SlideShare una empresa de Scribd logo
1 de 39
Descargar para leer sin conexión
ETABS MODELLING




AUTHOR: VALENTINOS NEOPHYTOU BEng (Hons), MSc


                 March 2013
ETABS MODELING ACCORDING TO EUROCODES


     Step by step procedure and methodology of how you
               developing a modelusing ETABS

Step 1: Specify Material Properties for Concrete



   1. Poisson ratio is equal to v = 0 (cracked concrete) and v = 0.2 (un-cracked concrete) as
      (EN1992-1-1,cl.3.1.3)
                    Table 1: Concrete properties (EN 1992, Table 3.1)

                                          C16/20       C20/25        C25/30         C30/37
Property Data for concrete
                                         (N/mm2)      (N/mm2)       (N/mm2)        (N/mm2)
Mass per unit Volume                     2,5E-09      2,5E-09        2,5E-09       2,5E-09
Weight per unit volume                   2,5E-05      2,5E-05        2,5E-05       2,5E-05
Modulus of Elasticity                     29000        30000          31000         33000
Poisson’s Ratio (cracked concrete)          0            0                   0        0
Coeff. of thermal expansion              10E-06        10E-06        10E-06        10E-06
Charact. ConcCyl. Strength, fck             16           20                  25       30
Bending Reinf. Yield stress, fyk           500          500              500         500
Shear Reinf. Yield stress, fyk             500          500              500         500

                                 Figure 1: Concrete properties




 Valentinos Neophytou BEng (Hons), MSc                                	
          Page: 2
 ETABS MANUAL                                                         	
  
ETABS MODELING ACCORDING TO EUROCODES

Step 2: Add frame section for columns



                   Figure 2: Section properties of concrete columns




Valentinos Neophytou BEng (Hons), MSc                            	
     Page: 3
ETABS MANUAL                                                     	
  
ETABS MODELING ACCORDING TO EUROCODES

Step 3: Add frame section for beams

                  Figure 3: Effective width of beams (EN1992-1-1,cl.5.3.2.1)




Interior beam




Internal beam
supporting an
internal and an
external slab




Exterior beam
supporting
cantilever




External beam
no cantilever




                                For practice use beff 1,2 = 0.2lo


 Valentinos Neophytou BEng (Hons), MSc                               	
        Page: 4
 ETABS MANUAL                                                        	
  
ETABS MODELING ACCORDING TO EUROCODES

                     Figure 4: Section properties of concrete beams




Notes:
   1. Property modification factors are used to reduce moment and torsion stiffness due to
      crack section. Torsional stiffness of the cracked section should be set equal to 10% of
      the torsional stiffness of the un-cracked section.
   2. Unless a more accurate analysis of the cracked elements is performed, the elastic
      flexural and shear stiffness properties of concrete and masonry elements may be taken
      to be equal to one-half of the corresponding stiffness of the un-cracked elements
      (EN1998-1-1,cl. 4.3.1(7)).
   3. These modification factor only affect the analysis properties, they do not affect the
      design properties.




   Column (Line            Beam (Line          Slab (Shell element)             Wall (Shell
     element)               element)                                             element)
    I22=I33=0.5            I22=I33=0.5           m11=m12=m22=0.5             m11= m12=m22=0.5
       It=0.1                 It=0.1                  It=0.1                       It=0.1




Valentinos Neophytou BEng (Hons), MSc                                 	
            Page: 5
ETABS MANUAL                                                          	
  
ETABS MODELING ACCORDING TO EUROCODES

Step 4: Add Slabs & Walls



                    Figure 5: Section properties of concrete slab




                    Figure 6: Section properties of concrete wall




Valentinos Neophytou BEng (Hons), MSc                               	
     Page: 6
ETABS MANUAL                                                        	
  
ETABS MODELING ACCORDING TO EUROCODES

Step 5: Define Response Spectrum function according to EC8



   1.   Peak ground acceleration agR=0,25g,
   2.   Type C or D for building within category of importance I and II,
   3.   Define two response spectrum cases if the factor q is different in each direction,
   4.   Modify the existing values of elastic response spectrum case in order to change it into
        the design response spectrum.
                           Figure 7: Response Spectrum to EC8




Valentinos Neophytou BEng (Hons), MSc                                   	
         Page: 7
ETABS MANUAL                                                            	
  
ETABS MODELING ACCORDING TO EUROCODES




                     Figure 8: Design spectrum for elastic analysis data


  PERIOD	
      ACCELERATION	
               g	
              =	
                        9.81	
              m/sec2	
  
     T	
            Sd(T)	
                  β	
              =	
                         0.2	
                -­‐	
         	
                  	
               	
  
  0.0000	
         0.0767	
      Soil	
  Type	
               =	
                          C	
                 -­‐	
  
  0.0667	
         0.1150	
                  q	
              =	
                        1.50	
                -­‐	
         	
                  	
               	
  
  0.1333	
         0.1533	
                αgR	
              =	
                        0.10	
                    -­‐	
  
  0.2000	
         0.1917	
                  S	
              =	
                        1.15	
                    -­‐	
     	
  
  0.6000	
         0.1917	
                 TB	
              =	
                        0.20	
                sec	
         	
                  	
               	
  
  0.8333	
           0.1380	
                      TC	
   =	
                            0.60	
                sec	
  
   1.0667	
          0.1078	
                      TD	
   =	
                            2.00	
                sec	
  
   1.3000	
          0.0885	
                       T	
   =	
                            0.50	
                sec	
  
   1.5333	
          0.0750	
                                                                                               	
                	
                  	
  
                                                       	
                                 	
                 	
  
   1.7667	
          0.0651	
                                 	
                     Data	
  for	
  soil	
  type	
  -­‐	
  T	
  ype	
  Spectrum	
  1	
  
                                                                                                                                                   	
             	
  
   2.0000	
          0.0575	
        	
                               index	
     Soil	
  Type	
           S	
                         TB	
             TC	
             TD	
  
   3.3333	
          0.0200	
        	
                                 1	
            A	
                 1	
                     0.15	
               0.4	
             2	
  
   4.6667	
          0.0200	
        	
                                 2	
             B	
            1.2	
                       0.15	
               0.5	
             2	
  
   6.0000	
          0.0200	
        	
                                 3	
             C	
           1.15	
                         0.2	
              0.6	
             2	
  
                                            	
  
   7.3333	
          0.0200	
                                           4	
            D	
            1.35	
                         0.2	
              0.8	
             2	
  
                                            	
  
   8.6667	
          0.0200	
                                           5	
             E	
            1.4	
                       0.15	
               0.5	
             2	
  
  10.0000	
                  	
  
                     0.0200	
  
                                                                          	
  
                             	
                                                   	
                  	
                     	
                         	
        	
  
Valentinos Neophytou BEng (Hons), MSc                                                                           	
                  Page: 8
ETABS MANUAL                                                                                                    	
  
ETABS MODELING ACCORDING TO EUROCODES

Step 6: Define Load Case



                               Figure 8: Dead/Live/Wind




Step 5: Define Equivalent Static Analysis



Equivalent static analysis can be used if the following case can be met:


   1. Ground acceleration: Check seismic zonation map from National Annex


   2. Spectrum type 1:                      5.5Hz<M (High seismicity areas)


   3. Ground type: Normally type B or C can be used (see EN 1998,table 3.1)


   4. Lower bound factor for the horizontal design spectrum: 0.2 (EN 1998-1-
      1,cl.3.2.2.5(4)P)



   5. Behavior factor q: See table



   6. Correction factor λ (EN1998-1-1,cl.4.3.3.2.2(1Ρ))
      λ=0.85 if T1≤2TC and more than 2 storey
      λ=1.0 in all other case

 Valentinos Neophytou BEng (Hons), MSc                              	
         Page: 9
 ETABS MANUAL                                                       	
  
ETABS MODELING ACCORDING TO EUROCODES




  7. Regular in elevation


  8. Regular in elevation and irregular in plan


  9. Fundamental period:         T1≤4T_c
                                  T1≤2,0s


                         Table 1: Equivalent Static Force Case
     Load case name            Direction and Eccentricity        % Eccentricity
         EQXA                       X Dir + Eccen. Y                 0.05
         EQYA                       X Dir – Eccen. Y                 0.05
         EQXB                       Y Dir + Eccen. X                 0.05
         EQYB                       Y Dir – Eccen. X                 0.05




Valentinos Neophytou BEng (Hons), MSc                            	
       Page: 10
ETABS MANUAL                                                     	
  
ETABS MODELING ACCORDING TO EUROCODES

Step 6: Define Load Combination for Equivalent lateral force analysis

Ultimate limit state (ULS)


Static case
   COMBO 1.           1.35DL + 1.5LL
   COMBO 2.           1.35DL + 1.5WINDX + 1.5 (0.7LL + 0.5 SNOW)
   COMBO 3.           1.35DL + 1.5WINDY + 1.5 (0.7LL + 0.5 SNOW)
   COMBO 4.           1.35DL + 1.5LL + 1.5 (0.7WINDX + 0.5 SNOW)
   COMBO 5.           1.35DL + 1.5LL + 1.5 (0.7WINDY + 0.5 SNOW)
   COMBO 6.           1.35DL + 1.5LL + 1.5 (0.7SNOW + 0.5WINDX)
   COMBO 7.           1.35DL + 1.5LL + 1.5 (0.7SNOW + 0.5WINDY)
   COMBO 8.           1.35DL + 1.5SNOW + 1.5 (0.7LL+ 0.5WINDX)
   COMBO 9.           1.35DL + 1.5SNOW + 1.5 (0.7LL+ 0.5WINDY)
   COMBO 10.          1.35DL + 1.5SNOW + 1.5 (0.7WINDX + 0.5LL)
   COMBO 11.          1.35DL + 1.5SNOW + 1.5 (0.7WINDY + 0.5LL)
   COMBO 12.          1.35DL + 1.5WINDX + 0.7*1.5(LL+SNOW)
   COMBO 13.          1.35DL + 1.5WINDY + 0.7*1.5(LL+SNOW)
   COMBO 14.          1.35DL + 1.5(LL+SNOW) + 0.7*1.5WINDX
   COMBO 15.          1.35DL + 1.5(LL+SNOW) + 0.7*1.5WINDY
Seismic case
   COMBO 16.          DL + 0.3LL + EQXA + 0.3EQYA
   COMBO 17.          DL + 0.3LL + EQXA – 0.3EQYA
   COMBO 18.          DL + 0.3LL - EQXA + 0.3EQYA
   COMBO 19.          DL + 0.3LL - EQXA – 0.3EQYA
   COMBO 20.          DL + 0.3LL + EQYA + 0.3EQXA
   COMBO 21.          DL + 0.3LL + EQYA – 0.3EQXA
   COMBO 22.          DL + 0.3LL - EQYA + 0.3EQXA
   COMBO 23.          DL + 0.3LL - EQYA – 0.3EQXA

