SlideShare una empresa de Scribd logo
1 de 1
Descargar para leer sin conexión
High	
  power	
  microwave	
  beam-­‐spli3er	
  
	
  
Ta$ana	
  Yugay1,2,	
  Thierry	
  Dubroca2,	
  Eden	
  Steven2,	
  Stephen	
  Hill2,3	
  
1.  Simmons	
  College	
  2.	
  Na$onal	
  High	
  Magne$c	
  Field	
  Laboratory	
  	
  3.	
  Florida	
  State	
  University	
  
Funding:	
  NSF-­‐MRI	
  CHE-­‐1229170,	
  NSF	
  DMR-­‐1157490,	
  State	
  of	
  Florida	
  	
  
Introduc9on	
  
Component	
  Characteriza9on	
  Methods	
  
Dynamic	
  nuclear	
  polariza$on	
  is	
  the	
  process	
  of	
  irradia$ng	
  a	
  sample	
  
with	
  microwaves	
  to	
  increase	
  its	
  nuclear	
  resonance	
  lines’	
  intensity.	
  A	
  
quasi-­‐op$cal	
  setup	
  is	
  used	
  to	
  guide	
  microwaves	
  from	
  a	
  395	
  GHz	
  
gyrotron	
  source	
  to	
  the	
  sample.	
  Transmission	
  losses	
  of	
  the	
  quasi-­‐
op$cal	
  components	
  were	
  evaluated.	
  Addi$onally,	
  a	
  beam-­‐spliWer	
  
was	
  designed	
  and	
  fabricated	
  to	
  simultaneously	
  run	
  two	
  dynamic	
  
nuclear	
  polariza$on	
  experiments	
  in	
  parallel.	
  
Beam-­‐spli3er	
  Fabrica9on	
  Methods	
  
Le@:	
  an	
  airbrush	
  was	
  used	
  to	
  spray	
  solu$on	
  of	
  polymer	
  and	
  silver	
  par$cles	
  onto	
  
various	
  substrates	
  such	
  as	
  polyethylene	
  (middle)	
  and	
  quartz	
  (right).	
  	
  
Beam-­‐spli3er	
  Characteriza9on	
  Results	
  
Conclusion	
  
Out	
  of	
  the	
  six	
  beam-­‐spliWers	
  created	
  by	
  two	
  different	
  
methods	
  (spray-­‐coa$ng	
  and	
  evapora$on)	
  on	
  three	
  
different	
  substrates,	
  only	
  the	
  beam-­‐spli3er	
  created	
  by	
  
evapora9ng	
  a	
  thin	
  layer	
  of	
  silver	
  onto	
  a	
  1	
  mm	
  thick	
  quartz	
  
was	
  able	
  to	
  sustain	
  microwave	
  beam	
  powers	
  up	
  to	
  50	
  
wa3.	
  There	
  are	
  therefore	
  four	
  requirements	
  to	
  	
  making	
  a	
  
successful	
  high	
  power	
  microwave	
  beam-­‐spliWer:	
  
Component	
  Characteriza9on	
  Results	
  
	
  
•  3D	
  horn:	
  
compared	
  
transmission	
  with	
  
and	
  without	
  the	
  
horn	
  
•  Cu	
  horn:	
  compared	
  
transmission	
  with	
  
and	
  without	
  horn	
  
•  Shu3er:	
  compared	
  
transmission	
  with	
  
open	
  and	
  without	
  
shuWer	
  
•  Back-­‐to-­‐back	
  horn:	
  
compared	
  
transmission	
  at	
  
entrance	
  and	
  exit	
  
•  Mirrors:	
  Measured	
  
reflec$on	
  
•  Grid:	
  Measured	
  
transmission	
  from	
  
0°	
  to	
  90°	
  rota$on.	
  
Le@:	
  beam-­‐spliWer,	
  made	
  with	
  silver	
  sprayed	
  onto	
  film,	
  melted	
  at	
  3	
  waWs	
  of	
  
microwave	
  power	
  from	
  a	
  395	
  GHz	
  gyrotron.	
  Middle:	
  150	
  μm	
  thick	
  quartz	
  with	
  
evaporated	
  silver	
  damaged	
  by	
  a	
  20	
  waW	
  microwave	
  beam.	
  Right:	
  no	
  
observable	
  damages	
  were	
  made	
  to	
  a	
  1	
  mm	
  thick	
  quartz	
  with	
  evaporated	
  
silver,	
  up	
  to	
  the	
  maximum	
  source	
  power	
  of	
  50	
  waW.	
  
