SlideShare una empresa de Scribd logo
1 de 26
Descargar para leer sin conexión
DNS DDoS Analysis and Defense
2013. Sep. Sukbum Hong (antihong@gmail.com)
Please let me know, if there is any error, question, or comment.
Page 1
Contents • DNS Risks
• DNS DDoS Attack History
• DNS DDoS Attack Types and Defense
(1) Bandwidth Consuming attack
(2) Massive A type Query attack
(3) Massive other query type attack
(4) Amplification attack
open-resolver project
(5) non-existant(NXDOMAIN) query attack
(6) RRL defense
• Conclusion
Page 2
What’s happen if DNS was attacked? Why Risk?
• Every service(web,e-mail,intranet) will be shutdown if DNS is down
• All domains in DNS server will be impacted
-. Generally One DNS server services several thousands of domains together
• Hard to change the IP address if get attacked
-. generally, DNS TTL is 1Day or 2Days
-. need to change the NAMEHOST(whois) as well as DNS A record
• Hard to defense attack as DNS packet is simple
-. impossible to distinguish the legitimate traffic from illegitimate traffic
• Hard to defense attack as DNS packet is UDP
-. No protocol based ACL
• Hard to block the source IP using rate-limit based
-. As attacker can spoof the Source IP address
Page 3
“Operation Global Blackout” on 31st March :: 2012/03
http://pastebin.com/NKbnh8q8
The principle is simple; a flaw that uses forged UDP packets is to be
used to trigger a rush of DNS queries all redirected and reflected to
those 13 IPs. The flaw is as follow; since the UDP protocol allows it,
we can change the source IP of the sender to our target, thus spoofing
the source of the DNS query.
The DNS server will then respond to that query by sending the answer to the
spoofed IP. Since the answer is always bigger than the query, the
DNS answers will then flood the target ip. It is called an amplified
because we can use small packets to generate large traffic. It is called
reflective because we will not send the queries to the root name servers,
instead, we will use a list of known vulnerable DNS servers which will attack the
root servers for us.
Page 4
GoDaddy Outage Takes Down Millions of customer Sites :: 2012/09/10
http://techcrunch.com/2012/09/10/godaddy-outage-takes-down-millions-of-sites/
http://www.wired.com/wiredenterprise/2012/09/godaddy-moves-to-verisign/
Amid Outage, GoDaddy Moves DNS
to Competitor VeriSign
Page 5
Knocked Spamhaus offline with 120G or 300Gbps attack :: 2013/03/19
http://blog.cloudflare.com/the-ddos-that-knocked-spamhaus-offline-and-ho
Officially 120Gbps, Unofficially 300Gbps attack
Page 6
300Gbps almost broke the Internet?
http://blog.cloudflare.com/the-ddos-that-almost-broke-the-internet
there's an online attack underway.
The biggest in history??
Enough to slow down the internet……………….???
http://gizmodo.com/5992652/that-internet-war-apocalypse-is-a-lie
That Internet War Apocalypse Is a Lie
Just to put it in perspective the traffic estimates for the DDOS attack were as high as 300 Gbps at the target. That would easily
overwhelm the average hosting center, but not a core component of the Internet. For example, DECIX, the German Internet
exchange in Frankfurt, regularly handles 2.5 Tbps at peak on any given day:
http://www.de-cix.net/about/statistics/
While it may have severely affected the websites it was
targeted at, the global Internet as a whole
was not impacted by this localized incident.
Page 7
NetworkSolutions outage because of DNS DDOS attack
http://blogs.cisco.com/security/hijacking-of-dns-records-from-network-solutions/
Over 5,000 domains including linkedin.com in NSI DNS customers were changed with Unknown DNS.
ns1624.ztomy.com(204.11.56.20) . It was in the process to move to Prolexic to defense the DDoS attack
July 16, 2013
http://blogs.cisco.com/security/network-solutions-customer-site-compromises-and-ddos/
Linkedin.com homepage was redirected to DomainSale Homepage
$ traceroute -q 1 ns1624.ztomy.com.
.......
15 209.200.136.34 (209.200.136.34) 118.578 ms
16 unknown.prolexic.com (72.52.18.126) 239.717 ms
17 204.11.56.20 (204.11.56.20) 235.350 ms
July 16, 2013
June 20, 2013
Service outage for 24 hours because of ddos attack
Page 8
Hosting Service outage :: June
:: Hosting Provider in Sydney
http://www.tppwholesale.com.au/support/service-alerts/more-information-recent-ddos-attacks
we took the drastic step of rate limiting DNS queries using the Arbor Pravail equipment to stem the flow of the attack.
but due to the aggressive filtering nature there will be some false positives and some customers who will be denied services despite being legitimate
users. This kind of rate limiting is not ideal or a long term solution and will result in some further inconvenience. Our long term strategy is to further
cluster, load balance and segregate name services to provide greatly enhanced scale, fault tolerance and capacity. This had not been required prior to
this attack.
:: DNS hosting provider based in Toronto
It was difficult to differentiate the real traffic from the DDoS traffic
“This is the ‘nightmare scenario’ for DNS providers, because it is not against a specific domain which we can isolate and mitigate, but it’s against
easyDNS itself”
http://blog.easydns.org/2013/06/04/post-mortem-of-the-june-3-4th-ddos/
We can recommend DNSMadeEasy, DNSimple or No-Ip, then there's Route53 (our users had good results with easyRoute53 overnight). - See more at:
http://blog.easydns.org/2013/06/04/post-mortem-of-the-june-3-4th-ddos/#sthash.wRlXg4iO.dpuf
:: DNS hosting Provider in Florida
“The attacker essentially flooded us with ‘ANY’ queries for a variety of domains managed by our DNS service, with the intention of amplifying these
small queries into significantly larger responses aimed at a specific network.”
Page 9
.CN root DNS outage
8/25(Sun) :: 00:00 DDoS attack to .CN root DNS server
02:00 Mitigated the attack
04:00 doos attack again
01:00 service recovered
No information about Attack size, how to attack,etc.
cn. 172800 IN NS a.dns.cn.
cn. 172800 IN NS b.dns.cn.
cn. 172800 IN NS c.dns.cn.
cn. 172800 IN NS d.dns.cn.
cn. 172800 IN NS e.dns.cn.
cn. 172800 IN NS ns.cernet.net.
google.cn. 86400 IN NS ns2.google.com.
google.cn. 86400 IN NS ns3.google.com.
google.cn. 86400 IN NS ns1.google.com.
google.cn. 86400 IN NS ns4.google.com.
;; Received 109 bytes from 203.119.27.1#53(c.dns.cn) in 75 ms
Around ~30% .CN traffic was downed even long TTL cache.
TTL 1 hour 1D(24h)
1m 1680(1.7%) 70
2m 3360 140
30m 50,000(50%) 2100
1h 100,000(100%) 4200(4.2%)
How much LDNS can lose the DNS cache?
Assumption : # of LDNS is 0.1M
Page 10
DNS DDoS Attack Types and Defense :: Bandwidth Consuming attack
Packet size based Filtering at Network Level?
30Gbps
20Gbps
1Gbps based network
Solution1 :: PBR  impossible as eating too much CPU
Router(config)# access-list 111 remark "DNS PBR“
Router(config)# access-list 111 permit udp any host dns.ip.addr eq 53
Router(config)# route-map dnsddos permit 10
Router(config-route-map)# match ip address 111
Router(config-route-map)# match length 512 1500
Router(config-route-map)# set interface Null 0
Router(config-if)# ip route-cache policy
Router(config-if)# ip policy route-map dnsddos
route 173.X.X.X/32-DNS-DROP {
match {
destination 173.X.X.X/32;
port 53;
packet-length [ 99971 99985 ];
} then discard;}
http://blog.cloudflare.com/todays-outage-post-mortem-82515
-. Direct attack from Zombies
-. Normal traffic should be UDP not TCP
TCP :: Zone transfer, when response over 512byte
-. Defense :: distributing the DNS infra
-. Defense :: Packet size based filtering if within the Infra size
-. Defense :: efficient by filtering the fragmented packet in upstream ISP
Page 11
DNS DDoS Attack Types and Defense :: Massive A type Query Attack
1.2.3.4.59873 > 10.10.1.2.53: 53495+ A? www.example.com. (44)
2.3.4.5.46922 > 10.10.1.2.53: 20009+ A? www.example.com. (44)
3.4.5.6.59873 > 10.10.1.2.53: 33495+ A? www.example.com. (44)
4.5.6.7.46922 > 10.10.1.2.53: 40009+ A? www.example.com. (44)
............................?
-. A Kind of QPS attack
-. Direct attack from Zombies
-. If source ip is not spoofed, we can filter rate-limited based policy
-. How to filter ?
If source ip is randomly changed?
and if the packet is exactly same with normal query traffic?
Victim :: 1.1.1.1
www.example.com IP Address?
How to differentiate attack or normal query?
Page 12
DNS DDoS Attack Types and Defense :: other Query type Attack
$ dig anonsc.com any
anonsc.com. IN A 123.45.67.59
anonsc.com. IN A 123.45.67.60
anonsc.com. IN A 123.45.67.61
anonsc.com. IN A 123.45.67.62
……………….
;; MSG SIZE rcvd: 3271
Ex: Direct attack case
Ex: Amplification attack case
Page 13
tcpdump example when ANY query
$ tcpdump -X port 53 -n (or tshark port 53 –n –x)
19:38:14.172255 IP 114.xx.xx.xx.60249 > 61.110.xxx.xxx.domain: 22765+ ANY? cdnetworks.co.kr. (34)
0x0000: 4500 003e 0000 4000 3311 9310 726f 3e14 E..>..@.3...ro>.
0x0010: 3d6e c6ad eb59 0035 002a fb7f 58ed 0100 =n...Y.5.*..X...
0x0020: 0001 0000 0000 0000 0a63 646e 6574 776f .........cdnetwo
0x0030: 726b 7302 636f 026b 7200 00ff 0001 rks.co.kr.....
