SlideShare una empresa de Scribd logo
1 de 32
Electrónica
Componentes activos
Semiconductores
Los componentes electrónicos activos se fundamentan en los materiales
semiconductores.
Un semiconductor es una sustancia que se comporta como
conductor o como aislante en función del aporte exterior de
energía.
Los materiales semiconductores
más utilizados son el silicio (Si) y
el germanio (Ge)
Los átomos de silicio y germanio
tienen cuatro electrones en su última
capa.
Estos electrones se combinan con otros
tantos átomos vecinos.
De esta forma al no existir electrones
libres se comporta como aislante
Semiconductores
Tipos:
Semiconductores intrínsecos: formado por átomos de un mismo
elemento. En ellos , la conducción se puede establecer mediante aporte de calor.
Semiconductores extrínsecos: formado por átomos de semiconductor
y de impurezas (dopado). Se emplean para fabricar los componentes más
importantes (diodos, transistor…)
• Tipo N: Se obtiene cuando las impurezas que se introducen
tienen cinco electrones de valencia. Los más empleados son arsénico,
bismuto, antimonio y fósforo.
• Tipo P: Se obtiene cuando las impurezas que se introducen
tienen tres electrones de valencia. Los más empleados son indio, alumio,
galio y boro.
Por cada átomo de impureza añadido se genera u electrón libre
En este tipo de dopado falta un electrón para completar los enlaces
covalentes entre un átomo de impureza y un átomo de silicio o
germanio.
Representación
Diodos
Dispositivo electrónico que resulta de la unión de un semiconductor
de tipo p (ánodo +) con un semiconductor de tipo n (cátodo -).
+ -
+ -
El polo negativo (cátodo) del diodo,
se identifica por una banda de color
gris.
Símbolo
Comprobación del estado del diodo y su polaridad.
Real
POLARIZACIÓN CIRCUITO CARACTERÍSTICAS
DIRECTA
el ánodo se conecta al
positivo de la batería
y el cátodo al negativo.
El diodo conduce con una caída de
tensión
de 0,6 a 0,7V.
El valor de la resistencia interna seria
muy bajo.
Se comporta como un
interruptor cerrado
INVERSA
el ánodo se conecta al
negativo y el cátodo
al positivo de la batería
El diodo no conduce y toda la tensión
de la pila cae sobre el.
Puede existir una corriente de fuga del
orden de uA.
El valor de la resistencia interna sería
muy alto
Se comporta como un
interruptor abierto.
Diodos
Polarización del diodo: En función de cómo conectemos el diodo
a los polos de la fuente de alimentación,
permitirá o no, el paso de la corriente
eléctrica.
Corriente Zener
Diodos Curva característica del diodo:
Representa la intensidad que recorre un diodo
en relación con el voltaje aplicado.
Cuando se sobrepasa la tensión umbral (Vu), se produce un crecimiento exponencial
de la corriente.
En esta zona, el diodo se comporta
prácticamente como un interruptor cerrado.
Intensidad directa máxima admisible (Idmax). Es el
valor máximo que puede alcanzar la corriente directa
sin sobrepasar la potencia máxima nominal del diodo
( no se destruya).
Al aplicar una tensión inversa, se
pruduce una corriente de fuga (I0)
prácticamente nula.
Tensión de ruptura o Zener (VZ):
es el valor máximo de la tensión
capaz de soportar el diodo sin que
se produzca la conducción en
inversa.
Diodos
Resolución de circuitos con diodos:
Existen tres aproximaciones para la resolución:
a) Diodo ideal ( 1ª aproximación)
El diodo ideal actúa exactamente igual que un conductor perfecto, cuando
está polarizado directamente y como aislante perfecto en polarización
inversa.
Curva equivalente
Polarización directa: actúa como un interruptor
cerrado.
Polarización indirecta: actúa como un interruptor
abierto.
Dado el circuito de la figura
calcula la intensidad, y la
potencia de la resistencia y el
diodo.
Diodos
Resolución de circuitos con diodos:
b) Segunda
aproximación.
Se necesitarán alrededor de 0,7 voltios para que el
diodo de silicio sea realmente un buen conductor.
(Para el germanio 0,3 V).
Curva aproximada
El diodo es equivalente a un interruptor
cerrado y una pila de 0,7 V.
Dado el circuito de la figura
calcula la intensidad, y la potencia
de la resistencia y el diodo, por la
segunda aproximación
Diodos
Tipos de diodos:
a) Diodo LED (Light Emitter Diode)
Es un diodo que emite luz cuando está polarizado
directamente.
El voltaje de conducción o tensión umbral es de 1,8 V a 2 V
Se tiene que colocar siempre una resistencia en
serie con el LED para protegerlo, limitando la
intensidad que pasa por el y proporcionarle la tensión
adecuada.
Identificación de polos La patilla más corta es el
cátodo (polo negativo).
El chaflán corresponde al
cátodo (-).
Símbolo
+ -
Diodos
Tipos de diodos:
a) Diodo LED (Light Emitter Diode)
Identificación de polos (Mediante el polímetro)
Colocamos la
ruleta en el símbolo
del diodo. La punta
de prueba roja sobre
el ánodo (+),patilla
larga y la negra sobre
el cátodo (-), patilla
corta. Nos dará una
lectura en la pantalla.
Si se coloca al revés
no da lectura o no se
enciende el LED
1
Cálculo de la resistencia en serie:
Normalmente se conocen los datos del Led, su intensidad máxima ( 5 mA a
20 mA) y su tensión 1,5 V a 2 V.
LED
I = 20 mA
VD= 2 V
Por ser un circuito en serie:
Ω===
=−=
+=
200
02,0
4
:
4
1
1
1
1
A
V
I
V
R
OhmdeLey
VVVV
VVV
R
DPR
DRP
Diodos a) Diodo LED (Light Emitter Diode)
Ejemplo:
Conocidas las magnitudes de un LED: intensidad
máxima de 20 mA y tensión de 2V. Calcula la resistencia a
conectar en serie si disponemos de una pila de 6 V.
El valor de resistencia normalizado más cercano es 180Ω o 220Ω.
Esquema:
¿Cuál pondremos? Se toma la de mayor valor para no superar la Imax
Diodos a) Diodo LED (Light Emitter Diode)
Ejercicio:
En el circuito de la figura, calcula la resistencia de
protección del LED, así como su potencia, sabiendo que la
tensión umbral de éste es de 2 v y que la intensidad
máxima que ha de circular es de 12,5 mA.
Diodos
Tipos de diodos:
c) Diodo emisor de luz infrarroja:
Es un diodo que emite luz infrarroja.
Ejemplos: - Mando de televisión.
- Control puerta de garaje
- Máquinas de tabaco.
La patilla mas larga es el ánodo (+)
y la más corta el cátodo (-)
Datos componente TSUS5400
Con un receptor apropiado nos permite activar y
desactivar un circuito de control.
Transistores
Los transistores son operadores electrónicos que,
conectados de forma adecuada en un circuito, pueden
funcionar como interruptores o como amplificadores de una
señal eléctrica.
Está constituido por tres cristales
semiconductores que forman dos
uniones PN juntas y en oposición.
Todo transistor dispone de tres patillas otres patillas o
terminalesterminales, que están conectadas a cada
cristal semiconductor:
Base (B): Es la patilla de control
Colector (C):
Emisor (E):
Transistores
PNP
Símbolo:
NPN
Símbolo:
Dependiendo de la colocación de los
semiconductores existen dos tipos:
Transistores Identificación de terminales
Existen muchos tipos de transistores con encapsulados
diferentes. Para realizar un montaje, es necesario identificar
cada patilla y asegurar así el funcionamiento correcto.
Buscando la
información en las
hojas del fabricante (
Data sheet) y en
función del tipo y su
encapsulado
identificaremos cada
patilla.
Transistores Identificación de terminales
Los polímetros digitales tienen unas
clavijas que sirven para medir la ganancia del
transistor.
Para identificar los
terminales, se coloca la rueda
selectora en el indicador de
medida de ganancia (hFE), se
introducen los terminales del
transistor de forma aleatoria en
las clavijas E, B,C,E repitiendo
el proceso hasta que aparezca
un valor coherente en la
pantalla ( un número entero
mayor que 1), y , en ese caso,
la base, el colector y el emisor
del transistor se corresponden
con las iniciales B, C y E
respectivamente.
Transistores Funcionamiento del transistor NPN
Los transistores pueden funcionar de tres formas
distintas: en activa, en corte y en saturación.
Analizamos su funcionamiento a través de un símil hidráulico.
Imaginemos una tubería que dispone de una llave de paso B con un “muelle
de cierre” cuya resistencia se vence al presionar la base. El agua intentará
pasar del emisor E al colector C.
Corte: si no hay presión en B (base), no puede abrir la válvula
y no se produce paso de fluido de E a C.
Si no hay corriente en la base del transistor no pasa