Op9cal	
  Component	
   Transmission	
  
3D	
  Horn	
   33%	
  
Cu	
  Horn	
   38%	
  
Open	
  ShuWer	
   99%	
  
Back-­‐to-­‐back	
  Horn	
   92%	
  
Sample	
   Low	
  Power	
   High	
  Power	
  
Polyethylene	
  film	
   ✔	
   ✔	
  
Quartz	
   ✔	
   ✔	
  
Polyethylene	
  +	
  spray-­‐coated	
  silver	
   ✔	
   ✗	
  
Polyethylene	
  +	
  deposited	
  silver	
   ✔	
   ✗	
  
150	
  μm	
  quartz	
  +	
  spray-­‐coated	
  silver	
   ✔	
   ✗	
  
150	
  μm	
  quartz	
  +	
  deposited	
  silver	
   ✔	
   ✗	
  
1	
  mm	
  quartz	
  +	
  deposited	
  silver	
  (20	
  nm)	
   ✔	
   ✔	
  
395	
  GHz	
  
gyrotron	
  
600	
  
MHz	
  
NMR	
  
magnet	
  
References:	
  1.	
  Overhauser	
  A.,	
  Phys.	
  Rev.	
  92,	
  2	
  (1953);	
  2.	
  Griffin	
  R.	
  et	
  al.,	
  PCCP	
  12,	
  5737	
  (2010);	
  3.	
  Ung	
  B.	
  et	
  al.,	
  Op$cs	
  Express.	
  20,	
  5	
  (2012).	
  
COPPER	
  HORN	
  
3D	
  HORN	
  
PYROMETER	
  BEAM	
  
BACK-­‐TO-­‐BACK	
  HORN	
  
GRID	
  
SHUTTER	
  
FLAT	
  
MIRROR	
  
CURVED	
  
MIRROR	
  
BEAM	
  
SPLITTER	
  
POLARIZER	
  
#1	
  
GYROTRON	
  
EXPERIMENT	
  1	
  
EXPERIMENT	
  2	
  
	
  
•  Gyrotron:	
  395	
  
GHz	
  beam	
  source	
  
•  Polarizer	
  #1:	
  
filters	
  out	
  beam	
  of	
  
wrong	
  
polariza$on	
  
•  Beam-­‐spli3er:	
  
splits	
  beam	
  in	
  two	
  
•  Curved	
  Mirror:	
  
converges	
  and	
  
propagates	
  beam	
  
•  Flat	
  Mirror:	
  
changes	
  beam	
  
direc$on	
  
•  Shu3er:	
  on/off	
  
beam	
  switch	
  
•  Back-­‐to-­‐back	
  
Horn:	
  Gaussian	
  
beam	
  filter	
  
0	
  
20	
  
40	
  
60	
  
80	
  
100	
  
120	
  
0	
   20	
   40	
   60	
   80	
   100	
   120	
   140	
   160	
  
Measured	
  Transmission	
  (mW)	
  
Distance	
  (mm)	
  
0	
  
50	
  
100	
  
150	
  
200	
  
250	
  
0	
   10	
   20	
   30	
   40	
   50	
   60	
   70	
   80	
   90	
   100	
  
Measured	
  Transmission	
  (mW)	
  
Angle	
  Rotated	
  (Degrees)	
  
Measured	
  
Malus	
  Law	
  
Where	
  beam	
  diameter	
  
=	
  3D	
  horn	
  diameter	
  
100%	
  transmission	
  
Transmission	
  plot	
  of	
  microwave	
  power	
  as	
  a	
  func$on	
  of	
  
distance	
  between	
  source	
  and	
  3D	
  horn	
  (blue	
  dots).	
  Linear	
  
regression	
  model	
  (solid	
  black).	
  
Transmission	
  plot	
  of	
  microwave	
  power	
  as	
  a	
  func$on	
  of	
  
rota$on	
  angle	
  of	
  a	
  polariza$on	
  grid	
  (blue	
  dots).	
  Malus	
  
Law	
  model	
  overlayed	
  (solid	
  orange).	
  
