SlideShare una empresa de Scribd logo
1 de 41
Descargar para leer sin conexión
MRS Fall Meeting: Symposium


 Multilayer Ceramic Microsystems:
applications in wireless, energy and
            life sciences


    Micro-Technologies Research Lab
       Solid State Research Center
              Motorola Labs
             Tempe, Arizona
OUTLINE
• MST definitions and technologies
• Ceramic “MEMS” technology
• Ceramic “MEMS” applications
   – Integration of RF-Wireless Functions
   – Miniaturization of Fuel Cell Systems
     • Direct Methanol
     • Reformed Hydrogen
   – Life Science Devices/Appliances
     •   MHD pumping
     •   DNA Amplification
     •   DNA Hybridization & Detection
     •   UV Light Source
     •   Conceptual Life Science Integrated Appliance
MicroSystem Technology (MST)*
                  Lab-on-       System in/on a
                   Chip         Package (SIP)       MOEMS     Packaging      Modular MEMS



                              MicroSystem Technologies

                                 System Miniaturization and Integration of
                                       Device Functions Based on:

             Mechatronics        Electronics     Photonics   MicroFluidics   Thermonics
              Microgrippers Microsensors/detectors
                                                             Micropumps        Microreactors
                Microactuators Microplasma                        Microvalves Microheaters
                                           Micromirrors
                                  Microswitches    Micropneumatics    Micromixers
                                     Enabled By 3D Multilayer
                               Integration/Fabrication Technologies:

                                    Ceramic, Glass, Plastic, Si
*Source:   M. Riester and D.L. Wilcox
Definition of MST

Any device or unit made up of a number of micro-
engineered components/devices.


An intelligent miniaturized monolithic and/or hybrid
integrated system comprising sensing, processing
and/or actuating devices utilizing two or more of the
following technologies: electronic, mechatronic,
microfluidic, thermonic, and photonic.
Microsystems Technology Driving
             Forces
• Integration and Miniaturization of
  Multifunctional Appliances
• Enabled by Integration of fluidics,
  electronics, photonics, and “thermonics”
• Market Opportunities:
  – Wireless – multiband and multimode phones
    requiring more components
  – Micro-scale energy sources for portable
    appliances
  – Emerging life science fluidic based devices
  – “Lab on a chip”; Micro-reactor; etc.
Important Microsystem Integration
              Technologies
• Ceramic - MEMS
• Si – MEMS
• Other Glass and Plastic (PCB) Technologies
• Electronic Packaging and Interconnect
  Technologies
• Materials, Process and Device Modeling and
  System Architecture/Partitioning and
  Technology Selection Protocols
• Tools for managing cross-discipline, cross-
  function teams!
Ceramic MEMS: Technologies & Applications
                 Methanol Reformer
                                                                                                 Cell Phone
                                                                                                 Receiver



                        15 mm
                                              fuel               integrated
ENERGY                                     reformers              modules
                                5 mm
                                              MICROSYSTEM
                                                                                             WIRELESS
  Direct                                       FUNCTIONS on-chip
 Methanol                                                                   power         COMMUNICATIONS
 Fuel Cell                                                             ICs amplifiers
                                         sensors
                                 fuel                 NEW
 Micro Hollow Cathode            cells             MATERIALS &                  filters                         8 mm

  Discharge (MHCD)                                 PROCESSES
                                           light                        pumps
    UV light source
                                         sources                                                      8.5 mm
                                                                                             Power Amplifier
                                               temperature       chemical
                                                                 reactors PCR
                                         E-chip control                                                        Pumping/
                                                                                                                Mixing

         V                                             cell sorting
        Integrated
        BioChip                              LIFE                                            DNA
        Technology
                                           SCIENCES                                       amplification
Processing of Ceramic MEMS Microsystems


                                 Integrated active                Integrated
                                 component          Sensor        Passive component
Electrical interconnect (Z)                  Electrical interconnect
Or Fluidic Microchannels (Z)                         Fluidic microchannels( X,Y)
                ……….. …..
                 ………..            ……….. …                               …
                   ………..




                                                                        ………..
                                     ..
             ………..


                         ………..




                                             ………..
                                                                               Inspection
            ………..




                                 ………..




                                                                .

                                                                    . . ..
                                                                .

                                                                    . ..
                                                                    . .. …..
                   . …..             . …..
            ………..




                   . …..             . …..                        ………...
                     .. . . ..




                                         .. . . ..
                     .. . . ..




                                         .. . . ..
                                                                  .
                 . . .             . . .                               . .
                       .. .




                                           .. .




                                                                    .. .
                       .. .




                                           .. .




                                                                    .. .
                     .                                                   .
                        . .. .




                                            . .. .




                                                                    . ..
                        . .. .




                                            . .. .




                                                                    . ..
                                                                                            Stacking




                                                                     . .
                 . . ….. ..        . . .




                                                                     . .
                 . . . …           . .                              .      …..
                                 .


                 ….. …..
                 . .              ….. …..
                                   . .

             Layer 1              Layer 2                      Layer n




    Attach Devices                                           Singulation
                                   Sintering                                                Lamination
MLC Feature Forming Technologies

                             green sheet thickness
                                  50-250 mm




    VIA                      mechanical punching     laser drilling
 FORMATION                        100 mm               50 mm


                                        stencil
    VIA                                 100 mm
    FILL


    LATERAL                      screen printing     photo-defined
   FEATURES                          50 mm             50 mm
(interconnects,      print thickness
    passives)            5-20 mm
Microfluidic Structures Requiring Support
AdvancedCMEMS Tape Texturing Technologies
        Microchannel Forming Technologies

    Embossing         Cast-on-Photoresist           Fugitive
                                                     Paste




            Ceramic
             Sheet                   Ceramic
                                      Sheet




            8 mm x 8 mm               10 mm channels heights
            channels                  for rapid diffusive mixing
Applications of the Ceramic MEMS
• Integration of RF-Wireless Functions (SIP)
• Miniaturization of Fuel Cell Systems
  – Direct Methanol
  – Reformed Hydrogen
• Life Science Devices/Appliances
  –   MHD pumping
  –   DNA amplification
  –   DNA hybridizatin and detection
  –   UV light source
  –   Conceptual integrated life science appliance
Conceptual Diagram for Wireless Communication
                   Device




