SlideShare una empresa de Scribd logo
1 de 37
Damageandlossevaluationintheperformance-basedwindengineering
Francesco Petrini
Konstantinos Gkoumas
Franco Bontempi
ICOSSAR 2013
11th
International Conference on Structural Safety & Reliability
June 16-20, Columbia University, New York, NY
Sapienza – University of Rome
Francesco Petrini, Ph.D., P.E.
Konstantinos Gkoumas, Ph.D., P.E.
Franco Bontempi, Ph.D., P.E.
Sapienza - University of Rome
Dipartimento di Ingegneria Strutturale e
Geotecnica
Damage and loss evaluation in the performance-
based wind engineering
Damageandlossevaluationintheperformance-basedwindengineering
Francesco Petrini
Konstantinos Gkoumas
Franco Bontempi
ICOSSAR 2013
11th
International Conference on Structural Safety & Reliability
June 16-20, Columbia University, New York, NY
Presentation outline
2
• Overview of the Performance Based Wind
Engineering (PBWE) procedure
• Models for tall buildings and the assessment of
occupant comfort:
• Application on a high-rise building
• Assessment of the annual probabilities of exceeding
the human perception thresholds
• Vibration and occupant comfort issues
• Damage analysis
• Loss analysis
• Conclusions and indications for further research
Damageandlossevaluationintheperformance-basedwindengineering
Francesco Petrini
Konstantinos Gkoumas
Franco Bontempi
ICOSSAR 2013
11th
International Conference on Structural Safety & Reliability
June 16-20, Columbia University, New York, NY
Presentation outline
3
• Overview of the Performance Based Wind
Engineering (PBWE) procedure
• Models for tall buildings and the assessment of
occupant comfort
• Application on a high-rise building
• Assessment of the annual probabilities of exceeding
the human perception thresholds
• Vibration and occupant comfort issues
• Damage analysis
• Loss analysis
• Conclusions and indications for further research
Damageandlossevaluationintheperformance-basedwindengineering
Francesco Petrini
Konstantinos Gkoumas
Franco Bontempi
ICOSSAR 2013
11th
International Conference on Structural Safety & Reliability
June 16-20, Columbia University, New York, NY
Performance-Based Wind Engineering (PBWE)
4
The problem of risk assessment is disaggregated into the following elements:
- site and structure-specific hazard analyses, that is, the assessment of the
probability density functions f(IM), f(SP) and f(IP|IM,SP);
- structural analysis, aiming at the assessment of the probability density function of
the structural response f(EDP|IM,IP,SP) conditional on the parameters characterizing the
environmental actions, the wind-fluid-structure interaction and the structural properties;
- damage analysis, that gives the damage probability density function f(DM|EDP)
conditional on EDP;
- finally, loss analysis, that is the assessment of G(DV|DM), where G(·|·) is a
conditional complementary cumulative distribution function.
G(DV) = ∫…∫ G(DV|DM) · f(DM|EDP) · f(EDP|IM, IP,SP) · f(IP|IM,SP) ·
· f(IM) · f(SP) · dDM · dEDP · dIP · dIM · dSP
Interaction
Parameters
Structural
Parameters
Intensity
measure
IM IP SP
Engineering
Demand
Parameters
EDP
Damage
Measure
DM
Decision
Variable
DV
Damageandlossevaluationintheperformance-basedwindengineering
Francesco Petrini
Konstantinos Gkoumas
Franco Bontempi
ICOSSAR 2013
11th
International Conference on Structural Safety & Reliability
June 16-20, Columbia University, New York, NY
PBWE procedure flowchart
5
Petrini, F. & Ciampoli M., 2012, Performance-based wind design of tall buildings, Structure & Infrastructure
Engineering, 8(10), 954-966.
O
f(IM|O)
f(IM) f(IP|IM,SP)
f(IP)
f(EDP|IM,IP,SP)
G(EDP)
f(DM|EDP)
G(DM)
f(DV|DM)
G(DV)
Hazard analysis
Interaction
analysis
Structuralanalysis Damageanalysis Loss analysis
IM: intensity
measure
IP: interaction
parameters
EDP:engineering
demand param.
DM:damage
measure
DV:decision
variable
Select
O, D
O:location
D:design
Environme
nt info
Decision-
making
D
f(SP|D)
f(SP)
Structural
characterization
SP:structural
system parameters
Structural
system
info
Ciampoli M, Petrini, F. & Augusti G., 2011, Performance-Based Wind Engineering: toward a general
procedure, Structural Safety, Structural Safety, 33(6), 367-378.
Damageandlossevaluationintheperformance-basedwindengineering
Francesco Petrini
Konstantinos Gkoumas
Franco Bontempi
ICOSSAR 2013
11th
International Conference on Structural Safety & Reliability
June 16-20, Columbia University, New York, NY
6
O
f(IM|O)
f(IM)
f(IP|IM,SP)
f(IP)
f(EDP|IM,IP,SP)
G(EDP)
f(DM|EDP)
G(DM)
f(DV|DM)
G(DV)
Hazard analysis
Aerodynamic
analysis
Struc’l analysis Damage analysis Loss analysis
IM: intensity measure
IP: interaction
parameters
EDP: engineering
demand parameters
DM: damage measures DV: decision variables
Select
O, D
O: location
D: design
Environment
info
Decision-
making
D
f(SP|D)
f(SP)
Structural
characterization
SP: structural system
parameters
Structural
system info
O
f(IM|O)
f(IM)
f(IP|IM,SP)
f(IP)
f(EDP|IM,IP,SP)
G(EDP)
f(DM|EDP)
G(DM)
f(DV|DM)
G(DV)
Hazard analysis
Aerodynamic
analysis
Struc’l analysis Damage analysis Loss analysis
IM: intensity measure
IP: interaction
parameters
EDP: engineering
demand parameters
DM: damage measures DV: decision variables
Select
O, D
O: location
D: design
Environment
info
Decision-
making
D
f(SP|D)
f(SP)
Structural
characterization
SP: structural system
parameters
Structural
system info
O, D
g(IM|O,D)
g(IM)
p(EDP|IM)
P(EDP)
p(DM|EDP)
P(DM)
p(DV|DM)
P(DV)
Hazard analysis Struc’l analysis Damage analysis Loss analysis
IM: intensity
measure
EDP: engineering
demand param.
DM: damage
measure
DV: decision
variable
Select
O, D
O: location
D: design
Facility
info
Decision-
making
O, D
g(IM|O,D)
g(IM)
p(EDP|IM)
P(EDP)
p(DM|EDP)
P(DM)
p(DV|DM)
P(DV)
Hazard analysis Struc’l analysis Damage analysis Loss analysis
IM: intensity
measure
EDP: engineering
demand param.
DM: damage
measure
DV: decision
variable
Select
O, D
O: location
D: design
Facility
info
Decision-
making
PBWEPBEE
Damageandlossevaluationintheperformance-basedwindengineering
Francesco Petrini
Konstantinos Gkoumas
Franco Bontempi
ICOSSAR 2013
11th
International Conference on Structural Safety & Reliability
June 16-20, Columbia University, New York, NY
Presentation outline
7
• Overview of the Performance Based Wind
Engineering (PBWE) procedure.
• Models for tall buildings and the assessment of
occupant comfort
• Application on a high-rise building
• Assessment of the annual probabilities of exceeding
the human perception thresholds
• Vibration and occupant comfort issues
• Damage analysis
• Loss analysis
• Conclusions and indications for further research
Damageandlossevaluationintheperformance-basedwindengineering
Francesco Petrini
Konstantinos Gkoumas
Franco Bontempi
ICOSSAR 2013
11th
International Conference on Structural Safety & Reliability
June 16-20, Columbia University, New York, NY
8
Tamura,Y.(2009).Windandtallbuildings,ProceedingsoftheFifth
European&AfricanConferenceonWindEngineering(EACWE5),
Florence,Italy,July19-23,2009..
Vibration frequency
Accelerationthresholdsformotion
perception
w(t;z2)Vm(z2)
Vm (z1)
Vm (z3)
V(t;z2)
v(t;z2)u(t;z2)
X
Z
Y
θ
B1
B2
H
Loss of serviceability
Lossofintegrityof
non-structural
elements
Motionperception
bybuilding
occupants
Displacements
Acceleration
Discomfort level in terms of
perception thresholds
1
Damageandlossevaluationintheperformance-basedwindengineering
Francesco Petrini
Konstantinos Gkoumas
Franco Bontempi
ICOSSAR 2013
11th
International Conference on Structural Safety & Reliability
June 16-20, Columbia University, New York, NY
9
Loss of serviceability
Lossofintegrityof
non-structural
elements
Motionperception
bybuilding
occupants
Bashor,R.andKareem,A.(2007)."ProbabilisticPerformanceEvaluationof
Buildings:AnOccupantComfortPerspective",Proc.12thInternational
ConferenceonWindEngineering,1-6July,Cairns,Australia.Available
onlineathttp://www.nd.edu/~nathaz/[Accessed15June2010].
w(t;z2)Vm(z2)
Vm (z1)
Vm (z3)
V(t;z2)
v(t;z2)u(t;z2)
X
Z
Y
θ
B1
B2
H
Discomfort level in terms of
perception thresholds
Usually Across wind vibration
is critical for comfort
The reference period for
comfort evaluation is 1 year
1
2
3 1st
natural frequency is dominant4
Italian Guidelines
f1
Scalarthreshold
Displacements
Acceleration
Damageandlossevaluationintheperformance-basedwindengineering
Francesco Petrini
Konstantinos Gkoumas
Franco Bontempi
ICOSSAR 2013
11th
International Conference on Structural Safety & Reliability
June 16-20, Columbia University, New York, NY
10
Case study structure
Structure
•74 floors
•Height H=305m
•Footprint B1=B2=50m (square)
3dframeontheexternalperimeter
centralcore
Bracing system
A steel high-rise building
Finite Element model
FE Model
Approximately
•10,000 elements
•4,000 nodes
•24,000 DOFs
Damageandlossevaluationintheperformance-basedwindengineering
Francesco Petrini
Konstantinos Gkoumas
Franco Bontempi
ICOSSAR 2013
11th
International Conference on Structural Safety & Reliability
June 16-20, Columbia University, New York, NY
11
Experimental model of
Actions
SpenceS.M.J.,GioffrèM.,GusellaV.,Influenceofhighermodesonthe
dynamicre-sponseofirregularandregulartallbuildings,Proc.6th
InternationalColloquiumonBluffBodiesAerodynamicsand
Applications(BBAAVI),Milano,Italy,July20-24,2008.
Boundary Layer Wind Tunnel of the
CRIACIV in Prato, Italy
1:500Scalemodel
Response
time history
Time domain structural analyses
(Experimental actions)
Time domain
analyses
Experimental
forces
-30
-20
-10
0
10
20
30
3500 3600 3700 3800 3900 4000
aL, aD
[cm/s2
]
t [s]Along Across
Damageandlossevaluationintheperformance-basedwindengineering
Francesco Petrini
Konstantinos Gkoumas
Franco Bontempi
ICOSSAR 2013
11th
International Conference on Structural Safety & Reliability
June 16-20, Columbia University, New York, NY
12
( )
( )
( ) )(),(
),,(exp
1
),(),(
22
212
2
ωχωρ
ωξξ
ωρω
⋅⋅⋅⋅=
=⋅⋅−⋅
⋅⋅⋅⋅=
∫∫
hSVc
dAdAf
A
hSVchS
uumxD
A A
uumxDDD tt
( )
)(),h(S
)(HVc
),h(S)(H),h(S
2
uu
22
mxD
DD
2
rr tttt
ωχω
ωρ
ωωω
⋅⋅
⋅⋅⋅⋅
=⋅=














⋅+







−
⋅
⋅
⋅
=
2
0
2
2
2
0
2
2
0
2
2
41
1
1
)(
ω
ω
ν
ω
ω
ω
ω
m
H
rrm
p
grr σ⋅+= rg
Wind action
spectra
(analytical)
Response spectra
Peak response
Frequency domain response
Response Peak
Factor
Analytical model of the buffeting forces
( ) ( ) ( ) ( )( )ωfexpωSωSωS jkuuuuuu kkjjkj
−=
( )
( )
( ) ( )( )kj
2
kj
2
z
jk
zVzV2π
zzCω
ωf
+
−
=
Cross-spectrum
5.0
0
uu2
x
u
200
300(x)dxR
u
1
L 





⋅== ∫
∞
z
where:
( )
( ) [ ]5/3
ju
ju
x2
u
uu
/zLf10.3021ω/2π
/zLfσ6.686
ωS jj
⋅⋅+⋅
⋅⋅⋅
=
( )( ) 2
fri0
0
u
2
u
u1.75)log(zarctan1.16
(n)dnSσ
⋅+⋅−=
== ∫
∞
)z(V2π
zω
f
jm
j
⋅
⋅
=
Autospectrum
( ) 3ew(t)2ev(t)1eu(t))j(zmV)jz(t;jV