Le@:	
  a	
  deposi$on	
  chamber	
  was	
  used	
  to	
  deposit	
  silver	
  par$cles	
  onto	
  quartz.	
  Middle:	
  
high	
  homogeneity	
  silver	
  deposi$on	
  on	
  quartz	
  substrate.	
  Mounted	
  beam-­‐spliWer	
  in	
  
quasi-­‐op$cal	
  bench	
  with	
  airflow	
  cooling	
  (bo3om	
  right).	
  
	
  
	
  
1.  A	
  substrate	
  transparent	
  to	
  microwaves,	
  yet	
  thick	
  (i.e.	
  
strong)	
  enough	
  to	
  mechanically	
  handle	
  thermal	
  
stress.	
  
2.  A	
  metal	
  layer	
  of	
  high	
  thickness	
  homogeneity,	
  
ensuring	
  the	
  beams’	
  shape	
  remains	
  unchanged.	
  
3.  Silver	
  layer	
  of	
  high	
  conduc9vity,	
  ensuring	
  minimal	
  
heat	
  absorp$on	
  (minimizes	
  thermal	
  stress).	
  
4.  A	
  cooling	
  source,	
  to	
  reduce	
  thermal	
  stress	
  on	
  the	
  
substrate	
  caused	
  by	
  microwave	
  hea$ng	
  of	
  the	
  metal	
  
layer.	
  

Más contenido relacionado

La actualidad más candente

Basic concepts of organic spectroscopy
Basic concepts of organic spectroscopyBasic concepts of organic spectroscopy
Basic concepts of organic spectroscopyDrBasavarajaiahSm
 
Types of spectrometer IMA
Types of spectrometer IMATypes of spectrometer IMA
Types of spectrometer IMAJAGESHWARSAHU2
 
Electromagnetic radiation
Electromagnetic radiationElectromagnetic radiation
Electromagnetic radiationSumant Diwakar
 
Electromagnetic radiation_Environmental Health
Electromagnetic radiation_Environmental HealthElectromagnetic radiation_Environmental Health
Electromagnetic radiation_Environmental HealthHussain Raufi
 
Ultraviolet spetroscopy by Dr. Monika Singh part-1 as per PCI syllabus
Ultraviolet spetroscopy by Dr. Monika Singh part-1 as per PCI syllabusUltraviolet spetroscopy by Dr. Monika Singh part-1 as per PCI syllabus
Ultraviolet spetroscopy by Dr. Monika Singh part-1 as per PCI syllabusMonika Singh
 
Presentasi Gelombang elektromagnetik Kelas X
Presentasi Gelombang elektromagnetik Kelas XPresentasi Gelombang elektromagnetik Kelas X
Presentasi Gelombang elektromagnetik Kelas XHanarsp
 
Electronsreveiw
ElectronsreveiwElectronsreveiw
Electronsreveiwkitcoffeen
 
Frequency wavelength trapping by integrated ring resonators for secured netwo...
Frequency wavelength trapping by integrated ring resonators for secured netwo...Frequency wavelength trapping by integrated ring resonators for secured netwo...
Frequency wavelength trapping by integrated ring resonators for secured netwo...University of Malaya (UM)
 
01 principle of molecular spectroscopy
01   principle of molecular spectroscopy01   principle of molecular spectroscopy
01 principle of molecular spectroscopyidionne
 
Molecular spectroscopy
Molecular spectroscopyMolecular spectroscopy
Molecular spectroscopyKashannajajula
 
Electromagnetic radiation
Electromagnetic radiationElectromagnetic radiation
Electromagnetic radiationSiyavula
 
Molecular spectroscopy 1
Molecular spectroscopy 1Molecular spectroscopy 1
Molecular spectroscopy 1Dewal Deshmukh
 

La actualidad más candente (20)

Ultravoilet spectroscopy
Ultravoilet spectroscopyUltravoilet spectroscopy
Ultravoilet spectroscopy
 
Basic concepts of organic spectroscopy
Basic concepts of organic spectroscopyBasic concepts of organic spectroscopy
Basic concepts of organic spectroscopy
 
NMR Spectroscopy
NMR SpectroscopyNMR Spectroscopy
NMR Spectroscopy
 
Types of spectrometer IMA
Types of spectrometer IMATypes of spectrometer IMA
Types of spectrometer IMA
 
Electromagnetic radiation
Electromagnetic radiationElectromagnetic radiation
Electromagnetic radiation
 