            RF Frontend      IF &
                             Baseband             Auxiliary
            Mainly Analog                         Functions
            Circuit          Mainly Digital
                             Circuit



•   Low RF Signal Loss Critical         •     High Interconnect Density:
•   Need High Frequency Stability             Fine Line, Pitch and Pad
•   High Functional Integration:        •     High Speed and Low Cross
    Medium K (7-200) Dielectric               Talk: Low K ( < 4) Dielectric
•   Low L,C,R Values                    •     High L,C,R Values
RF Device Elemental Structures


                                                 ANT

                                                   C7

                                                        C8

                                  Z1
                                                                     Multilayer Capacitor
                                             Z4


                          C1           Z2   D1          Z3                      C4
                     TX                                                              RX
  Vertically Coiled        C2               C3                  D2
                                                                           C5

 Transmission Line                                           BIAS
                                                                      C6




             Metal
Dielectric                Metal
                                                                       Horizontally Coiled
             Substrate                                                 Transmission Line

              Capacitor
Conceptual MCIC Structure
MCIC Integration Efforts

                              IRIDIUM:
                              LNA AND SWITCH
       ANT

     ACC     Rx / Tx - ANT / ACC
                 RF SWITCH




                                    PCS / DCS
                                   MCIC FILTER


                                                             GSM LEAP:
                                                             TRI-BAND Rx VCO
     TUNABLE DUPLEXER
                                                                   GSM LEAP:
                                                                   TRI-BAND Tx VCO




                          GSM KRAMER:
                          DUAL BAND PA MATCH,
                          HARMONIC FILTER,
                                                 Power Amp
                          COUPLER
Example of RF Front-End Functional Integration



                                                                     •
                                                                 ~
                                                       ~
                                                             •
                                LNA Bypass
  Impedance      Power and Bias Capacitors Bandpass Filter
    Matching
     Line
                                                 To
       Bias                                     Amplifier
       Circuit


        Trap                                     From
        Filter                                  Amplifier

                                                             1 cm X 1 cm
   Switch w/
   Harmonic                                                  41 components per sq. cm.
    Filter                                      To Mixer
                            Switch Image Reject Filter
           Transmit Antenna Bias
Synthesis Strategy of T2000 Dielectric*

                                      Ceramic Filler        Tf
        Glass: K2O, B2O3, SiO2
                                                         Adjuster
               CaO, SrO, BaO               Al2O3           TiO2
                60 vol %                35 vol %         5 vol %



                              Sintering
                             850~ 900 °C



    Glass       Crystalline Phases                           Tita-
    K2O, B2O3   CaAl2Si2O8 (35 vol%)           Al2O3
                                                             nates
    (SiO2)          SrAl2Si2O8 (10 vol%)
                                              25 vol %      5 vol %
    20 vol %    50 vol% BaAl2Si2O8 (5 vol%)
         Near Zero Temp. Coef. of Resonator Frequency
         Low Dielectric Loss Tangent
         Lead (Pb) Free Formulation
Formation of High Q Dielectric

    10.0                                                         1200


                                                                 1100
                      K


    9.0                                                          1000


                                                                 900
K                                                                       Q
                                                     Q

    8.0                                                          800


                                                                 700


    7.0                                                          600
          800   825   850     875    900       925   950   975

                            Temperature (°C)
    • Sintering T > 850 °C is necessary for high Q
    • Self Limiting Crystallization - Wide Sintering Window
Compensation of Tf in T2000 Dielectric
                       1.006

                                                                               Tf Measurement                                 Compensation of Tf:
                       1.004                                                                                                  TiO2:   TK =-750 ppm/°C
                                                                                                                              CaTiO3: TK =-1850 ppm/°C
                                                                                                                              SrTiO3: TK =-3000 ppm/°C
Normalized Frequency




                       1.002



                       1.000                                                                                                                      Tf Measurement
                                                                                                                              1.248
                                                                                                                              1.246                           TiO2 added




                                                                                                     Hz)
                       0.998         T2000: 0.6 ppm/C                                                                                                         No TiO




                                                                                                     9
                                                                                                                                                                    2
                                     FerroA6: -48 ppm/C                                                                       1.244
                                     DuPont 943: -58 ppm/C
                       0.996         DuPont 951: -69 ppm/C                                                                    1.242




                                                                                                     Resonant frequency (10
                                     Hereaus: -76 ppm/C
                                                                                                                               1.24
                       0.994
                               -50    -30         -10         10        30      50     70       90                            1.238
                                                             Temperature (C)                                                          Tf =4.2 ppm/°C
                                                                                                                              1.236
                           • Tf of T2000 is ~ 80 ppm/°C                                                                       1.234
                                                                                                                                      Tf =-78.5 ppm/°C
                           without compensation                                                                               1.232
                           • Can be continuously tuned                                                                                -40   -20     0   20 40 60        80
                                                                                                                                                   Temperature (°C)
                           to ~ 0 ppm/°C
Tf Impact on Embedded Filter Performance

                 Example of Tf Influence on Filter
                 Performance

             0

            10               Stop
                             Band                  Pass
                                                   Band
            20
    Attn.




                   Filter
            30     response at
                   room                    Tf = - 60, Q=1000
            40     temperature
                                           Tf =   0 , Q=1000
            50
                 850                900   MHz             950




                       Tf = -(1/2)Tk - 
     Tk: T coefficient of dielectric constant
     : linear CTE, 3~15 ppm/°C
Applications of the Ceramic MEMS

• Integration of RF-Wireless Functions
• Miniaturization of Fuel Cell Systems
  – Direct Methanol
  – Reformed Hydrogen
• Life Science Appliances
  –   MHD pumping
  –   DNA amplification
  –   DNA hybridizatin and detection
  –   Photonic light source
  –   Conceptual integrated life science appliance
MicroSystem Fuel Cell & Applications
                     A Fuel Cell is a System
                         Fuel Delivery System
                     Fuel Processing/Reforming

          Stack
                            Fuel Supply




    Small Portable                                Large Applications
     Applications                                       LOCAL

                                                  Central     Mobile
                                     FIXED        Utilities   Power     MOBILE
                                                 Distributed Luggable
                                                   Utilities  Power

