) (54). No increase was observed in clinical (63). In another study, Guerif et al. (64) also observed that PRs when performed in fresh embryos transferred to unse- the live birth rates and implantation rates per cycle were lected or nonpoor prognosis women or to women of advanced higher after blastocyst transfer compared with day 2 ET. age. Assisted hatching was also related to increased multiple They suggested that improved embryo selection and uterine PRs in women with previous repeated implantation failure. receptivity may explain the additional benefit of ET at the However, due to the small sample size of the included studies, blastocyst stage for couples with RIF (64). However, it should this meta-analysis was not able to draw any conclusions re- be noted that a percentage of fertilized eggs will never reach garding live birth or miscarriage rates (54). the blastocyst stage. Proper selection of cases suitable for blastocyst transfer is therefore critical to reduce the number of cycle cancellations (63). Embryo Culture Optimum culture conditions are a prerequisite for satisfactory Stimulation Protocols embryonic development and lack of these conditions may contribute to RIF. Various coculture systems have been devel- Variations in ovarian stimulation protocols have been sug- oped as a means of improving embryo culture conditions. The gested in some studies as a means of improving embryo devel- main aim is to increase the metabolic chances of the human opment and quality. The use of GnRH antagonist protocols in embryo to achieve the blastocyst stage because this leads to controlled ovarian hyperstimulation (COH) has been shown to a high implantation rate and PR. The suggested favorable ef- improve pregnancy outcome in patients with a history of RIF fects of cocultures include the secretion of embryotrophic fac- with GnRH agonist protocols. The investigators proposed that tors, such as nutrients and substrates, growth factors and this was most likely due to improvement of the quality of the cytokines, and the removal of free radicals and potentially blastocysts generated (65). Natural cycle IVF has also been harmful substances (55). Although multiple cell types have proposed as a means of improving implantation rates in pa- been used for coculturing embryos, ranging from human re- tients with RIF (66). Despite some personal experience with productive tissues, such as oviducts (56), endometrium (57), natural cycle IVF and in vitro maturation of oocytes in pa- sequential oviduct-endometrial coculture (58), and cumulus- tients with RIF, the lack of randomized clinical studies in granulosa cells (GC) (59–61), homologous endometrial cells this field does not allow any recommendations to be made appear to be the most promising coculture system (57). with regard to their efficacy. Using coculture of embryos on homologous endometrial cells in patients with RIF, Jayot et al. (57) reported an Zygote Intrafallopian Transfer overall PR of 21% per transfer versus 8% in previous IVF-ET Zygote intrafallopian transfer (ZIFT) allows the early embryo cycles. Similarly, using autologous endometrial coculture in to grow in the natural tubal environment and physiological patients with RIF, Spandorfer et al. (62) reported a significant transport of the embryos into the uterine cavity. It also over- improvement in embryo quality and clinical PRs. However, comes the problem of technically difficult ET because of cer- the advantage of coculture systems remains controversial. In vical stenosis (2). Although initial nonrandomized studies addition, most IVF units do not have the necessary personnel implied that ZIFT may be of value in RIF (67), a subsequent or facilities to perform coculture on a regular basis. meta-analysis of randomized controlled trials failed to dem- onstrate