   COMBO 24.          DL + 0.3LL + EQXB + 0.3EQYB
   COMBO 25.          DL + 0.3LL + EQXB – 0.3EQYB
   COMBO 26.          DL + 0.3LL - EQXB + 0.3EQYB
   COMBO 27.          DL + 0.3LL - EQXB – 0.3EQYB
   COMBO 28.          DL + 0.3LL + EQYB + 0.3EQXB
   COMBO 29.          DL + 0.3LL + EQYB – 0.3EQXB
   COMBO 30.          DL + 0.3LL - EQYB + 0.3EQXB
   COMBO 31.          DL + 0.3LL - EQYB – 0.3EQXB
Serviceability limit state (SLS)
   COMBO 32.          DL + LL

 Valentinos Neophytou BEng (Hons), MSc                           	
     Page: 11
 ETABS MANUAL                                                    	
  
ETABS MODELING ACCORDING TO EUROCODES

Step 7: Define Response Spectrum case



Modal Response spectrum
   1. Independently in X and Y direction,
   2. Define design spectrum,
   3. Use CQC rule for the combination of different modes (EN1998-1-1,cl.4.3.3.3.2(3))
   4. Use SRS rule for combined the results of modal analysis for both horizontal directions
      (EN1998-1-1,cl.4.3.3.5.1(21)).
   5. Accidental eccentricity of each storey cause of uncertainties locatin of masses have
      been taken into account 5% (EN1998-1-1,cl.4.3.2).
   6. Modal Combination: “Complete Quadratic Combination” (CQC) can be used if the Tj
      ≤ 0,9 Ti (EN1998-1-1,cl.4.3.3.3.2(3)P).
               Figure 9: Response Spectrum case Data for EQY& EQX




Valentinos Neophytou BEng (Hons), MSc                                	
         Page: 12
ETABS MANUAL                                                         	
  
ETABS MODELING ACCORDING TO EUROCODES

Step 8: Define Load Combination for modal analysis



Ultimate limit state (ULS)


Static case
   COMBO 1.           1.35DL + 1.5LL
   COMBO 2.           1.35DL + 1.5WINDX + 1.5 (0.7LL + 0.5 SNOW)
   COMBO 3.           1.35DL + 1.5WINDY + 1.5 (0.7LL + 0.5 SNOW)
   COMBO 4.           1.35DL + 1.5LL + 1.5 (0.7WINDX + 0.5 SNOW)
   COMBO 5.           1.35DL + 1.5LL + 1.5 (0.7WINDY + 0.5 SNOW)
   COMBO 6.           1.35DL + 1.5LL + 1.5 (0.7SNOW + 0.5WINDX)
   COMBO 7.           1.35DL + 1.5LL + 1.5 (0.7SNOW + 0.5WINDY)
   COMBO 8.           1.35DL + 1.5SNOW + 1.5 (0.7LL+ 0.5WINDX)
   COMBO 9.           1.35DL + 1.5SNOW + 1.5 (0.7LL+ 0.5WINDY)
   COMBO 10.          1.35DL + 1.5SNOW + 1.5 (0.7WINDX + 0.5LL)
   COMBO 11.          1.35DL + 1.5SNOW + 1.5 (0.7WINDY + 0.5LL)
   COMBO 12.          1.35DL + 1.5WINDX + 0.7*1.5(LL+SNOW)
   COMBO 13.          1.35DL + 1.5WINDY + 0.7*1.5(LL+SNOW)
   COMBO 14.          1.35DL + 1.5(LL+SNOW) + 0.7*1.5WINDX
   COMBO 15.          1.35DL + 1.5(LL+SNOW) + 0.7*1.5WINDY


Seismic case


   COMBO 16.          DL + 0.3LL + EQX + 0.3EQY
   COMBO 17.          DL + 0.3LL + EQX – 0.3EQY
   COMBO 18.          DL + 0.3LL - EQX + 0.3EQY
   COMBO 19.          DL + 0.3LL - EQX – 0.3EQY
   COMBO 20.          DL + 0.3LL + EQY + 0.3EQX
   COMBO 21.          DL + 0.3LL + EQY – 0.3EQX
   COMBO 22.          DL + 0.3LL - EQY + 0.3EQX
   COMBO 23.          DL + 0.3LL - EQY – 0.3EQX




Serviceability limit state (SLS)


   COMBO 24.          DL + LL


 Valentinos Neophytou BEng (Hons), MSc                        	
     Page: 13
 ETABS MANUAL                                                 	
  
ETABS MODELING ACCORDING TO EUROCODES

          G+0.3Q+Ex+0.3Ey               G+0.3Q+Ex-0.3Ey




          G+0.3Q-Ex+0.3Ey               G+0.3Q-Ex-0.3Ey




          G+0.3Q+Ey+0.3Ex               G+0.3Q+Ey-0.3Ex




Valentinos Neophytou BEng (Hons), MSc          	
         Page: 14
ETABS MANUAL                                   	
  
ETABS MODELING ACCORDING TO EUROCODES




            G+0.3Q-Ey+0.3Ex             G+0.3Q-Ey-0.3Ex




             1.35G+1.5Q




Valentinos Neophytou BEng (Hons), MSc          	
         Page: 15
ETABS MANUAL                                   	
  
ETABS MODELING ACCORDING TO EUROCODES




Valentinos Neophytou BEng (Hons), MSc   	
     Page: 16
ETABS MANUAL                            	
  
ETABS MODELING ACCORDING TO EUROCODES

Step 9: Meshing of slab



Assign -> Shell Area -> Area Object Mesh Option


Automatic meshing option for slab element only




Notes:
   1. The property assignments to meshed area objectets are the same as the original area
      object.
   2. Load and mass assignments on the original area object are appropriately broken up
      onto the meshed area objects.




 Valentinos Neophytou BEng (Hons), MSc                               	
        Page: 17
 ETABS MANUAL                                                        	
  
ETABS MODELING ACCORDING TO EUROCODES

Step 10: Meshing/Label of wall



Edit>Mesh shells and click on the
Mesh/Quads/Triangles at Intersections with visible grid lines:




Assign->Shell/Area->Pier Label or Spandrel Label.




 Valentinos Neophytou BEng (Hons), MSc                           	
     Page: 18
 ETABS MANUAL                                                    	
  
ETABS MODELING ACCORDING TO EUROCODES

Step 11: Define Auto-Line Constraint



Select area element (slab)->Assign->Shell Are-> Auto-Line Constraint




Step 12: Define mass source

Combination of the seismic action with other actions (EN 1998-1-1,cl.3.2.4):
   1. Define the category of building (EN 1991,Table 6.1),
   2. Define the reduce factor (EN 199, Table A.1.1).


                               Table 2: Combination of seismic mass

                            𝑮 𝒌,𝒋 +    𝝍 𝑬𝒊 𝑸 𝒌,𝒊            (ΕΝ1998-1-1,Eq. 3.17)

        Combination coefficient for variable action is:       𝜓!" = 𝜙 ∙ 𝜓!! (ΕΝ1998-1-1,Eq. 4.2)

                       Values of φ for calculating 𝝍 𝑬𝒊 (CYS NA EN1998-1-1:2004)
                    Type of                         Storey                       φ
                    Variable
                     action
                                      Roof                                      1,0
                 Categories A-
                                      Storeys with correlated occupancies       0,8
                      C1
                                      Independently occupied storeys            0,5
                 Categories A-
                                                                                1.0
                      F1




 Valentinos Neophytou BEng (Hons), MSc                                           	
           Page: 19
 ETABS MANUAL                                                                    	
  
ETABS MODELING ACCORDING TO EUROCODES



                           Table 3: Values of ψ coefficients
                                                           ψο    ψ1     ψ2
                Category             Specific Use
                   A            Domestic and residential   0.7   0.5   0.3
                   B                     Office            0.7   0.5   0.3
                   C            Areas for Congregation     0.7   0.7   0.6
                   D                    Shopping           0.7   0.7   0.6
                   E                     Storage           1.0   0.9   0.8
                   F            Traffic < 30 kN vehicle    0.7   0.7   0.6
                   G            Traffic < 160 kN vehicle   0.7   0.5   0.3
                   H                      Roofs            0.7    0     0
                                Snow, altitude < 1000 m    0.5   0.2    0
                                          Wind             0.5   0.2    0



                   Figure 10: Adding seismic mass to ETABS




Valentinos Neophytou BEng (Hons), MSc                                  	
     Page: 20
ETABS MANUAL                                                           	
  
ETABS MODELING ACCORDING TO EUROCODES



Step 13: Define number of modes



Notes:
   1. Minimum number of modes to be taken into account (EN1998-1-1,cl.4.3.3.3.1(5)):
                 k ≥ 3.√n


k is the number of modes taken into account.
n is the number of storeys above the foundation or the top of a rigid basement.




 Valentinos Neophytou BEng (Hons), MSc                                 	
         Page: 21
 ETABS MANUAL                                                          	
  
ETABS MODELING ACCORDING TO EUROCODES




Step 14: Define restrains at the base

Select the entire base joints




Step 15: Define diaphragms to slab




 Valentinos Neophytou BEng (Hons), MSc   	
     Page: 22
 ETABS MANUAL                            	
  
ETABS MODELING ACCORDING TO EUROCODES

Step 16: Checking the model




Valentinos Neophytou BEng (Hons), MSc   	
     Page: 23
ETABS MANUAL                            	
  
ETABS MODELING ACCORDING TO EUROCODES

                            MODAL ANALYSIS RESULTS



Step 1: Calculate the effective modal mass



Display> Show Tables > Modal information > Building modal information > Table
modal participation mass ratios


   1. The sum of the effective modal masses for the modes taken into account amounts to at
      least 90% of the total mass of the structure (EN 1998-1-1,cl.4.3.3.3.1(3)).
   2. All modes with effective modal masses greater than 5% of the total mass are taken
      into account.