[0001] means A record type
[0001] means IN
TYPE HEX
A 00010001
ANY 00ff0001
MX 000f0001
NS 00020001
PTR 000c0001
SOA 00060001
AAAA 001c0001
TXT 00100001
HINFO 000d0001
$iptables -A INPUT -p udp --dport 53 -m string --algo bm --hex-string '|00FF0001|' -m recent --set --name dnsany
$iptables -A INPUT -p udp --dport 53 -m string --algo bm --hex-string '|00FF0001|' -m recent --name dnsany
--rcheck --seconds 60 --hitcount 5 -j DROP
DNS DDoS Attack Types and Defense :: other Query type Attack
Default # of ipt_recent is 100,
so need to maxmize the value in advance
$ rmmod ipt_recent modprobe
$ ipt_recent ip_list_tot=4095
Page 14
Massive spoofed query as if source ip is Victim
Source:: 1.1.1.1:53 or 1024: / Dst :: open Resolver:53
Massive response from open resolver
Source:: Open_Resolver:53 / dst :: 1.1.1.1:53(or 1024~)
command
Distributed reflective, amplified attack
Prepare big size response packet in advance
$ dig re.vr.lt txt 60byte
;; MSG SIZE rcvd: 4000(byte)
x ~70 timesVictim :: 1.1.1.1
re.vr.lt DNS server :: 2.2.2.2
Page 15
Distributed reflective, amplified attack
Victim IP
Resolver DNS
Packet generating from Zombie PC
Packet from Victim Side
Resolver DNS
Page 16
Distributed reflective, amplified attack
IP (tos 0x0, ttl 49, id 25778, offset 0, flags [DF], proto: UDP (17), length: 65) 96.31.66.143.80 > 61.110.198.173.53: [udp sum ok] 59637+ [1au] TXT? re.vr.lt. ar: . OPT
UDPsize=4096 (37)
IP (tos 0x0, ttl 64, id 34118, offset 0, flags [+], proto: UDP (17), length: 1500) 61.110.198.173.53 > 96.31.66.143.80: 59637 q: TXT? re.vr.lt. 1/4/1 re.vr.lt. TXT[|domain]
IP (tos 0x0, ttl 64, id 34118, offset 1480, flags [+], proto: UDP (17), length: 1500) 61.110.198.173 > 96.31.66.143: udp
IP (tos 0x0, ttl 64, id 34118, offset 2960, flags [none], proto: UDP (17), length: 1039) 61.110.198.173 > 96.31.66.143: udp
# dig re.vr.lt txt +bufsize=4096
;; MSG SIZE rcvd: 3878
Page 17
Distributed reflective, amplified attack
# tcpdump -w dns.pcap -nn host 96.31.66.143
Only 1st response is DNS and the rests are Fragmented UDP packets
EDNS0 사용(Extension Mechanism for DNS) :: rfc2671
DNS 요청자는 RFC 2671에 정의된 EDNS0(DNS 확장 메커니즘)을 사용하여 UDP 패킷
의 크기를 알리고 UDP 패킷 크기의 원래 DNS 제한(RFC 1035)인 512(8진수)보다 큰
패킷 전송을 이용할 수 있습니다. DNS 서버는 UDP 전송 계층에서 요청을 받으면
OPT RR(리소스 레코드)에서 요청자의 UDP 패킷 크기를 확인하고 요청자가 지정한
최대 UDP 패킷 크기에 허용되는 만큼 리소스 레코드가 포함되도록 응답의 크기를
조절합니다.
$ man dig
+bufsize=B
Set the UDP message buffer size advertised using EDNS0 to B bytes. The maximum and
minimum sizes of this buffer are 65535 and 0 respectively. Values outside this range are
rounded up or down appropriately.
Page 18
Distributed reflective, amplified attack
http://dns.measurement-factory.com/surveys/openresolvers/ASN-reports/latest.html
http://www.chaz6.com/files/resolv.conf :: list of public ipv4/ipv6 dns cache servers
152,600 x Open Resolver !!!
http://openresolverproject.org/breakdown.cgi
2013-09-01 results
27,166,819 gave the correct answer to the A? for the DNS name queried
152,600 x 4,000 byte x 8(bit) = 4.8Gbps??
http://openresolverproject.org/searchby-asn.cgi?search?asn=XXXX  ASN
Assumption ::
if one zombie can query 152,600 open resolver in a second
if one open resolver can generate 4,000 byte answer
then, one DNS query can be 4.8Gbps traffic
Page 19
How to do at each Backbone/Access level?
20Gbps
40Gbps
Access Control ListHow to Filter? BackBone NET Level Access NET Level
Filtering big size UDP packet against
the DNS server
Access Control based on Source Port
and Destination Port
Src:53 / Dst:53 ??
Access Control Filtering for
Fragmented packets
Source IP Validation
SRC based Ratelimit
Signature based Filtering
Auth. DNS Server(ns1/ns2..)
Page 20
Signature Based Filtering against Amplification
How to filter if we get massive response packets , i,e. amplification attack
According to below image, we can see that QUESTION means 00010000 which means Questions :1, ANSWER:0
$ iptables -A INPUT -p udp --dport 53 -m string --algo bm --from 31 --to 32 --hex-string ! '|00010000|' -j DROP
# iptables -m string -h
string match options:
--from Offset to start searching from
--to Offset to stop searching
--algo Algorithm
[!] --string string Match a string in a packet
[!] --hex-string string Match a hex string in a packet
Page 21
Massive QUERY for $RANDOM.domain.com :: Non-Existent host
Objective :: The DNS server spends its time searching for something that doesn't exist instead of serving legitimate requests.
The result is that the cache on the DNS server gets filled with bad requests, and clients can't find the servers they are looking for.
• source IP based rate-limit if the source ip is not spoofed
• query type(ANY,TXT,CNAME,etc) based rate-limit or filtering
• it maybe problem if standard A query type with spoofed random source IP
NXDOMAIN query attack
Nov 21 09:09:58 s332-kt9-sel named[4942]: client 170.160.126.199#1234: query (cache) 'www.ceyxyl.biz/A/IN‘
Nov 21 09:09:58 s332-kt9-sel named[4942]: client 172.105.101.71#1234: query (cache) 'www.tcgexy.org/A/IN'
Nov 21 09:09:58 s332-kt9-sel named[4942]: client 177.112.102.240#1234: query (cache) 'www.etueqt.org/A/IN'
Nov 21 09:09:58 s332-kt9-sel named[4942]: client 59.34.42.184#1234: query (cache) 'www.nisyjr.com/A/IN'
Nov 21 09:09:58 s332-kt9-sel named[4942]: client 93.3.157.3#1234: query (cache) 'www.inrxpx.biz/A/IN'
Page 22
http://www.redbarn.org/dns/ratelimits :: Default function since centos 6.x since 2013.
http://ss.vix.su/~vjs/rl-arm.html
rate-limit {
[ responses-per-second number ; ]
[ referrals-per-second number ; ]
[ nodata-per-second number ; ]
[ nxdomains-per-second number ; ]
[ errors-per-second number ; ] // SERVFAIL, FORMERR excluding nxdomains
[ all-per-second number ; ] // normally at least 4~5 times bigger than other value
[ window number ; ]
[ log-only yes_or_no ; ]
[ qps-scale number ; ] // responses-per-second, errors-per-second, nxdomains-per-second ,all-per-second values are reduced by the ratio
[ ipv4-prefix-length number ; ] // default Is /24, need to change /32
[ slip number ; ]
}
e,g. qps-scale 250; responses-per-second 20; and a total query rate of 1000 queries/second for all queries from all DNS clients including via TCP,
then the effective responses/second limit changes to (250/1000)*20 or 5. Responses sent via TCP are not limited but are counted to compute the query per
second rate.
RRL(Response Rate Limiting) defense
Page 23
--- named.conf ---
rate-limit {
nxdomains-per-second 1;
ipv4-prefix-length 32;
slip 2;
};
RRL(Response Rate Limiting) defense
1 CLIENT -> SERVER DNS Standard query A 0.809928333227621.example.com
2 SERVER -> CLIENT DNS Standard query response, No such name
3 CLIENT -> SERVER DNS Standard query A 0.990417249591218.example.com
4 SERVER -> CLIENT DNS Standard query response
5 CLIENT -> SERVER TCP 41702 > 53 [SYN] Seq=0 Win=5840 Len=0 MSS=1460 TSV=3124747279 TSER=0 WS=7
6 SERVER -> CLIENT TCP 53 > 41702 [SYN, ACK] Seq=0 Ack=1 Win=14480 Len=0 MSS=1460 TSV=3737413786 TSER=3124747279 WS=6
7 CLIENT -> SERVER TCP 41702 > 53 [ACK] Seq=1 Ack=1 Win=5888 Len=0 TSV=3124747282 TSER=3737413786
8 CLIENT -> SERVER DNS Standard query A 0.990417249591218.example.com
9 SERVER -> CLIENT TCP 53 > 41702 [ACK] Seq=1 Ack=50 Win=14528 Len=0 TSV=3737413788 TSER=3124747282
10 SERVER -> CLIENT DNS Standard query response, No such name
11 CLIENT -> SERVER TCP 41702 > 53 [ACK] Seq=50 Ack=110 Win=5888 Len=0 TSV=3124747284 TSER=3737413788
12 CLIENT -> SERVER TCP 41702 > 53 [FIN, ACK] Seq=50 Ack=110 Win=5888 Len=0 TSV=3124747284 TSER=3737413788
13 SERVER -> CLIENT TCP 53 > 41702 [FIN, ACK] Seq=110 Ack=51 Win=14528 Len=0 TSV=3737413791 TSER=3124747284
14 CLIENT -> SERVER TCP 41702 > 53 [ACK] Seq=51 Ack=111 Win=5888 Len=0 TSV=3124747287 TSER=3737413791
3 way handshake
4 way handshake
Truncated: Message is truncated
Jul 1 14:11:10 SERVER named-sdb[15282]: limit responses to xx.xx.xx.xx/32 for xxxx.com IN A (00014672)
http://www.circleid.com/posts/20130820_a_question_of_dns_protocols/
17% of visible resolvers do not successfully followup with a TCP connection following the reception of a truncated UDP response.
Also performance issue.
Page 24
Anycast based Distribution
 http://www.root-servers.org/ j.root-servers.net(192.58.128.30)
 Google case:8.8.8.8
On the Internet, anycast is usually implemented by using
BGP to simultaneously announce the same destination IP
address range from many different places on the Internet.
This results in packets addressed to destination addresses
in this range being routed to the "nearest" point on the net
announcing the given destination IP address.
excerpted from Wikipedia.org
Page 25
Conclusion :: Technical Requirements for DNS DEFENSE
 Tolerant against Massive QPS attack (~Mqps)
 pass only valid dns packet
 rate-limit per query type
 ip rate-limit based on source ip or query type,etc
 filter bad flag combinations
 filter multiple request type in a packet
 filter based on packet size(length,range)
 Source IP validation
 Using Multiple DNS provider
 No solution against the
Massive standard Query
with randomly spoofed IP Address