any benefit for ZIFT (68). In fact, there was a trend Blastocyst Transfer toward increased risk of ectopic pregnancy (EP) with ZIFT (68). These findings led to the procedure being abandoned Embryo transfer at the blastocyst stage has been proposed as by most units. a strategy to improve implantation rates and PRs in patients with RIF. Blastocyst transfer is a more physiological approach as the human embryos usually enter the endometrial cavity 5 ET Technique days after fertilization, at the morula-blastocyst stage in nat- A meticulous ET technique is of utmost importance in achiev- ural conception cycles (2). Better embryo selection for transfer ing a successful pregnancy outcome. Studies show that avoid- and improved endometrial receptivity are obvious advantages ance of blood (69), mucus (70), bacterial contamination, of this approach. Some clinicians transfer several embryos trauma to the endometrium, touching the fundus, and exces- after RIF. Culturing embryos to the blastocyst stage helps in sive uterine contractions (71) are all associated with better selecting embryos with the best implantation potential. PRs and implantation rates after ET. Several techniques Therefore fewer embryos have to be transferred to achieve have been proposed to optimize the technique of ET. Methods, a successful pregnancy, thereby decreasing the risk of multi- such as a trial transfer (72), filled bladder (73), ultrasono- ple pregnancy. With single ET becoming the norm in younger graphic guidance (74), and use of soft catheters, all appear 1024 VOL. 97 NO. 5 / MAY 2012
  • 5. Fertility and Sterility® to facilitate a successful ET (21), whereas bed rest after ET has viability (83). Newer methods, such as vibrational spectros- not been shown to be of any benefit (75). copy, both Raman and near infrared, have been used to ana- lyze spent culture medium from human embryos, measuring bonds within functional groups of molecules at specific wave- Cytoplasmic Transfer lengths. Results from initial studies indicate that spectral pro- Ooplasmic factors play a role in the continued development files reflective of oxidative stress appear to have a good of the zygote, especially during the early cleavage stage. Co- correlation with pregnancy outcome (84). hen et al. (76) transferred ooplasm from donor eggs at meta- phase II stage into developmentally compromised metaphase II oocytes in patients with multiple implantation failure (76). CONCLUSION They noted that this led to an improvement in embryo mor- Regardless of the considerable improvement in treatment pro- phology. Cytoplasmic transfer from fertile donor oocytes or tocols and laboratory technologies, RIF still poses a significant zygotes into developmentally compromised oocytes from pa- challenge to clinicians and embryologists. Chromosomal ab- tients with RIF has led to the birth of several healthy babies normalities and suboptimal embryo development play a major worldwide (77). It has been suggested that this procedure role in the etiology of RIF. Emerging technologies, such as may correct an imbalance between anti- and pro-apoptotic CGH array and analysis of SNPs could enable a more compre- factors and/or correction of defective mitochondrial mem- hensive screening of chromosomes. Assisted hatching may brane potential (78). However, the transferred cytoplasm help to overcome zona hardening in selected patients. Opti- could contain messenger RNAs, proteins. and mitochondria mal culture conditions and blastocyst transfer may contribute (77). In addition, it is not known whether the physiology of toward improving the implantation rates and PRs in RIF. the early embryo is affected. The procedure is still experimen- Novel embryo assessment and selection procedures, such as tal and will require assessment of ooplasmic