                           Mode 1 (Translation Y - direction)




                           Mode 2 (Translation X - direction)
 Valentinos Neophytou BEng (Hons), MSc                              	
        Page: 24
 ETABS MANUAL                                                       	
  
ETABS MODELING ACCORDING TO EUROCODES




                             Mode 3 (Torsional)




Step 2: Damage limitations

Valentinos Neophytou BEng (Hons), MSc             	
     Page: 25
ETABS MANUAL                                      	
  
ETABS MODELING ACCORDING TO EUROCODES



The damage limitation requirements should be verified in terms of the interstorey drift (dr)
(EN 1998-1-1,cl.4.4.3.2) using the equation below:
                                                           𝑑!   𝑎
                                   𝑑! ∙ 𝑣 ≤ 𝑎 ∙ ℎ     =>      ≤
                                                           ℎ    𝑣
dr: is the difference of the average lateral displacement ds in CM at the top and bottom of
storey.
v: is the reduction factor which takes into account the lower return period of the seismic
action.
h: is the storey height
                      Table 4: Damage limitation (EN1998-1-1,cl.4.4.3)
For non-structural elements of brittle material attached to the structure          drv≤0.005h

For building having ductile non structural elements                               drv≤0.0075h

For building having non-structural elements fixed in a way so as not to            drv≤0.010h
interfere with structural deformation


    Tab;e 5: Reduction factor of limitation to interstorey drift (CYA NA EN1998-1-
                                      1,cl.NA.2.15)

                   Importance class                          Reduction factor v
                           I                                        0.5
                          II                                        0.5
                         III                                        0.4
                         IV                                         0.4




    1. Export results from ETABS to ECXEL
 Valentinos Neophytou BEng (Hons), MSc                                    	
        Page: 26
 ETABS MANUAL                                                             	
  
ETABS MODELING ACCORDING TO EUROCODES




  2. Sort the Larger value on top




  3. Record the value of each storey in the spread sheet below:
Valentinos Neophytou BEng (Hons), MSc                             	
     Page: 27
ETABS MANUAL                                                      	
  
ETABS MODELING ACCORDING TO EUROCODES

Damage limitation (EN1998-1-1,cl.4.4.3)

             Displacement Displacement Heigh of each   Reduction       v*dr           v*dr/h         X-­‐direction	
  	
  	
  	
  	
  	
  	
  	
  	
   Y-­‐direction	
  	
  	
  	
  	
  	
  	
  	
  	
  
                Drift X      Drift Y     storey, h      factor     X - direction   Y - direction   dr*v<0,005-­‐0,01 dr*v<0,005-­‐0,01
                dr (m)       dr (m)         (m)           v
  Storey 2      0,0026       0,0026        3,00          0,50        0,00043         0,00043                        OK                                                OK
  Storey 1      0,0017       0,0017        3,00          0,50        0,00028         0,00028                        OK                                                OK




Step 3: Second order effects



    1. The criterion for taking into account the second order effect is based on the interstorey
       drift sensitivity coefficient θ, which is define with equation (EN 1998-1-
       1,cl.4.4.2.2(2)).
                                                             𝑃!"! ∙ 𝑑!
                                                       𝜃=
                                                              𝑉!"! ∙ ℎ
hr: is the interstorey drift,
h: is the storey height,
Vtot: is the total seismic storey shear
Ptot: is the total gravity load at and above storey considered in the seismic design situation
(G+0.3Q).
                Table 6: Consequences of value of P-Δ coefficient θ on the analysis

                θ≤0,1                             No need to consider P-Δ effects
                               P-Δ effects may be taken into account approximately by
             0,1≤θ≤0,2                                                           !
                               amplifying the effects of the seismic actions by !!!
                               P-Δ effects must be accounted for by an analysis including
             0,2≤θ≤0,3
                               second order effects explicity
                θ≥0,3          Not permitted




    1. Explore the results from ETABS to EXCEL

 Valentinos Neophytou BEng (Hons), MSc                                                               	
                                           Page: 28
 ETABS MANUAL                                                                                        	
  
ETABS MODELING ACCORDING TO EUROCODES




  2. Select the combo G+0,3Q and record the highest value from each storey




  3. Record the heist value for Vtot
Valentinos Neophytou BEng (Hons), MSc                         	
        Page: 29
ETABS MANUAL                                                  	
  
ETABS MODELING ACCORDING TO EUROCODES




   4. Record all values on the spread sheet as showing below



Second order effects (EN1998-1-1,cl.4.4.2.2)

               Ptot      Heigh of         Vtot         Vtot     Displaceme Displacement                 θ	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  θ	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
                                                                                                                                                                                                                                     	
  	
  
              (kN)     each storey,   X-direction   Y-direction nt Drift X     Drift Y           X-­‐direction	
  	
  	
  	
  	
  	
  	
  	
  	
   Y-­‐direction	
  	
  	
  	
  	
  	
  	
  	
  	
  
                        h     (m)        (kN)          (kN)        dr (m)      dr (m)                 θ≤0.1                                                                                                         θ≤0.1
 Storey 2     709         3,00          220,00        220,00      0,00260     0,00260                  OK                                                                                                                  OK
 Storey 1     1426        3,00          334,00        334,00      0,00170     0,00170                  OK                                                                                                                  OK




Step 4: Structural regularity plan

 Valentinos Neophytou BEng (Hons), MSc                                                    	
                                                                                                     Page: 30
 ETABS MANUAL                                                                             	
  
ETABS MODELING ACCORDING TO EUROCODES



    1. Slenderness ratio of the building                     λ=Lmax/Lmin<4
    2. A “compact shape”: one in which the perimeter lines is always convex, or at least
       encloses not more than 5% re-entrant area.
    3. The floor diaphragms shall be sufficient stiff in-plane not to affect the distribution of
       lateral loads between vertical elements.
                                     Table 7: Criteria for regularity in plan
                                                                                        rx> 3.33eox
                          Lateral torsional rensponse condition:
                                                                                        rx> 3.33eoy
                          Torsionally rigidity condition:                               rx> Is


Regularity in plan (cl. 4.2.3.2)
Check 1 - slenderness ratio cl.4.2.3.2(5)
Slenderness ratio                                       λ=Lmax/Lmin<4        =                             2,80          OK



Regularity in plan (cl. 4.2.3.2)
Check 2 - structural eccentricity & torsional radius cl.4.2.3.2(6)

Length in longitudinal direction                                             =                             56      m
Length in trasverse direction                                                =                             20      m
Stifness in X direction                                     Sx=1000/dx

Stifness in Y direction                                     Sy=1000/dy

Torsional stifness                                          Ts=1000/Rz

Torsional radius                                            ry=Ts/Sx
Torsional radius                                            rx=Ts/Sy
Radius of gyration                                          Is=((Lmax²+Lmin²)12)^0,5

Structural eccentricity in x direction                      eox=Rz(Fx)/Rz(Mz)
Structural eccentricity in y direction                      eox=Rz(Fy)/Rz(Mz)


Table 1: Criteria for regularity in plan - Torsionally rigity condition

             Displacement Displacement         Rotation Z     Stifness X         Stifness Y      Torsional         rx          ry
                X (mm)       Y (mm)             (radians)      (kN/m)             (kN/m)          Stifness        (m)         (m)
                   dx           dy                 Rz             Sx                 Sy        (kNm/radian)
                                                                                                     Ts
 Storey 2         7,35             7,14        8,18E-06         136054            140056         1,22E+08         29,5        30,0
 Storey 1           5               6          8,18E-06         200000            166667         1,22E+08         27,1        24,7



                  0.3rx            0.3ry           Is            Is<rx             Is<ry
                   (m)              (m)           (m)


 Storey 2             8,9                9,0        17,2          OK                   OK
 Storey 1             8,1                7,4        17,2          OK                   OK

Table 2: Criteria for regularity in plan - Lateral torsional respone condition

              Rotation Rz     Rotation Rz Rotation Rz Eccentricity              Eccentricity   3,33eox<rx           3,33eoy<ry
                  for             for         for        eox                       eoy
              Fx=1000kN       Fy=1000kN Mx=1000kNm
 Storey 2      8,18E-06        8,18E-06    8,18E-06      1,00                       1,00           OK                    OK
 Storey 1      8,18E-06        8,18E-06    8,18E-06       1                      1,00E+00          OK                    OK

Apply forces as follow:
 Valentinos Neophytou BEng (Hons), MSc                                                              	
                 Page: 31
 ETABS MANUAL                                                                                       	
  
ETABS MODELING ACCORDING TO EUROCODES



                            Storeys           Load Case           Forces
                                              FX1                 FX1=1000kN
                            STOREY 1          FY1                 FΥ1=1000kN
                                              MZ1                 MZ1=1000kNm
                                              FX2                 FX2=1000kN
                            STOREY 2          FY2                 FΥ2=1000kN
                                              MZ2                 MZ2=1000kNm




Repeat this process for all load case in order to obtain the displacement values.


