Dr. Víctor Cabrera Peláez 
Ingeniería Química Grupo B 
Montiel Rivera Sujaily 
Fuentes Salado Víctor Joaquín 
Navarro Rose...
ORIGEN 
NÚMEROS 
PITÁGORAS 
FIBONACCI 
NÚMERO DORADO 
RECTÁNGULO 
PRPORCIONES 
CONCLUSIONES
ORIGEN 
El origen de los números irracionales 
Los números irracionales aparecen en la historia de la 
matemática vinculad...
TRES NÚMEROS CON NOMBRE 
Tres números con nombre 
Hay tres números de gran importancia en matemáticas y que 
"paradójicame...
TRES NÚMEROS CON NOMBRE 
Tres números con nombre 
El número designado con la letra griega = 3,14159....(Pi) que relaciona ...
PITÁGORAS 
Pitágoras (c. 582-c. 500 a.C.), filósofo y matemático griego 
La estrella pentagonal o pentágono estrellado 
er...
PITÁGORAS 
MENÚ 
ATRÁS
FIBONACCI 
SUCESIÓN DE FIBONACCI: 1, 1, 2, 3, 5, 8, 13, 21, 34... 
"Una pareja de conejos tarda un mes en alcanzar la edad...
LA SECCIÓN ÁUREA Y EL NÚMERO DE ORO 
La sección áurea es la división de un segmento en dos partes, una en 
menor y otra en...
LA SECCIÓN ÁUREA Y EL NÚMERO DE ORO 
Aplicando la proporción áurea obtenemos la siguiente 
ecuación que tendremos que reso...
EL RECTÁNGULO ÁUREO 
Dibujamos un cuadrado y marcamos el punto medio de uno de sus 
lados. Lo unimos con uno de los vértic...
PROPORCIONES 
El cuadro de Dalí 
Leda atómica, 
pintado en 1949, 
sintetiza siglos de 
tradición 
matemática y 
simbólica,...
PROPORCIONES 
En otros seres 
vivos también 
existen vínculos 
con la razón áurea. 
MENÚ SIGUIENTE
PROPORCIONES 
Construcciones 
griegas y de Ejipto. 
MENÚ SIGUIENTE
PROPORCIONES 
En el cuerpo humano 
(Fi) aparece un 
sinnúmero de veces. 
Algunas aparecen en 
las siguientes 
ilustracione...
CONCLUSIONES 
Entre los números reales encontramos que se descubrieron unos 
números llamados irracionales, lo cual fue un...
0.618
Próxima SlideShare
Cargando en…5
×

0.618

766 visualizaciones

Publicado el

Se describen los tres números irracionales con nombre, haciendo énfasis en el número dorado

Publicado en: Educación
0 comentarios
0 recomendaciones
Estadísticas
Notas
  • Sé el primero en comentar

  • Sé el primero en recomendar esto

Sin descargas
Visualizaciones
Visualizaciones totales
766
En SlideShare
0
De insertados
0
Número de insertados
4
Acciones
Compartido
0
Descargas
3
Comentarios
0
Recomendaciones
0
Insertados 0
No insertados

No hay notas en la diapositiva.