                                                   DISTRIBUTED
Methanol Fuel Cells
                                                              Direct Methanol Fuel cell
Two Approaches
                                                                                   Proton Conducting
                                                                         _
                                                            Pt-Ru Catalyst
Direct Methanol Fuel Cells (DMFC)
                                                                                   + Membrane
                                                              CH3OH                       Air (O2)
         - Low Power Density
                                                                   6H+                  Electrode
         - Room Temperature Operation                                                    Pt Catalyst
                                                                CO2
         - Liquid handling
                                                                        e-
                                                                                 Load

        - Initial Product Target:                            CH3OH + H2O                CO2 + 3H2O
                   100 mw system for Portables
                                                                  Hydrogen Fuel cell
                                                                                   Proton Conducting
Reformed Hydrogen (Methanol         H2) Fuel Cells (RHFC)   Pt Catalyst      _
                                                                                  + Membrane
        - High Power Density                                      H2                     Air (O2)
                                                                  2H+                   Electrode
        - Reformer Operating Temp ~200ºC                                                Pt Catalyst

        - Gas handling                                              e-
                                                                                 Load
        - Initial Focus on miniature reformer                       2H2 + O2              2H2O
                    Higher wattage systems
Direct Methanol Fuel Cell System

                                CO2 Separation
                                  & Venting

                               Water Recovery
   Water                       & Recirculation
  Cartridge                                                                      DC-DC
                                  Control                                       Converter
                   Mixing
                                                               Fuel
                                  circuitry                     Cell
                  Chamber
                                                               Stack
Fuel (Methanol)             MEMS Pumps        Sensors                  Rechargeable          Cell
  Cartridge                                                               Battery           Phone
                                      Methanol Concentration
                                      Temperature
                                      Flow
DMFC Fuel Cell Assembly
                  Gold                              Concept for Fuel Cell with integrated
                 Current                                  pumping and control
  Flow Field    Collector          Air Holes
 (anode side)                   (cathode side)




                          MEA

                Gaskets                                             Working Fuel Cell
                                        Assembled Fuel Cell
Reformed Hydrogen Fuel Cell System

                          Temperature &             Control
                           Po2 Sensors              Circuitry

                   Fuel Vaporizer (chemical heat)
                          or Electric Heat               Preferential
Fuel (Methanol)                                           Oxidation
  Cartridge                                                                                DC-DC
                                                          Reactor
                                                                                          Converter
                  Steam Reformer                        (CO cleanup)    Fuel
                          - Catalyst                                     Cell
                                                                        Stack
   Water             - Temperature 250C
                                                                                Rechargeable      Cell
  Cartridge                                                                        Battery       Phone
                          Heat Exchanger
                  Capture waste heat from FC feed
Reformed Hydrogen Fuel Cell System
        Fuel Reformer
                                                   Miniature Fuel Reformer with Integrated
                                                 Chemical Combustor Using Ceramics MEMS
CH3OH                   H2O                           Technology (Conceptual Design)

                                                                                        Reformer
                                                                                      Output to Fuel
                                                                                       Cell and Gas
                                                               Insulation                analysis

                        250 °C                                 Insulator
           Steam
          Reformer      (Endothermic Reaction)
                                                           Fuel Reformer                      H2 in
        CuO-ZnO
        Catalyst                                       Chemical Combustor                             Air in
                   CH3OH + H2O
                   CO2 + H2 + CO (about 1%)          Fuel Vaporizer/Heat Exchanger     MeOH in

                                                                Insulator
                                                                                       Exhaust
                                                                                         out
            CO                                                 Insulation
          Clean up
                         CO + 1/2O2        CO2
         Preferential                               Methanol/Water (1:1 mole ratio)
          Oxidation
                                                         Liquid Feed Pump: 10- 25 uL/min
          Catalyst
                           H2 gas to fuel cell
RHFC Fuel Processor

 Miniature Steam Reformer To Produce                               Reformer Test Data
Hydrogen Gas from Liquid Methanol Fuel                      (MeOH/ Water :1/1.05, 5 ul/min inlet fuel)

                                                            100%
                                                                           MeOH
                                                                                  CO2        CO2
                          Steam reformer
                                                            80%
       Gas Outlet                                                                       CO
                              catalyst




                                                 Volume %
      (H2 , CO and CO2)                                              CO2
                                                            60%


                                                            40%
                            Fuel Inlet
      Fuel Vaporizer      (Methanol + Water)                         H2           H2         H2
                                                            20%


                                                             0%
                                                                     180          200         230
      ~ 1 micro-liter/min total liquid in                                  Temperature (C)
                    produces
      ~ 1 milli-liter/min total gas out.               >90% MeOH Conversion @ 200C

  •   50 ul/min fuel can produce sufficient H2 for a Fuel Cell to produce 3W power
      operating at 30% efficiency
Applications of Ceramic MEMS

• Integration of RF-Wireless Functions
• Miniaturization of Fuel Cell Systems
  – Direct Methanol
  – Reformed Hydrogen
• Life Science Appliances
  –   MHD pumping
  –   DNA amplification
  –   DNA hybridizatin and detection
  –   Photonic light source
  –   Conceptual integrated life science appliance
Piezo-driven LTCC Micropump
• Multilayer ceramic design
• Cofired ball check valves
• Piezoelectrically driven, PZT unimorph                                  200




                                            Flow Rate (micro litre/min)
                                                                                              10~30 Hz
                                                                          150

                                                                                                                   5 Hz
                                                                          100
                                                                                                                   50 Hz
                                                                           50

                                                                                                                   1 Hz
                                                                            0
                                                                                0   10          20            30           40
                                                                                               Vp-p



                                                                          200




                                           Flow Rate (micro litre/min)
                                                                                                      Vp-p= 30 V
                                                                          150

                                                                                         Vp-p=20 V
                                                                          100


                                                                          50
                                                                                    Vp-p=10 V

                                                                           0
                                                                                0        20              40                60
                                                                                          Frequecy (Hz)




       Cofired balls inside
Magnetohydrodynamic (MHD) Pumping
                                                                                                                              Initial Pump Design
                                        Basic MHD Theory
                                                                                                                                                                                     First Generation MHD
                                                     B
                                                                                                                                                                                 View Channel                   1 mm
                                                                       I