 Valentinos Neophytou BEng (Hons), MSc                              	
         Page: 32
 ETABS MANUAL                                                       	
  
ETABS MODELING ACCORDING TO EUROCODES

Step 5: Structural type of the building



                       Table 8: Classification of structural system
Wall system                     Vertical and lateral load: Wall resist Vb,wall>65%Vbtotal
Frame system                    Vertical and lateral load: Vb,frame>65%Vbtotal
Frame-equivalent dual system    Vertical and lateral load: Vb,frame>50%Vbtotal
Wall-equivalent dual system     Vertical and lateral load: Vb,wall>50%Vbtotal


Display >Show Tables> Support/Sprint/Reaction


   1. Explore the results from ETABS to EXCEL




 Valentinos Neophytou BEng (Hons), MSc                                 	
          Page: 33
 ETABS MANUAL                                                          	
  
ETABS MODELING ACCORDING TO EUROCODES

From load case tick the worst-case seismic design combination:


   COMBO 1.          DL + 0.3LL + EQX + 0.3EQY
   COMBO 2.          DL + 0.3LL + EQX – 0.3EQY
   COMBO 3.          DL + 0.3LL - EQX + 0.3EQY
   COMBO 4.          DL + 0.3LL - EQX – 0.3EQY
   COMBO 5.          DL + 0.3LL + EQY + 0.3EQX
   COMBO 6.          DL + 0.3LL + EQY – 0.3EQX
   COMBO 7.          DL + 0.3LL - EQY + 0.3EQX
   COMBO 8.          DL + 0.3LL - EQY – 0.3EQX




   2. Select the worst-case design combo


   3. Select the nodes for frames only


   4. Calculate the sum of the base shear that can be resist by column in X and Y
      direction




 Valentinos Neophytou BEng (Hons), MSc                           	
        Page: 34
 ETABS MANUAL                                                    	
  
ETABS MODELING ACCORDING TO EUROCODES

i.e       VTOTAL        = 1000KN
          VFRAMES, X ,Y = 500KN
          VTOTAL / VFRAME 500/1000*100= 50%


Therefore the structural system of building is: Wall-equivalent dual system


How to checking base shear
Base shear can be check as follow:
                             Table 9: Checking the base shear
  Direction                Lower bound values                       Upper bound values
 X direction       Fb = %Effective mass(X dir.)*Mass *Sdx            Fb = ∑mass * Sdx

 Y direction       Fb = %Effective mass(Y dir.)*Mass *Sdv             Fb = ∑mass * Sdy

Note: The base shear should be within those limits




  NOTE: REPEAT ALL THIS PROCESS FROM BEGIN WITH
                 THE NEW Q VALUE

Revised the design spectrum input data with the new q (for example if q=1.5 adopt at initial
stage and the new q=3 then you have to repeat the process with the new q)




 Valentinos Neophytou BEng (Hons), MSc                                 	
         Page: 35
 ETABS MANUAL                                                          	
  
ETABS MODELING ACCORDING TO EUROCODES




                                    OUTPUT DATA



Step 1: Print data for steel/concrete design

File > Print Tables > Concrete Frame Design




 Valentinos Neophytou BEng (Hons), MSc            	
     Page: 36
 ETABS MANUAL                                     	
  
ETABS MODELING ACCORDING TO EUROCODES




                             ADDITIONAL NOTES



SHRINKAGE AREAS

Select Area > Edit > Expand/Srink Area




Valentinos Neophytou BEng (Hons), MSc           	
     Page: 37
ETABS MANUAL                                    	
  
ETABS MODELING ACCORDING TO EUROCODES

PIN JOINT




Export model to SAFE



File menu > Export > Save Story as SAFE.f2k Text File




Local Axis



Local axis 1                               X - direction
Local axis 2                               Y- direction
 Valentinos Neophytou BEng (Hons), MSc                     	
     Page: 38
 ETABS MANUAL                                              	
  
ETABS MODELING ACCORDING TO EUROCODES

Local axis 3                             Z - direction
Local axis 2 (My)                        Y- direction
Local axis 3 (Mx)                        X - direction




 Valentinos Neophytou BEng (Hons), MSc                   	
     Page: 39
 ETABS MANUAL                                            	
  

Más contenido relacionado

La actualidad más candente

Column Interaction Diagram construction
Column Interaction Diagram constructionColumn Interaction Diagram construction
Column Interaction Diagram constructionPritesh Parmar
 
Rc bldg. modeling & analysis
Rc bldg. modeling & analysisRc bldg. modeling & analysis
Rc bldg. modeling & analysisRamil Artates
 
3.4 pushover analysis
3.4 pushover analysis3.4 pushover analysis
3.4 pushover analysisNASRIN AFROZ
 
Tower design-Chapter 2-pile caps design
Tower design-Chapter 2-pile caps designTower design-Chapter 2-pile caps design
Tower design-Chapter 2-pile caps designNada Zarrak
 
Modelling Building Frame with STAAD.Pro & ETABS - Rahul Leslie
Modelling Building Frame with STAAD.Pro & ETABS - Rahul LeslieModelling Building Frame with STAAD.Pro & ETABS - Rahul Leslie
Modelling Building Frame with STAAD.Pro & ETABS - Rahul LeslieRahul Leslie
 
How to model and analyse structures using etabs
How to model and analyse structures using etabsHow to model and analyse structures using etabs
How to model and analyse structures using etabsWilson vils
 
Rcc structure design by etabs (acecoms)
Rcc structure design by etabs (acecoms)Rcc structure design by etabs (acecoms)
Rcc structure design by etabs (acecoms)Md. Shahadat Hossain
 
89505650 concrete-beam-and-slab-design-using-prokon
89505650 concrete-beam-and-slab-design-using-prokon89505650 concrete-beam-and-slab-design-using-prokon
89505650 concrete-beam-and-slab-design-using-prokonOscarKonzult
 
Etabs tutorial-tall-building-design (1)
Etabs tutorial-tall-building-design (1)Etabs tutorial-tall-building-design (1)
Etabs tutorial-tall-building-design (1)Nitesh Singh
 
Part-II: Seismic Analysis/Design of Multi-storied RC Buildings using STAAD.Pr...
Part-II: Seismic Analysis/Design of Multi-storied RC Buildings using STAAD.Pr...Part-II: Seismic Analysis/Design of Multi-storied RC Buildings using STAAD.Pr...
Part-II: Seismic Analysis/Design of Multi-storied RC Buildings using STAAD.Pr...Rahul Leslie
 
Membrane - Plate - Shell
Membrane - Plate - ShellMembrane - Plate - Shell
Membrane - Plate - Shellneikrof
 
Seismic Design Of Structures Project
Seismic Design Of Structures ProjectSeismic Design Of Structures Project
Seismic Design Of Structures ProjectGunjan Shetye
 
Matching base shear in Etabs 2016
Matching base shear in Etabs 2016Matching base shear in Etabs 2016
Matching base shear in Etabs 2016Vamsi krishna reddy
 
Design Procedure of Singly,Doubly & T-Beam(As Per ACI code)
Design Procedure of Singly,Doubly & T-Beam(As Per ACI code)Design Procedure of Singly,Doubly & T-Beam(As Per ACI code)
Design Procedure of Singly,Doubly & T-Beam(As Per ACI code)Jahidur Rahman
 

La actualidad más candente (20)

Column Interaction Diagram construction
Column Interaction Diagram constructionColumn Interaction Diagram construction
Column Interaction Diagram construction
 
Column design: as per bs code
Column design: as per bs codeColumn design: as per bs code
Column design: as per bs code
 
Rc bldg. modeling & analysis
Rc bldg. modeling & analysisRc bldg. modeling & analysis
Rc bldg. modeling & analysis
 
3.4 pushover analysis
3.4 pushover analysis3.4 pushover analysis
3.4 pushover analysis
 
Seismic assessment of buildings accordance to Eurocode 8 Part 3
Seismic assessment of buildings accordance to Eurocode 8 Part 3Seismic assessment of buildings accordance to Eurocode 8 Part 3
Seismic assessment of buildings accordance to Eurocode 8 Part 3
 
Tower design-Chapter 2-pile caps design
Tower design-Chapter 2-pile caps designTower design-Chapter 2-pile caps design
Tower design-Chapter 2-pile caps design
 
Etabs multistory-steel
Etabs multistory-steelEtabs multistory-steel
Etabs multistory-steel
 
Modelling Building Frame with STAAD.Pro & ETABS - Rahul Leslie
Modelling Building Frame with STAAD.Pro & ETABS - Rahul LeslieModelling Building Frame with STAAD.Pro & ETABS - Rahul Leslie
Modelling Building Frame with STAAD.Pro & ETABS - Rahul Leslie
 
How to model and analyse structures using etabs
How to model and analyse structures using etabsHow to model and analyse structures using etabs
How to model and analyse structures using etabs
 
Rcc structure design by etabs (acecoms)
Rcc structure design by etabs (acecoms)Rcc structure design by etabs (acecoms)
Rcc structure design by etabs (acecoms)
 
Etabs notes-pdf
Etabs notes-pdfEtabs notes-pdf
Etabs notes-pdf
 
Design notes for seismic design of building accordance to Eurocode 8
Design notes for seismic design of building accordance to Eurocode 8 Design notes for seismic design of building accordance to Eurocode 8
Design notes for seismic design of building accordance to Eurocode 8
 
89505650 concrete-beam-and-slab-design-using-prokon
89505650 concrete-beam-and-slab-design-using-prokon89505650 concrete-beam-and-slab-design-using-prokon
89505650 concrete-beam-and-slab-design-using-prokon
 
Etabs tutorial-tall-building-design (1)
Etabs tutorial-tall-building-design (1)Etabs tutorial-tall-building-design (1)
Etabs tutorial-tall-building-design (1)
 
Part-II: Seismic Analysis/Design of Multi-storied RC Buildings using STAAD.Pr...
Part-II: Seismic Analysis/Design of Multi-storied RC Buildings using STAAD.Pr...Part-II: Seismic Analysis/Design of Multi-storied RC Buildings using STAAD.Pr...
Part-II: Seismic Analysis/Design of Multi-storied RC Buildings using STAAD.Pr...
 