Más contenido relacionado

La actualidad más candente

Pseudo Random DNS Query Attacks and Resolver Mitigation Approaches
Pseudo Random DNS Query Attacks and Resolver Mitigation ApproachesPseudo Random DNS Query Attacks and Resolver Mitigation Approaches
Pseudo Random DNS Query Attacks and Resolver Mitigation ApproachesAPNIC
 
DDoS Attacks and Countermeasures
DDoS Attacks and CountermeasuresDDoS Attacks and Countermeasures
DDoS Attacks and Countermeasuresthaidn
 
DDoS Attack and Mitigation
DDoS Attack and MitigationDDoS Attack and Mitigation
DDoS Attack and MitigationDevang Badrakiya
 
Introduction DNSSec
Introduction DNSSecIntroduction DNSSec
Introduction DNSSecAFRINIC
 
DrupalCon Vienna 2017 - Anatomy of DDoS
DrupalCon Vienna 2017 - Anatomy of DDoSDrupalCon Vienna 2017 - Anatomy of DDoS
DrupalCon Vienna 2017 - Anatomy of DDoSSuzanne Aldrich
 
DNS-OARC 34: Measuring DNS Flag Day 2020
DNS-OARC 34: Measuring DNS Flag Day 2020DNS-OARC 34: Measuring DNS Flag Day 2020
DNS-OARC 34: Measuring DNS Flag Day 2020APNIC
 
IPv6 Threat Presentation
IPv6 Threat PresentationIPv6 Threat Presentation
IPv6 Threat Presentationjohnmcclure00
 