                                            v
                                                    IBw 2 h
                                         v
                                                  8mL( w  h) 2                                OUTLET                                                                       Outlet
                                                                                                                                                                                     Inlet
                                                                                                                                                                                                Electrodes for E-field
                                                                                                                                                                                                “channel for pumping”
                                                                                                                                         External mini-electromagnet
                                                                                                                          INLET                   for B-field



                                                                                                                                                                                      MHD Pumping Video
                                              MHD Experimental Data (100 mM NaCl solution)

                     3.5                                                                                       2.0

                     3.0                                                                                       1.5
                                 Model Prediction                                                                                                  Model Prediction
                                                                                                               1.0                                 Measured Data
                                                                                          Flow Rate (uL/min)




                     2.5         Measured Data
Flow Rate (uL/min)




                                                                                                               0.5
                     2.0
                                                                                                               0.0
                     1.5                                                                                              0       30    60       90     120      150      180
                                                                                                               -0.5
                     1.0
                                                                                                               -1.0
                     0.5
                                                                                                               -1.5
                     0.0                                                                                       -2.0
                           0.0    2.0       4.0       6.0        8.0       10.0   12.0
                                                                                                                                   Phase Angle (Degrees)
                                                  Current (mA)




                                                                                  Impact: No moving parts, bi-directional, non-pulsating flow
DNA amplification

                       CONTINUOUS FLOW POLYMERASE CHAIN REACTION (PCR)

                       DESIGN                                    LTCC DEVICE                      THERMAL PROFILE

                                              Outlet



                                                                                         95 C   55 C   72 C
                                    AIR GAP
CHANNEL 1




                       CHANNEL 2



                                              CHANNEL 3
             AIR GAP




                                                                   Generation 1          Model Predictions    Experimental Validation



Inlet

            AIR                    AIR
            GAP                    GAP
                                                                                                 DNA
                                                                                         AMPLFICATION
                                                                   Generation 2
                                                          Second generation design completed
                                                           with reduction in dead volume from
                                                                75% to 25% of the reactor
DNA hybridization & detection
                                                        FABRICATED DEVICES
         MODELING OBJECTIVE:
    less than 1C temperature variation
             across the array                                                  Sensing
                                                                               Electrodes
Heater:    Ag-Pd strip of 80 squares
Resistance: 30 mW/square x 80 squares = 2.4W
Energy Input: 160 mW
Heat loss: Natural Convection at device boundary
                           Temperature Profile             PCB-based array
Schematic of E-chip        across Sensor Pads

      Ag-Pd Heater




                                    Microwell
Gold Pad & Via                                     Sensor pads   Temperature      Heater
                                    Plane
                                                                   sensor
                                                             Ceramic arrays
Model Validation of Thermal Profile
                                                Experimental Details
                                                Heater Resistance:      2.6 W
                                                Current:                250 mA
                                                Energy Input (expt.):   0.1625 W
                                                Energy Input (model):   0.16 W


  Temperature Profile along X-axis                                           Temperature Profile along Y-axis

                                                                                                                       Measured
  DT < 0.5 C                                                              DT ~ 0.5 C
                                                                                                                       Predicted
                                     Column 3
                          Column 2
               Column 1




                                                                                                               Row 4
                                                                                               Row 2

                                                                                                       Row 3
                                                                                       Row 1
Ceramic Micro Hollow Cathode Discharge

                                                                      Integrated UV
                                                                      Light Source

                                           1000

                                                800                   XeI*B-X




                             Intensity (a.u.)
                                                                      253 nm
                                                600

                                                400                         XeI*B-A
                                                                            320 nm
                                                200         Iodine                         I*2
                                                            206 nm                         342 nm
                                                 0
                                                      200        250     300     350                 400
                                                                   Wavelength (nm)
 Dia. =250 mm
 Separation = 190 mm
 Gas: XeI
 V = 300 V
 I = 150 mA
                                                                 Collaboration with G. Eden, B. Vojak,
 Pressure = 20-60 Torr
                         V                                         Univ. of Illinois, Urbana, Illinois
CMEMS Enabled Devices and Functions
      Capacitive sensing of fluids                                               Capacitor                 Capacitive sensing of fluids:
                Channel flow sensor                                              plate                     -Channel flow sensor
                                                                                                           -Fluidic-well fill sensor
                                                                                         Conductor         -Precise metering of fluids
                                                                                         trace             -’Macro-to-micro’ fluid metering
                              Fluidic well fill sensor                                                                                   160

                                                                                                                                         140
       Fluid heating




                                                                                                                   Temperature (deg C)
                                                                                   Integrated coil heater                                120

                                                                                                                                         100

                                                                                                                                         80

                                                                                                                                         60
                                                                                                                                                           Temperature region
                                                                                                                                         40
                                                                                                                                                           of interest for “PCR”
                                                                                                                                         20
Electromagnetic-Coil Integration                                                                                                               0   0.5  1    1.5   2    2.5    3   3.5
                                                                                                                                                     Heater-Coil Power (Watts)
Electromagnetic
coil
                                                                        50
                                               Magnetic Flux (Gauss)




                                                                          0

                                                                        -50

                                                                       -100

   Coil             High-mu material                                   -150

  Integrated EM coils Enable:                                          -200                                                                               Polymer “Mag-Spheres”
  -Magnetic microsphere manipulation                                                                                                                      attracted to embedded
                                                                       -250
  -Magnetic-based stirring                                                -0.5      0        0.5   1     1.5   2                         2.5              electromagnetic coil
  -Magnetic pumping concepts                                                                  Power (Watts)
MST Integrated Bio-Analysis Appliance
                                                                         ELECTRONIC
   MST-ENABLED                                                       2-way Wireless Signaling
                                                                     & Networks (ANTENNA)
   FEATURES
   - uP & Memory
   - Thermal Cycles
                                      Ceramic-MEMS
   - Photon Sources
   - Photo Imager/Det
   - uFluidic Channels
   - uBio Chemistry
   - uPumping
   - Dense Packing                                                                    MST-INTEGRATION
   - Low Cost                                                                         TECHNOLOGIES
                                                                                      examples:
                                                                    RFIC
                                                                                      - Si-MEMS uPump
                              uPump             uC
                                                                                      - Ceramic-MEMS
                                                                                      - PCB/HDI/Plastics
                                                                                      - Si ICs     uC