anomalies and time-lapse imaging and metabolomics, may help in better optimization of techniques before it can be applied in clinical evaluation of embryo quality and viability and help in select- practice. ing embryos with the highest implantation potential. It should be noted that only those treatment options that are evidence based should be offered to patients. The safety, efficacy, and New Methods of Embryo Assessment practicality of new, emerging methods of treatment should Assessment of embryo quality is critical in selecting the best be evaluated in prospective randomized clinical trials before embryo(s) to transfer or cryopreserve. As visual assessment being accepted in clinical practice. of embryo quality using morphological criteria can be subjec- tive and requires considerable expertise, newer methods of as- sessing embryo quality and viability are being developed. REFERENCES Emerging techniques such as time-lapse imaging may lead 1. Tan BK, Vandekerckhove P, Kennedy R, Keay SD. Investigation and current to better assessment of embryo quality and help in selecting management of recurrent IVF treatment failure in the UK. BJOG 2005;112: 773–80. embryos with the highest implantation potential. It has 2. Margalioth EJ, Ben-Chetrit A, Gal M, Eldar-Geva T. Investigation and treat- been suggested that time-lapse observations using an incuba- ment of repeated implantation failure following IVF-ET. Hum Reprod 2006; tor with an integrated optical microscope may minimize the 21:3036–43. changes in the culturing environment by integrating the cul- 3. Raziel A, Friedler S, Schachter M, Kasterstein E, Strassburger D, Ron-El R. In- ture, observation, and time-lapse recording of cells into one creased frequency of female partner chromosomal abnormalities in patients system. The removal of embryos from the incubator for inter- with high-order implantation failure after in vitro fertilization. Fertil Steril mittent observation can therefore be avoided while enabling 2002;78:515–9. 4. Stern C, Pertile M, Norris H, Hale L, Baker HWG. Chromosome translocations the continuous monitoring of embryo development (79). in couples with in-vitro fertilization implantation failure. Hum Reprod 1999; There is evidence that time-lapse monitoring in the Embryo- 14:2097–101. Scope (Unisense FertiliTech) does not impair embryo quality 5. Patrizio P, Bianchi V, Lalioti MD, Gerasimova T, Sakkas D. High rate of bio- while allowing for morphological and spatial analysis of em- logical loss in assisted reproduction: it is in the seed, not in the soil. Reprod bryo development (80). However, besides being more expen- Biomed Online 2007;14(Spec No 1):23–6. sive than standard incubators, the culture preparation 6. Pehlivan T, Rubio C, Rodrigo L, Romero J, Remohi J, Simon C, et al. Impact of preimplantation genetic diagnosis on IVF outcome in implantation failure procedure is more time consuming compared with conven- patients. Reprod Biomed Online 2003;6:232–7. tional culture methods (81). 7. Voullaire L, Wilton L, McBain J, Callaghan T, Williamson R. Chromosome ab- Different approaches are also being developed to test the normalities identified by comparative genomic hybridization in embryos culture environment of a developing embryo to gain impor- from women with repeated implantation failure. Mol Hum Reprod 2002; tant information regarding its viability. Metabolomic analysis 8:1035–41. of follicular fluid (FF) can provide valuable information about 8. Rubio C, Gil-Salom M, Simon C, Vidal F, Rodrigo L, Mínguez Y, et al. Inci- individual oocyte maturation and developmental potential. dence of sperm chromosomal abnormalities in a risk population: relation- ship with sperm quality and ICSI outcome. Hum Reprod 2001;16:2084–92. Various methods have been described, which include mea- 