Membrane - Plate - Shell
Membrane - Plate - ShellMembrane - Plate - Shell
Membrane - Plate - Shell
 
Seismic Design Of Structures Project
Seismic Design Of Structures ProjectSeismic Design Of Structures Project
Seismic Design Of Structures Project
 
Etabs steel-design
Etabs steel-designEtabs steel-design
Etabs steel-design
 
Matching base shear in Etabs 2016
Matching base shear in Etabs 2016Matching base shear in Etabs 2016
Matching base shear in Etabs 2016
 
Design Procedure of Singly,Doubly & T-Beam(As Per ACI code)
Design Procedure of Singly,Doubly & T-Beam(As Per ACI code)Design Procedure of Singly,Doubly & T-Beam(As Per ACI code)
Design Procedure of Singly,Doubly & T-Beam(As Per ACI code)
 

Similar a ETABS modelling according to Eurocodes

Day 2 : Thermal Insulation & Building Physics
Day 2 : Thermal Insulation & Building PhysicsDay 2 : Thermal Insulation & Building Physics
Day 2 : Thermal Insulation & Building PhysicsRCREEE
 
Seismic Behavior of Two Layers of Drum And Up To the Mouth of the Mouth Dept...
Seismic Behavior of Two Layers of Drum And Up To the Mouth of  the Mouth Dept...Seismic Behavior of Two Layers of Drum And Up To the Mouth of  the Mouth Dept...
Seismic Behavior of Two Layers of Drum And Up To the Mouth of the Mouth Dept...IJMER
 
Initial Sintering Mechanism of Mesocarbon Microbeads
Initial Sintering Mechanism of Mesocarbon MicrobeadsInitial Sintering Mechanism of Mesocarbon Microbeads
Initial Sintering Mechanism of Mesocarbon Microbeadsguestdc9119
 
PriorInformationSupportedAerosolOpticalDepthRetrievalUsingGeostationarySatell...
PriorInformationSupportedAerosolOpticalDepthRetrievalUsingGeostationarySatell...PriorInformationSupportedAerosolOpticalDepthRetrievalUsingGeostationarySatell...
PriorInformationSupportedAerosolOpticalDepthRetrievalUsingGeostationarySatell...grssieee
 
Matrix Structural Analysis, Steel Frame Analysis in SAP2000
Matrix Structural Analysis, Steel Frame Analysis in SAP2000Matrix Structural Analysis, Steel Frame Analysis in SAP2000
Matrix Structural Analysis, Steel Frame Analysis in SAP2000Sajjad Ahmad
 
Re effect mo re welds-3
Re effect mo re welds-3Re effect mo re welds-3
Re effect mo re welds-3moriotf
 
Borosilicate3.3
Borosilicate3.3Borosilicate3.3
Borosilicate3.3Evan Fan
 
Presentation on BNBC 2015
Presentation on BNBC 2015Presentation on BNBC 2015
Presentation on BNBC 2015Souptik Tirtha
 
04 ec2 ws_walraven_ulssls
04 ec2 ws_walraven_ulssls04 ec2 ws_walraven_ulssls
04 ec2 ws_walraven_ulsslsluantvconst
 
Original PNP Transistor MJE15033 MJE15033G 15033 8A 250V TO-220 New ON
Original PNP Transistor MJE15033 MJE15033G 15033 8A 250V TO-220 New ONOriginal PNP Transistor MJE15033 MJE15033G 15033 8A 250V TO-220 New ON
Original PNP Transistor MJE15033 MJE15033G 15033 8A 250V TO-220 New ONAUTHELECTRONIC
 
Original Transistor NPN MJE15032 MJE15032G 15032 TO-220 8A 250V New ON
Original Transistor NPN MJE15032 MJE15032G 15032 TO-220 8A 250V New ONOriginal Transistor NPN MJE15032 MJE15032G 15032 TO-220 8A 250V New ON
Original Transistor NPN MJE15032 MJE15032G 15032 TO-220 8A 250V New ONauthelectroniccom
 
Deflagration in Magnetism
Deflagration in MagnetismDeflagration in Magnetism
Deflagration in Magnetismoriolespinal
 
15665658 square-cup-deep-drawing-using-forming-limit-diagram
15665658 square-cup-deep-drawing-using-forming-limit-diagram15665658 square-cup-deep-drawing-using-forming-limit-diagram
15665658 square-cup-deep-drawing-using-forming-limit-diagramsundar sivam
 
Characterization of different dopants in TiO2 Structure by Pulsed Laser Dep...
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Dep...Characterization of different dopants in TiO2 Structure by   Pulsed Laser Dep...
Characterization of different dopants in TiO2 Structure by Pulsed Laser Dep...sarmad
 

Similar a ETABS modelling according to Eurocodes (20)

Day 2 : Thermal Insulation & Building Physics
Day 2 : Thermal Insulation & Building PhysicsDay 2 : Thermal Insulation & Building Physics
Day 2 : Thermal Insulation & Building Physics
 
Seismic Behavior of Two Layers of Drum And Up To the Mouth of the Mouth Dept...
Seismic Behavior of Two Layers of Drum And Up To the Mouth of  the Mouth Dept...Seismic Behavior of Two Layers of Drum And Up To the Mouth of  the Mouth Dept...
Seismic Behavior of Two Layers of Drum And Up To the Mouth of the Mouth Dept...
 
Aem Lect18
Aem Lect18Aem Lect18
Aem Lect18
 
Initial Sintering Mechanism of Mesocarbon Microbeads
Initial Sintering Mechanism of Mesocarbon MicrobeadsInitial Sintering Mechanism of Mesocarbon Microbeads
Initial Sintering Mechanism of Mesocarbon Microbeads
 
Nanogel for super insulaton and energy saving
Nanogel  for super insulaton and energy savingNanogel  for super insulaton and energy saving
Nanogel for super insulaton and energy saving
 
PriorInformationSupportedAerosolOpticalDepthRetrievalUsingGeostationarySatell...
PriorInformationSupportedAerosolOpticalDepthRetrievalUsingGeostationarySatell...PriorInformationSupportedAerosolOpticalDepthRetrievalUsingGeostationarySatell...
PriorInformationSupportedAerosolOpticalDepthRetrievalUsingGeostationarySatell...
 
Matrix Structural Analysis, Steel Frame Analysis in SAP2000
Matrix Structural Analysis, Steel Frame Analysis in SAP2000Matrix Structural Analysis, Steel Frame Analysis in SAP2000
Matrix Structural Analysis, Steel Frame Analysis in SAP2000
 
Re effect mo re welds-3
Re effect mo re welds-3Re effect mo re welds-3
Re effect mo re welds-3
 
Borosilicate3.3
Borosilicate3.3Borosilicate3.3
Borosilicate3.3
 
Esd
EsdEsd
Esd
 
Presentation on BNBC 2015
Presentation on BNBC 2015Presentation on BNBC 2015
Presentation on BNBC 2015
 
Batterie
BatterieBatterie
Batterie
 
04 ec2 ws_walraven_ulssls
04 ec2 ws_walraven_ulssls04 ec2 ws_walraven_ulssls
04 ec2 ws_walraven_ulssls
 
call for papers, research paper publishing, where to publish research paper, ...
call for papers, research paper publishing, where to publish research paper, ...call for papers, research paper publishing, where to publish research paper, ...
call for papers, research paper publishing, where to publish research paper, ...
 
Original PNP Transistor MJE15033 MJE15033G 15033 8A 250V TO-220 New ON
Original PNP Transistor MJE15033 MJE15033G 15033 8A 250V TO-220 New ONOriginal PNP Transistor MJE15033 MJE15033G 15033 8A 250V TO-220 New ON
Original PNP Transistor MJE15033 MJE15033G 15033 8A 250V TO-220 New ON
 
Original Transistor NPN MJE15032 MJE15032G 15032 TO-220 8A 250V New ON
Original Transistor NPN MJE15032 MJE15032G 15032 TO-220 8A 250V New ONOriginal Transistor NPN MJE15032 MJE15032G 15032 TO-220 8A 250V New ON
Original Transistor NPN MJE15032 MJE15032G 15032 TO-220 8A 250V New ON
 
Seismic load (1)
Seismic load (1)Seismic load (1)
Seismic load (1)
 
Deflagration in Magnetism
Deflagration in MagnetismDeflagration in Magnetism
Deflagration in Magnetism
 
15665658 square-cup-deep-drawing-using-forming-limit-diagram
15665658 square-cup-deep-drawing-using-forming-limit-diagram15665658 square-cup-deep-drawing-using-forming-limit-diagram
15665658 square-cup-deep-drawing-using-forming-limit-diagram
 
Characterization of different dopants in TiO2 Structure by Pulsed Laser Dep...
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Dep...Characterization of different dopants in TiO2 Structure by   Pulsed Laser Dep...
Characterization of different dopants in TiO2 Structure by Pulsed Laser Dep...
 

Más de Eur Ing Valentinos Neophytou BEng (Hons), MSc, CEng MICE (10)

DETAILED CV - Aug 16 v3
DETAILED CV - Aug 16 v3DETAILED CV - Aug 16 v3
DETAILED CV - Aug 16 v3
 
SAMPLE OF MY PROJECTS
SAMPLE OF MY PROJECTSSAMPLE OF MY PROJECTS
SAMPLE OF MY PROJECTS
 
PORTFOLIO-Model
PORTFOLIO-ModelPORTFOLIO-Model
PORTFOLIO-Model
 
STRUCTURAL DESIGN OF PIPE CULVERT TO BS EN 1295-1
STRUCTURAL DESIGN OF PIPE CULVERT TO BS EN 1295-1STRUCTURAL DESIGN OF PIPE CULVERT TO BS EN 1295-1
STRUCTURAL DESIGN OF PIPE CULVERT TO BS EN 1295-1
 
WIND LOADING ON LIGHTING STEEL COLUMN - EN 40-3-1:2013
WIND LOADING ON LIGHTING STEEL COLUMN - EN 40-3-1:2013WIND LOADING ON LIGHTING STEEL COLUMN - EN 40-3-1:2013
WIND LOADING ON LIGHTING STEEL COLUMN - EN 40-3-1:2013
 
Wind load on pv system
Wind load on pv systemWind load on pv system
Wind load on pv system
 
SEISMIC ASSESSMENT OF WATER TOWER - MODEL
SEISMIC ASSESSMENT OF WATER TOWER - MODELSEISMIC ASSESSMENT OF WATER TOWER - MODEL
SEISMIC ASSESSMENT OF WATER TOWER - MODEL
 
Etabs modelling parameters
Etabs modelling parametersEtabs modelling parameters
Etabs modelling parameters
 
Loadings snow - wind
Loadings   snow - windLoadings   snow - wind
Loadings snow - wind
 