            3D LTCC Smart Substrate
                                                                                      - RFIC       neuRFon™
                                                                                      - LTCC 3D Interconnect
  Miniature Blood Analyser                                                            - Micro Displays
                                                                                      - Wafer Scale Ass’y
              Input Blood Sample -- cell sort -- lysing -- DNA amplify --
               DNA signal detection -- DNA analysis -- Transmission --                - Known Good Parts
               Medical Network Database -- Medical Network Response


        P. Roberts-SSRC
Summary
• A Microsystems Technology is Emerging
   – Enabling integration/miniaturization of bench top appliances
   – Enabling devices that are multifunction integrating electronic,
     microfluidic, mechatronic, thermonic and photonic devices
• These appliances will impact the electronic, energy, life
  science and micro-reactor related markets
• A Ceramic – “MEMS” or MST technology is emerging as
  an important multifunction micro-systems 3D integration
  technology:
   • Building on the multilayer “packaging/interconnect”
     and capacitor technologies and infrastructure
   • A true 3D integration technology with a rich menu of
     integrateable materials for Device opportunities
   • Provides dimension gap system tradeoff: SOC vs SIP
Summary
CMEMS Applications will accelerate with:
•Advances in simulation and modeling tools
•Advances in materials integration, and feature forming
technologies
•Expanded Research at Universities and National Labs
• Establishment of CMEMS User Facilities
• Establishing Standards for Materials and Processes
• Emulating PCB and Silicon Foundry Infrastructure ..
Cost, Cycle Times, Multiple Sources
Material and Process Challenges

 Material challenges:
   • Dielectrics
        • Ceramics (e.g., high K dielectrics)
        • Glass-ceramics (LTCC)
        • Glasses (encapsulation, sealing etc)
   • Conductors
        Au, Ag, Ag/Pd, Pt, Cu, base metals,…
   • Resistors (internal cofired, post fired, etc)
   • Magnetic Materials (ferrites, permanent magnets, etc)
   • Ferroelectric and Piezoelectric Materials

Process Challenges
   • Tape and Thick film processes
   • Thin film process
   • Interconnect technologies

 Looking for collaborations in the above fields!

Más contenido relacionado

Similar a Ceramic Microsystems

Micro electromechanical system
Micro electromechanical systemMicro electromechanical system
Micro electromechanical system
Bharath Kanna
 
Mems (Report)
Mems (Report)Mems (Report)
Mems (Report)
Vinayak Hegde
 

Similar a Ceramic Microsystems (20)

Micro electromechanical system
Micro electromechanical systemMicro electromechanical system
Micro electromechanical system
 
An Introduction to MEMS (Micro-electromechanical Systems) (2002).pdf
An Introduction to MEMS (Micro-electromechanical Systems) (2002).pdfAn Introduction to MEMS (Micro-electromechanical Systems) (2002).pdf
An Introduction to MEMS (Micro-electromechanical Systems) (2002).pdf
 
MEMS-unit1A.pptx
MEMS-unit1A.pptxMEMS-unit1A.pptx
MEMS-unit1A.pptx
 
Business Intelligence Area Science Park
Business Intelligence Area Science ParkBusiness Intelligence Area Science Park
Business Intelligence Area Science Park
 
Review of MEMS Technology & its Applications in Various Fields
Review of MEMS Technology & its Applications in Various FieldsReview of MEMS Technology & its Applications in Various Fields
Review of MEMS Technology & its Applications in Various Fields
 
Mems technologies and analysis of merits and demerits
Mems technologies and analysis of merits and demeritsMems technologies and analysis of merits and demerits
Mems technologies and analysis of merits and demerits
 
complete m.tech project report_2017 (Based on MEMS Technology)
complete m.tech project report_2017 (Based on MEMS Technology)complete m.tech project report_2017 (Based on MEMS Technology)
complete m.tech project report_2017 (Based on MEMS Technology)
 
Mems(Intro Presentation)
Mems(Intro Presentation)Mems(Intro Presentation)
Mems(Intro Presentation)
 
mems ppt
mems pptmems ppt
mems ppt
 
mems ppt
mems pptmems ppt
mems ppt
 
Mems
MemsMems
Mems
 
Progress of Integration in MEMS and New Industry Creation
Progress of Integration in MEMS and New Industry CreationProgress of Integration in MEMS and New Industry Creation
Progress of Integration in MEMS and New Industry Creation
 
MEMS & micro systems
MEMS & micro systemsMEMS & micro systems
MEMS & micro systems
 
Mems (Report)
Mems (Report)Mems (Report)
Mems (Report)
 
Mems application
Mems applicationMems application
Mems application
 
MEMS an overview and application
MEMS an overview and applicationMEMS an overview and application
MEMS an overview and application
 
Mems unit 1 ppt
Mems unit 1 pptMems unit 1 ppt
Mems unit 1 ppt
 
Smart dust
Smart dustSmart dust
Smart dust
 
Lecture 02 history &amp; characteristics of mems
Lecture 02   history &amp; characteristics of memsLecture 02   history &amp; characteristics of mems
Lecture 02 history &amp; characteristics of mems
 