BADCamp 2017 - Anatomy of DDoS
BADCamp 2017 - Anatomy of DDoSBADCamp 2017 - Anatomy of DDoS
BADCamp 2017 - Anatomy of DDoSSuzanne Aldrich
 
DDoS 101: Attack Types and Mitigation
DDoS 101: Attack Types and MitigationDDoS 101: Attack Types and Mitigation
DDoS 101: Attack Types and MitigationCloudflare
 
Dnssec tutorial-crypto-defs
Dnssec tutorial-crypto-defsDnssec tutorial-crypto-defs
Dnssec tutorial-crypto-defsAFRINIC
 
DNS Security Presentation ISSA
DNS Security Presentation ISSADNS Security Presentation ISSA
DNS Security Presentation ISSASrikrupa Srivatsan
 
Class Project Showcase: DNS Spoofing
Class Project Showcase: DNS SpoofingClass Project Showcase: DNS Spoofing
Class Project Showcase: DNS SpoofingBeibei Yang
 
Grehack2013-RuoAndo-Unraveling large scale geographical distribution of vulne...
Grehack2013-RuoAndo-Unraveling large scale geographical distribution of vulne...Grehack2013-RuoAndo-Unraveling large scale geographical distribution of vulne...
Grehack2013-RuoAndo-Unraveling large scale geographical distribution of vulne...Ruo Ando
 
Encrypted DNS - DNS over TLS / DNS over HTTPS
Encrypted DNS - DNS over TLS / DNS over HTTPSEncrypted DNS - DNS over TLS / DNS over HTTPS
Encrypted DNS - DNS over TLS / DNS over HTTPSAlex Mayrhofer
 

La actualidad más candente (20)

Pseudo Random DNS Query Attacks and Resolver Mitigation Approaches
Pseudo Random DNS Query Attacks and Resolver Mitigation ApproachesPseudo Random DNS Query Attacks and Resolver Mitigation Approaches
Pseudo Random DNS Query Attacks and Resolver Mitigation Approaches
 
DNS Security
DNS SecurityDNS Security
DNS Security
 
Network Security Best Practice (BCP38 & 140)
Network Security Best Practice (BCP38 & 140) Network Security Best Practice (BCP38 & 140)
Network Security Best Practice (BCP38 & 140)
 
DDoS Attacks and Countermeasures
DDoS Attacks and CountermeasuresDDoS Attacks and Countermeasures
DDoS Attacks and Countermeasures
 
What is DDoS ?
What is DDoS ?What is DDoS ?
What is DDoS ?
 
DDoS Attack and Mitigation
DDoS Attack and MitigationDDoS Attack and Mitigation
DDoS Attack and Mitigation
 
Introduction DNSSec
Introduction DNSSecIntroduction DNSSec
Introduction DNSSec
 
DrupalCon Vienna 2017 - Anatomy of DDoS
DrupalCon Vienna 2017 - Anatomy of DDoSDrupalCon Vienna 2017 - Anatomy of DDoS
DrupalCon Vienna 2017 - Anatomy of DDoS
 
DNS Cache White Paper
DNS Cache White PaperDNS Cache White Paper
DNS Cache White Paper
 
DNS-OARC 34: Measuring DNS Flag Day 2020
DNS-OARC 34: Measuring DNS Flag Day 2020DNS-OARC 34: Measuring DNS Flag Day 2020
DNS-OARC 34: Measuring DNS Flag Day 2020
 
Grey H@t - DNS Cache Poisoning
Grey H@t - DNS Cache PoisoningGrey H@t - DNS Cache Poisoning
Grey H@t - DNS Cache Poisoning
 
IPv6 Threat Presentation
IPv6 Threat PresentationIPv6 Threat Presentation
IPv6 Threat Presentation
 
BADCamp 2017 - Anatomy of DDoS
BADCamp 2017 - Anatomy of DDoSBADCamp 2017 - Anatomy of DDoS
BADCamp 2017 - Anatomy of DDoS
 
DDoS 101: Attack Types and Mitigation
DDoS 101: Attack Types and MitigationDDoS 101: Attack Types and Mitigation
DDoS 101: Attack Types and Mitigation
 
Dnssec tutorial-crypto-defs
Dnssec tutorial-crypto-defsDnssec tutorial-crypto-defs
Dnssec tutorial-crypto-defs
 
DNS Cache Poisoning
DNS Cache PoisoningDNS Cache Poisoning
DNS Cache Poisoning
 
DNS Security Presentation ISSA
DNS Security Presentation ISSADNS Security Presentation ISSA
DNS Security Presentation ISSA
 
Class Project Showcase: DNS Spoofing
Class Project Showcase: DNS SpoofingClass Project Showcase: DNS Spoofing
Class Project Showcase: DNS Spoofing
 
Grehack2013-RuoAndo-Unraveling large scale geographical distribution of vulne...
Grehack2013-RuoAndo-Unraveling large scale geographical distribution of vulne...Grehack2013-RuoAndo-Unraveling large scale geographical distribution of vulne...
Grehack2013-RuoAndo-Unraveling large scale geographical distribution of vulne...
 
Encrypted DNS - DNS over TLS / DNS over HTTPS
Encrypted DNS - DNS over TLS / DNS over HTTPSEncrypted DNS - DNS over TLS / DNS over HTTPS
Encrypted DNS - DNS over TLS / DNS over HTTPS
 

Destacado

DDoS Attack on DNS using infected IoT Devices
DDoS Attack on DNS using infected IoT DevicesDDoS Attack on DNS using infected IoT Devices
DDoS Attack on DNS using infected IoT DevicesSeungjoo Kim
 
DNS Hizmetine Yönetlik DoS/DDoS Saldırıları
DNS Hizmetine Yönetlik DoS/DDoS SaldırılarıDNS Hizmetine Yönetlik DoS/DDoS Saldırıları
DNS Hizmetine Yönetlik DoS/DDoS SaldırılarıBGA Cyber Security
 
Ağ Protokollerine Yönelik Adli Bilişim Analizi
Ağ Protokollerine Yönelik Adli Bilişim AnaliziAğ Protokollerine Yönelik Adli Bilişim Analizi
Ağ Protokollerine Yönelik Adli Bilişim AnaliziBGA Cyber Security
 
Different types of attacks in internet
Different types of attacks in internetDifferent types of attacks in internet
Different types of attacks in internetRohan Bharadwaj
 

Destacado (6)

DDoS Attack on DNS using infected IoT Devices
DDoS Attack on DNS using infected IoT DevicesDDoS Attack on DNS using infected IoT Devices
DDoS Attack on DNS using infected IoT Devices
 
DNS Hizmetine Yönetlik DoS/DDoS Saldırıları
DNS Hizmetine Yönetlik DoS/DDoS SaldırılarıDNS Hizmetine Yönetlik DoS/DDoS Saldırıları
DNS Hizmetine Yönetlik DoS/DDoS Saldırıları
 
DDoS Attacks
DDoS AttacksDDoS Attacks
DDoS Attacks
 
Ağ Protokollerine Yönelik Adli Bilişim Analizi
Ağ Protokollerine Yönelik Adli Bilişim AnaliziAğ Protokollerine Yönelik Adli Bilişim Analizi
Ağ Protokollerine Yönelik Adli Bilişim Analizi
 
Different types of attacks in internet
Different types of attacks in internetDifferent types of attacks in internet
Different types of attacks in internet
 
Denial Of Service Attack
Denial Of Service AttackDenial Of Service Attack
Denial Of Service Attack
 