Spectroscopy
SpectroscopySpectroscopy
Spectroscopy
 
Spectroscopy
SpectroscopySpectroscopy
Spectroscopy
 
Electromagnetic radiation_Environmental Health
Electromagnetic radiation_Environmental HealthElectromagnetic radiation_Environmental Health
Electromagnetic radiation_Environmental Health
 
Ultraviolet spetroscopy by Dr. Monika Singh part-1 as per PCI syllabus
Ultraviolet spetroscopy by Dr. Monika Singh part-1 as per PCI syllabusUltraviolet spetroscopy by Dr. Monika Singh part-1 as per PCI syllabus
Ultraviolet spetroscopy by Dr. Monika Singh part-1 as per PCI syllabus
 
Presentasi Gelombang elektromagnetik Kelas X
Presentasi Gelombang elektromagnetik Kelas XPresentasi Gelombang elektromagnetik Kelas X
Presentasi Gelombang elektromagnetik Kelas X
 
Electronsreveiw
ElectronsreveiwElectronsreveiw
Electronsreveiw
 
Frequency wavelength trapping by integrated ring resonators for secured netwo...
Frequency wavelength trapping by integrated ring resonators for secured netwo...Frequency wavelength trapping by integrated ring resonators for secured netwo...
Frequency wavelength trapping by integrated ring resonators for secured netwo...
 
01 principle of molecular spectroscopy
01   principle of molecular spectroscopy01   principle of molecular spectroscopy
01 principle of molecular spectroscopy
 
Vijay seminor ..analysis
Vijay seminor ..analysisVijay seminor ..analysis
Vijay seminor ..analysis
 
Molecular spectroscopy
Molecular spectroscopyMolecular spectroscopy
Molecular spectroscopy
 
Presentation1
Presentation1Presentation1
Presentation1
 
4-Wave Mixing
4-Wave Mixing4-Wave Mixing
4-Wave Mixing
 
Electromagnetic radiation
Electromagnetic radiationElectromagnetic radiation
Electromagnetic radiation
 
Uv
UvUv
Uv
 
Molecular spectroscopy 1
Molecular spectroscopy 1Molecular spectroscopy 1
Molecular spectroscopy 1
 

Destacado

Space solarpower
Space solarpowerSpace solarpower
Space solarpowerisrokids
 
microwave transmission
microwave transmissionmicrowave transmission
microwave transmissionAmit Kumar
 
Life detection using microwave L band
Life detection using microwave L bandLife detection using microwave L band
Life detection using microwave L bandshiva kumar cheruku
 
Digital microwave communication principles
Digital microwave communication principles Digital microwave communication principles
Digital microwave communication principles Mohamed Sewailam
 
Point to point microwave
Point to point microwavePoint to point microwave
Point to point microwavenandkishorsuman
 
FUNDAMENTALS OF MICROWAVE RADIO COMMUNICATION FOR IP AND TDM
FUNDAMENTALS OF MICROWAVE RADIO COMMUNICATION FOR IP AND TDMFUNDAMENTALS OF MICROWAVE RADIO COMMUNICATION FOR IP AND TDM
FUNDAMENTALS OF MICROWAVE RADIO COMMUNICATION FOR IP AND TDMCarlos Antonio Leal Saballos
 
SEO: Getting Personal
SEO: Getting PersonalSEO: Getting Personal
SEO: Getting PersonalKirsty Hulse
 

Destacado (9)

Space solarpower
Space solarpowerSpace solarpower
Space solarpower
 
microwave transmission
microwave transmissionmicrowave transmission
microwave transmission
 
Life detection using microwave L band
Life detection using microwave L bandLife detection using microwave L band
Life detection using microwave L band
 
microwave_antenna
microwave_antennamicrowave_antenna
microwave_antenna
 
Mw day 1
Mw day 1Mw day 1
Mw day 1
 
Digital microwave communication principles
Digital microwave communication principles Digital microwave communication principles
Digital microwave communication principles
 
Point to point microwave
Point to point microwavePoint to point microwave
Point to point microwave
 
FUNDAMENTALS OF MICROWAVE RADIO COMMUNICATION FOR IP AND TDM
FUNDAMENTALS OF MICROWAVE RADIO COMMUNICATION FOR IP AND TDMFUNDAMENTALS OF MICROWAVE RADIO COMMUNICATION FOR IP AND TDM
FUNDAMENTALS OF MICROWAVE RADIO COMMUNICATION FOR IP AND TDM
 