Simplified notes of calculate Wind & Snow loads based on CYS EC1
Simplified notes of calculate Wind & Snow loads based on CYS EC1Simplified notes of calculate Wind & Snow loads based on CYS EC1
Simplified notes of calculate Wind & Snow loads based on CYS EC1
 

Último

ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYKayeClaireEstoconing
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfSpandanaRallapalli
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4MiaBumagat1
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptxiammrhaywood
 
Culture Uniformity or Diversity IN SOCIOLOGY.pptx
Culture Uniformity or Diversity IN SOCIOLOGY.pptxCulture Uniformity or Diversity IN SOCIOLOGY.pptx
Culture Uniformity or Diversity IN SOCIOLOGY.pptxPoojaSen20
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptxmary850239
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfphamnguyenenglishnb
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfErwinPantujan2
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parentsnavabharathschool99
 

Último (20)

ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdf
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4
 
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptxYOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
 
Culture Uniformity or Diversity IN SOCIOLOGY.pptx
Culture Uniformity or Diversity IN SOCIOLOGY.pptxCulture Uniformity or Diversity IN SOCIOLOGY.pptx
Culture Uniformity or Diversity IN SOCIOLOGY.pptx
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parents
 

ETABS modelling according to Eurocodes

  • 1. ETABS MODELLING AUTHOR: VALENTINOS NEOPHYTOU BEng (Hons), MSc March 2013
  • 2. ETABS MODELING ACCORDING TO EUROCODES Step by step procedure and methodology of how you developing a modelusing ETABS Step 1: Specify Material Properties for Concrete 1. Poisson ratio is equal to v = 0 (cracked concrete) and v = 0.2 (un-cracked concrete) as (EN1992-1-1,cl.3.1.3) Table 1: Concrete properties (EN 1992, Table 3.1) C16/20 C20/25 C25/30 C30/37 Property Data for concrete (N/mm2) (N/mm2) (N/mm2) (N/mm2) Mass per unit Volume 2,5E-09 2,5E-09 2,5E-09 2,5E-09 Weight per unit volume 2,5E-05 2,5E-05 2,5E-05 2,5E-05 Modulus of Elasticity 29000 30000 31000 33000 Poisson’s Ratio (cracked concrete) 0 0 0 0 Coeff. of thermal expansion 10E-06 10E-06 10E-06 10E-06 Charact. ConcCyl. Strength, fck 16 20 25 30 Bending Reinf. Yield stress, fyk 500 500 500 500 Shear Reinf. Yield stress, fyk 500 500 500 500 Figure 1: Concrete properties Valentinos Neophytou BEng (Hons), MSc   Page: 2 ETABS MANUAL  
  • 3. ETABS MODELING ACCORDING TO EUROCODES Step 2: Add frame section for columns Figure 2: Section properties of concrete columns Valentinos Neophytou BEng (Hons), MSc   Page: 3 ETABS MANUAL  
  • 4. ETABS MODELING ACCORDING TO EUROCODES Step 3: Add frame section for beams Figure 3: Effective width of beams (EN1992-1-1,cl.5.3.2.1) Interior beam Internal beam supporting an internal and an external slab Exterior beam supporting cantilever External beam no cantilever For practice use beff 1,2 = 0.2lo Valentinos Neophytou BEng (Hons), MSc   Page: 4 ETABS MANUAL  
  • 5. ETABS MODELING ACCORDING TO EUROCODES Figure 4: Section properties of concrete beams Notes: 1. Property modification factors are used to reduce moment and torsion stiffness due to crack section. Torsional stiffness of the cracked section should be set equal to 10% of the torsional stiffness of the un-cracked section. 2. Unless a more accurate analysis of the cracked elements is performed, the elastic flexural and shear stiffness properties of concrete and masonry elements may be taken to be equal to one-half of the corresponding stiffness of the un-cracked elements (EN1998-1-1,cl. 4.3.1(7)). 3. These modification factor only affect the analysis properties, they do not affect the design properties. Column (Line Beam (Line Slab (Shell element) Wall (Shell element) element) element) I22=I33=0.5 I22=I33=0.5 m11=m12=m22=0.5 m11= m12=m22=0.5 It=0.1 It=0.1 It=0.1 It=0.1 Valentinos Neophytou BEng (Hons), MSc   Page: 5 ETABS MANUAL  
  • 6. ETABS MODELING ACCORDING TO EUROCODES Step 4: Add Slabs & Walls Figure 5: Section properties of concrete slab Figure 6: Section properties of concrete wall Valentinos Neophytou BEng (Hons), MSc   Page: 6 ETABS MANUAL  
  • 7. ETABS MODELING ACCORDING TO EUROCODES Step 5: Define Response Spectrum function according to EC8 1. Peak ground acceleration agR=0,25g, 2. Type C or D for building within category of importance I and II, 3. Define two response spectrum cases if the factor q is different in each direction, 4. Modify the existing values of elastic response spectrum case in order to change it into the design response spectrum. Figure 7: Response Spectrum to EC8 Valentinos Neophytou BEng (Hons), MSc   Page: 7 ETABS MANUAL  
  • 8. ETABS MODELING ACCORDING TO EUROCODES Figure 8: Design spectrum for elastic analysis data PERIOD   ACCELERATION   g   =   9.81   m/sec2   T   Sd(T)   β   =   0.2   -­‐         0.0000   0.0767   Soil  Type   =   C   -­‐   0.0667   0.1150   q   =   1.50   -­‐         0.1333   0.1533   αgR   =   0.10   -­‐   0.2000   0.1917   S   =   1.15   -­‐     0.6000   0.1917   TB   =   0.20   sec         0.8333   0.1380   TC   =   0.60   sec   1.0667   0.1078   TD   =   2.00   sec   1.3000   0.0885   T   =   0.50   sec   1.5333   0.0750               1.7667   0.0651     Data  for  soil  type  -­‐  T  ype  Spectrum  1       2.0000   0.0575     index   Soil  Type   S   TB   TC   TD   3.3333   0.0200     1   A   1   0.15   0.4   2   4.6667   0.0200     2   B   1.2   0.15   0.5   2   6.0000   0.0200     3   C   1.15   0.2   0.6   2     7.3333   0.0200   4   D   1.35   0.2   0.8   2     8.6667   0.0200   5   E   1.4   0.15   0.5   2   10.0000     0.0200                 Valentinos Neophytou BEng (Hons), MSc   Page: 8 ETABS MANUAL  
  • 9. ETABS MODELING ACCORDING TO EUROCODES Step 6: Define Load Case Figure 8: Dead/Live/Wind Step 5: Define Equivalent Static Analysis Equivalent static analysis can be used if the following case can be met: 1. Ground acceleration: Check seismic zonation map from National Annex 2. Spectrum type 1: 5.5Hz<M (High seismicity areas) 3. Ground type: Normally type B or C can be used (see EN 1998,table 3.1) 4. Lower bound factor for the horizontal design spectrum: 0.2 (EN 1998-1- 1,cl.3.2.2.5(4)P) 5. Behavior factor q: See table 6. Correction factor λ (EN1998-1-1,cl.4.3.3.2.2(1Ρ)) λ=0.85 if T1≤2TC and more than 2 storey λ=1.0 in all other case Valentinos Neophytou BEng (Hons), MSc   Page: 9 ETABS MANUAL  
  • 10. ETABS MODELING ACCORDING TO EUROCODES 7. Regular in elevation 8. Regular in elevation and irregular in plan 9. Fundamental period: T1≤4T_c T1≤2,0s Table 1: Equivalent Static Force Case Load case name Direction and Eccentricity % Eccentricity EQXA X Dir + Eccen. Y 0.05 EQYA X Dir – Eccen. Y 0.05 EQXB Y Dir + Eccen. X 0.05 EQYB Y Dir – Eccen. X 0.05 Valentinos Neophytou BEng (Hons), MSc   Page: 10 ETABS MANUAL  