⋅+⋅+⋅+=
α
10m
10
z
V(z)V








⋅=
Solari,G.Piccardo,G.(2001).Probabilistic3-Dturbulencemodelingforgustbuffetingof
structures,ProbabilisticEngineeringMechanics,(16),73–86.
Turbulentwindvelocityspectra
(analytical)
Model of the Vortex shedding forces
(variable with the angle of attack)
1.E+01
1.E+03
1.E+05
1.E+07
1.E+09
1.E+11
0.000 0.001 0.010 0.100 1.000
PSD
n [Hz]
Total Forcespectrum
Turbulenceforcespectrum
Vortexsheddingforcespectrum
Damageandlossevaluationintheperformance-basedwindengineering
Francesco Petrini
Konstantinos Gkoumas
Franco Bontempi
ICOSSAR 2013
11th
International Conference on Structural Safety & Reliability
June 16-20, Columbia University, New York, NY
13
Damageandlossevaluationintheperformance-basedwindengineering
Francesco Petrini
Konstantinos Gkoumas
Franco Bontempi
ICOSSAR 2013
11th
International Conference on Structural Safety & Reliability
June 16-20, Columbia University, New York, NY
14
Damageandlossevaluationintheperformance-basedwindengineering
Francesco Petrini
Konstantinos Gkoumas
Franco Bontempi
ICOSSAR 2013
11th
International Conference on Structural Safety & Reliability
June 16-20, Columbia University, New York, NY
15
Hazard analysis
( ) ( ) 













θ
−⋅





θ
⋅
θ
θ
=θ
θ−θ
θ
)(
10
1)(
10
10, exp
)(
)(
),(f 10
kk
V
c
V
c
V
c
k
V
The roughness length z0 is characterized by a
lognormal PDF. The mean value μz0 and the
standard deviation σz0 of z0 are expressed as
function of θ (assuming a slight difference between
four sectors, i.e. a mean value of z0 varying
between 0.08 m and 0.12 m and a COVz0 equal to
0.30).
V10 and θ are described by their joint probability
distribution function
θ
V10
IM =
θ
V10
z0
Parameters c(θ) and k(θ) are derived from NIST®
wind speed database.
(Annual occurrence)
Models for tall buildings and the assessment of occupant comfort
O
f(IM|O)
f(IM) f(IP|IM,SP)
f(IP)
f(EDP|IM,IP,SP)
G(EDP)
f(DM|EDP)
G(DM)
f(DV|DM)
G(DV)
Hazard analysis
Interaction
analysis
Structural analysis Damageanalysis Loss analysis
IM: intensity
measure
IP: interaction
parameters
EDP:engineering
demand param.
DM:damage
measure
DV: decision
variable
Select
O, D
O:location
D:design
Environme
nt info
Decision-
making
D
f(SP|D)
f(SP)
Structural
characterization
SP:structural
system parameters
Structural
system
info
Damageandlossevaluationintheperformance-basedwindengineering
ICOSSAR 2013
11th
International Conference on Structural Safety & Reliability
June 16-20, Columbia University, New York, NY
Francesco Petrini
Konstantinos Gkoumas
Franco Bontempi
16
Models for tall buildings and the assessment of occupant comfort
Interaction analysis IP =
gr
CD
CL
O
f(IM|O)
f(IM) f(IP|IM,SP)
f(IP)
f(EDP|IM,IP,SP)
G(EDP)
f(DM|EDP)
G(DM)
f(DV|DM)
G(DV)
Hazard analysis
Interaction
analysis
Structural analysis Damageanalysis Loss analysis
IM: intensity
measure
IP: interaction
parameters
EDP:engineering
demand param.
DM:damage
measure
DV: decision
variable
Select
O, D
O:location
D:design
Environme
nt info
Decision-
making
D
f(SP|D)
f(SP)
Structural
characterization
SP:structural
system parameters
Structural
system
info
Damageandlossevaluationintheperformance-basedwindengineering
ICOSSAR 2013
11th
International Conference on Structural Safety & Reliability
June 16-20, Columbia University, New York, NY
Francesco Petrini
Konstantinos Gkoumas
Franco Bontempi
17
Interaction analysis IP =
gr
CD
CL
O
f(IM|O)
f(IM) f(IP|IM,SP)
f(IP)
f(EDP|IM,IP,SP)
G(EDP)
f(DM|EDP)
G(DM)
f(DV|DM)
G(DV)
Hazard analysis
Interaction
analysis
Structural analysis Damageanalysis Loss analysis
IM: intensity
measure
IP: interaction
parameters
EDP:engineering
demand param.
DM:damage
measure
DV: decision
variable
Select
O, D
O:location
D:design
Environme
nt info
Decision-
making
D
f(SP|D)
f(SP)
Structural
characterization
SP:structural
system parameters
Structural
system
info
Models for tall buildings and the assessment of occupant comfort
462.2507.1265.0 2
+ξ+ξ−=µ
rg
( )











≤⋅η
>⋅η
⋅η+
−
⋅η
=σ
+
+
+
+
122if650
122if
46
213
45
2
21
.T.
.T
.
)Tln(
.
)Tln(
.
windr,e
windr,e
windr,e
windr,e
gr
( )







<≤
η
<≤
η−
=η +
+
+
1690if
690100if
380631 450
r
r
r
r
.
r
r,e
q.
.q.
.q.
r
r
r σ
σ
=+η 
(Obtained from time-domain
analyses)
The peak response factor gr is characterized by a Gaussian distribution function
rgµ
rgµ
Vanmarcke (1975)
The aerodynamic coefficients CD and CL are characterized by Gaussian
distributions. Mean values are expressed as a function of θ, varying from
those corresponding to a square shape (for θ = 0) to those corresponding to
a rhomboidal shape (for θ = 45); the coefficient of variations of CL and CD
are taken equal to 0.07 and 0.05.
μCD μCL
D
Cµ
μCD μCL
L
Cµ
rrm
p
grr σ⋅+=
Damageandlossevaluationintheperformance-basedwindengineering
ICOSSAR 2013
11th
International Conference on Structural Safety & Reliability
June 16-20, Columbia University, New York, NY
Francesco Petrini
Konstantinos Gkoumas
Franco Bontempi
18
G(EDP) = ∫…∫ G(EDP|IM, IP, SP) · f(IP|IM,SP) · f(IM) · f(SP) · dIP · dIM · dSP
Monte Carlo sim
(5000 runs)
aL
p
Reduced
formulation
O
f(IM|O)
f(IM) f(IP|IM,SP)
f(IP)
f(EDP|IM,IP,SP)
G(EDP)
f(DM|EDP)
G(DM)
f(DV|DM)
G(DV)
Hazard analysis
Interaction
analysis
Structural analysis Damageanalysis Loss analysis
IM: intensity
measure
IP: interaction
parameters
EDP:engineering
demand param.
DM:damage
measure
DV: decision
variable
Select
O, D
O:location
D:design
Environme
nt info
Decision-
making
D
f(SP|D)
f(SP)
Structural
characterization
SP:structural
system parameters
Structural
system
info
Structural analysis
Models for tall buildings and the assessment of occupant comfort
EDP= aL
p
(peak acceleration in the across wind direction)
Damageandlossevaluationintheperformance-basedwindengineering
ICOSSAR 2013
11th
International Conference on Structural Safety & Reliability
June 16-20, Columbia University, New York, NY
Francesco Petrini
Konstantinos Gkoumas
Franco Bontempi
19
Risk Curve. EDP= aL
p
= peak acceleration in the across wind direction
The annual probabilities of exceeding the human perception thresholds for
apartment and office building vibrations are 0.0576 and 0.0148 respectively.
aL
p
G(aL
p)
aL
p [mm/s2]
Ciampoli, M. & Petrini, F., 2012, Performance-Based Aeolian Risk assessment and reduction for tall buildings, Probabilistic
Engineering Mechanics, 28 (75–84).
Models for tall buildings and the assessment of occupant comfort
Damageandlossevaluationintheperformance-basedwindengineering
Francesco Petrini
Konstantinos Gkoumas
Franco Bontempi
ICOSSAR 2013
11th
International Conference on Structural Safety & Reliability
June 16-20, Columbia University, New York, NY
20
TMD
Design Parameters
γ = mTMD/mtot
β = ωTMD/ ω1
ξ* = damping of TMD
aL
p[mm/s2]
n [Hz]
β = ξ* =
β = ξ* =
β = ξ* =
β = ξ* =
β = ξ* =
β = ξ* =
β = ξ* =
G(aL
p)
aL
p [mm/s2]
Parametric analysis Effects on risk
γ = 1/150
Aeolian Risk reduction using TMD
Models for tall buildings and the assessment of occupant comfort
Damageandlossevaluationintheperformance-basedwindengineering
Francesco Petrini
Konstantinos Gkoumas
Franco Bontempi
ICOSSAR 2013
11th
International Conference on Structural Safety & Reliability
June 16-20, Columbia University, New York, NY
Presentation outline
21
• Overview of the Performance Based Wind
Engineering (PBWE) procedure.
• Models for tall buildings and the assessment of
occupant comfort
• Application on a high-rise building
• Assessment of the annual probabilities of exceeding
the human perception thresholds
• Vibration and occupant comfort issues
• Damage analysis
• Loss analysis
• Conclusions and indications for further research
Damageandlossevaluationintheperformance-basedwindengineering
Francesco Petrini
Konstantinos Gkoumas
Franco Bontempi
ICOSSAR 2013
11th
International Conference on Structural Safety & Reliability
June 16-20, Columbia University, New York, NY
22
Vibration and occupant comfort issues
Consequences of wind induced vibrations
in high rise buildings
-Fear and alarm
-Discomfort
-Reduced task concentration
-Dizziness, migraine and nausea
Kwok, K.C.S., Hitchcock, P.A. & Burton, M.D., 2009, Perception of vibration and occupant comfort in wind-
excited tall buildings, Journal of Wind Engineering and Industrial Aerodynamics, 97(7-8), 368-380
Wind induced vibration
−Damage analysis
−Loss Analysis
Studies on human perception of vibration and tolerance thresholds
-Field experiments and studies in wind-excited buildings
-Motion simulator tests
-Field experiments conducted in artificially excited buildings
Mitigation measures
-Modifications to the structural system and/or the
aerodynamic shape
-Installation of vibration control devices
- Negative impressions/ publicity
- Eventually they can be an attraction
O
f(IM|O)
f(IM) f(IP|IM,SP)
f(IP)
f(EDP|IM,IP,SP)
G(EDP)
f(DM|EDP)
G(DM)
f(DV|DM)
G(DV)
Hazard analysis
Interaction
analysis
Structural analysis Damageanalysis Loss analysis
IM: intensity
measure
IP: interaction
parameters
EDP:engineering
demand param.
DM:damage
measure
DV: decision
variable
Select
O, D
O:location
D:design
Environme
nt info
Decision-
making
D
f(SP|D)
f(SP)
Structural
characterization
SP:structural
system parameters
Structural
system
info
Damageandlossevaluationintheperformance-basedwindengineering
Francesco Petrini
Konstantinos Gkoumas
Franco Bontempi
ICOSSAR 2013
11th
International Conference on Structural Safety & Reliability
June 16-20, Columbia University, New York, NY
23
O
f(IM|O)
f(IM) f(IP|IM,SP)
f(IP)
f(EDP|IM,IP,SP)
G(EDP)
f(DM|EDP)
G(DM)
f(DV|DM)
G(DV)
Hazard analysis
Interaction
analysis
Structural analysis Damageanalysis Loss analysis
IM: intensity
measure
IP: interaction
parameters
EDP:engineering
demand param.
DM:damage
measure
DV: decision
variable
Select
O, D
O:location
D:design
Environme
nt info
Decision-
making
D
f(SP|D)
f(SP)
Structural
characterization
SP:structural
system parameters
Structural
system
info
Damage analysis
Probabilistic damage analysis: assign a probability distribution to the perception
thresholds
Procedure: obtain a pdf that assigns at each vibration level a percentage of persons
that experience discomfort
Kwok, K.C.S., Hitchcock, P.A., 2008. Occupant comfort test using a tall building motion simulator. In: Proceedings of Fourth
International Conference on Advances in Wind and Structures, Jeju, Korea, 28–30 May.
Vibration and occupant comfort issues
Damageandlossevaluationintheperformance-basedwindengineering
Francesco Petrini
Konstantinos Gkoumas
Franco Bontempi
ICOSSAR 2013
11th
International Conference on Structural Safety & Reliability
June 16-20, Columbia University, New York, NY
24
O
f(IM|O)
f(IM) f(IP|IM,SP)
f(IP)
f(EDP|IM,IP,SP)
G(EDP)
f(DM|EDP)
G(DM)
f(DV|DM)
G(DV)
Hazard analysis
Interaction
analysis
Structural analysis Damageanalysis Loss analysis
IM: intensity
measure
IP: interaction
parameters
EDP:engineering
demand param.
DM:damage
measure
DV: decision
variable
Select
O, D
O:location
D:design
Environme
nt info
Decision-
making
D
f(SP|D)
f(SP)
Structural
characterization
SP:structural
system parameters
Structural
system
info
Loss analysis
Probabilistic loss analysis: assign a cost probability for different damages
Issues: the uncertainty in the cost relies on various factors (e.g. market trend)
DM
Non structural elements
Structural elements
Comfort
Safety
Serviceability
Safety
Serviceability
DV
Direct
Indirect
(As a direct damage to the structure)
(As a consequence of the damaged structure)
IM
SP
IP EDP DM DV
- Direct VS indirect cost that are not
possible to account for in monetary terms.
- Initial VS life-cycle cost. In particular
regarding the evaluation of retrofitting
strategies that could improve the
serviceability performance (e.g. comfort),
by means of vibration mitigation.
Vibration and occupant comfort issues
Damageandlossevaluationintheperformance-basedwindengineering
Francesco Petrini
Konstantinos Gkoumas
Franco Bontempi
ICOSSAR 2013
11th
International Conference on Structural Safety & Reliability
June 16-20, Columbia University, New York, NY
25
Vibration and occupant comfort issues
Loss analysis for comfort – concept (1)
Limit states implying damages in structural or non-
structural components
•Direct damages (tangible): costs necessary for
retrofitting the structures
•Direct damages (non tangible): costs due to service
interruption for restoration
Uncertainties are on the unitary costs
Damageandlossevaluationintheperformance-basedwindengineering
Francesco Petrini
Konstantinos Gkoumas
Franco Bontempi
ICOSSAR 2013
11th
International Conference on Structural Safety & Reliability
June 16-20, Columbia University, New York, NY
26
Vibration and occupant comfort issues
Loss analysis for comfort – concept (2)
Limit states implying perception of low structural
quality (e.g. discomfort) but not implying damages
Our proposal
Cost necessary for improving the quality to an
acceptable level, e.g.
a.Cost related with a change of the activity in the structure (for
example, change from residential to office)
b.Cost of a TMD installation
• Direct losses: DL= ATMD * Ac + TMD installation cost
• Direct losses due to the activity interruption for retrofitting the TMD’s
• Account for possible future gains due to attraction factor
Damageandlossevaluationintheperformance-basedwindengineering
Francesco Petrini
Konstantinos Gkoumas
Franco Bontempi
ICOSSAR 2013
11th
International Conference on Structural Safety & Reliability
June 16-20, Columbia University, New York, NY
27
Vibration and occupant comfort issues
Loss analysis for comfort – concept (3)
INDIRECT DAMAGES
Depending o whether we consider a new or an
existing structure
• Structural design before
the construction
• Existing structure
no indirect costs
costs due to
service interruption
Damageandlossevaluationintheperformance-basedwindengineering
Francesco Petrini
Konstantinos Gkoumas
Franco Bontempi
ICOSSAR 2013
11th
International Conference on Structural Safety & Reliability
June 16-20, Columbia University, New York, NY
Wind occurrence
28
Vibration and occupant comfort issues
Lifecycle cost analysis
O
f(IM|O)
f(IM) f(IP|IM,SP)
f(IP)
f(EDP|IM,IP,SP)
G(EDP)
f(DM|EDP)
G(DM)
f(DV|DM)
G(DV)
Hazard analysis
Interaction
analysis
Structural analysis Damageanalysis Loss analysis
IM: intensity
measure
IP: interaction
parameters
EDP:engineering
demand param.
DM:damage
measure
DV: decision
variable
Select
O, D
O:location
D:design
Environme
nt info
Decision-
making
D
f(SP|D)
f(SP)
Structural
characterization
SP:structural
system parameters
Structural
system
info
Loss analysis
Economic
investment
Economic
value
Life cycle
assessment
MC
simulation
With TMD
With TMD retrofitted
Economic
losses
Without TMD
Damageandlossevaluationintheperformance-basedwindengineering
Francesco Petrini
Konstantinos Gkoumas
Franco Bontempi
ICOSSAR 2013
11th
International Conference on Structural Safety & Reliability
June 16-20, Columbia University, New York, NY
Presentation outline
29
• Overview of the Performance Based Wind
Engineering (PBWE) procedure.
• Models for tall buildings and the assessment of
occupant comfort
• Application on a high-rise building
• Assessment of the annual probabilities of exceeding
the human perception thresholds
• Vibration and occupant comfort issues
• Damage analysis
• Loss analysis
• Conclusions and indications for further research
Damageandlossevaluationintheperformance-basedwindengineering
Francesco Petrini
Konstantinos Gkoumas
Franco Bontempi
ICOSSAR 2013
11th
International Conference on Structural Safety & Reliability
June 16-20, Columbia University, New York, NY
• Occupant comfort is an important issue in the design of
tall buildings. Due to the stochastic nature of wind action
and wind-induced vibration, deterministic analyses are
inadequate for carrying out a comfort assessment.
• The insertion of passive control devices can reduce
the vibration perception of building occupants. But the
effectiveness of the device must be evaluated in terms of
cost (by computing the probability of exceeding
acceptable values of an appropriate DV).
• Damage and loss analysis of wind-induced vibrations
will be based on corroborated literature studies that
provide statistics on the occupant comfort.
30
Conclusions and indications for further research
Damageandlossevaluationintheperformance-basedwindengineering
Francesco Petrini
Konstantinos Gkoumas
Franco Bontempi
ICOSSAR 2013
11th
International Conference on Structural Safety & Reliability
June 16-20, Columbia University, New York, NY
Thank you for your attention
31
Francesco Petrini, Konstantinos Gkoumas, Franco Bontempi
Sapienza - University of Rome, Dipartimento di Ingegneria Strutturale e Geotecnica
Acknowledgements:
Prof. Marcello Ciampoli, Prof. Giuliano Augusti
This study is partially supported by StroNGER s.r.l. from the fund “FILAS - POR FESR LAZIO
2007/2013 - Support for the research spin-off”.
Damageandlossevaluationintheperformance-basedwindengineering
Francesco Petrini
Konstantinos Gkoumas
Franco Bontempi
ICOSSAR 2013
11th
International Conference on Structural Safety & Reliability
June 16-20, Columbia University, New York, NY
Additional slides
32
Francesco Petrini, Konstantinos Gkoumas, Franco Bontempi
Sapienza - University of Rome, Dipartimento di Ingegneria Strutturale e Geotecnica
Damageandlossevaluationintheperformance-basedwindengineering
ICOSSAR 2013
11th
International Conference on Structural Safety & Reliability
June 16-20, Columbia University, New York, NY
Francesco Petrini
Konstantinos Gkoumas
Franco Bontempi
33
Models for tall buildings and the assessment of occupant comfort
Interaction analysis IP =
gr
CD
CL
O
f(IM|O)
f(IM) f(IP|IM,SP)
f(IP)
f(EDP|IM,IP,SP)
G(EDP)
f(DM|EDP)
G(DM)
f(DV|DM)
G(DV)
Hazard analysis
Interaction
analysis
Structural analysis Damageanalysis Loss analysis
IM: intensity
measure
IP: interaction
parameters
EDP:engineering
demand param.
DM:damage
measure
DV: decision
variable
Select
O, D
O:location
D:design
Environme
nt info
Decision-
making
D
f(SP|D)
f(SP)
Structural
characterization
SP:structural
system parameters
Structural
system
info
rrm
p
grr σ⋅+=
)T(log
.
)T(log
winde
windegr
⋅η
+⋅η=µ
2
5770
2 Davenport
(1983)
Reliable results for a broad
range of processes
Damageandlossevaluationintheperformance-basedwindengineering
ICOSSAR 2013
11th
International Conference on Structural Safety & Reliability
June 16-20, Columbia University, New York, NY
Francesco Petrini
Konstantinos Gkoumas
Franco Bontempi
34
Interaction analysis IP =
gr
CD
CL
O
f(IM|O)
f(IM) f(IP|IM,SP)
f(IP)
f(EDP|IM,IP,SP)
G(EDP)
f(DM|EDP)
G(DM)
f(DV|DM)
G(DV)
Hazard analysis
Interaction
analysis
Structural analysis Damageanalysis Loss analysis
IM: intensity
measure
IP: interaction
parameters
EDP:engineering
demand param.
DM:damage
measure
DV: decision
variable
Select
O, D
O:location
D:design
Environme
nt info
Decision-
making
D
f(SP|D)
f(SP)
Structural
characterization
SP:structural
system parameters
Structural
system
info
rrm
p
grr σ⋅+=
)T(log
.
)T(log
winde
windegr
⋅η
+⋅η=µ
2
5770
2 Davenport
(1983)
Reliable results for a broad
range of processes
- In the Davenport formulation the peak factor does not depend on the bandwidth of the stochastic process.
- Alternative formulations consider this dependence.
( )