Similar a DNS DDoS Attack and Risk

DEF CON 27 - GERALD DOUSSOT AND ROGER MEYER - state of dns rebinding attack ...
DEF CON 27 - GERALD DOUSSOT  AND ROGER MEYER - state of dns rebinding attack ...DEF CON 27 - GERALD DOUSSOT  AND ROGER MEYER - state of dns rebinding attack ...
DEF CON 27 - GERALD DOUSSOT AND ROGER MEYER - state of dns rebinding attack ...Felipe Prado
 
Cloudshield_DNS Tips_032014
Cloudshield_DNS Tips_032014Cloudshield_DNS Tips_032014
Cloudshield_DNS Tips_032014Laura L. Adams
 
Dns protocol design attacks and security
Dns protocol design attacks and securityDns protocol design attacks and security
Dns protocol design attacks and securityMichael Earls
 
Ddos and mitigation methods.pptx (1)
Ddos and mitigation methods.pptx (1)Ddos and mitigation methods.pptx (1)
Ddos and mitigation methods.pptx (1)btpsec
 
PLNOG 13: Adam Obszyński: Case Study – Infoblox Advanced DNS Protection
PLNOG 13: Adam Obszyński: Case Study – Infoblox Advanced DNS ProtectionPLNOG 13: Adam Obszyński: Case Study – Infoblox Advanced DNS Protection
PLNOG 13: Adam Obszyński: Case Study – Infoblox Advanced DNS ProtectionPROIDEA
 
(SEC306) Defending Against DDoS Attacks
(SEC306) Defending Against DDoS Attacks(SEC306) Defending Against DDoS Attacks
(SEC306) Defending Against DDoS AttacksAmazon Web Services
 
DNS spoofing/poisoning Attack Report (Word Document)
DNS spoofing/poisoning Attack Report (Word Document)DNS spoofing/poisoning Attack Report (Word Document)
DNS spoofing/poisoning Attack Report (Word Document)Fatima Qayyum
 
DNS Advanced Attacks and Analysis
DNS Advanced Attacks and AnalysisDNS Advanced Attacks and Analysis
DNS Advanced Attacks and AnalysisCSCJournals
 
Denial of Service - Service Provider Overview
Denial of Service - Service Provider OverviewDenial of Service - Service Provider Overview
Denial of Service - Service Provider OverviewMarketingArrowECS_CZ
 
AWS User Group - Perth - April 2021 - DNS
AWS User Group - Perth - April 2021 - DNSAWS User Group - Perth - April 2021 - DNS
AWS User Group - Perth - April 2021 - DNSJames Bromberger
 
Network Intelligence for a secured Network (2014-03-12)
Network Intelligence for a secured Network (2014-03-12)Network Intelligence for a secured Network (2014-03-12)
Network Intelligence for a secured Network (2014-03-12)Andreas Taudte
 
KHNOG 3: DDoS Attack Prevention
KHNOG 3: DDoS Attack PreventionKHNOG 3: DDoS Attack Prevention
KHNOG 3: DDoS Attack PreventionAPNIC
 
Game DDOS Prevention
Game DDOS PreventionGame DDOS Prevention
Game DDOS PreventionWalter Liu
 
Cybersecurity breakfast tour 2013 (1)
Cybersecurity breakfast tour 2013 (1)Cybersecurity breakfast tour 2013 (1)
Cybersecurity breakfast tour 2013 (1)Infradata
 
PLNOG16: DDOS SOLUTIONS – CUSTOMER POINT OF VIEW, Piotr Wojciechowski
PLNOG16: DDOS SOLUTIONS – CUSTOMER POINT OF VIEW, Piotr WojciechowskiPLNOG16: DDOS SOLUTIONS – CUSTOMER POINT OF VIEW, Piotr Wojciechowski
PLNOG16: DDOS SOLUTIONS – CUSTOMER POINT OF VIEW, Piotr WojciechowskiPROIDEA
 
DNS Survival Guide
DNS Survival GuideDNS Survival Guide
DNS Survival GuideAPNIC
 
DNS Survival Guide.
DNS Survival Guide.DNS Survival Guide.
DNS Survival Guide.Qrator Labs
 
2016 state of the internet threat advisory dnssec ddos amplification attacks
2016 state of the internet threat advisory dnssec ddos amplification attacks2016 state of the internet threat advisory dnssec ddos amplification attacks
2016 state of the internet threat advisory dnssec ddos amplification attacksAndrey Apuhtin
 
DNS Over HTTPS by Michael Casadevall
DNS Over HTTPS by Michael CasadevallDNS Over HTTPS by Michael Casadevall
DNS Over HTTPS by Michael CasadevallGlenn McKnight
 

Similar a DNS DDoS Attack and Risk (20)

DEF CON 27 - GERALD DOUSSOT AND ROGER MEYER - state of dns rebinding attack ...
DEF CON 27 - GERALD DOUSSOT  AND ROGER MEYER - state of dns rebinding attack ...DEF CON 27 - GERALD DOUSSOT  AND ROGER MEYER - state of dns rebinding attack ...
DEF CON 27 - GERALD DOUSSOT AND ROGER MEYER - state of dns rebinding attack ...
 
Cloudshield_DNS Tips_032014
Cloudshield_DNS Tips_032014Cloudshield_DNS Tips_032014
Cloudshield_DNS Tips_032014
 
Dns protocol design attacks and security
Dns protocol design attacks and securityDns protocol design attacks and security
Dns protocol design attacks and security
 
Ddos and mitigation methods.pptx (1)
Ddos and mitigation methods.pptx (1)Ddos and mitigation methods.pptx (1)
Ddos and mitigation methods.pptx (1)
 
PLNOG 13: Adam Obszyński: Case Study – Infoblox Advanced DNS Protection
PLNOG 13: Adam Obszyński: Case Study – Infoblox Advanced DNS ProtectionPLNOG 13: Adam Obszyński: Case Study – Infoblox Advanced DNS Protection
PLNOG 13: Adam Obszyński: Case Study – Infoblox Advanced DNS Protection
 
(SEC306) Defending Against DDoS Attacks
(SEC306) Defending Against DDoS Attacks(SEC306) Defending Against DDoS Attacks
(SEC306) Defending Against DDoS Attacks
 
DNS spoofing/poisoning Attack Report (Word Document)
DNS spoofing/poisoning Attack Report (Word Document)DNS spoofing/poisoning Attack Report (Word Document)
DNS spoofing/poisoning Attack Report (Word Document)
 
DNS Advanced Attacks and Analysis
DNS Advanced Attacks and AnalysisDNS Advanced Attacks and Analysis
DNS Advanced Attacks and Analysis
 
9534715
95347159534715
9534715
 
Denial of Service - Service Provider Overview
Denial of Service - Service Provider OverviewDenial of Service - Service Provider Overview
Denial of Service - Service Provider Overview
 
AWS User Group - Perth - April 2021 - DNS
AWS User Group - Perth - April 2021 - DNSAWS User Group - Perth - April 2021 - DNS
AWS User Group - Perth - April 2021 - DNS
 
Network Intelligence for a secured Network (2014-03-12)
Network Intelligence for a secured Network (2014-03-12)Network Intelligence for a secured Network (2014-03-12)
Network Intelligence for a secured Network (2014-03-12)
 
KHNOG 3: DDoS Attack Prevention
KHNOG 3: DDoS Attack PreventionKHNOG 3: DDoS Attack Prevention
KHNOG 3: DDoS Attack Prevention
 
Game DDOS Prevention
Game DDOS PreventionGame DDOS Prevention
Game DDOS Prevention
 
Cybersecurity breakfast tour 2013 (1)
Cybersecurity breakfast tour 2013 (1)Cybersecurity breakfast tour 2013 (1)
Cybersecurity breakfast tour 2013 (1)
 
PLNOG16: DDOS SOLUTIONS – CUSTOMER POINT OF VIEW, Piotr Wojciechowski
PLNOG16: DDOS SOLUTIONS – CUSTOMER POINT OF VIEW, Piotr WojciechowskiPLNOG16: DDOS SOLUTIONS – CUSTOMER POINT OF VIEW, Piotr Wojciechowski
PLNOG16: DDOS SOLUTIONS – CUSTOMER POINT OF VIEW, Piotr Wojciechowski
 
DNS Survival Guide
DNS Survival GuideDNS Survival Guide
DNS Survival Guide
 
DNS Survival Guide.
DNS Survival Guide.DNS Survival Guide.
DNS Survival Guide.
 