  • 11. ETABS MODELING ACCORDING TO EUROCODES Step 6: Define Load Combination for Equivalent lateral force analysis Ultimate limit state (ULS) Static case COMBO 1. 1.35DL + 1.5LL COMBO 2. 1.35DL + 1.5WINDX + 1.5 (0.7LL + 0.5 SNOW) COMBO 3. 1.35DL + 1.5WINDY + 1.5 (0.7LL + 0.5 SNOW) COMBO 4. 1.35DL + 1.5LL + 1.5 (0.7WINDX + 0.5 SNOW) COMBO 5. 1.35DL + 1.5LL + 1.5 (0.7WINDY + 0.5 SNOW) COMBO 6. 1.35DL + 1.5LL + 1.5 (0.7SNOW + 0.5WINDX) COMBO 7. 1.35DL + 1.5LL + 1.5 (0.7SNOW + 0.5WINDY) COMBO 8. 1.35DL + 1.5SNOW + 1.5 (0.7LL+ 0.5WINDX) COMBO 9. 1.35DL + 1.5SNOW + 1.5 (0.7LL+ 0.5WINDY) COMBO 10. 1.35DL + 1.5SNOW + 1.5 (0.7WINDX + 0.5LL) COMBO 11. 1.35DL + 1.5SNOW + 1.5 (0.7WINDY + 0.5LL) COMBO 12. 1.35DL + 1.5WINDX + 0.7*1.5(LL+SNOW) COMBO 13. 1.35DL + 1.5WINDY + 0.7*1.5(LL+SNOW) COMBO 14. 1.35DL + 1.5(LL+SNOW) + 0.7*1.5WINDX COMBO 15. 1.35DL + 1.5(LL+SNOW) + 0.7*1.5WINDY Seismic case COMBO 16. DL + 0.3LL + EQXA + 0.3EQYA COMBO 17. DL + 0.3LL + EQXA – 0.3EQYA COMBO 18. DL + 0.3LL - EQXA + 0.3EQYA COMBO 19. DL + 0.3LL - EQXA – 0.3EQYA COMBO 20. DL + 0.3LL + EQYA + 0.3EQXA COMBO 21. DL + 0.3LL + EQYA – 0.3EQXA COMBO 22. DL + 0.3LL - EQYA + 0.3EQXA COMBO 23. DL + 0.3LL - EQYA – 0.3EQXA COMBO 24. DL + 0.3LL + EQXB + 0.3EQYB COMBO 25. DL + 0.3LL + EQXB – 0.3EQYB COMBO 26. DL + 0.3LL - EQXB + 0.3EQYB COMBO 27. DL + 0.3LL - EQXB – 0.3EQYB COMBO 28. DL + 0.3LL + EQYB + 0.3EQXB COMBO 29. DL + 0.3LL + EQYB – 0.3EQXB COMBO 30. DL + 0.3LL - EQYB + 0.3EQXB COMBO 31. DL + 0.3LL - EQYB – 0.3EQXB Serviceability limit state (SLS) COMBO 32. DL + LL Valentinos Neophytou BEng (Hons), MSc   Page: 11 ETABS MANUAL  
  • 12. ETABS MODELING ACCORDING TO EUROCODES Step 7: Define Response Spectrum case Modal Response spectrum 1. Independently in X and Y direction, 2. Define design spectrum, 3. Use CQC rule for the combination of different modes (EN1998-1-1,cl.4.3.3.3.2(3)) 4. Use SRS rule for combined the results of modal analysis for both horizontal directions (EN1998-1-1,cl.4.3.3.5.1(21)). 5. Accidental eccentricity of each storey cause of uncertainties locatin of masses have been taken into account 5% (EN1998-1-1,cl.4.3.2). 6. Modal Combination: “Complete Quadratic Combination” (CQC) can be used if the Tj ≤ 0,9 Ti (EN1998-1-1,cl.4.3.3.3.2(3)P). Figure 9: Response Spectrum case Data for EQY& EQX Valentinos Neophytou BEng (Hons), MSc   Page: 12 ETABS MANUAL  
  • 13. ETABS MODELING ACCORDING TO EUROCODES Step 8: Define Load Combination for modal analysis Ultimate limit state (ULS) Static case COMBO 1. 1.35DL + 1.5LL COMBO 2. 1.35DL + 1.5WINDX + 1.5 (0.7LL + 0.5 SNOW) COMBO 3. 1.35DL + 1.5WINDY + 1.5 (0.7LL + 0.5 SNOW) COMBO 4. 1.35DL + 1.5LL + 1.5 (0.7WINDX + 0.5 SNOW) COMBO 5. 1.35DL + 1.5LL + 1.5 (0.7WINDY + 0.5 SNOW) COMBO 6. 1.35DL + 1.5LL + 1.5 (0.7SNOW + 0.5WINDX) COMBO 7. 1.35DL + 1.5LL + 1.5 (0.7SNOW + 0.5WINDY) COMBO 8. 1.35DL + 1.5SNOW + 1.5 (0.7LL+ 0.5WINDX) COMBO 9. 1.35DL + 1.5SNOW + 1.5 (0.7LL+ 0.5WINDY) COMBO 10. 1.35DL + 1.5SNOW + 1.5 (0.7WINDX + 0.5LL) COMBO 11. 1.35DL + 1.5SNOW + 1.5 (0.7WINDY + 0.5LL) COMBO 12. 1.35DL + 1.5WINDX + 0.7*1.5(LL+SNOW) COMBO 13. 1.35DL + 1.5WINDY + 0.7*1.5(LL+SNOW) COMBO 14. 1.35DL + 1.5(LL+SNOW) + 0.7*1.5WINDX COMBO 15. 1.35DL + 1.5(LL+SNOW) + 0.7*1.5WINDY Seismic case COMBO 16. DL + 0.3LL + EQX + 0.3EQY COMBO 17. DL + 0.3LL + EQX – 0.3EQY COMBO 18. DL + 0.3LL - EQX + 0.3EQY COMBO 19. DL + 0.3LL - EQX – 0.3EQY COMBO 20. DL + 0.3LL + EQY + 0.3EQX COMBO 21. DL + 0.3LL + EQY – 0.3EQX COMBO 22. DL + 0.3LL - EQY + 0.3EQX COMBO 23. DL + 0.3LL - EQY – 0.3EQX Serviceability limit state (SLS) COMBO 24. DL + LL Valentinos Neophytou BEng (Hons), MSc   Page: 13 ETABS MANUAL  
  • 14. ETABS MODELING ACCORDING TO EUROCODES G+0.3Q+Ex+0.3Ey G+0.3Q+Ex-0.3Ey G+0.3Q-Ex+0.3Ey G+0.3Q-Ex-0.3Ey G+0.3Q+Ey+0.3Ex G+0.3Q+Ey-0.3Ex Valentinos Neophytou BEng (Hons), MSc   Page: 14 ETABS MANUAL  
  • 15. ETABS MODELING ACCORDING TO EUROCODES G+0.3Q-Ey+0.3Ex G+0.3Q-Ey-0.3Ex 1.35G+1.5Q Valentinos Neophytou BEng (Hons), MSc   Page: 15 ETABS MANUAL  
  • 16. ETABS MODELING ACCORDING TO EUROCODES Valentinos Neophytou BEng (Hons), MSc   Page: 16 ETABS MANUAL  
  • 17. ETABS MODELING ACCORDING TO EUROCODES Step 9: Meshing of slab Assign -> Shell Area -> Area Object Mesh Option Automatic meshing option for slab element only Notes: 1. The property assignments to meshed area objectets are the same as the original area object. 2. Load and mass assignments on the original area object are appropriately broken up onto the meshed area objects. Valentinos Neophytou BEng (Hons), MSc   Page: 17 ETABS MANUAL  
  • 18. ETABS MODELING ACCORDING TO EUROCODES Step 10: Meshing/Label of wall Edit>Mesh shells and click on the Mesh/Quads/Triangles at Intersections with visible grid lines: Assign->Shell/Area->Pier Label or Spandrel Label. Valentinos Neophytou BEng (Hons), MSc   Page: 18 ETABS MANUAL  
  • 19. ETABS MODELING ACCORDING TO EUROCODES Step 11: Define Auto-Line Constraint Select area element (slab)->Assign->Shell Are-> Auto-Line Constraint Step 12: Define mass source Combination of the seismic action with other actions (EN 1998-1-1,cl.3.2.4): 1. Define the category of building (EN 1991,Table 6.1), 2. Define the reduce factor (EN 199, Table A.1.1). Table 2: Combination of seismic mass 𝑮 𝒌,𝒋 + 𝝍 𝑬𝒊 𝑸 𝒌,𝒊 (ΕΝ1998-1-1,Eq. 3.17) Combination coefficient for variable action is: 𝜓!" = 𝜙 ∙ 𝜓!! (ΕΝ1998-1-1,Eq. 4.2) Values of φ for calculating 𝝍 𝑬𝒊 (CYS NA EN1998-1-1:2004) Type of Storey φ Variable action Roof 1,0 Categories A- Storeys with correlated occupancies 0,8 C1 Independently occupied storeys 0,5 Categories A- 1.0 F1 Valentinos Neophytou BEng (Hons), MSc   Page: 19 ETABS MANUAL  
  • 20. ETABS MODELING ACCORDING TO EUROCODES Table 3: Values of ψ coefficients ψο ψ1 ψ2 Category Specific Use A Domestic and residential 0.7 0.5 0.3 B Office 0.7 0.5 0.3 C Areas for Congregation 0.7 0.7 0.6 D Shopping 0.7 0.7 0.6 E Storage 1.0 0.9 0.8 F Traffic < 30 kN vehicle 0.7 0.7 0.6 G Traffic < 160 kN vehicle 0.7 0.5 0.3 H Roofs 0.7 0 0 Snow, altitude < 1000 m 0.5 0.2 0 Wind 0.5 0.2 0 Figure 10: Adding seismic mass to ETABS Valentinos Neophytou BEng (Hons), MSc   Page: 20 ETABS MANUAL  
  • 21. ETABS MODELING ACCORDING TO EUROCODES Step 13: Define number of modes Notes: 1. Minimum number of modes to be taken into account (EN1998-1-1,cl.4.3.3.3.1(5)): k ≥ 3.√n k is the number of modes taken into account. n is the number of storeys above the foundation or the top of a rigid basement. Valentinos Neophytou BEng (Hons), MSc   Page: 21 ETABS MANUAL  
  • 22. ETABS MODELING ACCORDING TO EUROCODES Step 14: Define restrains at the base Select the entire base joints Step 15: Define diaphragms to slab Valentinos Neophytou BEng (Hons), MSc   Page: 22 ETABS MANUAL  
  • 23. ETABS MODELING ACCORDING TO EUROCODES Step 16: Checking the model Valentinos Neophytou BEng (Hons), MSc   Page: 23 ETABS MANUAL  
  • 24. ETABS MODELING ACCORDING TO EUROCODES MODAL ANALYSIS RESULTS Step 1: Calculate the effective modal mass Display> Show Tables > Modal information > Building modal information > Table modal participation mass ratios 1. The sum of the effective modal masses for the modes taken into account amounts to at least 90% of the total mass of the structure (EN 1998-1-1,cl.4.3.3.3.1(3)). 2. All modes with effective modal masses greater than 5% of the total mass are taken into account. Mode 1 (Translation Y - direction) Mode 2 (Translation X - direction) Valentinos Neophytou BEng (Hons), MSc   Page: 24 ETABS MANUAL  
  • 25. ETABS MODELING ACCORDING TO EUROCODES Mode 3 (Torsional) Step 2: Damage limitations Valentinos Neophytou BEng (Hons), MSc   Page: 25 ETABS MANUAL  
  • 26. ETABS MODELING ACCORDING TO EUROCODES The damage limitation requirements should be verified in terms of the interstorey drift (dr) (EN 1998-1-1,cl.4.4.3.2) using the equation below: 𝑑! 𝑎 𝑑! ∙ 𝑣 ≤ 𝑎 ∙ ℎ     => ≤ ℎ 𝑣 dr: is the difference of the average lateral displacement ds in CM at the top and bottom of storey. v: is the reduction factor which takes into account the lower return period of the seismic action. h: is the storey height Table 4: Damage limitation (EN1998-1-1,cl.4.4.3) For non-structural elements of brittle material attached to the structure drv≤0.005h For building having ductile non structural elements drv≤0.0075h For building having non-structural elements fixed in a way so as not to drv≤0.010h interfere with structural deformation Tab;e 5: Reduction factor of limitation to interstorey drift (CYA NA EN1998-1- 1,cl.NA.2.15) Importance class Reduction factor v I 0.5 II 0.5 III 0.4 IV 0.4 1. Export results from ETABS to ECXEL Valentinos Neophytou BEng (Hons), MSc   Page: 26 ETABS MANUAL  