≤⋅η
>⋅η
⋅η+
−
⋅η
=σ
+
+
+
+
122if650
122if
46
213
45
2
21
.T.
.T
.
)Tln(
.
)Tln(
.
windr,e
windr,e
windr,e
windr,e
gr
)ln(2
577.0
)ln(2
,
,
windre
windreg
T
Tr
⋅η
+⋅η=µ
+
+
Vanmarcke
(1975)
Models for tall buildings and the assessment of occupant comfort
Damageandlossevaluationintheperformance-basedwindengineering
ICOSSAR 2013
11th
International Conference on Structural Safety & Reliability
June 16-20, Columbia University, New York, NY
Francesco Petrini
Konstantinos Gkoumas
Franco Bontempi
35
Interaction analysis IP =
gr
CD
CL
O
f(IM|O)
f(IM) f(IP|IM,SP)
f(IP)
f(EDP|IM,IP,SP)
G(EDP)
f(DM|EDP)
G(DM)
f(DV|DM)
G(DV)
Hazard analysis
Interaction
analysis
Structural analysis Damageanalysis Loss analysis
IM: intensity
measure
IP: interaction
parameters
EDP:engineering
demand param.
DM:damage
measure
DV: decision
variable
Select
O, D
O:location
D:design
Environme
nt info
Decision-
making
D
f(SP|D)
f(SP)
Structural
characterization
SP:structural
system parameters
Structural
system
info
rrm
p
grr σ⋅+=
)T(log
.
)T(log
winde
windegr
⋅η
+⋅η=µ
2
5770
2 Davenport
(1983)
Reliable results for a broad
range of processes
- In the Davenport formulation the peak factor does not depend on the bandwidth of the stochastic process.
- Alternative formulations consider this dependence.
( )











≤⋅η
>⋅η
⋅η+
−
⋅η
=σ
+
+
+
+
122if650
122if
46
213
45
2
21
.T.
.T
.
)Tln(
.
)Tln(
.
windr,e
windr,e
windr,e
windr,e
gr
)ln(2
577.0
)ln(2
,
,
windre
windreg
T
Tr
⋅η
+⋅η=µ
+
+
Vanmarcke
(1975)
Models for tall buildings and the assessment of occupant comfort
rR1
2
rB
2
rR2
2
n*Srr
n (Hz)
rR1
2
rB
2
rR2
2
n*Srr
n (Hz)
Background
(broad band process)
Resonant
(narrow band
process)
Lightly damped
buildings
Highly damped
buildings
Damageandlossevaluationintheperformance-basedwindengineering
ICOSSAR 2013
11th
International Conference on Structural Safety & Reliability
June 16-20, Columbia University, New York, NY
Francesco Petrini
Konstantinos Gkoumas
Franco Bontempi
36
Interaction analysis IP =
gr
CD
CL
O
f(IM|O)
f(IM) f(IP|IM,SP)
f(IP)
f(EDP|IM,IP,SP)
G(EDP)
f(DM|EDP)
G(DM)
f(DV|DM)
G(DV)
Hazard analysis
Interaction
analysis
Structural analysis Damageanalysis Loss analysis
IM: intensity
measure
IP: interaction
parameters
EDP:engineering
demand param.
DM:damage
measure
DV: decision
variable
Select
O, D
O:location
D:design
Environme
nt info
Decision-
making
D
f(SP|D)
f(SP)
Structural
characterization
SP:structural
system parameters
Structural
system
info
Models for tall buildings and the assessment of occupant comfort
rR1
2
rB
2
rR2
2
n*Srr
n (Hz)
rR1
2
rB
2
rR2
2
n*Srr
n (Hz)
Background
(broad band process)
Resonant
(narrow band
process)
Lightly damped
buildings
Highly damped
buildings
Therefore, the bandwidth
parameter, and also the response
peak factor must depend on the
structural damping
Damageandlossevaluationintheperformance-basedwindengineering
ICOSSAR 2013
11th
International Conference on Structural Safety & Reliability
June 16-20, Columbia University, New York, NY
Francesco Petrini
Konstantinos Gkoumas
Franco Bontempi
37
Interaction analysis IP =
gr
CD
CL
O
f(IM|O)
f(IM) f(IP|IM,SP)
f(IP)
f(EDP|IM,IP,SP)
G(EDP)
f(DM|EDP)
G(DM)
f(DV|DM)
G(DV)
Hazard analysis
Interaction
analysis
Structural analysis Damageanalysis Loss analysis
IM: intensity
measure
IP: interaction
parameters
EDP:engineering
demand param.
DM:damage
measure
DV: decision
variable
Select
O, D
O:location
D:design
Environme
nt info
Decision-
making
D
f(SP|D)
f(SP)
Structural
characterization
SP:structural
system parameters
Structural
system
info
Models for tall buildings and the assessment of occupant comfort
462.2507.1265.0 2
+ξ+ξ−=µ
rg
( )











≤⋅η
>⋅η
⋅η+
−
⋅η
=σ
+
+
+
+
122if650
122if
46
213
45
2
21
.T.
.T
.
)Tln(
.
)Tln(
.
windr,e
windr,e
windr,e
windr,e
gr
( )