la corriente del colector al emisor. Se comporta como un interruptor
abierto.
Transistores Funcionamiento del transistor NPN
Activa: si llega algo de presión a B (base), está abrirá más o
menos la válvula y dejará pasar más o menos fluido de E a C
El transistor permitirá un paso de corriente proporcional
a la intensidad en la base y siempre superior a esta. A la
relación entre ambas corrientes se le llama amplificación
o ganancia.
Se comporta como un amplificador
Transistores Funcionamiento del transistor NPN
Saturación: si llega suficiente presión a B (base) de forma
que abra totalmente la válvula, se comunica E con C y el fluido
pasa sin dificultad.
Cuando la intensidad en la base es grande, el
transistor se comporta como un interruptor cerrado
Con una pequeña señal en la base ( μA) se controla el funcionamiento
del transistor.
Transistores Las tensiones y corrientes en el transistor.
En la figura se observa el sentido de las
diferentes intensidades de corriente, así
como la denominación de las tensiones
entre los tres terminales.
 Considerando el transistor como un
nudo eléctrico:
 Considerando el transistor como una malla:
Transistores
Para funcionamiento en activa, se cumple:
Donde:
IB = Intensidad de corriente en la base.
IC = Intensidad de corriente en el colector.
IE = Intensidad de corriente en el emisor.
VCE = tensión entre el colector y el emisor.
VBE = tensión entre la base y el emisor.
VCB = tensión entre el colector y la base.
ß = ganancia en intensidad
Transistores Regiones de funcionamiento.
Región de corte
Se caracteriza porque tanto la unión base-emisor como la
unión base-colector están polarizadas inversamente.
En estas condiciones la tensión en la base
es nula o negativa, luego las intensidades
que aparecen son prácticamente nulas, el
transistor no conduce.
La tensión entre el colector y el emisor (VCE) es
prácticamente igual a la de alimentación.
VCE = VCC
La tensión entre la base y el emisor (VBE) es menor a 0,7 V (silicio).
VBE < 0,7 v
El transistor se comporta como un
interruptor abierto.
Transistores Regiones de funcionamiento.
Región activa
Se caracteriza porque la unión base-emisor se polariza
directamente y, en inverso, la unión base-colector.
En este caso, las intensidades de corriente
ya no son nulas ( el transistor conduce
parcialmente).
La tensión entre el colector y el emisor (VCE)
está comprendida entre 0,2 V y la tensión de
alimentación.
La tensión entre la base y el emisor (VBE) es mayor o igual a 0,7 V
(silicio). VBE ≥ 0,7 v
El transistor se comporta como un
amplificador.
0,2 v ≤VCE ≤ VCC
La intensidad en el colector
será:
Transistores Regiones de funcionamiento.
Región de saturación
Se caracteriza porque las uniones base-emisor y base-
colector se polariza directamente.
El transistor conduce plenamente y la tensión
colector-emisor es aproximadamente 0,2 V.
En esta región ya no se cumple la ecuación
fundamental del transistor, sino que la
intensidad de colector es inferior a la que se
obtendría en zona activa.
VCE = 0,2 V
El transistor se comporta como un
interruptor cerrado.
Transistores Regiones de funcionamiento.
Tabla resumen del funcionamiento del transistor
Transistores Curvas características.
Resolución de circuitos con transistores
Diferenciamos dos circuitos:
Circuito de entrada: formado por la base y el emisor.
RB
RC
VBB
VCC
VCC
RB
RC
VBB VCE
VBEIb
Ib
0=++− BEBbBB VRIV
B
BEBB
b
R
VV
I
−
=
VBE
VBB
RB
Ib
Circuito equivalente
Resolución de circuitos con transistores
RB
RC
VBB
VCC
VCC
RB
RC
VBB VCE
VBEIb
Ib
Ic
Ib
Circuito de salida: formado por el colector y el emisor.
RC
VCC
VCE
Ic
Malla: 0=++− CECcCC VRIV
C
CECC
c
R
VV
I
−
=
Resolución de circuitos con transistores (NPN)
Pasos a seguir suponiendo transistor en activa.
• Suponiendo transistor en activa : VBE ≥ 0,7 v
• Calcular la intensidad de la base (Ib) : mediante malla de entrada
• Si Ib> 0 Está en activa
• Calcular la tensión VCE : mediante la expresión bc II ⋅= β
• Se comprueba que VCE > VCEsat> 0,2 v
• Si no se cumplen estas condicines expuestas el transistor esta
polarizado en saturación
RB
RC
VBB
VCCIb B
BEBB
b
R
VV
I
−
=
y la malla de salida 0=++− CECcCC VRIV