2016 state of the internet threat advisory dnssec ddos amplification attacks
2016 state of the internet threat advisory dnssec ddos amplification attacks2016 state of the internet threat advisory dnssec ddos amplification attacks
2016 state of the internet threat advisory dnssec ddos amplification attacks
 
DNS Over HTTPS by Michael Casadevall
DNS Over HTTPS by Michael CasadevallDNS Over HTTPS by Michael Casadevall
DNS Over HTTPS by Michael Casadevall
 

Último

Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CVKhem
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slidespraypatel2
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsJoaquim Jorge
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘RTylerCroy
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processorsdebabhi2
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEarley Information Science
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Igalia
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...Neo4j
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Enterprise Knowledge
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfsudhanshuwaghmare1
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024Rafal Los
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Servicegiselly40
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?Igalia
 

Último (20)

Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slides
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 

DNS DDoS Attack and Risk

  • 1. DNS DDoS Analysis and Defense 2013. Sep. Sukbum Hong (antihong@gmail.com) Please let me know, if there is any error, question, or comment.
  • 2. Page 1 Contents • DNS Risks • DNS DDoS Attack History • DNS DDoS Attack Types and Defense (1) Bandwidth Consuming attack (2) Massive A type Query attack (3) Massive other query type attack (4) Amplification attack open-resolver project (5) non-existant(NXDOMAIN) query attack (6) RRL defense • Conclusion
  • 3. Page 2 What’s happen if DNS was attacked? Why Risk? • Every service(web,e-mail,intranet) will be shutdown if DNS is down • All domains in DNS server will be impacted -. Generally One DNS server services several thousands of domains together • Hard to change the IP address if get attacked -. generally, DNS TTL is 1Day or 2Days -. need to change the NAMEHOST(whois) as well as DNS A record • Hard to defense attack as DNS packet is simple -. impossible to distinguish the legitimate traffic from illegitimate traffic • Hard to defense attack as DNS packet is UDP -. No protocol based ACL • Hard to block the source IP using rate-limit based -. As attacker can spoof the Source IP address
  • 4. Page 3 “Operation Global Blackout” on 31st March :: 2012/03 http://pastebin.com/NKbnh8q8 The principle is simple; a flaw that uses forged UDP packets is to be used to trigger a rush of DNS queries all redirected and reflected to those 13 IPs. The flaw is as follow; since the UDP protocol allows it, we can change the source IP of the sender to our target, thus spoofing the source of the DNS query. The DNS server will then respond to that query by sending the answer to the spoofed IP. Since the answer is always bigger than the query, the DNS answers will then flood the target ip. It is called an amplified because we can use small packets to generate large traffic. It is called reflective because we will not send the queries to the root name servers, instead, we will use a list of known vulnerable DNS servers which will attack the root servers for us.
  • 5. Page 4 GoDaddy Outage Takes Down Millions of customer Sites :: 2012/09/10 http://techcrunch.com/2012/09/10/godaddy-outage-takes-down-millions-of-sites/ http://www.wired.com/wiredenterprise/2012/09/godaddy-moves-to-verisign/ Amid Outage, GoDaddy Moves DNS to Competitor VeriSign
  • 6. Page 5 Knocked Spamhaus offline with 120G or 300Gbps attack :: 2013/03/19 http://blog.cloudflare.com/the-ddos-that-knocked-spamhaus-offline-and-ho Officially 120Gbps, Unofficially 300Gbps attack
  • 7. Page 6 300Gbps almost broke the Internet? http://blog.cloudflare.com/the-ddos-that-almost-broke-the-internet there's an online attack underway. The biggest in history?? Enough to slow down the internet……………….??? http://gizmodo.com/5992652/that-internet-war-apocalypse-is-a-lie That Internet War Apocalypse Is a Lie Just to put it in perspective the traffic estimates for the DDOS attack were as high as 300 Gbps at the target. That would easily overwhelm the average hosting center, but not a core component of the Internet. For example, DECIX, the German Internet exchange in Frankfurt, regularly handles 2.5 Tbps at peak on any given day: http://www.de-cix.net/about/statistics/ While it may have severely affected the websites it was targeted at, the global Internet as a whole was not impacted by this localized incident.
  • 8. Page 7 NetworkSolutions outage because of DNS DDOS attack http://blogs.cisco.com/security/hijacking-of-dns-records-from-network-solutions/ Over 5,000 domains including linkedin.com in NSI DNS customers were changed with Unknown DNS. ns1624.ztomy.com(204.11.56.20) . It was in the process to move to Prolexic to defense the DDoS attack July 16, 2013 http://blogs.cisco.com/security/network-solutions-customer-site-compromises-and-ddos/ Linkedin.com homepage was redirected to DomainSale Homepage $ traceroute -q 1 ns1624.ztomy.com. ....... 15 209.200.136.34 (209.200.136.34) 118.578 ms 16 unknown.prolexic.com (72.52.18.126) 239.717 ms 17 204.11.56.20 (204.11.56.20) 235.350 ms July 16, 2013 June 20, 2013 Service outage for 24 hours because of ddos attack
  • 9. Page 8 Hosting Service outage :: June :: Hosting Provider in Sydney http://www.tppwholesale.com.au/support/service-alerts/more-information-recent-ddos-attacks we took the drastic step of rate limiting DNS queries using the Arbor Pravail equipment to stem the flow of the attack. but due to the aggressive filtering nature there will be some false positives and some customers who will be denied services despite being legitimate users. This kind of rate limiting is not ideal or a long term solution and will result in some further inconvenience. Our long term strategy is to further cluster, load balance and segregate name services to provide greatly enhanced scale, fault tolerance and capacity. This had not been required prior to this attack. :: DNS hosting provider based in Toronto It was difficult to differentiate the real traffic from the DDoS traffic “This is the ‘nightmare scenario’ for DNS providers, because it is not against a specific domain which we can isolate and mitigate, but it’s against easyDNS itself” http://blog.easydns.org/2013/06/04/post-mortem-of-the-june-3-4th-ddos/ We can recommend DNSMadeEasy, DNSimple or No-Ip, then there's Route53 (our users had good results with easyRoute53 overnight). - See more at: http://blog.easydns.org/2013/06/04/post-mortem-of-the-june-3-4th-ddos/#sthash.wRlXg4iO.dpuf :: DNS hosting Provider in Florida “The attacker essentially flooded us with ‘ANY’ queries for a variety of domains managed by our DNS service, with the intention of amplifying these small queries into significantly larger responses aimed at a specific network.”
