Your SlideShare is downloading. ×
Identidades Trigonométricas
Próxima SlideShare
Cargando en...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×

Saving this for later?

Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime - even offline.

Text the download link to your phone

Standard text messaging rates apply

Identidades Trigonométricas

93,809
views

Published on

Muestra de las principales Identidades Trigonométricas aplicadas para un mismo arco o ángulo.

Muestra de las principales Identidades Trigonométricas aplicadas para un mismo arco o ángulo.


3 comentarios
7 Me gusta
Estadísticas
Notas
Sin descargas
reproducciones
reproducciones totales
93,809
En SlideShare
0
De insertados
0
Número de insertados
5
Acciones
Compartido
0
Descargas
577
Comentarios
3
Me gusta
7
Insertados 0
No embeds

Denunciar contenido
Marcada como inapropiada Marcar como inapropiada
Marcar como inapropiada

Seleccione la razón para marcar esta presentación como inapropiada.

Cancelar
No notes for slide

Transcript

  • 1. Curso: Trigonometría Cód.: Trig 05 Tema: Identidades Trigonométricas para un mismo Arco - Identidades Fundamentales - Deducción de Fórmulas - Ejercicios aplicativos
  • 2.  Identidades Fundamentales: Identidades Pitagóricas: Se denominan de esa manera por que son producto de la aplicación del Teorema de Pitágoras con las razones trigonométricas C Sen 2α + Cos 2α = 1 A α Tg α + 1 = Sec α 2 2 B A2 + B 2 = C 2 Ctg α + 1 = Csc α 2 2 (Teorema de Pitágoras)
  • 3.  Identidades Fundamentales: Identidades Recíprocas: Se denominan de esa manera por que son obtenidas al efectuar el producto entre dos razones recíprocas. Ejm: “Seno y Cosecante” Senα .Cscα = 1 C A Cosα .Secα = 1 α B Tgα .Ctgα = 1 C.O A C. A B C.O A No olvides que: Senα = = ; Cosα = = ; Tgα = = Hip C Hip C C. A B
  • 4.  Identidades Fundamentales: Identidades por Cociente: Denominadas así por que cada una de ellas representa la división o cociente entre otras dos razones trigonométricas. Senα Tgα = C Cosα A α Cosα Ctgα = B Senα OK… pero… ¿de donde salen esas fórmulas?
  • 5.  Deducción de Fórmulas Veamos este ejemplo: Hipótesis : Sen 2α + Cos 2α = 1 Como ésta es una “Identidad Pitagórica”, usaremos el “Teorema de Pitágoras” para su demostración … listos? Del triángulo trigonométrico sabemos que: A B Senα = y Cosα = … entonces: C C C 2 2 A  A B Sen α =   y Cos 2α =   2 α C  C B A2 + B 2 Sen α + Cos α = 2 2 A2 + B = C 2 2 C2 (Teorema de Pitágoras) C2 Por lo tanto: Sen α + Cos α = 2 = 1 2 2 C
  • 6.  Deducción de Fórmulas Una deducción más para que quede clara la idea ok? Senα Hipótesis : Tgα = Cosα Como ésta es una “Identidad por Cociente“, vamos a dividir las razones Seno y Coseno para la deducción. Del triángulo trigonométrico sabemos que: A B Senα = y Cosα = C C C A A Senα C A A α Dividiendo : = / = Pero : = Tgα Cosα B B B B C/ Senα Por lo tanto: Tgα = Cosα
  • 7.  Ejercicios aplicativos Ahora veamos cómo se resuelven algunos ejercicios: 1. Simplifica: E = Cosx.Ctgx − Cscx 1 − Sen 2 x ( ) Solución: Por lo general, es conveniente convertir todo a Senos y Cosenos. Entonces Cosx 1 i ) Ctgx = ...Id . por cociente ii ) Cscx = ... Id . Recíproca Senx Senx iii )1 − Sen 2 x = Cos 2 x... Id . Pitagórica Cosx 1 Reemplazando las identidades tenemos: E = Cosx. − .Cos 2 x Senx Senx Cos 2 x Cos 2 x Cos 2 x − Cos 2 x Multiplicando y agrupando: E = − = Senx Senx Senx 0 Y llegamos a la respuesta: E= =0 Senx
  • 8.  Ejercicios aplicativos 1. Simplifica: M = 1 + 2 Senα .Cosα − Senα Solución: Recordemos que una de las identidades Pitagóricas es ( Sen α + Cos α ) = 1 Reemplazando tenemos: 2 2 M = ( Sen α + Cos α ) + 2 Senα .Cosα − Senα 2 2 ¿Esto no es un producto notable?... Sí: M= ( Senα + Cosα ) 2 − Senα M = Senα + Cosα − Senα Y llegamos a la respuesta: M = Cosα
  • 9.  Resumen de Fórmulas Identidades Fundamentales Pitagóricas : Por Cociente : Recíprocas : Sen x + Cos x = 1 2 2 Senx Senx.Cscx = 1 Tgx = Cosx Cosx.Secx = 1 Tg 2 x + 1 = Sec 2 x Cosx Ctg 2 x + 1 = Ctg 2 x Ctgx = Tgx.Ctgx = 1 Senx Ahora a seguir practicando …