Microgrippers
MicrogrippersMicrogrippers
Microgrippers
 

Ceramic Microsystems

  • 1. MRS Fall Meeting: Symposium Multilayer Ceramic Microsystems: applications in wireless, energy and life sciences Micro-Technologies Research Lab Solid State Research Center Motorola Labs Tempe, Arizona
  • 2. OUTLINE • MST definitions and technologies • Ceramic “MEMS” technology • Ceramic “MEMS” applications – Integration of RF-Wireless Functions – Miniaturization of Fuel Cell Systems • Direct Methanol • Reformed Hydrogen – Life Science Devices/Appliances • MHD pumping • DNA Amplification • DNA Hybridization & Detection • UV Light Source • Conceptual Life Science Integrated Appliance
  • 3. MicroSystem Technology (MST)* Lab-on- System in/on a Chip Package (SIP) MOEMS Packaging Modular MEMS MicroSystem Technologies System Miniaturization and Integration of Device Functions Based on: Mechatronics Electronics Photonics MicroFluidics Thermonics Microgrippers Microsensors/detectors Micropumps Microreactors Microactuators Microplasma Microvalves Microheaters Micromirrors Microswitches Micropneumatics Micromixers Enabled By 3D Multilayer Integration/Fabrication Technologies: Ceramic, Glass, Plastic, Si *Source: M. Riester and D.L. Wilcox
  • 4. Definition of MST Any device or unit made up of a number of micro- engineered components/devices. An intelligent miniaturized monolithic and/or hybrid integrated system comprising sensing, processing and/or actuating devices utilizing two or more of the following technologies: electronic, mechatronic, microfluidic, thermonic, and photonic.
  • 5. Microsystems Technology Driving Forces • Integration and Miniaturization of Multifunctional Appliances • Enabled by Integration of fluidics, electronics, photonics, and “thermonics” • Market Opportunities: – Wireless – multiband and multimode phones requiring more components – Micro-scale energy sources for portable appliances – Emerging life science fluidic based devices – “Lab on a chip”; Micro-reactor; etc.
  • 6. Important Microsystem Integration Technologies • Ceramic - MEMS • Si – MEMS • Other Glass and Plastic (PCB) Technologies • Electronic Packaging and Interconnect Technologies • Materials, Process and Device Modeling and System Architecture/Partitioning and Technology Selection Protocols • Tools for managing cross-discipline, cross- function teams!
  • 7. Ceramic MEMS: Technologies & Applications Methanol Reformer Cell Phone Receiver 15 mm fuel integrated ENERGY reformers modules 5 mm MICROSYSTEM WIRELESS Direct FUNCTIONS on-chip Methanol power COMMUNICATIONS Fuel Cell ICs amplifiers sensors fuel NEW Micro Hollow Cathode cells MATERIALS & filters 8 mm Discharge (MHCD) PROCESSES light pumps UV light source sources 8.5 mm Power Amplifier temperature chemical reactors PCR E-chip control Pumping/ Mixing V cell sorting Integrated BioChip LIFE DNA Technology SCIENCES amplification
  • 8. Processing of Ceramic MEMS Microsystems Integrated active Integrated component Sensor Passive component Electrical interconnect (Z) Electrical interconnect Or Fluidic Microchannels (Z) Fluidic microchannels( X,Y) ……….. ….. ……….. ……….. … … ……….. ……….. .. ……….. ……….. ……….. Inspection ……….. ……….. . . . .. . . .. . .. ….. . ….. . ….. ……….. . ….. . ….. ………... .. . . .. .. . . .. .. . . .. .. . . .. . . . . . . . . . .. . .. . .. . .. . .. . .. . . . . .. . . .. . . .. . .. . . .. . . .. Stacking . . . . ….. .. . . . . . . . . … . . . ….. . ….. ….. . . ….. ….. . . Layer 1 Layer 2 Layer n Attach Devices Singulation Sintering Lamination
  • 9. MLC Feature Forming Technologies green sheet thickness 50-250 mm VIA mechanical punching laser drilling FORMATION  100 mm  50 mm stencil VIA  100 mm FILL LATERAL screen printing photo-defined FEATURES  50 mm  50 mm (interconnects, print thickness passives) 5-20 mm
  • 11. AdvancedCMEMS Tape Texturing Technologies Microchannel Forming Technologies Embossing Cast-on-Photoresist Fugitive Paste Ceramic Sheet Ceramic Sheet 8 mm x 8 mm 10 mm channels heights channels for rapid diffusive mixing
  • 12. Applications of the Ceramic MEMS • Integration of RF-Wireless Functions (SIP) • Miniaturization of Fuel Cell Systems – Direct Methanol – Reformed Hydrogen • Life Science Devices/Appliances – MHD pumping – DNA amplification – DNA hybridizatin and detection – UV light source – Conceptual integrated life science appliance
  • 13. Conceptual Diagram for Wireless Communication Device RF Frontend IF & Baseband Auxiliary Mainly Analog Functions Circuit Mainly Digital Circuit • Low RF Signal Loss Critical • High Interconnect Density: • Need High Frequency Stability Fine Line, Pitch and Pad • High Functional Integration: • High Speed and Low Cross Medium K (7-200) Dielectric Talk: Low K ( < 4) Dielectric • Low L,C,R Values • High L,C,R Values
  • 14. RF Device Elemental Structures ANT C7 C8 Z1 Multilayer Capacitor Z4 C1 Z2 D1 Z3 C4 TX RX Vertically Coiled C2 C3 D2 C5 Transmission Line BIAS C6 Metal Dielectric Metal Horizontally Coiled Substrate Transmission Line Capacitor
  • 16. MCIC Integration Efforts IRIDIUM: LNA AND SWITCH ANT ACC Rx / Tx - ANT / ACC RF SWITCH PCS / DCS MCIC FILTER GSM LEAP: TRI-BAND Rx VCO TUNABLE DUPLEXER GSM LEAP: TRI-BAND Tx VCO GSM KRAMER: DUAL BAND PA MATCH, HARMONIC FILTER, Power Amp COUPLER
  • 17. Example of RF Front-End Functional Integration • ~ ~ • LNA Bypass Impedance Power and Bias Capacitors Bandpass Filter Matching Line To Bias Amplifier Circuit Trap From Filter Amplifier 1 cm X 1 cm Switch w/ Harmonic 41 components per sq. cm. Filter To Mixer Switch Image Reject Filter Transmit Antenna Bias