Más contenido relacionado

La actualidad más candente

La actualidad más candente (19)

Electronica analogica
Electronica analogicaElectronica analogica
Electronica analogica
 
Electrónica de 3º E. S. O.
Electrónica de 3º E. S. O.Electrónica de 3º E. S. O.
Electrónica de 3º E. S. O.
 
ELECTRICIDAD Y ELECTRÓNICA
ELECTRICIDAD Y ELECTRÓNICAELECTRICIDAD Y ELECTRÓNICA
ELECTRICIDAD Y ELECTRÓNICA
 
Tema 2
Tema 2Tema 2
Tema 2
 
Diodos y transistores
Diodos y transistoresDiodos y transistores
Diodos y transistores
 
Laboratorio de electrónica nº 5
Laboratorio de electrónica nº 5Laboratorio de electrónica nº 5
Laboratorio de electrónica nº 5
 
Electrónica analógica
Electrónica analógicaElectrónica analógica
Electrónica analógica
 
ElectróNica AnalogíCa 2
ElectróNica AnalogíCa 2ElectróNica AnalogíCa 2
ElectróNica AnalogíCa 2
 
Clases de (electronica) 2
Clases de (electronica) 2Clases de (electronica) 2
Clases de (electronica) 2
 
Fundamentos del diodo.
Fundamentos del diodo.Fundamentos del diodo.
Fundamentos del diodo.
 
Electronica aplicada automotriz 3
Electronica aplicada automotriz 3Electronica aplicada automotriz 3
Electronica aplicada automotriz 3
 
Electrónica Analógica
Electrónica AnalógicaElectrónica Analógica
Electrónica Analógica
 
Electrónica Analógica Básica ⓗⓢⓗ
Electrónica Analógica Básica ⓗⓢⓗElectrónica Analógica Básica ⓗⓢⓗ
Electrónica Analógica Básica ⓗⓢⓗ
 
La electrónica
La electrónicaLa electrónica
La electrónica
 
El diodo zener
El diodo zenerEl diodo zener
El diodo zener
 
S01. diodo semiconductor
S01. diodo semiconductorS01. diodo semiconductor
S01. diodo semiconductor
 
Electrónica analógica
Electrónica analógicaElectrónica analógica
Electrónica analógica
 
El diodo
El diodoEl diodo
El diodo
 
Electricidad y electrónica
Electricidad y electrónicaElectricidad y electrónica
Electricidad y electrónica
 

Similar a La electrónica II

Electronica analogica 2013
Electronica analogica 2013Electronica analogica 2013
Electronica analogica 2013Julio Sanchez
 
Introduccion a la electronica. Tecnología ESO.ppt
Introduccion a la electronica. Tecnología ESO.pptIntroduccion a la electronica. Tecnología ESO.ppt
Introduccion a la electronica. Tecnología ESO.pptGJover2
 