<≤
η
<≤
η−
=η +
+
+
1690if
690100if
380631 450
r
r
r
r
.
r
r,e
q.
.q.
.q.
r
r
r σ
σ
=+η 
(Obtained from time-domain
analyses)
The peak response factor gr is characterized by a Gaussian distribution
function
rgµ
rgµ
Vanmarcke (1975)

Más contenido relacionado

Similar a ICOSSAR FP et al

Pbwe fp palmeri_barbato
Pbwe fp palmeri_barbatoPbwe fp palmeri_barbato
Pbwe fp palmeri_barbatoStroNGER2012
 
3 - Structural Integrity Evaluation of Offshore Wind Turbines - Giuliani
3 - Structural Integrity Evaluation of Offshore Wind Turbines - Giuliani3 - Structural Integrity Evaluation of Offshore Wind Turbines - Giuliani
3 - Structural Integrity Evaluation of Offshore Wind Turbines - GiulianiStroNGER2012
 
Structural Integrity Evaluation of Offshore Wind Turbines
Structural Integrity Evaluation of Offshore Wind TurbinesStructural Integrity Evaluation of Offshore Wind Turbines
Structural Integrity Evaluation of Offshore Wind TurbinesFranco Bontempi
 
StroNGER S.r.l. @ COMPDYN CONGRESS 2013
StroNGER S.r.l. @ COMPDYN CONGRESS 2013StroNGER S.r.l. @ COMPDYN CONGRESS 2013
StroNGER S.r.l. @ COMPDYN CONGRESS 2013StroNGER2012
 
Fragility analysis for the Performance-Based Design of cladding wall panels s...
Fragility analysis for the Performance-Based Design of cladding wall panels s...Fragility analysis for the Performance-Based Design of cladding wall panels s...
Fragility analysis for the Performance-Based Design of cladding wall panels s...StroNGER2012
 
Building occupants’ comfort assessment in the PBWE framework
Building occupants’ comfort assessment in the PBWE frameworkBuilding occupants’ comfort assessment in the PBWE framework
Building occupants’ comfort assessment in the PBWE frameworkFranco Bontempi
 
Fire risk analysis of structures and infrastructures: theory and application ...
Fire risk analysis of structures and infrastructures: theory and application ...Fire risk analysis of structures and infrastructures: theory and application ...
Fire risk analysis of structures and infrastructures: theory and application ...Franco Bontempi Org Didattica
 
6 - A Risk Analysis Framework for Offshore Wind Turbines - Gkoumas
6 - A Risk Analysis Framework for Offshore Wind Turbines - Gkoumas6 - A Risk Analysis Framework for Offshore Wind Turbines - Gkoumas
6 - A Risk Analysis Framework for Offshore Wind Turbines - GkoumasStroNGER2012
 
SNAME Offshore Symposium - Morandi - Robustness
SNAME Offshore Symposium - Morandi - RobustnessSNAME Offshore Symposium - Morandi - Robustness
SNAME Offshore Symposium - Morandi - RobustnessAlberto Morandi
 
INFRARISK. Novel Indicators for identifying critical INFRAstructure at RISK f...
INFRARISK. Novel Indicators for identifying critical INFRAstructure at RISK f...INFRARISK. Novel Indicators for identifying critical INFRAstructure at RISK f...
INFRARISK. Novel Indicators for identifying critical INFRAstructure at RISK f...Infra Risk
 
IRJET- Non-Destructive Test Application in Civil Infrastructure
IRJET- Non-Destructive Test Application in Civil InfrastructureIRJET- Non-Destructive Test Application in Civil Infrastructure
IRJET- Non-Destructive Test Application in Civil InfrastructureIRJET Journal
 
IRJET- A Case Study on Rehabilitation and Retrofitting of Cheetal Marriage Ac...
IRJET- A Case Study on Rehabilitation and Retrofitting of Cheetal Marriage Ac...IRJET- A Case Study on Rehabilitation and Retrofitting of Cheetal Marriage Ac...
IRJET- A Case Study on Rehabilitation and Retrofitting of Cheetal Marriage Ac...IRJET Journal
 

Similar a ICOSSAR FP et al (20)

Pbwe fp palmeri_barbato
Pbwe fp palmeri_barbatoPbwe fp palmeri_barbato
Pbwe fp palmeri_barbato
 
StroNGER + cistec 19 09 2014
StroNGER + cistec 19 09 2014StroNGER + cistec 19 09 2014
StroNGER + cistec 19 09 2014
 
StroNGER portfolio short
StroNGER portfolio shortStroNGER portfolio short
StroNGER portfolio short
 
3 - Structural Integrity Evaluation of Offshore Wind Turbines - Giuliani
3 - Structural Integrity Evaluation of Offshore Wind Turbines - Giuliani3 - Structural Integrity Evaluation of Offshore Wind Turbines - Giuliani
3 - Structural Integrity Evaluation of Offshore Wind Turbines - Giuliani
 
Structural Integrity Evaluation of Offshore Wind Turbines
Structural Integrity Evaluation of Offshore Wind TurbinesStructural Integrity Evaluation of Offshore Wind Turbines
Structural Integrity Evaluation of Offshore Wind Turbines
 
StroNGER S.r.l. @ COMPDYN CONGRESS 2013
StroNGER S.r.l. @ COMPDYN CONGRESS 2013StroNGER S.r.l. @ COMPDYN CONGRESS 2013
StroNGER S.r.l. @ COMPDYN CONGRESS 2013
 
Fragility analysis for the Performance-Based Design of cladding wall panels s...
Fragility analysis for the Performance-Based Design of cladding wall panels s...Fragility analysis for the Performance-Based Design of cladding wall panels s...
Fragility analysis for the Performance-Based Design of cladding wall panels s...
 
Dcee4 paper 9
Dcee4 paper 9Dcee4 paper 9
Dcee4 paper 9
 
Structural robustness: concepts and applications.
Structural robustness: concepts and applications.Structural robustness: concepts and applications.
Structural robustness: concepts and applications.
 
Building occupants’ comfort assessment in the PBWE framework
Building occupants’ comfort assessment in the PBWE frameworkBuilding occupants’ comfort assessment in the PBWE framework
Building occupants’ comfort assessment in the PBWE framework
 
Minisymposium
MinisymposiumMinisymposium
Minisymposium
 
Fire risk analysis of structures and infrastructures: theory and application ...
Fire risk analysis of structures and infrastructures: theory and application ...Fire risk analysis of structures and infrastructures: theory and application ...
Fire risk analysis of structures and infrastructures: theory and application ...
 
6 - A Risk Analysis Framework for Offshore Wind Turbines - Gkoumas
6 - A Risk Analysis Framework for Offshore Wind Turbines - Gkoumas6 - A Risk Analysis Framework for Offshore Wind Turbines - Gkoumas
6 - A Risk Analysis Framework for Offshore Wind Turbines - Gkoumas
 
SNAME Offshore Symposium - Morandi - Robustness
SNAME Offshore Symposium - Morandi - RobustnessSNAME Offshore Symposium - Morandi - Robustness
SNAME Offshore Symposium - Morandi - Robustness
 
Olmati et al.
Olmati et al.Olmati et al.
Olmati et al.
 
INFRARISK. Novel Indicators for identifying critical INFRAstructure at RISK f...
INFRARISK. Novel Indicators for identifying critical INFRAstructure at RISK f...INFRARISK. Novel Indicators for identifying critical INFRAstructure at RISK f...
INFRARISK. Novel Indicators for identifying critical INFRAstructure at RISK f...
 
IRJET- Non-Destructive Test Application in Civil Infrastructure
IRJET- Non-Destructive Test Application in Civil InfrastructureIRJET- Non-Destructive Test Application in Civil Infrastructure
IRJET- Non-Destructive Test Application in Civil Infrastructure
 
IRJET- A Case Study on Rehabilitation and Retrofitting of Cheetal Marriage Ac...
IRJET- A Case Study on Rehabilitation and Retrofitting of Cheetal Marriage Ac...IRJET- A Case Study on Rehabilitation and Retrofitting of Cheetal Marriage Ac...
IRJET- A Case Study on Rehabilitation and Retrofitting of Cheetal Marriage Ac...
 
PSA - Lezione del 29 ottobre 2014 - ROBUSTEZZA
PSA - Lezione del 29 ottobre 2014 - ROBUSTEZZAPSA - Lezione del 29 ottobre 2014 - ROBUSTEZZA
PSA - Lezione del 29 ottobre 2014 - ROBUSTEZZA
 
Contact Detontions
Contact DetontionsContact Detontions
Contact Detontions
 

Más de StroNGER2012

Corso di dottorato & Corso di formazione
Corso di dottorato & Corso di formazione Corso di dottorato & Corso di formazione
Corso di dottorato & Corso di formazione StroNGER2012
 
I Restauri e la Città: l’esempio del Colosseo e della Casa di Augusto
I Restauri e la Città: l’esempio del Colosseo e della Casa di AugustoI Restauri e la Città: l’esempio del Colosseo e della Casa di Augusto
I Restauri e la Città: l’esempio del Colosseo e della Casa di AugustoStroNGER2012
 
SISTEMILA RETE STRADALE URBANA:UN’EMERGENZA DEL QUOTIDIANO O UN’OPPORTUNITA’ ...
SISTEMILA RETE STRADALE URBANA:UN’EMERGENZA DEL QUOTIDIANO O UN’OPPORTUNITA’ ...SISTEMILA RETE STRADALE URBANA:UN’EMERGENZA DEL QUOTIDIANO O UN’OPPORTUNITA’ ...
SISTEMILA RETE STRADALE URBANA:UN’EMERGENZA DEL QUOTIDIANO O UN’OPPORTUNITA’ ...StroNGER2012
 
INFRASTRUTTURE IN AMBITO URBANO: COMPLESSITA’ DI PROGETTO E DURABILITA’
INFRASTRUTTURE IN AMBITO URBANO: COMPLESSITA’ DI PROGETTO E DURABILITA’INFRASTRUTTURE IN AMBITO URBANO: COMPLESSITA’ DI PROGETTO E DURABILITA’
INFRASTRUTTURE IN AMBITO URBANO: COMPLESSITA’ DI PROGETTO E DURABILITA’StroNGER2012
 
61Resilienza dei centri urbani e rilievo delle costruzioni: un binomio indivi...
61Resilienza dei centri urbani e rilievo delle costruzioni: un binomio indivi...61Resilienza dei centri urbani e rilievo delle costruzioni: un binomio indivi...
61Resilienza dei centri urbani e rilievo delle costruzioni: un binomio indivi...StroNGER2012
 
Roma e le sue acque:il punto di vista della Protezione Civile
Roma e le sue acque:il punto di vista della Protezione CivileRoma e le sue acque:il punto di vista della Protezione Civile
Roma e le sue acque:il punto di vista della Protezione CivileStroNGER2012
 
Una visione ampia dei sistemi: robustezza e resilienza.
Una visione ampia dei sistemi: robustezza e resilienza.Una visione ampia dei sistemi: robustezza e resilienza.
Una visione ampia dei sistemi: robustezza e resilienza.StroNGER2012
 
L’investigazione antincendio sugli aspetti strutturali: una proposta di codifica
L’investigazione antincendio sugli aspetti strutturali: una proposta di codificaL’investigazione antincendio sugli aspetti strutturali: una proposta di codifica
L’investigazione antincendio sugli aspetti strutturali: una proposta di codificaStroNGER2012
 
Progetto e analisi di ospedali come costruzioni strategiche: visione di siste...
Progetto e analisi di ospedali come costruzioni strategiche: visione di siste...Progetto e analisi di ospedali come costruzioni strategiche: visione di siste...
Progetto e analisi di ospedali come costruzioni strategiche: visione di siste...StroNGER2012
 
norme tecniche di prevenzione incendi
norme tecniche di prevenzione incendinorme tecniche di prevenzione incendi
norme tecniche di prevenzione incendiStroNGER2012
 
Arangio sapienza-may2015
Arangio sapienza-may2015Arangio sapienza-may2015
Arangio sapienza-may2015StroNGER2012
 
Petrini sapienza-may2015
Petrini sapienza-may2015Petrini sapienza-may2015
Petrini sapienza-may2015StroNGER2012
 
Erdogmus sapienza-may2015
Erdogmus sapienza-may2015Erdogmus sapienza-may2015
Erdogmus sapienza-may2015StroNGER2012
 
Avila sapienza-may2015
Avila sapienza-may2015Avila sapienza-may2015
Avila sapienza-may2015StroNGER2012
 
Uso delle fibre di basalto nel risanamento degli edifici storici
Uso delle fibre di basalto nel risanamento degli edifici storiciUso delle fibre di basalto nel risanamento degli edifici storici
Uso delle fibre di basalto nel risanamento degli edifici storiciStroNGER2012
 
Programma IF CRASC 15
Programma IF CRASC 15Programma IF CRASC 15
Programma IF CRASC 15StroNGER2012
 
IDENTIFICAZIONE STRUTTURALE DEL COMPORTAMENTO SPERIMENTALE DI CENTINE INNOVAT...
IDENTIFICAZIONE STRUTTURALE DEL COMPORTAMENTO SPERIMENTALE DI CENTINE INNOVAT...IDENTIFICAZIONE STRUTTURALE DEL COMPORTAMENTO SPERIMENTALE DI CENTINE INNOVAT...
IDENTIFICAZIONE STRUTTURALE DEL COMPORTAMENTO SPERIMENTALE DI CENTINE INNOVAT...StroNGER2012
 