9. Delhanty JD. Mechanisms of aneuploidy induction in human oogenesis and surement of oxygen (81), pyruvate, and glucose consumption early embryogenesis. Cytogenet Genome Res 2005;111:237–44. by the embryo in the culture medium (82). Amino acid 10. Obasaju M, Kadam A, Sultan K, Fateh M, Munn S. Sperm quality may e turnover, which appears to be correlated to blastocyst adversely affect the chromosome constitution of embryos that result from development, can be measured as an indication of embryo intracytoplasmic sperm injection. Fertil Steril 1999;72:1113–5. VOL. 97 NO. 5 / MAY 2012 1025
  • 6. VIEWS AND REVIEWS 11. Bungum M, Humaidan P, Axmon A, Spano M, Bungum L, Erenpreiss J, et al. 32. The Practice Committee of the Society for Assisted Reproductive Technol- Sperm DNA integrity assessment in prediction of assisted reproduction tech- ogy, Practice Committee of the American Society for Reproductive Medi- nology outcome. Hum Reprod 2007;22:174–9. cine. Preimplantation genetic testing: a Practice Committee opinion. Fertil 12. Zini A, Boman JM, Belzile E, Ciampi A. Sperm DNA damage is associated Steril 2008;90:S136–43. with an increased risk of pregnancy loss after IVF and ICSI: systematic review 33. Wells D, Alfarawati S, Fragouli E. Use of comprehensive chromosomal and meta-analysis. Hum Reprod 2008;23:2663–8. screening for embryo assessment: microarrays and CGH. Mol Hum Reprod 13. Bleil JD, Wassarman PM. Structure and function of the zona pellucida: iden- 2008;14:703–10. tification and characterization of the proteins of the mouse oocyte's zona 34. Wilton L. Preimplantation genetic diagnosis and chromosome analysis of pellucida. Dev Biol 1980;76:185–202. blastomeres using comparative genomic hybridization. Hum Reprod Update 14. van Duin M, Polman JE, De Breet IT, van Ginneken K, Bunschoten H, 2005;11:33–41. Grootenhuis A, et al. Recombinant human zona pellucida protein ZP3 pro- 35. Wilton L, Voullaire L, Sargeant P, Williamson R, McBain J. Preimplantation duced by Chinese hamster ovary cells induces the human sperm acrosome aneuploidy screening using comparative genomic hybridization or fluores- reaction and promotes sperm-egg fusion. Biol Reprod 1994;51:607–17. cence in situ hybridization of embryos from patients with recurrent implan- 15. De Vos A, Van Steirteghem A. Zona hardening, zona drilling and assisted tation failure. Fertil Steril 2003;80:860–8. hatching: new achievements in assisted reproduction. Cells Tissues Organs 36. Geraedts J, Montag M, Magli MC, Repping S, Handyside A, Staessen C, et al. 2000;166:220–7. Polar body array CGH for prediction of the status of the corresponding oo- 16. Trounson AO, Moore NW. The survival and development of sheep eggs fol- cyte. Part I: clinical results. Hum Reprod 2011;26:3173–80. lowing complete or partial removal of the zona pellucida. J Reprod Fertil 37. Cohen J. Assisted hatching of human embryos. J Assist Reprod Genet 1991; 1974;41:97–105. 8:179–90. 17. Schiewe M, Araujo E, Asch R, Balmaceda J. Enzymatic characterization of 38. Cohen J, Inge KL, Suzman M, Wiker SR, Wright G. Videocinematography of zona pellucida hardening in human eggs and embryos. J Assist Reprod fresh and cryopreserved embryos: a retrospective analysis of embryonic mor- Genet 1995;12:2–7. phology and implantation. Fertil Steril 1989;51:820–7. 18. Gordon JW, Dapunt U. A new mouse model for embryos with a hatching 39. Malter HE, Cohen J. Blastocyst formation and hatching in vitro following deficiency and its use to elucidate the mechanism of blastocyst hatching. zona drilling of mouse and human embryos. Gamete Res 1989;24:67–80. Fertil Steril 1993;59:1296–301. 