SEO: Getting Personal
SEO: Getting PersonalSEO: Getting Personal
SEO: Getting Personal
 

Similar a poster3

Nmr instrumentation Naveen Balaji
Nmr instrumentation Naveen BalajiNmr instrumentation Naveen Balaji
Nmr instrumentation Naveen BalajiNaveen Balaji
 
X ray generation Radiology information by rahul ppt 2
X ray generation  Radiology information by rahul ppt 2X ray generation  Radiology information by rahul ppt 2
X ray generation Radiology information by rahul ppt 2Rahul Midha
 
Neutron scattering from nanoparticles
Neutron  scattering from  nanoparticlesNeutron  scattering from  nanoparticles
Neutron scattering from nanoparticlesupvita pandey
 
B.Tech sem I Engineering Physics U-V Chapter 2-Ultrasonic waves
B.Tech sem I Engineering Physics U-V Chapter 2-Ultrasonic wavesB.Tech sem I Engineering Physics U-V Chapter 2-Ultrasonic waves
B.Tech sem I Engineering Physics U-V Chapter 2-Ultrasonic wavesAbhi Hirpara
 
B.tech sem i engineering physics u v chapter 2-ultrasonic waves
B.tech sem i engineering physics u v chapter 2-ultrasonic wavesB.tech sem i engineering physics u v chapter 2-ultrasonic waves
B.tech sem i engineering physics u v chapter 2-ultrasonic wavesRai University
 
Dr. jaishree nmr instrumentation
Dr. jaishree nmr instrumentationDr. jaishree nmr instrumentation
Dr. jaishree nmr instrumentationJaishree Bardapure
 
Coulomb drag between graphene and LaAlO3/SrTiO3 heterostructures
Coulomb drag between graphene and LaAlO3/SrTiO3 heterostructuresCoulomb drag between graphene and LaAlO3/SrTiO3 heterostructures
Coulomb drag between graphene and LaAlO3/SrTiO3 heterostructuresQingGuo5
 
Ch5_plasma in food and agri
Ch5_plasma in food and agriCh5_plasma in food and agri
Ch5_plasma in food and agriSITHUHan3
 
Analysis ppt xrd
Analysis ppt xrdAnalysis ppt xrd
Analysis ppt xrdpooja joshi
 
Magnetic ceramic 2008 gcmea
Magnetic ceramic 2008 gcmeaMagnetic ceramic 2008 gcmea
Magnetic ceramic 2008 gcmeaShozen Co.ltd
 
X ray crystallography
X ray crystallographyX ray crystallography
X ray crystallographyROHIT PAL
 
1998 epitaxial film growth of the charge density-wave conductor rb0.30 moo3 o...
1998 epitaxial film growth of the charge density-wave conductor rb0.30 moo3 o...1998 epitaxial film growth of the charge density-wave conductor rb0.30 moo3 o...
1998 epitaxial film growth of the charge density-wave conductor rb0.30 moo3 o...pmloscholte
 
Three papers about HiPIMS and mass spectrometry
Three papers about HiPIMS and mass spectrometryThree papers about HiPIMS and mass spectrometry
Three papers about HiPIMS and mass spectrometryJavier García Molleja
 

Similar a poster3 (20)

Nmr instrumentation Naveen Balaji
Nmr instrumentation Naveen BalajiNmr instrumentation Naveen Balaji
Nmr instrumentation Naveen Balaji
 
X ray generation Radiology information by rahul ppt 2
X ray generation  Radiology information by rahul ppt 2X ray generation  Radiology information by rahul ppt 2
X ray generation Radiology information by rahul ppt 2
 
Neutron scattering from nanoparticles
Neutron  scattering from  nanoparticlesNeutron  scattering from  nanoparticles
Neutron scattering from nanoparticles
 
B.Tech sem I Engineering Physics U-V Chapter 2-Ultrasonic waves
B.Tech sem I Engineering Physics U-V Chapter 2-Ultrasonic wavesB.Tech sem I Engineering Physics U-V Chapter 2-Ultrasonic waves
B.Tech sem I Engineering Physics U-V Chapter 2-Ultrasonic waves
 
B.tech sem i engineering physics u v chapter 2-ultrasonic waves
B.tech sem i engineering physics u v chapter 2-ultrasonic wavesB.tech sem i engineering physics u v chapter 2-ultrasonic waves
B.tech sem i engineering physics u v chapter 2-ultrasonic waves
 