IF CRASC'15 summary
IF CRASC'15 summaryIF CRASC'15 summary
IF CRASC'15 summaryStroNGER2012
 
Corso Ottimizzazione Strutturale Sapienza 2015
Corso Ottimizzazione Strutturale Sapienza 2015Corso Ottimizzazione Strutturale Sapienza 2015
Corso Ottimizzazione Strutturale Sapienza 2015StroNGER2012
 
MIGLIORAMENTO ED ADEGUAMENTO SISMICO DI STRUTTURE ESISTENTI ATTRAVERSO L’UTIL...
MIGLIORAMENTO ED ADEGUAMENTO SISMICO DI STRUTTURE ESISTENTI ATTRAVERSO L’UTIL...MIGLIORAMENTO ED ADEGUAMENTO SISMICO DI STRUTTURE ESISTENTI ATTRAVERSO L’UTIL...
MIGLIORAMENTO ED ADEGUAMENTO SISMICO DI STRUTTURE ESISTENTI ATTRAVERSO L’UTIL...StroNGER2012
 

Más de StroNGER2012 (20)

Corso di dottorato & Corso di formazione
Corso di dottorato & Corso di formazione Corso di dottorato & Corso di formazione
Corso di dottorato & Corso di formazione
 
I Restauri e la Città: l’esempio del Colosseo e della Casa di Augusto
I Restauri e la Città: l’esempio del Colosseo e della Casa di AugustoI Restauri e la Città: l’esempio del Colosseo e della Casa di Augusto
I Restauri e la Città: l’esempio del Colosseo e della Casa di Augusto
 
SISTEMILA RETE STRADALE URBANA:UN’EMERGENZA DEL QUOTIDIANO O UN’OPPORTUNITA’ ...
SISTEMILA RETE STRADALE URBANA:UN’EMERGENZA DEL QUOTIDIANO O UN’OPPORTUNITA’ ...SISTEMILA RETE STRADALE URBANA:UN’EMERGENZA DEL QUOTIDIANO O UN’OPPORTUNITA’ ...
SISTEMILA RETE STRADALE URBANA:UN’EMERGENZA DEL QUOTIDIANO O UN’OPPORTUNITA’ ...
 
INFRASTRUTTURE IN AMBITO URBANO: COMPLESSITA’ DI PROGETTO E DURABILITA’
INFRASTRUTTURE IN AMBITO URBANO: COMPLESSITA’ DI PROGETTO E DURABILITA’INFRASTRUTTURE IN AMBITO URBANO: COMPLESSITA’ DI PROGETTO E DURABILITA’
INFRASTRUTTURE IN AMBITO URBANO: COMPLESSITA’ DI PROGETTO E DURABILITA’
 
61Resilienza dei centri urbani e rilievo delle costruzioni: un binomio indivi...
61Resilienza dei centri urbani e rilievo delle costruzioni: un binomio indivi...61Resilienza dei centri urbani e rilievo delle costruzioni: un binomio indivi...
61Resilienza dei centri urbani e rilievo delle costruzioni: un binomio indivi...
 
Roma e le sue acque:il punto di vista della Protezione Civile
Roma e le sue acque:il punto di vista della Protezione CivileRoma e le sue acque:il punto di vista della Protezione Civile
Roma e le sue acque:il punto di vista della Protezione Civile
 
Una visione ampia dei sistemi: robustezza e resilienza.
Una visione ampia dei sistemi: robustezza e resilienza.Una visione ampia dei sistemi: robustezza e resilienza.
Una visione ampia dei sistemi: robustezza e resilienza.
 
L’investigazione antincendio sugli aspetti strutturali: una proposta di codifica
L’investigazione antincendio sugli aspetti strutturali: una proposta di codificaL’investigazione antincendio sugli aspetti strutturali: una proposta di codifica
L’investigazione antincendio sugli aspetti strutturali: una proposta di codifica
 
Progetto e analisi di ospedali come costruzioni strategiche: visione di siste...
Progetto e analisi di ospedali come costruzioni strategiche: visione di siste...Progetto e analisi di ospedali come costruzioni strategiche: visione di siste...
Progetto e analisi di ospedali come costruzioni strategiche: visione di siste...
 
norme tecniche di prevenzione incendi
norme tecniche di prevenzione incendinorme tecniche di prevenzione incendi
norme tecniche di prevenzione incendi
 
Arangio sapienza-may2015
Arangio sapienza-may2015Arangio sapienza-may2015
Arangio sapienza-may2015
 
Petrini sapienza-may2015
Petrini sapienza-may2015Petrini sapienza-may2015
Petrini sapienza-may2015
 
Erdogmus sapienza-may2015
Erdogmus sapienza-may2015Erdogmus sapienza-may2015
Erdogmus sapienza-may2015
 
Avila sapienza-may2015
Avila sapienza-may2015Avila sapienza-may2015
Avila sapienza-may2015
 
Uso delle fibre di basalto nel risanamento degli edifici storici
Uso delle fibre di basalto nel risanamento degli edifici storiciUso delle fibre di basalto nel risanamento degli edifici storici
Uso delle fibre di basalto nel risanamento degli edifici storici
 
Programma IF CRASC 15
Programma IF CRASC 15Programma IF CRASC 15
Programma IF CRASC 15
 
IDENTIFICAZIONE STRUTTURALE DEL COMPORTAMENTO SPERIMENTALE DI CENTINE INNOVAT...
IDENTIFICAZIONE STRUTTURALE DEL COMPORTAMENTO SPERIMENTALE DI CENTINE INNOVAT...IDENTIFICAZIONE STRUTTURALE DEL COMPORTAMENTO SPERIMENTALE DI CENTINE INNOVAT...
IDENTIFICAZIONE STRUTTURALE DEL COMPORTAMENTO SPERIMENTALE DI CENTINE INNOVAT...
 
IF CRASC'15 summary
IF CRASC'15 summaryIF CRASC'15 summary
IF CRASC'15 summary
 
Corso Ottimizzazione Strutturale Sapienza 2015
Corso Ottimizzazione Strutturale Sapienza 2015Corso Ottimizzazione Strutturale Sapienza 2015
Corso Ottimizzazione Strutturale Sapienza 2015
 
MIGLIORAMENTO ED ADEGUAMENTO SISMICO DI STRUTTURE ESISTENTI ATTRAVERSO L’UTIL...
MIGLIORAMENTO ED ADEGUAMENTO SISMICO DI STRUTTURE ESISTENTI ATTRAVERSO L’UTIL...MIGLIORAMENTO ED ADEGUAMENTO SISMICO DI STRUTTURE ESISTENTI ATTRAVERSO L’UTIL...
MIGLIORAMENTO ED ADEGUAMENTO SISMICO DI STRUTTURE ESISTENTI ATTRAVERSO L’UTIL...
 

Último

Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Miguel Araújo
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Enterprise Knowledge
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slidespraypatel2
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024Results
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024Rafal Los
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?Antenna Manufacturer Coco
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Igalia
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘RTylerCroy
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024The Digital Insurer
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...Martijn de Jong
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfsudhanshuwaghmare1
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Scriptwesley chun
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 

Último (20)

Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slides
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 