40. Cohen J, Alikani M, Malter HE, Adler A, Talansky BE, Rosenwaks Z. Partial 19. Hammadeh M, Fischer-Hammadeh C, Ali K. Assisted hatching in assisted re- zona dissection or subzonal sperm insertion: microsurgical fertilization alter- production: a state of the art. J Assist Reprod Genet 2011;28:119–28. natives based on evaluation of sperm and embryo morphology. Fertil Steril 20. Gardner DK, Reed L, Linck D, Sheehan C, Lane M. Quality control in human 1991;56:696–706. in vitro fertilization. Semin Reprod Med 2005;23:319–24. 41. Nikas G, Develioglu OH, Toner JP, Jones HW. Endometrial pinopodes indicate 21. Schoolcraft WB, Surrey ES, Gardner DK. Embryo transfer: techniques and a shift in the window of receptivity in IVF cycles. Hum Reprod 1999;14:787–92. variables affecting success. Fertil Steril 2001;76:863–70. 42. Cohen J, Alikani M, Trowbridge J, Rosenwaks Z. Implantation enhancement 22. Harton GL, Magli MC, Lundin K, Montag M, Lemmen J, Harper JC. ESHRE by selective assisted hatching using zona drilling of human embryos with PGD Consortium/Embryology Special Interest Group—best practice guide- poor prognosis. Hum Reprod 1992;7:685–91. lines for polar body and embryo biopsy for preimplantation genetic diagno- 43. Hershlag A, Feng HL. Effect of prefreeze assisted hatching on postthaw sur- sis/screening (PGD/PGS). Hum Reprod 2011;26:41–6. vival of mouse embryos. Fertil Steril 2005;84:1752–4. 23. Ly KD, Agarwal A, Nagy ZP. Preimplantation genetic screening: does it help 44. Khalifa EA, Tucker MJ, Hunt P. Cruciate thinning of the zona pellucida for or hinder IVF treatment and what is the role of the embryo? J Assist Reprod more successful enhancement of blastocyst hatching in the mouse. Hum Re- Genet 2011;28:833–49. prod 1992;7:532–6. 24. Goossens V, Harton G, Moutou C, Traeger-Synodinos J, Van Rij M, 45. Fong CY, Bongso A, Ng SC, Kumar J, Trounson A, Ratnam S. Blastocyst trans- Harper JC. ESHRE PGD Consortium data collection IX: cycles from January fer after enzymatic treatment of the zona pellucida: improving in-vitro fertil- to December 2006 with pregnancy follow-up to October 2007. Hum Reprod ization and understanding implantation. Hum Reprod 1998;13:2926–32. 2009;24:1786–810. 46. Valojerdi MR, Eftekhari-Yazdi P, Karimian L, Ashtiani SK. Effect of laser zona 25. Wilding M, Forman R, Hogewind G, Di Matteo L, Zullo F, Cappiello F, et al. pellucida opening on clinical outcome of assisted reproduction technology Preimplantation genetic diagnosis for the treatment of failed in vitro in patients with advanced female age, recurrent implantation failure, or fertilization-embryo transfer and habitual abortion. Fertil Steril 2004;81: frozen-thawed embryos. Fertil Steril 2008;90:84–91. 1302–7. 47. Laufer N, Palanker D, Shufaro Y, Safran A, Simon A, Lewis A. The efficacy 26. Blockeel C, Schutyser V, De Vos A, Verpoest W, De Vos M, Staessen C, et al. and safety of zona pellucida drilling by a 193-nm excimer laser. Fertil Steril Prospectively randomized controlled trial of PGS in IVF/ICSI patients with 1993;59:889–95. poor implantation. Reprod Biomed Online 2008;17:848–54. 48. Nakayama T, Fujiwara H, Yamada S, Tastumi K, Honda T, Fujii S. Clinical ap- 27. Mastenbroek S, Twisk M, van der Veen F, Repping S. Preimplantation ge- plication of a new assisted hatching method using a piezo-micromanipulator netic screening: a systematic review and meta-analysis of RCTs. Hum Reprod for morphologically low-quality embryos in poor-prognosis infertile patients. Update 2011;17:454–66. Fertil Steril 1999;71:1014–8. 28. Harper JC, Coonen E, Handyside AH, Winston RM, Hopman AH, 49. Antinori S, Selman HA, Caffa B, Panci C, Dani GL, Versaci C. Fertilization and Delhanty JD. Mosaicism of autosomes and sex chromosomes in morpholog- early embryology: zona opening of human embryos using a non-contact UV ically normal, monospermic preimplantation human embryos. Prenat Diagn laser for assisted hatching in patients with poor prognosis of pregnancy. 