  • 18. Synthesis Strategy of T2000 Dielectric* Ceramic Filler Tf Glass: K2O, B2O3, SiO2 Adjuster CaO, SrO, BaO Al2O3 TiO2 60 vol % 35 vol % 5 vol % Sintering 850~ 900 °C Glass Crystalline Phases Tita- K2O, B2O3 CaAl2Si2O8 (35 vol%) Al2O3 nates (SiO2) SrAl2Si2O8 (10 vol%) 25 vol % 5 vol % 20 vol % 50 vol% BaAl2Si2O8 (5 vol%) Near Zero Temp. Coef. of Resonator Frequency Low Dielectric Loss Tangent Lead (Pb) Free Formulation
  • 19. Formation of High Q Dielectric 10.0 1200 1100 K 9.0 1000 900 K Q Q 8.0 800 700 7.0 600 800 825 850 875 900 925 950 975 Temperature (°C) • Sintering T > 850 °C is necessary for high Q • Self Limiting Crystallization - Wide Sintering Window
  • 20. Compensation of Tf in T2000 Dielectric 1.006 Tf Measurement Compensation of Tf: 1.004 TiO2: TK =-750 ppm/°C CaTiO3: TK =-1850 ppm/°C SrTiO3: TK =-3000 ppm/°C Normalized Frequency 1.002 1.000 Tf Measurement 1.248 1.246 TiO2 added Hz) 0.998 T2000: 0.6 ppm/C No TiO 9 2 FerroA6: -48 ppm/C 1.244 DuPont 943: -58 ppm/C 0.996 DuPont 951: -69 ppm/C 1.242 Resonant frequency (10 Hereaus: -76 ppm/C 1.24 0.994 -50 -30 -10 10 30 50 70 90 1.238 Temperature (C) Tf =4.2 ppm/°C 1.236 • Tf of T2000 is ~ 80 ppm/°C 1.234 Tf =-78.5 ppm/°C without compensation 1.232 • Can be continuously tuned -40 -20 0 20 40 60 80 Temperature (°C) to ~ 0 ppm/°C
  • 21. Tf Impact on Embedded Filter Performance Example of Tf Influence on Filter Performance 0 10 Stop Band Pass Band 20 Attn. Filter 30 response at room Tf = - 60, Q=1000 40 temperature Tf = 0 , Q=1000 50 850 900 MHz 950 Tf = -(1/2)Tk -  Tk: T coefficient of dielectric constant : linear CTE, 3~15 ppm/°C
  • 22. Applications of the Ceramic MEMS • Integration of RF-Wireless Functions • Miniaturization of Fuel Cell Systems – Direct Methanol – Reformed Hydrogen • Life Science Appliances – MHD pumping – DNA amplification – DNA hybridizatin and detection – Photonic light source – Conceptual integrated life science appliance
  • 23. MicroSystem Fuel Cell & Applications A Fuel Cell is a System Fuel Delivery System Fuel Processing/Reforming Stack Fuel Supply Small Portable Large Applications Applications LOCAL Central Mobile FIXED Utilities Power MOBILE Distributed Luggable Utilities Power DISTRIBUTED
  • 24. Methanol Fuel Cells Direct Methanol Fuel cell Two Approaches Proton Conducting _ Pt-Ru Catalyst Direct Methanol Fuel Cells (DMFC) + Membrane CH3OH Air (O2) - Low Power Density 6H+ Electrode - Room Temperature Operation Pt Catalyst CO2 - Liquid handling e- Load - Initial Product Target: CH3OH + H2O CO2 + 3H2O 100 mw system for Portables Hydrogen Fuel cell Proton Conducting Reformed Hydrogen (Methanol H2) Fuel Cells (RHFC) Pt Catalyst _ + Membrane - High Power Density H2 Air (O2) 2H+ Electrode - Reformer Operating Temp ~200ºC Pt Catalyst - Gas handling e- Load - Initial Focus on miniature reformer 2H2 + O2 2H2O Higher wattage systems
  • 25. Direct Methanol Fuel Cell System CO2 Separation & Venting Water Recovery Water & Recirculation Cartridge DC-DC Control Converter Mixing Fuel circuitry Cell Chamber Stack Fuel (Methanol) MEMS Pumps Sensors Rechargeable Cell Cartridge Battery Phone Methanol Concentration Temperature Flow
  • 26. DMFC Fuel Cell Assembly Gold Concept for Fuel Cell with integrated Current pumping and control Flow Field Collector Air Holes (anode side) (cathode side) MEA Gaskets Working Fuel Cell Assembled Fuel Cell
  • 27. Reformed Hydrogen Fuel Cell System Temperature & Control Po2 Sensors Circuitry Fuel Vaporizer (chemical heat) or Electric Heat Preferential Fuel (Methanol) Oxidation Cartridge DC-DC Reactor Converter Steam Reformer (CO cleanup) Fuel - Catalyst Cell Stack Water - Temperature 250C Rechargeable Cell Cartridge Battery Phone Heat Exchanger Capture waste heat from FC feed
  • 28. Reformed Hydrogen Fuel Cell System Fuel Reformer Miniature Fuel Reformer with Integrated Chemical Combustor Using Ceramics MEMS CH3OH H2O Technology (Conceptual Design) Reformer Output to Fuel Cell and Gas Insulation analysis 250 °C Insulator Steam Reformer (Endothermic Reaction) Fuel Reformer H2 in CuO-ZnO Catalyst Chemical Combustor Air in CH3OH + H2O CO2 + H2 + CO (about 1%) Fuel Vaporizer/Heat Exchanger MeOH in Insulator Exhaust out CO Insulation Clean up CO + 1/2O2 CO2 Preferential Methanol/Water (1:1 mole ratio) Oxidation Liquid Feed Pump: 10- 25 uL/min Catalyst H2 gas to fuel cell
  • 29. RHFC Fuel Processor Miniature Steam Reformer To Produce Reformer Test Data Hydrogen Gas from Liquid Methanol Fuel (MeOH/ Water :1/1.05, 5 ul/min inlet fuel) 100% MeOH CO2 CO2 Steam reformer 80% Gas Outlet CO catalyst Volume % (H2 , CO and CO2) CO2 60% 40% Fuel Inlet Fuel Vaporizer (Methanol + Water) H2 H2 H2 20% 0% 180 200 230 ~ 1 micro-liter/min total liquid in Temperature (C) produces ~ 1 milli-liter/min total gas out. >90% MeOH Conversion @ 200C • 50 ul/min fuel can produce sufficient H2 for a Fuel Cell to produce 3W power operating at 30% efficiency
  • 30. Applications of Ceramic MEMS • Integration of RF-Wireless Functions • Miniaturization of Fuel Cell Systems – Direct Methanol – Reformed Hydrogen • Life Science Appliances – MHD pumping – DNA amplification – DNA hybridizatin and detection – Photonic light source – Conceptual integrated life science appliance
  • 31. Piezo-driven LTCC Micropump • Multilayer ceramic design • Cofired ball check valves • Piezoelectrically driven, PZT unimorph 200 Flow Rate (micro litre/min) 10~30 Hz 150 5 Hz 100 50 Hz 50 1 Hz 0 0 10 20 30 40 Vp-p 200 Flow Rate (micro litre/min) Vp-p= 30 V 150 Vp-p=20 V 100 50 Vp-p=10 V 0 0 20 40 60 Frequecy (Hz) Cofired balls inside