  • 10. Page 9 .CN root DNS outage 8/25(Sun) :: 00:00 DDoS attack to .CN root DNS server 02:00 Mitigated the attack 04:00 doos attack again 01:00 service recovered No information about Attack size, how to attack,etc. cn. 172800 IN NS a.dns.cn. cn. 172800 IN NS b.dns.cn. cn. 172800 IN NS c.dns.cn. cn. 172800 IN NS d.dns.cn. cn. 172800 IN NS e.dns.cn. cn. 172800 IN NS ns.cernet.net. google.cn. 86400 IN NS ns2.google.com. google.cn. 86400 IN NS ns3.google.com. google.cn. 86400 IN NS ns1.google.com. google.cn. 86400 IN NS ns4.google.com. ;; Received 109 bytes from 203.119.27.1#53(c.dns.cn) in 75 ms Around ~30% .CN traffic was downed even long TTL cache. TTL 1 hour 1D(24h) 1m 1680(1.7%) 70 2m 3360 140 30m 50,000(50%) 2100 1h 100,000(100%) 4200(4.2%) How much LDNS can lose the DNS cache? Assumption : # of LDNS is 0.1M
  • 11. Page 10 DNS DDoS Attack Types and Defense :: Bandwidth Consuming attack Packet size based Filtering at Network Level? 30Gbps 20Gbps 1Gbps based network Solution1 :: PBR  impossible as eating too much CPU Router(config)# access-list 111 remark "DNS PBR“ Router(config)# access-list 111 permit udp any host dns.ip.addr eq 53 Router(config)# route-map dnsddos permit 10 Router(config-route-map)# match ip address 111 Router(config-route-map)# match length 512 1500 Router(config-route-map)# set interface Null 0 Router(config-if)# ip route-cache policy Router(config-if)# ip policy route-map dnsddos route 173.X.X.X/32-DNS-DROP { match { destination 173.X.X.X/32; port 53; packet-length [ 99971 99985 ]; } then discard;} http://blog.cloudflare.com/todays-outage-post-mortem-82515 -. Direct attack from Zombies -. Normal traffic should be UDP not TCP TCP :: Zone transfer, when response over 512byte -. Defense :: distributing the DNS infra -. Defense :: Packet size based filtering if within the Infra size -. Defense :: efficient by filtering the fragmented packet in upstream ISP
  • 12. Page 11 DNS DDoS Attack Types and Defense :: Massive A type Query Attack 1.2.3.4.59873 > 10.10.1.2.53: 53495+ A? www.example.com. (44) 2.3.4.5.46922 > 10.10.1.2.53: 20009+ A? www.example.com. (44) 3.4.5.6.59873 > 10.10.1.2.53: 33495+ A? www.example.com. (44) 4.5.6.7.46922 > 10.10.1.2.53: 40009+ A? www.example.com. (44) ............................? -. A Kind of QPS attack -. Direct attack from Zombies -. If source ip is not spoofed, we can filter rate-limited based policy -. How to filter ? If source ip is randomly changed? and if the packet is exactly same with normal query traffic? Victim :: 1.1.1.1 www.example.com IP Address? How to differentiate attack or normal query?
  • 13. Page 12 DNS DDoS Attack Types and Defense :: other Query type Attack $ dig anonsc.com any anonsc.com. IN A 123.45.67.59 anonsc.com. IN A 123.45.67.60 anonsc.com. IN A 123.45.67.61 anonsc.com. IN A 123.45.67.62 ………………. ;; MSG SIZE rcvd: 3271 Ex: Direct attack case Ex: Amplification attack case
  • 14. Page 13 tcpdump example when ANY query $ tcpdump -X port 53 -n (or tshark port 53 –n –x) 19:38:14.172255 IP 114.xx.xx.xx.60249 > 61.110.xxx.xxx.domain: 22765+ ANY? cdnetworks.co.kr. (34) 0x0000: 4500 003e 0000 4000 3311 9310 726f 3e14 E..>..@.3...ro>. 0x0010: 3d6e c6ad eb59 0035 002a fb7f 58ed 0100 =n...Y.5.*..X... 0x0020: 0001 0000 0000 0000 0a63 646e 6574 776f .........cdnetwo 0x0030: 726b 7302 636f 026b 7200 00ff 0001 rks.co.kr..... [0001] means A record type [0001] means IN TYPE HEX A 00010001 ANY 00ff0001 MX 000f0001 NS 00020001 PTR 000c0001 SOA 00060001 AAAA 001c0001 TXT 00100001 HINFO 000d0001 $iptables -A INPUT -p udp --dport 53 -m string --algo bm --hex-string '|00FF0001|' -m recent --set --name dnsany $iptables -A INPUT -p udp --dport 53 -m string --algo bm --hex-string '|00FF0001|' -m recent --name dnsany --rcheck --seconds 60 --hitcount 5 -j DROP DNS DDoS Attack Types and Defense :: other Query type Attack Default # of ipt_recent is 100, so need to maxmize the value in advance $ rmmod ipt_recent modprobe $ ipt_recent ip_list_tot=4095
  • 15. Page 14 Massive spoofed query as if source ip is Victim Source:: 1.1.1.1:53 or 1024: / Dst :: open Resolver:53 Massive response from open resolver Source:: Open_Resolver:53 / dst :: 1.1.1.1:53(or 1024~) command Distributed reflective, amplified attack Prepare big size response packet in advance $ dig re.vr.lt txt 60byte ;; MSG SIZE rcvd: 4000(byte) x ~70 timesVictim :: 1.1.1.1 re.vr.lt DNS server :: 2.2.2.2
  • 16. Page 15 Distributed reflective, amplified attack Victim IP Resolver DNS Packet generating from Zombie PC Packet from Victim Side Resolver DNS
  • 17. Page 16 Distributed reflective, amplified attack IP (tos 0x0, ttl 49, id 25778, offset 0, flags [DF], proto: UDP (17), length: 65) 96.31.66.143.80 > 61.110.198.173.53: [udp sum ok] 59637+ [1au] TXT? re.vr.lt. ar: . OPT UDPsize=4096 (37) IP (tos 0x0, ttl 64, id 34118, offset 0, flags [+], proto: UDP (17), length: 1500) 61.110.198.173.53 > 96.31.66.143.80: 59637 q: TXT? re.vr.lt. 1/4/1 re.vr.lt. TXT[|domain] IP (tos 0x0, ttl 64, id 34118, offset 1480, flags [+], proto: UDP (17), length: 1500) 61.110.198.173 > 96.31.66.143: udp IP (tos 0x0, ttl 64, id 34118, offset 2960, flags [none], proto: UDP (17), length: 1039) 61.110.198.173 > 96.31.66.143: udp # dig re.vr.lt txt +bufsize=4096 ;; MSG SIZE rcvd: 3878
  • 18. Page 17 Distributed reflective, amplified attack # tcpdump -w dns.pcap -nn host 96.31.66.143 Only 1st response is DNS and the rests are Fragmented UDP packets EDNS0 사용(Extension Mechanism for DNS) :: rfc2671 DNS 요청자는 RFC 2671에 정의된 EDNS0(DNS 확장 메커니즘)을 사용하여 UDP 패킷 의 크기를 알리고 UDP 패킷 크기의 원래 DNS 제한(RFC 1035)인 512(8진수)보다 큰 패킷 전송을 이용할 수 있습니다. DNS 서버는 UDP 전송 계층에서 요청을 받으면 OPT RR(리소스 레코드)에서 요청자의 UDP 패킷 크기를 확인하고 요청자가 지정한 최대 UDP 패킷 크기에 허용되는 만큼 리소스 레코드가 포함되도록 응답의 크기를 조절합니다. $ man dig +bufsize=B Set the UDP message buffer size advertised using EDNS0 to B bytes. The maximum and minimum sizes of this buffer are 65535 and 0 respectively. Values outside this range are rounded up or down appropriately.