1995;15:41–9. Hum Reprod 1996;11:2488–92. 29. Vanneste E, Voet T, Melotte C, Debrock S, Sermon K, Staessen C, et al. What 50. Chao K-H, Chen S-U, Chen H-F, Wu M-Y, Yang Y-S, Ho H-N. Assisted hatch- next for preimplantation genetic screening? High mitotic chromosome in- ing increases the implantation and pregnancy rate of in vitro fertilization stability rate provides the biological basis for the low success rate. Hum Re- (IVF)-embryo transfer (ET), but not that of IVF-tubal ET in patients with re- prod 2009;24:2679–82. peated IVF failures. Fertil Steril 1997;67:904–8. 30. Harper J, Coonen E, De Rycke M, Fiorentino F, Geraedts J, Goossens V, et al. 51. Jelinkova L, Pavelkova J, Strehler E, Paulus W, Zivny J, Sterzik K. Improved im- What next for preimplantation genetic screening (PGS)? A position state- plantation rate after chemical removal of the zona pellucida. Fertil Steril ment from the ESHRE PGD Consortium steering committee. Hum Reprod 2003;79:1299–303. 2010;25:821–3. 52. Stein A, Rufas O, Amit S, Avrech O, Pinkas H, Ovadia J, et al. Assisted hatch- 31. Anderson RA, Pickering S. The current status of preimplantation genetic ing by partial zona dissection of human pre-embryos in patients with recur- screening: British Fertility Society Policy and Practice Guidelines. Hum Fertil rent implantation failure after in vitro fertilization. Fertil Steril 1995;63: (Camb) 2008;11:71–5. 838–41. 1026 VOL. 97 NO. 5 / MAY 2012
  • 7. Fertility and Sterility® 53. Petersen CG, Mauri AL, Baruffi RL, Oliveira JBA, Massaro FC, Elder K, et al. 68. Habana AE, Palter SF. Is tubal embryo transfer of any value? A meta-analysis Implantation failures: success of assisted hatching with quarter-laser zona and comparison with the Society for Assisted Reproductive Technology da- thinning. Reprod BioMed Online 2005;10:224–9. tabase. Fertil Steril 2001;76:286–93. 54. Martins WP, Rocha IA, Ferriani RA, Nastri CO. Assisted hatching of human 69. Goudas VT, Hammitt DG, Damario MA, Session DR, Singh AP, Dumesic DA. embryos: a systematic review and meta-analysis of randomized controlled Blood on the embryo transfer catheter is associated with decreased rates of trials. Hum Reprod Update 2011;17:438–53. embryo implantation and clinical pregnancy with the use of in vitro fertiliza- 55. Simon C, Mercader A, Garcia-Velasco J, Nikas G, Moreno C, Remohí J, et al. tion–embryo transfer. Fertil Steril 1998;70:878–82. Coculture of human embryos with autologous human endometrial epithe- 70. Egbase PE, al-Sharhan M, al-Othman S, al-Mutawa M, Udo EE, Grudzinskas JG. lial cells in patients with implantation failure. J Clin Endocrinol Metab Incidence of microbial growth from the tip of the embryo transfer catheter 1999;84:2638–46. after embryo transfer in relation to clinical pregnancy rate following in-vitro 56. Yeung WSB, Ho PC, Lau EYL, Chan STH. Improved development of human fertilization and embryo transfer. Hum Reprod 1996;11:1687–9. embryos in vitro by a human oviductal cell co-culture system. Hum Reprod 71. Lesny P, Killick SR, Tetlow RL, Robinson J, Maguiness SD. Embryo transfer— 1992;7:1144–9. can we learn anything new from the observation of junctional zone contrac- 57. Jayot S, Parneix I, Verdaguer S, Discamps G, Audebert A, Emperaire JC. tions? Hum Reprod 1998;13:1540–6. Coculture of embryos on homologous endometrial cells in patients with 72. Mansour R, Aboulghar M, Serour G. Dummy embryo transfer: a technique repeated failures of implantation. Fertil Steril 1995;63:109–14. that minimizes the problems of embryo transfer and improves the pregnancy 58. Bongso A, Fong CY, Ng SC, Ratnam S. Human embryonic behavior in a se- rate in human in vitro fertilization. Fertil Steril 1990;54:678–81. quential human oviduct-endometrial coculture system. Fertil Steril 1994;61: 73. Sundstrom P, Wramsby H, Persson PH, Liedholm P. Filled bladder simplifies 976–8. human embryo transfer. Br J Obstet Gynaecol 1984;91:506–7. 