  • 32. Magnetohydrodynamic (MHD) Pumping Initial Pump Design Basic MHD Theory First Generation MHD B View Channel 1 mm I v IBw 2 h v 8mL( w  h) 2 OUTLET Outlet Inlet Electrodes for E-field “channel for pumping” External mini-electromagnet INLET for B-field MHD Pumping Video MHD Experimental Data (100 mM NaCl solution) 3.5 2.0 3.0 1.5 Model Prediction Model Prediction 1.0 Measured Data Flow Rate (uL/min) 2.5 Measured Data Flow Rate (uL/min) 0.5 2.0 0.0 1.5 0 30 60 90 120 150 180 -0.5 1.0 -1.0 0.5 -1.5 0.0 -2.0 0.0 2.0 4.0 6.0 8.0 10.0 12.0 Phase Angle (Degrees) Current (mA) Impact: No moving parts, bi-directional, non-pulsating flow
  • 33. DNA amplification CONTINUOUS FLOW POLYMERASE CHAIN REACTION (PCR) DESIGN LTCC DEVICE THERMAL PROFILE Outlet 95 C 55 C 72 C AIR GAP CHANNEL 1 CHANNEL 2 CHANNEL 3 AIR GAP Generation 1 Model Predictions Experimental Validation Inlet AIR AIR GAP GAP DNA AMPLFICATION Generation 2 Second generation design completed with reduction in dead volume from 75% to 25% of the reactor
  • 34. DNA hybridization & detection FABRICATED DEVICES MODELING OBJECTIVE: less than 1C temperature variation across the array Sensing Electrodes Heater: Ag-Pd strip of 80 squares Resistance: 30 mW/square x 80 squares = 2.4W Energy Input: 160 mW Heat loss: Natural Convection at device boundary Temperature Profile PCB-based array Schematic of E-chip across Sensor Pads Ag-Pd Heater Microwell Gold Pad & Via Sensor pads Temperature Heater Plane sensor Ceramic arrays
  • 35. Model Validation of Thermal Profile Experimental Details Heater Resistance: 2.6 W Current: 250 mA Energy Input (expt.): 0.1625 W Energy Input (model): 0.16 W Temperature Profile along X-axis Temperature Profile along Y-axis Measured DT < 0.5 C DT ~ 0.5 C Predicted Column 3 Column 2 Column 1 Row 4 Row 2 Row 3 Row 1
  • 36. Ceramic Micro Hollow Cathode Discharge Integrated UV Light Source 1000 800 XeI*B-X Intensity (a.u.) 253 nm 600 400 XeI*B-A 320 nm 200 Iodine I*2 206 nm 342 nm 0 200 250 300 350 400 Wavelength (nm) Dia. =250 mm Separation = 190 mm Gas: XeI V = 300 V I = 150 mA Collaboration with G. Eden, B. Vojak, Pressure = 20-60 Torr V Univ. of Illinois, Urbana, Illinois
  • 37. CMEMS Enabled Devices and Functions Capacitive sensing of fluids Capacitor Capacitive sensing of fluids: Channel flow sensor plate -Channel flow sensor -Fluidic-well fill sensor Conductor -Precise metering of fluids trace -’Macro-to-micro’ fluid metering Fluidic well fill sensor 160 140 Fluid heating Temperature (deg C) Integrated coil heater 120 100 80 60 Temperature region 40 of interest for “PCR” 20 Electromagnetic-Coil Integration 0 0.5 1 1.5 2 2.5 3 3.5 Heater-Coil Power (Watts) Electromagnetic coil 50 Magnetic Flux (Gauss) 0 -50 -100 Coil High-mu material -150 Integrated EM coils Enable: -200 Polymer “Mag-Spheres” -Magnetic microsphere manipulation attracted to embedded -250 -Magnetic-based stirring -0.5 0 0.5 1 1.5 2 2.5 electromagnetic coil -Magnetic pumping concepts Power (Watts)
  • 38. MST Integrated Bio-Analysis Appliance ELECTRONIC MST-ENABLED 2-way Wireless Signaling & Networks (ANTENNA) FEATURES - uP & Memory - Thermal Cycles Ceramic-MEMS - Photon Sources - Photo Imager/Det - uFluidic Channels - uBio Chemistry - uPumping - Dense Packing MST-INTEGRATION - Low Cost TECHNOLOGIES examples: RFIC - Si-MEMS uPump uPump uC - Ceramic-MEMS - PCB/HDI/Plastics - Si ICs uC 3D LTCC Smart Substrate - RFIC neuRFon™ - LTCC 3D Interconnect Miniature Blood Analyser - Micro Displays - Wafer Scale Ass’y Input Blood Sample -- cell sort -- lysing -- DNA amplify -- DNA signal detection -- DNA analysis -- Transmission -- - Known Good Parts Medical Network Database -- Medical Network Response P. Roberts-SSRC
  • 39. Summary • A Microsystems Technology is Emerging – Enabling integration/miniaturization of bench top appliances – Enabling devices that are multifunction integrating electronic, microfluidic, mechatronic, thermonic and photonic devices • These appliances will impact the electronic, energy, life science and micro-reactor related markets • A Ceramic – “MEMS” or MST technology is emerging as an important multifunction micro-systems 3D integration technology: • Building on the multilayer “packaging/interconnect” and capacitor technologies and infrastructure • A true 3D integration technology with a rich menu of integrateable materials for Device opportunities • Provides dimension gap system tradeoff: SOC vs SIP
  • 40. Summary CMEMS Applications will accelerate with: •Advances in simulation and modeling tools •Advances in materials integration, and feature forming technologies •Expanded Research at Universities and National Labs • Establishment of CMEMS User Facilities • Establishing Standards for Materials and Processes • Emulating PCB and Silicon Foundry Infrastructure .. Cost, Cycle Times, Multiple Sources
  • 41. Material and Process Challenges Material challenges: • Dielectrics • Ceramics (e.g., high K dielectrics) • Glass-ceramics (LTCC) • Glasses (encapsulation, sealing etc) • Conductors Au, Ag, Ag/Pd, Pt, Cu, base metals,… • Resistors (internal cofired, post fired, etc) • Magnetic Materials (ferrites, permanent magnets, etc) • Ferroelectric and Piezoelectric Materials Process Challenges • Tape and Thick film processes • Thin film process • Interconnect technologies Looking for collaborations in the above fields!