  • 27. ETABS MODELING ACCORDING TO EUROCODES 2. Sort the Larger value on top 3. Record the value of each storey in the spread sheet below: Valentinos Neophytou BEng (Hons), MSc   Page: 27 ETABS MANUAL  
  • 28. ETABS MODELING ACCORDING TO EUROCODES Damage limitation (EN1998-1-1,cl.4.4.3) Displacement Displacement Heigh of each Reduction v*dr v*dr/h X-­‐direction                   Y-­‐direction                   Drift X Drift Y storey, h factor X - direction Y - direction dr*v<0,005-­‐0,01 dr*v<0,005-­‐0,01 dr (m) dr (m) (m) v Storey 2 0,0026 0,0026 3,00 0,50 0,00043 0,00043 OK OK Storey 1 0,0017 0,0017 3,00 0,50 0,00028 0,00028 OK OK Step 3: Second order effects 1. The criterion for taking into account the second order effect is based on the interstorey drift sensitivity coefficient θ, which is define with equation (EN 1998-1- 1,cl.4.4.2.2(2)). 𝑃!"! ∙ 𝑑! 𝜃= 𝑉!"! ∙ ℎ hr: is the interstorey drift, h: is the storey height, Vtot: is the total seismic storey shear Ptot: is the total gravity load at and above storey considered in the seismic design situation (G+0.3Q). Table 6: Consequences of value of P-Δ coefficient θ on the analysis θ≤0,1 No need to consider P-Δ effects P-Δ effects may be taken into account approximately by 0,1≤θ≤0,2 ! amplifying the effects of the seismic actions by !!! P-Δ effects must be accounted for by an analysis including 0,2≤θ≤0,3 second order effects explicity θ≥0,3 Not permitted 1. Explore the results from ETABS to EXCEL Valentinos Neophytou BEng (Hons), MSc   Page: 28 ETABS MANUAL  
  • 29. ETABS MODELING ACCORDING TO EUROCODES 2. Select the combo G+0,3Q and record the highest value from each storey 3. Record the heist value for Vtot Valentinos Neophytou BEng (Hons), MSc   Page: 29 ETABS MANUAL  
  • 30. ETABS MODELING ACCORDING TO EUROCODES 4. Record all values on the spread sheet as showing below Second order effects (EN1998-1-1,cl.4.4.2.2) Ptot Heigh of Vtot Vtot Displaceme Displacement θ                                                              θ                                                                                       (kN) each storey, X-direction Y-direction nt Drift X Drift Y X-­‐direction                   Y-­‐direction                   h (m) (kN) (kN) dr (m) dr (m) θ≤0.1 θ≤0.1 Storey 2 709 3,00 220,00 220,00 0,00260 0,00260 OK OK Storey 1 1426 3,00 334,00 334,00 0,00170 0,00170 OK OK Step 4: Structural regularity plan Valentinos Neophytou BEng (Hons), MSc   Page: 30 ETABS MANUAL  
  • 31. ETABS MODELING ACCORDING TO EUROCODES 1. Slenderness ratio of the building λ=Lmax/Lmin<4 2. A “compact shape”: one in which the perimeter lines is always convex, or at least encloses not more than 5% re-entrant area. 3. The floor diaphragms shall be sufficient stiff in-plane not to affect the distribution of lateral loads between vertical elements. Table 7: Criteria for regularity in plan rx> 3.33eox Lateral torsional rensponse condition: rx> 3.33eoy Torsionally rigidity condition: rx> Is Regularity in plan (cl. 4.2.3.2) Check 1 - slenderness ratio cl.4.2.3.2(5) Slenderness ratio λ=Lmax/Lmin<4 = 2,80 OK Regularity in plan (cl. 4.2.3.2) Check 2 - structural eccentricity & torsional radius cl.4.2.3.2(6) Length in longitudinal direction = 56 m Length in trasverse direction = 20 m Stifness in X direction Sx=1000/dx Stifness in Y direction Sy=1000/dy Torsional stifness Ts=1000/Rz Torsional radius ry=Ts/Sx Torsional radius rx=Ts/Sy Radius of gyration Is=((Lmax²+Lmin²)12)^0,5 Structural eccentricity in x direction eox=Rz(Fx)/Rz(Mz) Structural eccentricity in y direction eox=Rz(Fy)/Rz(Mz) Table 1: Criteria for regularity in plan - Torsionally rigity condition Displacement Displacement Rotation Z Stifness X Stifness Y Torsional rx ry X (mm) Y (mm) (radians) (kN/m) (kN/m) Stifness (m) (m) dx dy Rz Sx Sy (kNm/radian) Ts Storey 2 7,35 7,14 8,18E-06 136054 140056 1,22E+08 29,5 30,0 Storey 1 5 6 8,18E-06 200000 166667 1,22E+08 27,1 24,7 0.3rx 0.3ry Is Is<rx Is<ry (m) (m) (m) Storey 2 8,9 9,0 17,2 OK OK Storey 1 8,1 7,4 17,2 OK OK Table 2: Criteria for regularity in plan - Lateral torsional respone condition Rotation Rz Rotation Rz Rotation Rz Eccentricity Eccentricity 3,33eox<rx 3,33eoy<ry for for for eox eoy Fx=1000kN Fy=1000kN Mx=1000kNm Storey 2 8,18E-06 8,18E-06 8,18E-06 1,00 1,00 OK OK Storey 1 8,18E-06 8,18E-06 8,18E-06 1 1,00E+00 OK OK Apply forces as follow: Valentinos Neophytou BEng (Hons), MSc   Page: 31 ETABS MANUAL  
  • 32. ETABS MODELING ACCORDING TO EUROCODES Storeys Load Case Forces FX1 FX1=1000kN STOREY 1 FY1 FΥ1=1000kN MZ1 MZ1=1000kNm FX2 FX2=1000kN STOREY 2 FY2 FΥ2=1000kN MZ2 MZ2=1000kNm Repeat this process for all load case in order to obtain the displacement values. Valentinos Neophytou BEng (Hons), MSc   Page: 32 ETABS MANUAL  
  • 33. ETABS MODELING ACCORDING TO EUROCODES Step 5: Structural type of the building Table 8: Classification of structural system Wall system Vertical and lateral load: Wall resist Vb,wall>65%Vbtotal Frame system Vertical and lateral load: Vb,frame>65%Vbtotal Frame-equivalent dual system Vertical and lateral load: Vb,frame>50%Vbtotal Wall-equivalent dual system Vertical and lateral load: Vb,wall>50%Vbtotal Display >Show Tables> Support/Sprint/Reaction 1. Explore the results from ETABS to EXCEL Valentinos Neophytou BEng (Hons), MSc   Page: 33 ETABS MANUAL  
  • 34. ETABS MODELING ACCORDING TO EUROCODES From load case tick the worst-case seismic design combination: COMBO 1. DL + 0.3LL + EQX + 0.3EQY COMBO 2. DL + 0.3LL + EQX – 0.3EQY COMBO 3. DL + 0.3LL - EQX + 0.3EQY COMBO 4. DL + 0.3LL - EQX – 0.3EQY COMBO 5. DL + 0.3LL + EQY + 0.3EQX COMBO 6. DL + 0.3LL + EQY – 0.3EQX COMBO 7. DL + 0.3LL - EQY + 0.3EQX COMBO 8. DL + 0.3LL - EQY – 0.3EQX 2. Select the worst-case design combo 3. Select the nodes for frames only 4. Calculate the sum of the base shear that can be resist by column in X and Y direction Valentinos Neophytou BEng (Hons), MSc   Page: 34 ETABS MANUAL  
  • 35. ETABS MODELING ACCORDING TO EUROCODES i.e VTOTAL = 1000KN VFRAMES, X ,Y = 500KN VTOTAL / VFRAME 500/1000*100= 50% Therefore the structural system of building is: Wall-equivalent dual system How to checking base shear Base shear can be check as follow: Table 9: Checking the base shear Direction Lower bound values Upper bound values X direction Fb = %Effective mass(X dir.)*Mass *Sdx Fb = ∑mass * Sdx Y direction Fb = %Effective mass(Y dir.)*Mass *Sdv Fb = ∑mass * Sdy Note: The base shear should be within those limits NOTE: REPEAT ALL THIS PROCESS FROM BEGIN WITH THE NEW Q VALUE Revised the design spectrum input data with the new q (for example if q=1.5 adopt at initial stage and the new q=3 then you have to repeat the process with the new q) Valentinos Neophytou BEng (Hons), MSc   Page: 35 ETABS MANUAL  
  • 36. ETABS MODELING ACCORDING TO EUROCODES OUTPUT DATA Step 1: Print data for steel/concrete design File > Print Tables > Concrete Frame Design Valentinos Neophytou BEng (Hons), MSc   Page: 36 ETABS MANUAL  
  • 37. ETABS MODELING ACCORDING TO EUROCODES ADDITIONAL NOTES SHRINKAGE AREAS Select Area > Edit > Expand/Srink Area Valentinos Neophytou BEng (Hons), MSc   Page: 37 ETABS MANUAL  
  • 38. ETABS MODELING ACCORDING TO EUROCODES PIN JOINT Export model to SAFE File menu > Export > Save Story as SAFE.f2k Text File Local Axis Local axis 1 X - direction Local axis 2 Y- direction Valentinos Neophytou BEng (Hons), MSc   Page: 38 ETABS MANUAL  
  • 39. ETABS MODELING ACCORDING TO EUROCODES Local axis 3 Z - direction Local axis 2 (My) Y- direction Local axis 3 (Mx) X - direction Valentinos Neophytou BEng (Hons), MSc   Page: 39 ETABS MANUAL