59. Plachot M, Antoine JM, Alvarez S, Firmin C, Pfister A, Mandelbaum J, et al. 74. Hurley VA, Osborn JC, Leoni MA, Leeton J. Ultrasound-guided embryo trans- Fertilization and early embryology: granulosa cells improve human embryo fer: a controlled trial. Fertil Steril 1991;55:559–62. development in vitro. Hum Reprod 1993;8:2133–40. 75. Botta G, Grudzinskas G. Is a prolonged bed rest following embryo transfer 60. Quinn P, Margalit R. Beneficial effects of coculture with cumulus cells on useful? Hum Reprod 1997;12:2489–92. blastocyst formation in a prospective trial with supernumerary human 76. Cohen J, Scott R, Alikani M, Schimmel T, Munn S, Levron J, et al. Ooplasmic e embryos. J Assist Reprod Genet 1996;13:9–14. transfer in mature human oocytes. Mol Hum Reprod 1998;4:269–80. 61. Freeman MR, Whitworth CM, Hill GA. Fertilization and early embryology: 77. Barritt JA, Willadsen S, Brenner C, Cohen J. Cytoplasmic transfer in assisted granulosa cell co-culture enhances human embryo development and reproduction. Hum Reprod Update 2001;7:428–35. pregnancy rate following in-vitro fertilization. Hum Reprod 1995;10: 78. Levy R, Elder K, Mnzo Y. Cytoplasmic transfer in oocytes: biochemical e e 408–14. aspects. Hum Reprod Update 2004;10:241–50. 62. Spandorfer SD, Pascal P, Parks J, Clark R, Veeck L, Davis OK, et al. Autolo- 79. Nakahara T, Iwase A, Goto M, Harata T, Suzuki M, Ienaga M, et al. Evalua- gous endometrial coculture in patients with IVF failure: outcome of the first tion of the safety of time-lapse observations for human embryos. J Assist 1,030 cases. J Reprod Med 2004;49:463–7. Reprod Genet 2010;27:93–6. 63. Levitas E, Lunenfeld E, Har-Vardi I, Albotiano S, Sonin Y, Hackmon-Ram R, 80. Cruz M, Gadea B, Garrido N, Pedersen KS, Martinez M, Perez-Cano I, et al. et al. Blastocyst-stage embryo transfer in patients who failed to conceive Embryo quality, blastocyst and ongoing pregnancy rates in oocyte donation in three or more day 2–3 embryo transfer cycles: a prospective, randomized patients whose embryos were monitored by time-lapse imaging. J Assist study. Fertil Steril 2004;81:567–71. Reprod Genet 2011;28:569–73. 64. Guerif F, Bidault R, Gasnier O, Couet ML, Gervereau O, Lansac J, et al. Effi- 81. Nel-Themaat L, Nagy ZP. A review of the promises and pitfalls of oocyte and cacy of blastocyst transfer after implantation failure. Reprod Biomed Online embryo metabolomics. Placenta 2011;32(Suppl 3):S257–63. 2004;9:630–6. 82. Gardner DK, Lane M, Stevens J, Schoolcraft WB. Noninvasive assessment of 65. Takahashi K, Mukaida T, Tomiyama T, Goto T, Oka C. GnRH antagonist im- human embryo nutrient consumption as a measure of developmental po- proved blastocyst quality and pregnancy outcome after multiple failures of tential. Fertil Steril 2001;76:1175–80. IVF/ICSI–ET with a GnRH agonist protocol. J Assist Reprod Genet 2004;21: 83. Houghton FD, Hawkhead JA, Humpherson PG, Hogg JE, Balen AH, 317–22. Rutherford AJ, et al. Non-invasive amino acid turnover predicts human em- 66. Kadoch IJ. [Natural cycle IVF (nIVF) in women with implantation failure]. J Gy- bryo developmental capacity. Hum Reprod 2002;17:999–1005. necol Obstet Biol Reprod (Paris) 2004;33:S33–5. 84. Seli E, Sakkas D, Scott R, Kwok SC, Rosendahl SM, Burns DH. Noninvasive 67. Levran D, Mashiach S, Dor J, Levron J, Farhi J. Zygote intrafallopian transfer metabolomic profiling of embryo culture media using Raman and near- may improve pregnancy rate in patients with repeated failure of implanta- infrared spectroscopy correlates with reproductive potential of embryos in tion. Fertil Steril 1998;69:26–30. women undergoing in vitro fertilization. Fertil Steril 2007;88:1350–7. VOL. 97 NO. 5 / MAY 2012 1027