DIODOS Y TRANSISTORES.pptx
DIODOS Y TRANSISTORES.pptxDIODOS Y TRANSISTORES.pptx
DIODOS Y TRANSISTORES.pptxFlorenPajarito1
 
Componentes Electrónicos.
Componentes Electrónicos.Componentes Electrónicos.
Componentes Electrónicos.Maria Mora
 
Presentacion Componentes Electronicos
Presentacion Componentes ElectronicosPresentacion Componentes Electronicos
Presentacion Componentes ElectronicosLuis A. Diaz Sanchez
 
Elementos Eléctricos y Electrónicos
Elementos Eléctricos y ElectrónicosElementos Eléctricos y Electrónicos
Elementos Eléctricos y ElectrónicosAlex Vasquez
 
Electronica analogica
Electronica analogicaElectronica analogica
Electronica analogicaMario Flores
 
Alarma con retardo ala entradaysalida
Alarma con retardo ala entradaysalidaAlarma con retardo ala entradaysalida
Alarma con retardo ala entradaysalidaJorge_Roca
 
Power t5
Power t5Power t5
Power t5ucouco
 
Electronica transistores2
Electronica transistores2Electronica transistores2
Electronica transistores2sonrisas28
 
Electronica transistores3
Electronica transistores3Electronica transistores3
Electronica transistores3sonrisas28
 

Similar a La electrónica II (20)

Electronica analogica 2013
Electronica analogica 2013Electronica analogica 2013
Electronica analogica 2013
 
Electronica industrial chuquimajo
Electronica industrial chuquimajoElectronica industrial chuquimajo
Electronica industrial chuquimajo
 
Electronica 4ºEso
Electronica 4ºEsoElectronica 4ºEso
Electronica 4ºEso
 
Introduccion a la electronica. Tecnología ESO.ppt
Introduccion a la electronica. Tecnología ESO.pptIntroduccion a la electronica. Tecnología ESO.ppt
Introduccion a la electronica. Tecnología ESO.ppt
 
Tema 2
Tema 2Tema 2
Tema 2
 
DIODOS Y TRANSISTORES.pptx
DIODOS Y TRANSISTORES.pptxDIODOS Y TRANSISTORES.pptx
DIODOS Y TRANSISTORES.pptx
 
Componentes Electrónicos.
Componentes Electrónicos.Componentes Electrónicos.
Componentes Electrónicos.
 
Electronica
ElectronicaElectronica
Electronica
 
Presentacion Componentes Electronicos
Presentacion Componentes ElectronicosPresentacion Componentes Electronicos
Presentacion Componentes Electronicos
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Elementos Eléctricos y Electrónicos
Elementos Eléctricos y ElectrónicosElementos Eléctricos y Electrónicos
Elementos Eléctricos y Electrónicos
 
Electronica analogica
Electronica analogicaElectronica analogica
Electronica analogica
 
Alarma con retardo ala entradaysalida
Alarma con retardo ala entradaysalidaAlarma con retardo ala entradaysalida
Alarma con retardo ala entradaysalida
 
Electronica Analogica
Electronica AnalogicaElectronica Analogica
Electronica Analogica
 
Power t5
Power t5Power t5
Power t5
 
Transistores
TransistoresTransistores
Transistores
 
ElectróNica
ElectróNicaElectróNica
ElectróNica
 
Electronica-basica
Electronica-basicaElectronica-basica
Electronica-basica
 
Electronica transistores2
Electronica transistores2Electronica transistores2
Electronica transistores2
 
Electronica transistores3
Electronica transistores3Electronica transistores3
Electronica transistores3
 