  • 19. Page 18 Distributed reflective, amplified attack http://dns.measurement-factory.com/surveys/openresolvers/ASN-reports/latest.html http://www.chaz6.com/files/resolv.conf :: list of public ipv4/ipv6 dns cache servers 152,600 x Open Resolver !!! http://openresolverproject.org/breakdown.cgi 2013-09-01 results 27,166,819 gave the correct answer to the A? for the DNS name queried 152,600 x 4,000 byte x 8(bit) = 4.8Gbps?? http://openresolverproject.org/searchby-asn.cgi?search?asn=XXXX  ASN Assumption :: if one zombie can query 152,600 open resolver in a second if one open resolver can generate 4,000 byte answer then, one DNS query can be 4.8Gbps traffic
  • 20. Page 19 How to do at each Backbone/Access level? 20Gbps 40Gbps Access Control ListHow to Filter? BackBone NET Level Access NET Level Filtering big size UDP packet against the DNS server Access Control based on Source Port and Destination Port Src:53 / Dst:53 ?? Access Control Filtering for Fragmented packets Source IP Validation SRC based Ratelimit Signature based Filtering Auth. DNS Server(ns1/ns2..)
  • 21. Page 20 Signature Based Filtering against Amplification How to filter if we get massive response packets , i,e. amplification attack According to below image, we can see that QUESTION means 00010000 which means Questions :1, ANSWER:0 $ iptables -A INPUT -p udp --dport 53 -m string --algo bm --from 31 --to 32 --hex-string ! '|00010000|' -j DROP # iptables -m string -h string match options: --from Offset to start searching from --to Offset to stop searching --algo Algorithm [!] --string string Match a string in a packet [!] --hex-string string Match a hex string in a packet
  • 22. Page 21 Massive QUERY for $RANDOM.domain.com :: Non-Existent host Objective :: The DNS server spends its time searching for something that doesn't exist instead of serving legitimate requests. The result is that the cache on the DNS server gets filled with bad requests, and clients can't find the servers they are looking for. • source IP based rate-limit if the source ip is not spoofed • query type(ANY,TXT,CNAME,etc) based rate-limit or filtering • it maybe problem if standard A query type with spoofed random source IP NXDOMAIN query attack Nov 21 09:09:58 s332-kt9-sel named[4942]: client 170.160.126.199#1234: query (cache) 'www.ceyxyl.biz/A/IN‘ Nov 21 09:09:58 s332-kt9-sel named[4942]: client 172.105.101.71#1234: query (cache) 'www.tcgexy.org/A/IN' Nov 21 09:09:58 s332-kt9-sel named[4942]: client 177.112.102.240#1234: query (cache) 'www.etueqt.org/A/IN' Nov 21 09:09:58 s332-kt9-sel named[4942]: client 59.34.42.184#1234: query (cache) 'www.nisyjr.com/A/IN' Nov 21 09:09:58 s332-kt9-sel named[4942]: client 93.3.157.3#1234: query (cache) 'www.inrxpx.biz/A/IN'
  • 23. Page 22 http://www.redbarn.org/dns/ratelimits :: Default function since centos 6.x since 2013. http://ss.vix.su/~vjs/rl-arm.html rate-limit { [ responses-per-second number ; ] [ referrals-per-second number ; ] [ nodata-per-second number ; ] [ nxdomains-per-second number ; ] [ errors-per-second number ; ] // SERVFAIL, FORMERR excluding nxdomains [ all-per-second number ; ] // normally at least 4~5 times bigger than other value [ window number ; ] [ log-only yes_or_no ; ] [ qps-scale number ; ] // responses-per-second, errors-per-second, nxdomains-per-second ,all-per-second values are reduced by the ratio [ ipv4-prefix-length number ; ] // default Is /24, need to change /32 [ slip number ; ] } e,g. qps-scale 250; responses-per-second 20; and a total query rate of 1000 queries/second for all queries from all DNS clients including via TCP, then the effective responses/second limit changes to (250/1000)*20 or 5. Responses sent via TCP are not limited but are counted to compute the query per second rate. RRL(Response Rate Limiting) defense
  • 24. Page 23 --- named.conf --- rate-limit { nxdomains-per-second 1; ipv4-prefix-length 32; slip 2; }; RRL(Response Rate Limiting) defense 1 CLIENT -> SERVER DNS Standard query A 0.809928333227621.example.com 2 SERVER -> CLIENT DNS Standard query response, No such name 3 CLIENT -> SERVER DNS Standard query A 0.990417249591218.example.com 4 SERVER -> CLIENT DNS Standard query response 5 CLIENT -> SERVER TCP 41702 > 53 [SYN] Seq=0 Win=5840 Len=0 MSS=1460 TSV=3124747279 TSER=0 WS=7 6 SERVER -> CLIENT TCP 53 > 41702 [SYN, ACK] Seq=0 Ack=1 Win=14480 Len=0 MSS=1460 TSV=3737413786 TSER=3124747279 WS=6 7 CLIENT -> SERVER TCP 41702 > 53 [ACK] Seq=1 Ack=1 Win=5888 Len=0 TSV=3124747282 TSER=3737413786 8 CLIENT -> SERVER DNS Standard query A 0.990417249591218.example.com 9 SERVER -> CLIENT TCP 53 > 41702 [ACK] Seq=1 Ack=50 Win=14528 Len=0 TSV=3737413788 TSER=3124747282 10 SERVER -> CLIENT DNS Standard query response, No such name 11 CLIENT -> SERVER TCP 41702 > 53 [ACK] Seq=50 Ack=110 Win=5888 Len=0 TSV=3124747284 TSER=3737413788 12 CLIENT -> SERVER TCP 41702 > 53 [FIN, ACK] Seq=50 Ack=110 Win=5888 Len=0 TSV=3124747284 TSER=3737413788 13 SERVER -> CLIENT TCP 53 > 41702 [FIN, ACK] Seq=110 Ack=51 Win=14528 Len=0 TSV=3737413791 TSER=3124747284 14 CLIENT -> SERVER TCP 41702 > 53 [ACK] Seq=51 Ack=111 Win=5888 Len=0 TSV=3124747287 TSER=3737413791 3 way handshake 4 way handshake Truncated: Message is truncated Jul 1 14:11:10 SERVER named-sdb[15282]: limit responses to xx.xx.xx.xx/32 for xxxx.com IN A (00014672) http://www.circleid.com/posts/20130820_a_question_of_dns_protocols/ 17% of visible resolvers do not successfully followup with a TCP connection following the reception of a truncated UDP response. Also performance issue.
  • 25. Page 24 Anycast based Distribution  http://www.root-servers.org/ j.root-servers.net(192.58.128.30)  Google case:8.8.8.8 On the Internet, anycast is usually implemented by using BGP to simultaneously announce the same destination IP address range from many different places on the Internet. This results in packets addressed to destination addresses in this range being routed to the "nearest" point on the net announcing the given destination IP address. excerpted from Wikipedia.org
  • 26. Page 25 Conclusion :: Technical Requirements for DNS DEFENSE  Tolerant against Massive QPS attack (~Mqps)  pass only valid dns packet  rate-limit per query type  ip rate-limit based on source ip or query type,etc  filter bad flag combinations  filter multiple request type in a packet  filter based on packet size(length,range)  Source IP validation  Using Multiple DNS provider  No solution against the Massive standard Query with randomly spoofed IP Address