ICOSSAR FP et al

  • 1. Damageandlossevaluationintheperformance-basedwindengineering Francesco Petrini Konstantinos Gkoumas Franco Bontempi ICOSSAR 2013 11th International Conference on Structural Safety & Reliability June 16-20, Columbia University, New York, NY Sapienza – University of Rome Francesco Petrini, Ph.D., P.E. Konstantinos Gkoumas, Ph.D., P.E. Franco Bontempi, Ph.D., P.E. Sapienza - University of Rome Dipartimento di Ingegneria Strutturale e Geotecnica Damage and loss evaluation in the performance- based wind engineering
  • 2. Damageandlossevaluationintheperformance-basedwindengineering Francesco Petrini Konstantinos Gkoumas Franco Bontempi ICOSSAR 2013 11th International Conference on Structural Safety & Reliability June 16-20, Columbia University, New York, NY Presentation outline 2 • Overview of the Performance Based Wind Engineering (PBWE) procedure • Models for tall buildings and the assessment of occupant comfort: • Application on a high-rise building • Assessment of the annual probabilities of exceeding the human perception thresholds • Vibration and occupant comfort issues • Damage analysis • Loss analysis • Conclusions and indications for further research
  • 3. Damageandlossevaluationintheperformance-basedwindengineering Francesco Petrini Konstantinos Gkoumas Franco Bontempi ICOSSAR 2013 11th International Conference on Structural Safety & Reliability June 16-20, Columbia University, New York, NY Presentation outline 3 • Overview of the Performance Based Wind Engineering (PBWE) procedure • Models for tall buildings and the assessment of occupant comfort • Application on a high-rise building • Assessment of the annual probabilities of exceeding the human perception thresholds • Vibration and occupant comfort issues • Damage analysis • Loss analysis • Conclusions and indications for further research
  • 4. Damageandlossevaluationintheperformance-basedwindengineering Francesco Petrini Konstantinos Gkoumas Franco Bontempi ICOSSAR 2013 11th International Conference on Structural Safety & Reliability June 16-20, Columbia University, New York, NY Performance-Based Wind Engineering (PBWE) 4 The problem of risk assessment is disaggregated into the following elements: - site and structure-specific hazard analyses, that is, the assessment of the probability density functions f(IM), f(SP) and f(IP|IM,SP); - structural analysis, aiming at the assessment of the probability density function of the structural response f(EDP|IM,IP,SP) conditional on the parameters characterizing the environmental actions, the wind-fluid-structure interaction and the structural properties; - damage analysis, that gives the damage probability density function f(DM|EDP) conditional on EDP; - finally, loss analysis, that is the assessment of G(DV|DM), where G(·|·) is a conditional complementary cumulative distribution function. G(DV) = ∫…∫ G(DV|DM) · f(DM|EDP) · f(EDP|IM, IP,SP) · f(IP|IM,SP) · · f(IM) · f(SP) · dDM · dEDP · dIP · dIM · dSP Interaction Parameters Structural Parameters Intensity measure IM IP SP Engineering Demand Parameters EDP Damage Measure DM Decision Variable DV
  • 5. Damageandlossevaluationintheperformance-basedwindengineering Francesco Petrini Konstantinos Gkoumas Franco Bontempi ICOSSAR 2013 11th International Conference on Structural Safety & Reliability June 16-20, Columbia University, New York, NY PBWE procedure flowchart 5 Petrini, F. & Ciampoli M., 2012, Performance-based wind design of tall buildings, Structure & Infrastructure Engineering, 8(10), 954-966. O f(IM|O) f(IM) f(IP|IM,SP) f(IP) f(EDP|IM,IP,SP) G(EDP) f(DM|EDP) G(DM) f(DV|DM) G(DV) Hazard analysis Interaction analysis Structuralanalysis Damageanalysis Loss analysis IM: intensity measure IP: interaction parameters EDP:engineering demand param. DM:damage measure DV:decision variable Select O, D O:location D:design Environme nt info Decision- making D f(SP|D) f(SP) Structural characterization SP:structural system parameters Structural system info Ciampoli M, Petrini, F. & Augusti G., 2011, Performance-Based Wind Engineering: toward a general procedure, Structural Safety, Structural Safety, 33(6), 367-378.
  • 6. Damageandlossevaluationintheperformance-basedwindengineering Francesco Petrini Konstantinos Gkoumas Franco Bontempi ICOSSAR 2013 11th International Conference on Structural Safety & Reliability June 16-20, Columbia University, New York, NY 6 O f(IM|O) f(IM) f(IP|IM,SP) f(IP) f(EDP|IM,IP,SP) G(EDP) f(DM|EDP) G(DM) f(DV|DM) G(DV) Hazard analysis Aerodynamic analysis Struc’l analysis Damage analysis Loss analysis IM: intensity measure IP: interaction parameters EDP: engineering demand parameters DM: damage measures DV: decision variables Select O, D O: location D: design Environment info Decision- making D f(SP|D) f(SP) Structural characterization SP: structural system parameters Structural system info O f(IM|O) f(IM) f(IP|IM,SP) f(IP) f(EDP|IM,IP,SP) G(EDP) f(DM|EDP) G(DM) f(DV|DM) G(DV) Hazard analysis Aerodynamic analysis Struc’l analysis Damage analysis Loss analysis IM: intensity measure IP: interaction parameters EDP: engineering demand parameters DM: damage measures DV: decision variables Select O, D O: location D: design Environment info Decision- making D f(SP|D) f(SP) Structural characterization SP: structural system parameters Structural system info O, D g(IM|O,D) g(IM) p(EDP|IM) P(EDP) p(DM|EDP) P(DM) p(DV|DM) P(DV) Hazard analysis Struc’l analysis Damage analysis Loss analysis IM: intensity measure EDP: engineering demand param. DM: damage measure DV: decision variable Select O, D O: location D: design Facility info Decision- making O, D g(IM|O,D) g(IM) p(EDP|IM) P(EDP) p(DM|EDP) P(DM) p(DV|DM) P(DV) Hazard analysis Struc’l analysis Damage analysis Loss analysis IM: intensity measure EDP: engineering demand param. DM: damage measure DV: decision variable Select O, D O: location D: design Facility info Decision- making PBWEPBEE
  • 7. Damageandlossevaluationintheperformance-basedwindengineering Francesco Petrini Konstantinos Gkoumas Franco Bontempi ICOSSAR 2013 11th International Conference on Structural Safety & Reliability June 16-20, Columbia University, New York, NY Presentation outline 7 • Overview of the Performance Based Wind Engineering (PBWE) procedure. • Models for tall buildings and the assessment of occupant comfort • Application on a high-rise building • Assessment of the annual probabilities of exceeding the human perception thresholds • Vibration and occupant comfort issues • Damage analysis • Loss analysis • Conclusions and indications for further research
  • 8. Damageandlossevaluationintheperformance-basedwindengineering Francesco Petrini Konstantinos Gkoumas Franco Bontempi ICOSSAR 2013 11th International Conference on Structural Safety & Reliability June 16-20, Columbia University, New York, NY 8 Tamura,Y.(2009).Windandtallbuildings,ProceedingsoftheFifth European&AfricanConferenceonWindEngineering(EACWE5), Florence,Italy,July19-23,2009.. Vibration frequency Accelerationthresholdsformotion perception w(t;z2)Vm(z2) Vm (z1) Vm (z3) V(t;z2) v(t;z2)u(t;z2) X Z Y θ B1 B2 H Loss of serviceability Lossofintegrityof non-structural elements Motionperception bybuilding occupants Displacements Acceleration Discomfort level in terms of perception thresholds 1
  • 9. Damageandlossevaluationintheperformance-basedwindengineering Francesco Petrini Konstantinos Gkoumas Franco Bontempi ICOSSAR 2013 11th International Conference on Structural Safety & Reliability June 16-20, Columbia University, New York, NY 9 Loss of serviceability Lossofintegrityof non-structural elements Motionperception bybuilding occupants Bashor,R.andKareem,A.(2007)."ProbabilisticPerformanceEvaluationof Buildings:AnOccupantComfortPerspective",Proc.12thInternational ConferenceonWindEngineering,1-6July,Cairns,Australia.Available onlineathttp://www.nd.edu/~nathaz/[Accessed15June2010]. w(t;z2)Vm(z2) Vm (z1) Vm (z3) V(t;z2) v(t;z2)u(t;z2) X Z Y θ B1 B2 H Discomfort level in terms of perception thresholds Usually Across wind vibration is critical for comfort The reference period for comfort evaluation is 1 year 1 2 3 1st natural frequency is dominant4 Italian Guidelines f1 Scalarthreshold Displacements Acceleration
  • 10. Damageandlossevaluationintheperformance-basedwindengineering Francesco Petrini Konstantinos Gkoumas Franco Bontempi ICOSSAR 2013 11th International Conference on Structural Safety & Reliability June 16-20, Columbia University, New York, NY 10 Case study structure Structure •74 floors •Height H=305m •Footprint B1=B2=50m (square) 3dframeontheexternalperimeter centralcore Bracing system A steel high-rise building Finite Element model FE Model Approximately •10,000 elements •4,000 nodes •24,000 DOFs
  • 11. Damageandlossevaluationintheperformance-basedwindengineering Francesco Petrini Konstantinos Gkoumas Franco Bontempi ICOSSAR 2013 11th International Conference on Structural Safety & Reliability June 16-20, Columbia University, New York, NY 11 Experimental model of Actions SpenceS.M.J.,GioffrèM.,GusellaV.,Influenceofhighermodesonthe dynamicre-sponseofirregularandregulartallbuildings,Proc.6th InternationalColloquiumonBluffBodiesAerodynamicsand Applications(BBAAVI),Milano,Italy,July20-24,2008. Boundary Layer Wind Tunnel of the CRIACIV in Prato, Italy 1:500Scalemodel Response time history Time domain structural analyses (Experimental actions) Time domain analyses Experimental forces -30 -20 -10 0 10 20 30 3500 3600 3700 3800 3900 4000 aL, aD [cm/s2 ] t [s]Along Across
  • 12. Damageandlossevaluationintheperformance-basedwindengineering Francesco Petrini Konstantinos Gkoumas Franco Bontempi ICOSSAR 2013 11th International Conference on Structural Safety & Reliability June 16-20, Columbia University, New York, NY 12 ( ) ( ) ( ) )(),( ),,(exp 1 ),(),( 22 212 2 ωχωρ ωξξ ωρω ⋅⋅⋅⋅= =⋅⋅−⋅ ⋅⋅⋅⋅= ∫∫ hSVc dAdAf A hSVchS uumxD A A uumxDDD tt ( ) )(),h(S )(HVc ),h(S)(H),h(S 2 uu 22 mxD DD 2 rr tttt ωχω ωρ ωωω ⋅⋅ ⋅⋅⋅⋅ =⋅=               ⋅+        − ⋅ ⋅ ⋅ = 2 0 2 2 2 0 2 2 0 2 2 41 1 1 )( ω ω ν ω ω ω ω m H rrm p grr σ⋅+= rg Wind action spectra (analytical) Response spectra Peak response Frequency domain response Response Peak Factor Analytical model of the buffeting forces ( ) ( ) ( ) ( )( )ωfexpωSωSωS jkuuuuuu kkjjkj −= ( ) ( ) ( ) ( )( )kj 2 kj 2 z jk zVzV2π zzCω ωf + − = Cross-spectrum 5.0 0 uu2 x u 200 300(x)dxR u 1 L       ⋅== ∫ ∞ z where: ( ) ( ) [ ]5/3 ju ju x2 u uu /zLf10.3021ω/2π /zLfσ6.686 ωS jj ⋅⋅+⋅ ⋅⋅⋅ = ( )( ) 2 fri0 0 u 2 u u1.75)log(zarctan1.16 (n)dnSσ ⋅+⋅−= == ∫ ∞ )z(V2π zω f jm j ⋅ ⋅ = Autospectrum ( ) 3ew(t)2ev(t)1eu(t))j(zmV)jz(t;jV  ⋅+⋅+⋅+= α 10m 10 z V(z)V         ⋅= Solari,G.Piccardo,G.(2001).Probabilistic3-Dturbulencemodelingforgustbuffetingof structures,ProbabilisticEngineeringMechanics,(16),73–86. Turbulentwindvelocityspectra (analytical) Model of the Vortex shedding forces (variable with the angle of attack) 1.E+01 1.E+03 1.E+05 1.E+07 1.E+09 1.E+11 0.000 0.001 0.010 0.100 1.000 PSD n [Hz] Total Forcespectrum Turbulenceforcespectrum Vortexsheddingforcespectrum
  • 13. Damageandlossevaluationintheperformance-basedwindengineering Francesco Petrini Konstantinos Gkoumas Franco Bontempi ICOSSAR 2013 11th International Conference on Structural Safety & Reliability June 16-20, Columbia University, New York, NY 13
  • 14. Damageandlossevaluationintheperformance-basedwindengineering Francesco Petrini Konstantinos Gkoumas Franco Bontempi ICOSSAR 2013 11th International Conference on Structural Safety & Reliability June 16-20, Columbia University, New York, NY 14
  • 15. Damageandlossevaluationintheperformance-basedwindengineering Francesco Petrini Konstantinos Gkoumas Franco Bontempi ICOSSAR 2013 11th International Conference on Structural Safety & Reliability June 16-20, Columbia University, New York, NY 15 Hazard analysis ( ) ( )               θ −⋅      θ ⋅ θ θ =θ θ−θ θ )( 10 1)( 10 10, exp )( )( ),(f 10 kk V c V c V c k V The roughness length z0 is characterized by a lognormal PDF. The mean value μz0 and the standard deviation σz0 of z0 are expressed as function of θ (assuming a slight difference between four sectors, i.e. a mean value of z0 varying between 0.08 m and 0.12 m and a COVz0 equal to 0.30). V10 and θ are described by their joint probability distribution function θ V10 IM = θ V10 z0 Parameters c(θ) and k(θ) are derived from NIST® wind speed database. (Annual occurrence) Models for tall buildings and the assessment of occupant comfort O f(IM|O) f(IM) f(IP|IM,SP) f(IP) f(EDP|IM,IP,SP) G(EDP) f(DM|EDP) G(DM) f(DV|DM) G(DV) Hazard analysis Interaction analysis Structural analysis Damageanalysis Loss analysis IM: intensity measure IP: interaction parameters EDP:engineering demand param. DM:damage measure DV: decision variable Select O, D O:location D:design Environme nt info Decision- making D f(SP|D) f(SP) Structural characterization SP:structural system parameters Structural system info
  • 16. Damageandlossevaluationintheperformance-basedwindengineering ICOSSAR 2013 11th International Conference on Structural Safety & Reliability June 16-20, Columbia University, New York, NY Francesco Petrini Konstantinos Gkoumas Franco Bontempi 16 Models for tall buildings and the assessment of occupant comfort Interaction analysis IP = gr CD CL O f(IM|O) f(IM) f(IP|IM,SP) f(IP) f(EDP|IM,IP,SP) G(EDP) f(DM|EDP) G(DM) f(DV|DM) G(DV) Hazard analysis Interaction analysis Structural analysis Damageanalysis Loss analysis IM: intensity measure IP: interaction parameters EDP:engineering demand param. DM:damage measure DV: decision variable Select O, D O:location D:design Environme nt info Decision- making D f(SP|D) f(SP) Structural characterization SP:structural system parameters Structural system info
  • 17. Damageandlossevaluationintheperformance-basedwindengineering ICOSSAR 2013 11th International Conference on Structural Safety & Reliability June 16-20, Columbia University, New York, NY Francesco Petrini Konstantinos Gkoumas Franco Bontempi 17 Interaction analysis IP = gr CD CL O f(IM|O) f(IM) f(IP|IM,SP) f(IP) f(EDP|IM,IP,SP) G(EDP) f(DM|EDP) G(DM) f(DV|DM) G(DV) Hazard analysis Interaction analysis Structural analysis Damageanalysis Loss analysis IM: intensity measure IP: interaction parameters EDP:engineering demand param. DM:damage measure DV: decision variable Select O, D O:location D:design Environme nt info Decision- making D f(SP|D) f(SP) Structural characterization SP:structural system parameters Structural system info Models for tall buildings and the assessment of occupant comfort 462.2507.1265.0 2 +ξ+ξ−=µ rg ( )            ≤⋅η >⋅η ⋅η+ − ⋅η =σ + + + + 122if650 122if 46 213 45 2 21 .T. .T . )Tln( . )Tln( . windr,e windr,e windr,e windr,e gr ( )        <≤ η <≤ η− =η + + + 1690if 690100if 380631 450 r r r r . r r,e q. .q. .q. r r r σ σ =+η  (Obtained from time-domain analyses) The peak response factor gr is characterized by a Gaussian distribution function rgµ rgµ Vanmarcke (1975) The aerodynamic coefficients CD and CL are characterized by Gaussian distributions. Mean values are expressed as a function of θ, varying from those corresponding to a square shape (for θ = 0) to those corresponding to a rhomboidal shape (for θ = 45); the coefficient of variations of CL and CD are taken equal to 0.07 and 0.05. μCD μCL D Cµ μCD μCL L Cµ rrm p grr σ⋅+=
  • 18. Damageandlossevaluationintheperformance-basedwindengineering ICOSSAR 2013 11th International Conference on Structural Safety & Reliability June 16-20, Columbia University, New York, NY Francesco Petrini Konstantinos Gkoumas Franco Bontempi 18 G(EDP) = ∫…∫ G(EDP|IM, IP, SP) · f(IP|IM,SP) · f(IM) · f(SP) · dIP · dIM · dSP Monte Carlo sim (5000 runs) aL p Reduced formulation O f(IM|O) f(IM) f(IP|IM,SP) f(IP) f(EDP|IM,IP,SP) G(EDP) f(DM|EDP) G(DM) f(DV|DM) G(DV) Hazard analysis Interaction analysis Structural analysis Damageanalysis Loss analysis IM: intensity measure IP: interaction parameters EDP:engineering demand param. DM:damage measure DV: decision variable Select O, D O:location D:design Environme nt info Decision- making D f(SP|D) f(SP) Structural characterization SP:structural system parameters Structural system info Structural analysis Models for tall buildings and the assessment of occupant comfort EDP= aL p (peak acceleration in the across wind direction)
  • 19. Damageandlossevaluationintheperformance-basedwindengineering ICOSSAR 2013 11th International Conference on Structural Safety & Reliability June 16-20, Columbia University, New York, NY Francesco Petrini Konstantinos Gkoumas Franco Bontempi 19 Risk Curve. EDP= aL p = peak acceleration in the across wind direction The annual probabilities of exceeding the human perception thresholds for apartment and office building vibrations are 0.0576 and 0.0148 respectively. aL p G(aL p) aL p [mm/s2] Ciampoli, M. & Petrini, F., 2012, Performance-Based Aeolian Risk assessment and reduction for tall buildings, Probabilistic Engineering Mechanics, 28 (75–84). Models for tall buildings and the assessment of occupant comfort