La electrónica II

  • 2. Semiconductores Los componentes electrónicos activos se fundamentan en los materiales semiconductores. Un semiconductor es una sustancia que se comporta como conductor o como aislante en función del aporte exterior de energía. Los materiales semiconductores más utilizados son el silicio (Si) y el germanio (Ge) Los átomos de silicio y germanio tienen cuatro electrones en su última capa. Estos electrones se combinan con otros tantos átomos vecinos. De esta forma al no existir electrones libres se comporta como aislante
  • 3. Semiconductores Tipos: Semiconductores intrínsecos: formado por átomos de un mismo elemento. En ellos , la conducción se puede establecer mediante aporte de calor. Semiconductores extrínsecos: formado por átomos de semiconductor y de impurezas (dopado). Se emplean para fabricar los componentes más importantes (diodos, transistor…) • Tipo N: Se obtiene cuando las impurezas que se introducen tienen cinco electrones de valencia. Los más empleados son arsénico, bismuto, antimonio y fósforo. • Tipo P: Se obtiene cuando las impurezas que se introducen tienen tres electrones de valencia. Los más empleados son indio, alumio, galio y boro. Por cada átomo de impureza añadido se genera u electrón libre En este tipo de dopado falta un electrón para completar los enlaces covalentes entre un átomo de impureza y un átomo de silicio o germanio.
  • 4. Representación Diodos Dispositivo electrónico que resulta de la unión de un semiconductor de tipo p (ánodo +) con un semiconductor de tipo n (cátodo -). + - + - El polo negativo (cátodo) del diodo, se identifica por una banda de color gris. Símbolo Comprobación del estado del diodo y su polaridad. Real
  • 5. POLARIZACIÓN CIRCUITO CARACTERÍSTICAS DIRECTA el ánodo se conecta al positivo de la batería y el cátodo al negativo. El diodo conduce con una caída de tensión de 0,6 a 0,7V. El valor de la resistencia interna seria muy bajo. Se comporta como un interruptor cerrado INVERSA el ánodo se conecta al negativo y el cátodo al positivo de la batería El diodo no conduce y toda la tensión de la pila cae sobre el. Puede existir una corriente de fuga del orden de uA. El valor de la resistencia interna sería muy alto Se comporta como un interruptor abierto. Diodos Polarización del diodo: En función de cómo conectemos el diodo a los polos de la fuente de alimentación, permitirá o no, el paso de la corriente eléctrica.
  • 6. Corriente Zener Diodos Curva característica del diodo: Representa la intensidad que recorre un diodo en relación con el voltaje aplicado. Cuando se sobrepasa la tensión umbral (Vu), se produce un crecimiento exponencial de la corriente. En esta zona, el diodo se comporta prácticamente como un interruptor cerrado. Intensidad directa máxima admisible (Idmax). Es el valor máximo que puede alcanzar la corriente directa sin sobrepasar la potencia máxima nominal del diodo ( no se destruya). Al aplicar una tensión inversa, se pruduce una corriente de fuga (I0) prácticamente nula. Tensión de ruptura o Zener (VZ): es el valor máximo de la tensión capaz de soportar el diodo sin que se produzca la conducción en inversa.
  • 7. Diodos Resolución de circuitos con diodos: Existen tres aproximaciones para la resolución: a) Diodo ideal ( 1ª aproximación) El diodo ideal actúa exactamente igual que un conductor perfecto, cuando está polarizado directamente y como aislante perfecto en polarización inversa. Curva equivalente Polarización directa: actúa como un interruptor cerrado. Polarización indirecta: actúa como un interruptor abierto.
  • 8. Dado el circuito de la figura calcula la intensidad, y la potencia de la resistencia y el diodo.
  • 9. Diodos Resolución de circuitos con diodos: b) Segunda aproximación. Se necesitarán alrededor de 0,7 voltios para que el diodo de silicio sea realmente un buen conductor. (Para el germanio 0,3 V). Curva aproximada El diodo es equivalente a un interruptor cerrado y una pila de 0,7 V.
  • 10. Dado el circuito de la figura calcula la intensidad, y la potencia de la resistencia y el diodo, por la segunda aproximación