Search for Neutron Electric Dipole Moment
Search for Neutron Electric Dipole MomentSearch for Neutron Electric Dipole Moment
Search for Neutron Electric Dipole Moment
 
Dr. jaishree nmr instrumentation
Dr. jaishree nmr instrumentationDr. jaishree nmr instrumentation
Dr. jaishree nmr instrumentation
 
X ray Crystallography
X ray CrystallographyX ray Crystallography
X ray Crystallography
 
Research Poster 2 Dongwei Liu
Research Poster 2 Dongwei LiuResearch Poster 2 Dongwei Liu
Research Poster 2 Dongwei Liu
 
Coulomb drag between graphene and LaAlO3/SrTiO3 heterostructures
Coulomb drag between graphene and LaAlO3/SrTiO3 heterostructuresCoulomb drag between graphene and LaAlO3/SrTiO3 heterostructures
Coulomb drag between graphene and LaAlO3/SrTiO3 heterostructures
 
Laser drivenplasma
Laser drivenplasmaLaser drivenplasma
Laser drivenplasma
 
Ch5_plasma in food and agri
Ch5_plasma in food and agriCh5_plasma in food and agri
Ch5_plasma in food and agri
 
Analysis ppt xrd
Analysis ppt xrdAnalysis ppt xrd
Analysis ppt xrd
 
Magnetic ceramic 2008 gcmea
Magnetic ceramic 2008 gcmeaMagnetic ceramic 2008 gcmea
Magnetic ceramic 2008 gcmea
 
X ray crystallography
X ray crystallographyX ray crystallography
X ray crystallography
 
Ldb Convergenze Parallele_11
Ldb Convergenze Parallele_11Ldb Convergenze Parallele_11
Ldb Convergenze Parallele_11
 
1998 epitaxial film growth of the charge density-wave conductor rb0.30 moo3 o...
1998 epitaxial film growth of the charge density-wave conductor rb0.30 moo3 o...1998 epitaxial film growth of the charge density-wave conductor rb0.30 moo3 o...
1998 epitaxial film growth of the charge density-wave conductor rb0.30 moo3 o...
 
ULTRASONICS
ULTRASONICSULTRASONICS
ULTRASONICS
 
Instruments of NMR
Instruments of NMR Instruments of NMR
Instruments of NMR
 
Three papers about HiPIMS and mass spectrometry
Three papers about HiPIMS and mass spectrometryThree papers about HiPIMS and mass spectrometry
Three papers about HiPIMS and mass spectrometry
 