0.618

  1. 1. Dr. Víctor Cabrera Peláez Ingeniería Química Grupo B Montiel Rivera Sujaily Fuentes Salado Víctor Joaquín Navarro Rosete Jezabel Iraí Telpalo Méndez Yuri Ingeniería Mecatrónica Grupo B Zepeda Sánchez Giovanni Chávez Cervantes Raúl Abdel Barragán Martínez Roberto
  2. 2. ORIGEN NÚMEROS PITÁGORAS FIBONACCI NÚMERO DORADO RECTÁNGULO PRPORCIONES CONCLUSIONES
  3. 3. ORIGEN El origen de los números irracionales Los números irracionales aparecen en la historia de la matemática vinculados a la geometría. La matemática pitagórica estaba basada en los enteros positivos y en todo lo que es expresable en términos de operaciones entre ellos, por lo tanto a lo más se llegaron a considerar fracciones positivas y se encontraron con que estas cantidades no eran números enteros ni fracciones. A estos números, que no eran ni enteros ni fracciones, los llamaron alogos o irracionales. En la época de Platón (428 - 347 A.C.) ya se conocía la irracionalidad de los números: MENÚ
  4. 4. TRES NÚMEROS CON NOMBRE Tres números con nombre Hay tres números de gran importancia en matemáticas y que "paradójicamente" nombramos con una letra. Estos números son: Hacer click en los números MENÚ
  5. 5. TRES NÚMEROS CON NOMBRE Tres números con nombre El número designado con la letra griega = 3,14159....(Pi) que relaciona la longitud de la circunferencia con su diámetro ( Longitud = 2..radio= .diámetro). El número e = 2´71828......, inicial del apellido de su descubridor Leonhard Euler (matemático suizo del siglo XVIII) que aparece como límite de la sucesión de término general . El número designado con letra griega = 1,61803... (Fi), llamado número de oro y que es la inicial del nombre del escultor griego Fidias que lo tuvo presente en sus obras. MENÚ
  6. 6. PITÁGORAS Pitágoras (c. 582-c. 500 a.C.), filósofo y matemático griego La estrella pentagonal o pentágono estrellado era, según la tradición, el símbolo de los seguidores de Pitágoras. Los pitagóricos pensaban que el mundo estaba configurado según un orden numérico, donde sólo tenían cabida los números fraccionarios. La casualidad hizo que en su propio símbolo se encontrara un número raro: el numero de oro. MENÚ SIGUIENTE
  7. 7. PITÁGORAS MENÚ ATRÁS
  8. 8. FIBONACCI SUCESIÓN DE FIBONACCI: 1, 1, 2, 3, 5, 8, 13, 21, 34... "Una pareja de conejos tarda un mes en alcanzar la edad fértil, a partir de ese momento cada vez engendra una pareja de conejos, que a su vez, tras ser fértiles engendrarán cada mes una pareja de conejos. MENÚ
  9. 9. LA SECCIÓN ÁUREA Y EL NÚMERO DE ORO La sección áurea es la división de un segmento en dos partes, una en menor y otra en mayor tamaño. Es decir, que el segmento menor es proporcional al segmento mayor y viceversa. De esta manera se establece una relación de tamaños con la misma proporcionalidad entre el todo dividido en mayor y menor. Esta proporción o forma de seleccionar proporcionalmente una línea se llama proporción áurea.Tomemos un segmento de longitud uno y hagamos en el la división indicada anteriormente MENÚ SIGUIENTE
  10. 10. LA SECCIÓN ÁUREA Y EL NÚMERO DE ORO Aplicando la proporción áurea obtenemos la siguiente ecuación que tendremos que resolver X - 1 X = X11 - X = X2 X + X - 1= 0 2 ANTERIOR MENÚ
  11. 11. EL RECTÁNGULO ÁUREO Dibujamos un cuadrado y marcamos el punto medio de uno de sus lados. Lo unimos con uno de los vértices del lado opuesto y llevamos esa distancia sobre el lado inicial, de esta manera obtenemos el lado mayor del rectángulo. MENÚ
  12. 12. PROPORCIONES El cuadro de Dalí Leda atómica, pintado en 1949, sintetiza siglos de tradición matemática y simbólica, especialmente pitagórica. MENÚ SIGUIENTE
  13. 13. PROPORCIONES En otros seres vivos también existen vínculos con la razón áurea. MENÚ SIGUIENTE
  14. 14. PROPORCIONES Construcciones griegas y de Ejipto. MENÚ SIGUIENTE
  15. 15. PROPORCIONES En el cuerpo humano (Fi) aparece un sinnúmero de veces. Algunas aparecen en las siguientes ilustraciones, en las que hemos trazado rectángulos áureos sobre el rostro y el cuerpo. Sobra decir que Leonardo Da Vinci, el autor del dibujo que hemos usado aquí, conocía f y sus vínculos con las proporciones humanas. MENÚ
  16. 16. CONCLUSIONES Entre los números reales encontramos que se descubrieron unos números llamados irracionales, lo cual fue un avance muy importante en las matemáticas de esa época, debido a esto la geometría tuvo cambios contrastantes en sus planteamientos, como fue mencionado en el inicio de este documento, se tenía la idea que la figuras geométricas estaban formadas por el seguimiento de puntos finitos, hasta que encontraron que estas también estaban formadas por números irracionales. Entre estos fi. El número dorado también llamado número divino lo encontramos en las formas geométricas de la naturaleza, parase ser que estamos diseñados bajo un mismo patrón numérico de proporcionalidad, ya que multiplicando este número (0.618) por las magnitudes de ciertos objetos y hasta de nuestro cuerpo nos damos cuenta que estamos formados bajo este patrón de proporción. MENÚ

×