  • 11. Diodos Tipos de diodos: a) Diodo LED (Light Emitter Diode) Es un diodo que emite luz cuando está polarizado directamente. El voltaje de conducción o tensión umbral es de 1,8 V a 2 V Se tiene que colocar siempre una resistencia en serie con el LED para protegerlo, limitando la intensidad que pasa por el y proporcionarle la tensión adecuada. Identificación de polos La patilla más corta es el cátodo (polo negativo). El chaflán corresponde al cátodo (-). Símbolo + -
  • 12. Diodos Tipos de diodos: a) Diodo LED (Light Emitter Diode) Identificación de polos (Mediante el polímetro) Colocamos la ruleta en el símbolo del diodo. La punta de prueba roja sobre el ánodo (+),patilla larga y la negra sobre el cátodo (-), patilla corta. Nos dará una lectura en la pantalla. Si se coloca al revés no da lectura o no se enciende el LED 1
  • 13. Cálculo de la resistencia en serie: Normalmente se conocen los datos del Led, su intensidad máxima ( 5 mA a 20 mA) y su tensión 1,5 V a 2 V. LED I = 20 mA VD= 2 V Por ser un circuito en serie: Ω=== =−= += 200 02,0 4 : 4 1 1 1 1 A V I V R OhmdeLey VVVV VVV R DPR DRP Diodos a) Diodo LED (Light Emitter Diode) Ejemplo: Conocidas las magnitudes de un LED: intensidad máxima de 20 mA y tensión de 2V. Calcula la resistencia a conectar en serie si disponemos de una pila de 6 V. El valor de resistencia normalizado más cercano es 180Ω o 220Ω. Esquema: ¿Cuál pondremos? Se toma la de mayor valor para no superar la Imax
  • 14. Diodos a) Diodo LED (Light Emitter Diode) Ejercicio: En el circuito de la figura, calcula la resistencia de protección del LED, así como su potencia, sabiendo que la tensión umbral de éste es de 2 v y que la intensidad máxima que ha de circular es de 12,5 mA.
  • 15. Diodos Tipos de diodos: c) Diodo emisor de luz infrarroja: Es un diodo que emite luz infrarroja. Ejemplos: - Mando de televisión. - Control puerta de garaje - Máquinas de tabaco. La patilla mas larga es el ánodo (+) y la más corta el cátodo (-) Datos componente TSUS5400 Con un receptor apropiado nos permite activar y desactivar un circuito de control.
  • 16. Transistores Los transistores son operadores electrónicos que, conectados de forma adecuada en un circuito, pueden funcionar como interruptores o como amplificadores de una señal eléctrica. Está constituido por tres cristales semiconductores que forman dos uniones PN juntas y en oposición. Todo transistor dispone de tres patillas otres patillas o terminalesterminales, que están conectadas a cada cristal semiconductor: Base (B): Es la patilla de control Colector (C): Emisor (E):
  • 17. Transistores PNP Símbolo: NPN Símbolo: Dependiendo de la colocación de los semiconductores existen dos tipos:
  • 18. Transistores Identificación de terminales Existen muchos tipos de transistores con encapsulados diferentes. Para realizar un montaje, es necesario identificar cada patilla y asegurar así el funcionamiento correcto. Buscando la información en las hojas del fabricante ( Data sheet) y en función del tipo y su encapsulado identificaremos cada patilla.
  • 19. Transistores Identificación de terminales Los polímetros digitales tienen unas clavijas que sirven para medir la ganancia del transistor. Para identificar los terminales, se coloca la rueda selectora en el indicador de medida de ganancia (hFE), se introducen los terminales del transistor de forma aleatoria en las clavijas E, B,C,E repitiendo el proceso hasta que aparezca un valor coherente en la pantalla ( un número entero mayor que 1), y , en ese caso, la base, el colector y el emisor del transistor se corresponden con las iniciales B, C y E respectivamente.
  • 20. Transistores Funcionamiento del transistor NPN Los transistores pueden funcionar de tres formas distintas: en activa, en corte y en saturación. Analizamos su funcionamiento a través de un símil hidráulico. Imaginemos una tubería que dispone de una llave de paso B con un “muelle de cierre” cuya resistencia se vence al presionar la base. El agua intentará pasar del emisor E al colector C. Corte: si no hay presión en B (base), no puede abrir la válvula y no se produce paso de fluido de E a C. Si no hay corriente en la base del transistor no pasa la corriente del colector al emisor. Se comporta como un interruptor abierto.