  • 20. Damageandlossevaluationintheperformance-basedwindengineering Francesco Petrini Konstantinos Gkoumas Franco Bontempi ICOSSAR 2013 11th International Conference on Structural Safety & Reliability June 16-20, Columbia University, New York, NY 20 TMD Design Parameters γ = mTMD/mtot β = ωTMD/ ω1 ξ* = damping of TMD aL p[mm/s2] n [Hz] β = ξ* = β = ξ* = β = ξ* = β = ξ* = β = ξ* = β = ξ* = β = ξ* = G(aL p) aL p [mm/s2] Parametric analysis Effects on risk γ = 1/150 Aeolian Risk reduction using TMD Models for tall buildings and the assessment of occupant comfort
  • 21. Damageandlossevaluationintheperformance-basedwindengineering Francesco Petrini Konstantinos Gkoumas Franco Bontempi ICOSSAR 2013 11th International Conference on Structural Safety & Reliability June 16-20, Columbia University, New York, NY Presentation outline 21 • Overview of the Performance Based Wind Engineering (PBWE) procedure. • Models for tall buildings and the assessment of occupant comfort • Application on a high-rise building • Assessment of the annual probabilities of exceeding the human perception thresholds • Vibration and occupant comfort issues • Damage analysis • Loss analysis • Conclusions and indications for further research
  • 22. Damageandlossevaluationintheperformance-basedwindengineering Francesco Petrini Konstantinos Gkoumas Franco Bontempi ICOSSAR 2013 11th International Conference on Structural Safety & Reliability June 16-20, Columbia University, New York, NY 22 Vibration and occupant comfort issues Consequences of wind induced vibrations in high rise buildings -Fear and alarm -Discomfort -Reduced task concentration -Dizziness, migraine and nausea Kwok, K.C.S., Hitchcock, P.A. & Burton, M.D., 2009, Perception of vibration and occupant comfort in wind- excited tall buildings, Journal of Wind Engineering and Industrial Aerodynamics, 97(7-8), 368-380 Wind induced vibration −Damage analysis −Loss Analysis Studies on human perception of vibration and tolerance thresholds -Field experiments and studies in wind-excited buildings -Motion simulator tests -Field experiments conducted in artificially excited buildings Mitigation measures -Modifications to the structural system and/or the aerodynamic shape -Installation of vibration control devices - Negative impressions/ publicity - Eventually they can be an attraction O f(IM|O) f(IM) f(IP|IM,SP) f(IP) f(EDP|IM,IP,SP) G(EDP) f(DM|EDP) G(DM) f(DV|DM) G(DV) Hazard analysis Interaction analysis Structural analysis Damageanalysis Loss analysis IM: intensity measure IP: interaction parameters EDP:engineering demand param. DM:damage measure DV: decision variable Select O, D O:location D:design Environme nt info Decision- making D f(SP|D) f(SP) Structural characterization SP:structural system parameters Structural system info
  • 23. Damageandlossevaluationintheperformance-basedwindengineering Francesco Petrini Konstantinos Gkoumas Franco Bontempi ICOSSAR 2013 11th International Conference on Structural Safety & Reliability June 16-20, Columbia University, New York, NY 23 O f(IM|O) f(IM) f(IP|IM,SP) f(IP) f(EDP|IM,IP,SP) G(EDP) f(DM|EDP) G(DM) f(DV|DM) G(DV) Hazard analysis Interaction analysis Structural analysis Damageanalysis Loss analysis IM: intensity measure IP: interaction parameters EDP:engineering demand param. DM:damage measure DV: decision variable Select O, D O:location D:design Environme nt info Decision- making D f(SP|D) f(SP) Structural characterization SP:structural system parameters Structural system info Damage analysis Probabilistic damage analysis: assign a probability distribution to the perception thresholds Procedure: obtain a pdf that assigns at each vibration level a percentage of persons that experience discomfort Kwok, K.C.S., Hitchcock, P.A., 2008. Occupant comfort test using a tall building motion simulator. In: Proceedings of Fourth International Conference on Advances in Wind and Structures, Jeju, Korea, 28–30 May. Vibration and occupant comfort issues
  • 24. Damageandlossevaluationintheperformance-basedwindengineering Francesco Petrini Konstantinos Gkoumas Franco Bontempi ICOSSAR 2013 11th International Conference on Structural Safety & Reliability June 16-20, Columbia University, New York, NY 24 O f(IM|O) f(IM) f(IP|IM,SP) f(IP) f(EDP|IM,IP,SP) G(EDP) f(DM|EDP) G(DM) f(DV|DM) G(DV) Hazard analysis Interaction analysis Structural analysis Damageanalysis Loss analysis IM: intensity measure IP: interaction parameters EDP:engineering demand param. DM:damage measure DV: decision variable Select O, D O:location D:design Environme nt info Decision- making D f(SP|D) f(SP) Structural characterization SP:structural system parameters Structural system info Loss analysis Probabilistic loss analysis: assign a cost probability for different damages Issues: the uncertainty in the cost relies on various factors (e.g. market trend) DM Non structural elements Structural elements Comfort Safety Serviceability Safety Serviceability DV Direct Indirect (As a direct damage to the structure) (As a consequence of the damaged structure) IM SP IP EDP DM DV - Direct VS indirect cost that are not possible to account for in monetary terms. - Initial VS life-cycle cost. In particular regarding the evaluation of retrofitting strategies that could improve the serviceability performance (e.g. comfort), by means of vibration mitigation. Vibration and occupant comfort issues
  • 25. Damageandlossevaluationintheperformance-basedwindengineering Francesco Petrini Konstantinos Gkoumas Franco Bontempi ICOSSAR 2013 11th International Conference on Structural Safety & Reliability June 16-20, Columbia University, New York, NY 25 Vibration and occupant comfort issues Loss analysis for comfort – concept (1) Limit states implying damages in structural or non- structural components •Direct damages (tangible): costs necessary for retrofitting the structures •Direct damages (non tangible): costs due to service interruption for restoration Uncertainties are on the unitary costs
  • 26. Damageandlossevaluationintheperformance-basedwindengineering Francesco Petrini Konstantinos Gkoumas Franco Bontempi ICOSSAR 2013 11th International Conference on Structural Safety & Reliability June 16-20, Columbia University, New York, NY 26 Vibration and occupant comfort issues Loss analysis for comfort – concept (2) Limit states implying perception of low structural quality (e.g. discomfort) but not implying damages Our proposal Cost necessary for improving the quality to an acceptable level, e.g. a.Cost related with a change of the activity in the structure (for example, change from residential to office) b.Cost of a TMD installation • Direct losses: DL= ATMD * Ac + TMD installation cost • Direct losses due to the activity interruption for retrofitting the TMD’s • Account for possible future gains due to attraction factor
  • 27. Damageandlossevaluationintheperformance-basedwindengineering Francesco Petrini Konstantinos Gkoumas Franco Bontempi ICOSSAR 2013 11th International Conference on Structural Safety & Reliability June 16-20, Columbia University, New York, NY 27 Vibration and occupant comfort issues Loss analysis for comfort – concept (3) INDIRECT DAMAGES Depending o whether we consider a new or an existing structure • Structural design before the construction • Existing structure no indirect costs costs due to service interruption
  • 28. Damageandlossevaluationintheperformance-basedwindengineering Francesco Petrini Konstantinos Gkoumas Franco Bontempi ICOSSAR 2013 11th International Conference on Structural Safety & Reliability June 16-20, Columbia University, New York, NY Wind occurrence 28 Vibration and occupant comfort issues Lifecycle cost analysis O f(IM|O) f(IM) f(IP|IM,SP) f(IP) f(EDP|IM,IP,SP) G(EDP) f(DM|EDP) G(DM) f(DV|DM) G(DV) Hazard analysis Interaction analysis Structural analysis Damageanalysis Loss analysis IM: intensity measure IP: interaction parameters EDP:engineering demand param. DM:damage measure DV: decision variable Select O, D O:location D:design Environme nt info Decision- making D f(SP|D) f(SP) Structural characterization SP:structural system parameters Structural system info Loss analysis Economic investment Economic value Life cycle assessment MC simulation With TMD With TMD retrofitted Economic losses Without TMD
  • 29. Damageandlossevaluationintheperformance-basedwindengineering Francesco Petrini Konstantinos Gkoumas Franco Bontempi ICOSSAR 2013 11th International Conference on Structural Safety & Reliability June 16-20, Columbia University, New York, NY Presentation outline 29 • Overview of the Performance Based Wind Engineering (PBWE) procedure. • Models for tall buildings and the assessment of occupant comfort • Application on a high-rise building • Assessment of the annual probabilities of exceeding the human perception thresholds • Vibration and occupant comfort issues • Damage analysis • Loss analysis • Conclusions and indications for further research
  • 30. Damageandlossevaluationintheperformance-basedwindengineering Francesco Petrini Konstantinos Gkoumas Franco Bontempi ICOSSAR 2013 11th International Conference on Structural Safety & Reliability June 16-20, Columbia University, New York, NY • Occupant comfort is an important issue in the design of tall buildings. Due to the stochastic nature of wind action and wind-induced vibration, deterministic analyses are inadequate for carrying out a comfort assessment. • The insertion of passive control devices can reduce the vibration perception of building occupants. But the effectiveness of the device must be evaluated in terms of cost (by computing the probability of exceeding acceptable values of an appropriate DV). • Damage and loss analysis of wind-induced vibrations will be based on corroborated literature studies that provide statistics on the occupant comfort. 30 Conclusions and indications for further research
  • 31. Damageandlossevaluationintheperformance-basedwindengineering Francesco Petrini Konstantinos Gkoumas Franco Bontempi ICOSSAR 2013 11th International Conference on Structural Safety & Reliability June 16-20, Columbia University, New York, NY Thank you for your attention 31 Francesco Petrini, Konstantinos Gkoumas, Franco Bontempi Sapienza - University of Rome, Dipartimento di Ingegneria Strutturale e Geotecnica Acknowledgements: Prof. Marcello Ciampoli, Prof. Giuliano Augusti This study is partially supported by StroNGER s.r.l. from the fund “FILAS - POR FESR LAZIO 2007/2013 - Support for the research spin-off”.
  • 32. Damageandlossevaluationintheperformance-basedwindengineering Francesco Petrini Konstantinos Gkoumas Franco Bontempi ICOSSAR 2013 11th International Conference on Structural Safety & Reliability June 16-20, Columbia University, New York, NY Additional slides 32 Francesco Petrini, Konstantinos Gkoumas, Franco Bontempi Sapienza - University of Rome, Dipartimento di Ingegneria Strutturale e Geotecnica
  • 33. Damageandlossevaluationintheperformance-basedwindengineering ICOSSAR 2013 11th International Conference on Structural Safety & Reliability June 16-20, Columbia University, New York, NY Francesco Petrini Konstantinos Gkoumas Franco Bontempi 33 Models for tall buildings and the assessment of occupant comfort Interaction analysis IP = gr CD CL O f(IM|O) f(IM) f(IP|IM,SP) f(IP) f(EDP|IM,IP,SP) G(EDP) f(DM|EDP) G(DM) f(DV|DM) G(DV) Hazard analysis Interaction analysis Structural analysis Damageanalysis Loss analysis IM: intensity measure IP: interaction parameters EDP:engineering demand param. DM:damage measure DV: decision variable Select O, D O:location D:design Environme nt info Decision- making D f(SP|D) f(SP) Structural characterization SP:structural system parameters Structural system info rrm p grr σ⋅+= )T(log . )T(log winde windegr ⋅η +⋅η=µ 2 5770 2 Davenport (1983) Reliable results for a broad range of processes
  • 34. Damageandlossevaluationintheperformance-basedwindengineering ICOSSAR 2013 11th International Conference on Structural Safety & Reliability June 16-20, Columbia University, New York, NY Francesco Petrini Konstantinos Gkoumas Franco Bontempi 34 Interaction analysis IP = gr CD CL O f(IM|O) f(IM) f(IP|IM,SP) f(IP) f(EDP|IM,IP,SP) G(EDP) f(DM|EDP) G(DM) f(DV|DM) G(DV) Hazard analysis Interaction analysis Structural analysis Damageanalysis Loss analysis IM: intensity measure IP: interaction parameters EDP:engineering demand param. DM:damage measure DV: decision variable Select O, D O:location D:design Environme nt info Decision- making D f(SP|D) f(SP) Structural characterization SP:structural system parameters Structural system info rrm p grr σ⋅+= )T(log . )T(log winde windegr ⋅η +⋅η=µ 2 5770 2 Davenport (1983) Reliable results for a broad range of processes - In the Davenport formulation the peak factor does not depend on the bandwidth of the stochastic process. - Alternative formulations consider this dependence. ( )            ≤⋅η >⋅η ⋅η+ − ⋅η =σ + + + + 122if650 122if 46 213 45 2 21 .T. .T . )Tln( . )Tln( . windr,e windr,e windr,e windr,e gr )ln(2 577.0 )ln(2 , , windre windreg T Tr ⋅η +⋅η=µ + + Vanmarcke (1975) Models for tall buildings and the assessment of occupant comfort
  • 35. Damageandlossevaluationintheperformance-basedwindengineering ICOSSAR 2013 11th International Conference on Structural Safety & Reliability June 16-20, Columbia University, New York, NY Francesco Petrini Konstantinos Gkoumas Franco Bontempi 35 Interaction analysis IP = gr CD CL O f(IM|O) f(IM) f(IP|IM,SP) f(IP) f(EDP|IM,IP,SP) G(EDP) f(DM|EDP) G(DM) f(DV|DM) G(DV) Hazard analysis Interaction analysis Structural analysis Damageanalysis Loss analysis IM: intensity measure IP: interaction parameters EDP:engineering demand param. DM:damage measure DV: decision variable Select O, D O:location D:design Environme nt info Decision- making D f(SP|D) f(SP) Structural characterization SP:structural system parameters Structural system info rrm p grr σ⋅+= )T(log . )T(log winde windegr ⋅η +⋅η=µ 2 5770 2 Davenport (1983) Reliable results for a broad range of processes - In the Davenport formulation the peak factor does not depend on the bandwidth of the stochastic process. - Alternative formulations consider this dependence. ( )            ≤⋅η >⋅η ⋅η+ − ⋅η =σ + + + + 122if650 122if 46 213 45 2 21 .T. .T . )Tln( . )Tln( . windr,e windr,e windr,e windr,e gr )ln(2 577.0 )ln(2 , , windre windreg T Tr ⋅η +⋅η=µ + + Vanmarcke (1975) Models for tall buildings and the assessment of occupant comfort rR1 2 rB 2 rR2 2 n*Srr n (Hz) rR1 2 rB 2 rR2 2 n*Srr n (Hz) Background (broad band process) Resonant (narrow band process) Lightly damped buildings Highly damped buildings
  • 36. Damageandlossevaluationintheperformance-basedwindengineering ICOSSAR 2013 11th International Conference on Structural Safety & Reliability June 16-20, Columbia University, New York, NY Francesco Petrini Konstantinos Gkoumas Franco Bontempi 36 Interaction analysis IP = gr CD CL O f(IM|O) f(IM) f(IP|IM,SP) f(IP) f(EDP|IM,IP,SP) G(EDP) f(DM|EDP) G(DM) f(DV|DM) G(DV) Hazard analysis Interaction analysis Structural analysis Damageanalysis Loss analysis IM: intensity measure IP: interaction parameters EDP:engineering demand param. DM:damage measure DV: decision variable Select O, D O:location D:design Environme nt info Decision- making D f(SP|D) f(SP) Structural characterization SP:structural system parameters Structural system info Models for tall buildings and the assessment of occupant comfort rR1 2 rB 2 rR2 2 n*Srr n (Hz) rR1 2 rB 2 rR2 2 n*Srr n (Hz) Background (broad band process) Resonant (narrow band process) Lightly damped buildings Highly damped buildings Therefore, the bandwidth parameter, and also the response peak factor must depend on the structural damping
  • 37. Damageandlossevaluationintheperformance-basedwindengineering ICOSSAR 2013 11th International Conference on Structural Safety & Reliability June 16-20, Columbia University, New York, NY Francesco Petrini Konstantinos Gkoumas Franco Bontempi 37 Interaction analysis IP = gr CD CL O f(IM|O) f(IM) f(IP|IM,SP) f(IP) f(EDP|IM,IP,SP) G(EDP) f(DM|EDP) G(DM) f(DV|DM) G(DV) Hazard analysis Interaction analysis Structural analysis Damageanalysis Loss analysis IM: intensity measure IP: interaction parameters EDP:engineering demand param. DM:damage measure DV: decision variable Select O, D O:location D:design Environme nt info Decision- making D f(SP|D) f(SP) Structural characterization SP:structural system parameters Structural system info Models for tall buildings and the assessment of occupant comfort 462.2507.1265.0 2 +ξ+ξ−=µ rg ( )            ≤⋅η >⋅η ⋅η+ − ⋅η =σ + + + + 122if650 122if 46 213 45 2 21 .T. .T . )Tln( . )Tln( . windr,e windr,e windr,e windr,e gr ( )        <≤ η <≤ η− =η + + + 1690if 690100if 380631 450 r r r r . r r,e q. .q. .q. r r r σ σ =+η  (Obtained from time-domain analyses) The peak response factor gr is characterized by a Gaussian distribution function rgµ rgµ Vanmarcke (1975)