poster3

  • 1. High  power  microwave  beam-­‐spli3er     Ta$ana  Yugay1,2,  Thierry  Dubroca2,  Eden  Steven2,  Stephen  Hill2,3   1.  Simmons  College  2.  Na$onal  High  Magne$c  Field  Laboratory    3.  Florida  State  University   Funding:  NSF-­‐MRI  CHE-­‐1229170,  NSF  DMR-­‐1157490,  State  of  Florida     Introduc9on   Component  Characteriza9on  Methods   Dynamic  nuclear  polariza$on  is  the  process  of  irradia$ng  a  sample   with  microwaves  to  increase  its  nuclear  resonance  lines’  intensity.  A   quasi-­‐op$cal  setup  is  used  to  guide  microwaves  from  a  395  GHz   gyrotron  source  to  the  sample.  Transmission  losses  of  the  quasi-­‐ op$cal  components  were  evaluated.  Addi$onally,  a  beam-­‐spliWer   was  designed  and  fabricated  to  simultaneously  run  two  dynamic   nuclear  polariza$on  experiments  in  parallel.   Beam-­‐spli3er  Fabrica9on  Methods   Le@:  an  airbrush  was  used  to  spray  solu$on  of  polymer  and  silver  par$cles  onto   various  substrates  such  as  polyethylene  (middle)  and  quartz  (right).     Beam-­‐spli3er  Characteriza9on  Results   Conclusion   Out  of  the  six  beam-­‐spliWers  created  by  two  different   methods  (spray-­‐coa$ng  and  evapora$on)  on  three   different  substrates,  only  the  beam-­‐spli3er  created  by   evapora9ng  a  thin  layer  of  silver  onto  a  1  mm  thick  quartz   was  able  to  sustain  microwave  beam  powers  up  to  50   wa3.  There  are  therefore  four  requirements  to    making  a   successful  high  power  microwave  beam-­‐spliWer:   Component  Characteriza9on  Results     •  3D  horn:   compared   transmission  with   and  without  the   horn   •  Cu  horn:  compared   transmission  with   and  without  horn   •  Shu3er:  compared   transmission  with   open  and  without   shuWer   •  Back-­‐to-­‐back  horn:   compared   transmission  at   entrance  and  exit   •  Mirrors:  Measured   reflec$on   •  Grid:  Measured   transmission  from   0°  to  90°  rota$on.   Le@:  beam-­‐spliWer,  made  with  silver  sprayed  onto  film,  melted  at  3  waWs  of   microwave  power  from  a  395  GHz  gyrotron.  Middle:  150  μm  thick  quartz  with   evaporated  silver  damaged  by  a  20  waW  microwave  beam.  Right:  no   observable  damages  were  made  to  a  1  mm  thick  quartz  with  evaporated   silver,  up  to  the  maximum  source  power  of  50  waW.   Op9cal  Component   Transmission   3D  Horn   33%   Cu  Horn   38%   Open  ShuWer   99%   Back-­‐to-­‐back  Horn   92%   Sample   Low  Power   High  Power   Polyethylene  film   ✔   ✔   Quartz   ✔   ✔   Polyethylene  +  spray-­‐coated  silver   ✔   ✗   Polyethylene  +  deposited  silver   ✔   ✗   150  μm  quartz  +  spray-­‐coated  silver   ✔   ✗   150  μm  quartz  +  deposited  silver   ✔   ✗   1  mm  quartz  +  deposited  silver  (20  nm)   ✔   ✔   395  GHz   gyrotron   600   MHz   NMR   magnet   References:  1.  Overhauser  A.,  Phys.  Rev.  92,  2  (1953);  2.  Griffin  R.  et  al.,  PCCP  12,  5737  (2010);  3.  Ung  B.  et  al.,  Op$cs  Express.  20,  5  (2012).   COPPER  HORN   3D  HORN   PYROMETER  BEAM   BACK-­‐TO-­‐BACK  HORN   GRID   SHUTTER   FLAT   MIRROR   CURVED   MIRROR   BEAM   SPLITTER   POLARIZER   #1   GYROTRON   EXPERIMENT  1   EXPERIMENT  2     •  Gyrotron:  395   GHz  beam  source   •  Polarizer  #1:   filters  out  beam  of   wrong   polariza$on   •  Beam-­‐spli3er:   splits  beam  in  two   •  Curved  Mirror:   converges  and   propagates  beam   •  Flat  Mirror:   changes  beam   direc$on   •  Shu3er:  on/off   beam  switch   •  Back-­‐to-­‐back   Horn:  Gaussian   beam  filter   0   20   40   60   80   100   120   0   20   40   60   80   100   120   140   160   Measured  Transmission  (mW)   Distance  (mm)   0   50   100   150   200   250   0   10   20   30   40   50   60   70   80   90   100   Measured  Transmission  (mW)   Angle  Rotated  (Degrees)   Measured   Malus  Law   Where  beam  diameter   =  3D  horn  diameter   100%  transmission   Transmission  plot  of  microwave  power  as  a  func$on  of   distance  between  source  and  3D  horn  (blue  dots).  Linear   regression  model  (solid  black).   Transmission  plot  of  microwave  power  as  a  func$on  of   rota$on  angle  of  a  polariza$on  grid  (blue  dots).  Malus   Law  model  overlayed  (solid  orange).   Le@:  a  deposi$on  chamber  was  used  to  deposit  silver  par$cles  onto  quartz.  Middle:   high  homogeneity  silver  deposi$on  on  quartz  substrate.  Mounted  beam-­‐spliWer  in   quasi-­‐op$cal  bench  with  airflow  cooling  (bo3om  right).       1.  A  substrate  transparent  to  microwaves,  yet  thick  (i.e.   strong)  enough  to  mechanically  handle  thermal   stress.   2.  A  metal  layer  of  high  thickness  homogeneity,   ensuring  the  beams’  shape  remains  unchanged.   3.  Silver  layer  of  high  conduc9vity,  ensuring  minimal   heat  absorp$on  (minimizes  thermal  stress).   4.  A  cooling  source,  to  reduce  thermal  stress  on  the   substrate  caused  by  microwave  hea$ng  of  the  metal   layer.