  • 21. Transistores Funcionamiento del transistor NPN Activa: si llega algo de presión a B (base), está abrirá más o menos la válvula y dejará pasar más o menos fluido de E a C El transistor permitirá un paso de corriente proporcional a la intensidad en la base y siempre superior a esta. A la relación entre ambas corrientes se le llama amplificación o ganancia. Se comporta como un amplificador
  • 22. Transistores Funcionamiento del transistor NPN Saturación: si llega suficiente presión a B (base) de forma que abra totalmente la válvula, se comunica E con C y el fluido pasa sin dificultad. Cuando la intensidad en la base es grande, el transistor se comporta como un interruptor cerrado Con una pequeña señal en la base ( μA) se controla el funcionamiento del transistor.
  • 23. Transistores Las tensiones y corrientes en el transistor. En la figura se observa el sentido de las diferentes intensidades de corriente, así como la denominación de las tensiones entre los tres terminales.  Considerando el transistor como un nudo eléctrico:  Considerando el transistor como una malla:
  • 24. Transistores Para funcionamiento en activa, se cumple: Donde: IB = Intensidad de corriente en la base. IC = Intensidad de corriente en el colector. IE = Intensidad de corriente en el emisor. VCE = tensión entre el colector y el emisor. VBE = tensión entre la base y el emisor. VCB = tensión entre el colector y la base. ß = ganancia en intensidad
  • 25. Transistores Regiones de funcionamiento. Región de corte Se caracteriza porque tanto la unión base-emisor como la unión base-colector están polarizadas inversamente. En estas condiciones la tensión en la base es nula o negativa, luego las intensidades que aparecen son prácticamente nulas, el transistor no conduce. La tensión entre el colector y el emisor (VCE) es prácticamente igual a la de alimentación. VCE = VCC La tensión entre la base y el emisor (VBE) es menor a 0,7 V (silicio). VBE < 0,7 v El transistor se comporta como un interruptor abierto.
  • 26. Transistores Regiones de funcionamiento. Región activa Se caracteriza porque la unión base-emisor se polariza directamente y, en inverso, la unión base-colector. En este caso, las intensidades de corriente ya no son nulas ( el transistor conduce parcialmente). La tensión entre el colector y el emisor (VCE) está comprendida entre 0,2 V y la tensión de alimentación. La tensión entre la base y el emisor (VBE) es mayor o igual a 0,7 V (silicio). VBE ≥ 0,7 v El transistor se comporta como un amplificador. 0,2 v ≤VCE ≤ VCC La intensidad en el colector será:
  • 27. Transistores Regiones de funcionamiento. Región de saturación Se caracteriza porque las uniones base-emisor y base- colector se polariza directamente. El transistor conduce plenamente y la tensión colector-emisor es aproximadamente 0,2 V. En esta región ya no se cumple la ecuación fundamental del transistor, sino que la intensidad de colector es inferior a la que se obtendría en zona activa. VCE = 0,2 V El transistor se comporta como un interruptor cerrado.
  • 28. Transistores Regiones de funcionamiento. Tabla resumen del funcionamiento del transistor
  • 30. Resolución de circuitos con transistores Diferenciamos dos circuitos: Circuito de entrada: formado por la base y el emisor. RB RC VBB VCC VCC RB RC VBB VCE VBEIb Ib 0=++− BEBbBB VRIV B BEBB b R VV I − = VBE VBB RB Ib Circuito equivalente
  • 31. Resolución de circuitos con transistores RB RC VBB VCC VCC RB RC VBB VCE VBEIb Ib Ic Ib Circuito de salida: formado por el colector y el emisor. RC VCC VCE Ic Malla: 0=++− CECcCC VRIV C CECC c R VV I − =
  • 32. Resolución de circuitos con transistores (NPN) Pasos a seguir suponiendo transistor en activa. • Suponiendo transistor en activa : VBE ≥ 0,7 v • Calcular la intensidad de la base (Ib) : mediante malla de entrada • Si Ib> 0 Está en activa • Calcular la tensión VCE : mediante la expresión bc II ⋅= β • Se comprueba que VCE > VCEsat> 0,2 v • Si no se cumplen estas condicines expuestas el transistor esta polarizado en saturación RB RC VBB VCCIb B BEBB b R VV I − = y la malla de salida 0=++− CECcCC VRIV