Notas del editor

  1. - First, I will provide an overview of the PBWE procedure, as it has been defined in several studies and journal papers by my co-author Dr. Petrini In the second part of my presentation I will briefly discuss models for the occupant comfort assessment in high-rise buildings Finally, I will introduce some considerations for the extension of the application of the PBWE framework to the Damage and Loss analysis from vibration discomfort in high-rise buildings. This is a work in process by me with my co-authors.
  2. The structural risk is conventionally measured by the probability of exceeding a relevant value of the corresponding DV . A simplification is introduced: If the performance is expressed by the fulfillment of a limit state , and the limit state condition in terms of an EDP , the whole procedure can be simplified assuming DV = EDP .
  3. The assessment of the serviceability of high-rise buildings under wind actions is usually carried out considering the peak values of the horizontal displacements, some measure of the acceleration . Horizontal displacements shall be limited to prevent loss of integrity to cladding and partitions ; the acceleration measure and the building natural frequencies are essential to determine the level of perception of motion , and in general the habitability issue under building vibrations. the occupant motion perception can be related to body sensation and/or visual cues; in general, the perception related to body sensation is dominant in case of low frequency vibrations (less than 2 Hz) , while the perception related to visual cues is dominant in case of relatively high frequency vibrations (greater than 2 Hz). In the right figure from Tamura ed al, comfort curves are shown (ISO and Japanese) Percentage of people that experience discomfort, confronted with literature (at any given frequency corresponds a perception threshold) Figura Tamura, curve di comfort, percezione da giaponesi e ISO Fa vedere I risultati (percentualle di persone che sentono discomfort), confrontate con letteratura, a seconda della frequenza ce soglia di percezione
  4. The Italian code adopts the Japanese curves. What you do is enter the graph with the first natural frequency of the structure and see the acceptance rate of the accelerations.
  5. The examined high-rise steel building has a square plan (side length: B = 50 m) and a total height of 305 m; the number of floors is 74. The main structural system is composed by a central core (a 3D frame with 16 columns) and a 3D frame on the external perimeter (28 columns). The two substructures are connected at three levels (at the height of 100 m, 200 m and 300 m); the stiffening systems are extended for 3 or 2 floors . The structural analyses have been carried out on a FE model of the building implemented in ANSYS V11; the FE model is composed by 7592 BEAM4 elements and 2680 LINK8 elements Linear dynamic analyses , assuming rigid diaphragms
  6. Forse togliere The time series of the floor forces have been obtained by wind tunnel tests on a 1:500 scale rigid model (Fig. left ), that have been carried out at the Boundary Layer Wind Tunnel of the CRIACIV (Inter-university Research Centre on Buildings Aerodynamics and Wind Engineering) in Prato, Italy. One the other hand, in this study well consolidated analytical models has been adopted in order to carry out structural analyses in frequency domain Left: Floor forces in the along and across wind direction, evaluated at the top of the building, by scaling the experimental measures Right: Acceleration at the top of the building for a mean wind velocity at the top of the building for a V=35 m/sec (DESIGN RETURN PERIOD OF 1 YEAR according to the ITALIAN CODE/CNR 2008) – V0=20.25 m/sec
  7. In this slide you can see the analytical model of the buffeting forces and the Vortex Shedding model . In particular, the VS effect is strong when the wind is orthogonal to the building side. The VS energy is higher. La frequenza di VS ha piu’ energia delle altre Rosso: turbolenza normale Nero VS ipotizzato tarato Blu: totle sovraposizione dei due For the examined building, time series of the floor forces were available , as derived by experimental tests (Spence et al 2008a, 2008b). However, in order to carry out probabilistic calculations, in the linear range it is preferable (at least, to reduce the computational burden) to analyze the structural response in the frequency domain , by adopting the previously introduced analytical model of the wind action.
  8. Blu: torque Red: forces in the x and y axis
  9. Displacements
  10. The analysis steps are as follows: First hazard analysis: The intensity measure vector contains the following random elements V10 (10 minute velocity) Theta (the direction of the wind velocity) Z0 (roughness length) Joint Probability Density Function of the MEAN VELOCITY Finally, all previously introduced parameters has been considered random. Here the structural response in terms of across wind peak accelerations is still represented as function of the V10. I passi dell’analisi Distribuzione V10 di cui parametri dipendono da theta Dal database di NIST, Dal mare coef rug basso Z0 dipende da theta
  11. For the interaction analysis vector, 3 parameters are chosen The peak response factor And two aerodynamic coefficients
  12. The response parameter is given as a sum of the average value plus the peak response factor times the variance
  13. Riassunto Edp accelerazione di picco across wind
  14. Figure Complementary cumulative function of the EDP
  15. Metto TMD tre parametri beta rapporto di frequenze Analisi parametrica variando I 3 rapporti per scegliere Risultati per gamma fissato, alvariare di beta… risposte massime Basso a destra come cambia la curva di rischio TAPEI 101 In order to optimize the structural response, the insertion of a TMD can be considered. Here the TMD has been inserted at the top of the building and the structural response is represented in terms of occupant comfort. The TMD produces two main effects: the variation of the structural natural frequency, and a reduction in maximum the response. Here the maximum across wind acceleration obtained for different sets of TMD design parameters are shown and compared with the comfort thresholds. Each figure represents a different mass ratio “gamma”, different markers represent different natural frequency ratios “beta” and different points with the same marker represent different damping ratios “csi”. The maximum effect is obtained by “gamma” equal to 1/150, “Beta” equal to 1 and “csi” equal to 10%
  16. In this part I will provide some considerations for the application of the PBWE framework to the Damage and Loss analysis due to the occupant discomfort in high-rise buildings
  17. So far, the research focused on the Hazard, Interaction and Structural analysis for the occupant comfort. In order to apply the PBWE framework to the damage and loss analysis from vibration comfort, some additional considerations are necessary. In this slide are reassumed the major issues (from a paper by Kwok et al) Mitigation measures in particular are proposed in literature in the form of among else the installation of vibration control devices
  18. Left Distribution of comfort ratings from occupant comfort tests conducted in motion simulator Right Comparison of occupant comfort serviceability criteria for 1 year return period wind storm . The uncertainty can be modeled considering the different density of the lines at different frequencies.
  19. Direct costs were in the past considered the tangible costs. Now also business/service interruption should be considered. Indirect costs should consider indirect consequences (in the supply chain) Need to focus on a case-by-case basis.
  20. Questo si fa di solito ma non si puo fare in questo caso For limit states that damage at physical components doesn’t occur, as fo example discomfort in building occupants, the big issue is how to calculate the losses
  21. Se la qualita’ non e’ accetabile per residenziali ma lo e’ per uffici Se non e’ accetabile neanche per uffici o se non voglio cambiare la destinazione d’uso, installo TMD Indirect
  22. So far, the research focused on the Hazard, Interaction and Structural analysis for the occupant comfort. In order to apply the PBWE framework to the damage and loss analysis from vibration comfort, some additional considerations are necessary. In this slide are reassumed the major issues (from a paper by Kwok et al) Mitigation measures in particular are proposed in literature in the form of among else the installation of vibration control devices For direct cost, the surface of the floor thatare occupied by the TMD should be considered. Direct: differenza di superficie In the case of retrofitting: direct losses are in terms of m2 times m2 cost + cost of instalation perdite dirette differenza di metri quadri e costo di istalazione ( Sismica: perdita dirette sono calcolate con il costo degli elementi struturali e non rotti Vento: se non c-e rottura di niente? Faber e Ciampoli: LQI Concetto: non riusciamo a calcolare le perdite dirette usualmente si basano su un danno fisico… Quinon c’e nessun danno fisico. Se ci sono come si fa a calcolare? Giorni di chiusura per installare il TMD o per attuare la soluzione del programma, costo del TMD: associ il costo della cura. Della soluzione piu economca possibile (e.g. liquid mass damper). Io calcolo le perdite dirette come spesa per togliere quel effetto.
  23. So far, the research focused on the Hazard, Interaction and Structural analysis for the occupant comfort. In order to apply the PBWE framework to the damage and loss analysis from vibration comfort, some additional considerations are necessary. In this slide are reassumed the major issues (from a paper by Kwok et al) Mitigation measures in particular are proposed in literature in the form of among else the installation of vibration control devices For direct cost, the surface of the floor thatare occupied by the TMD should be considered. Direct: differenza di superficie In the case of retrofitting: direct losses are in terms of m2 times m2 cost + cost of instalation perdite dirette differenza di metri quadri e costo di istalazione ( Sismica: perdita dirette sono calcolate con il costo degli elementi struturali e non rotti Vento: se non c-e rottura di niente? Faber e Ciampoli: LQI Concetto: non riusciamo a calcolare le perdite dirette usualmente si basano su un danno fisico… Quinon c’e nessun danno fisico. Se ci sono come si fa a calcolare? Giorni di chiusura per installare il TMD o per attuare la soluzione del programma, costo del TMD: associ il costo della cura. Della soluzione piu economca possibile (e.g. liquid mass damper). Io calcolo le perdite dirette come spesa per togliere quel effetto.
  24. Media datta da Davenport. ‘E affidabile solo per processi stocastici a banda larga