SlideShare una empresa de Scribd logo
1 de 12
Descargar para leer sin conexión
1
One important principle underpinning this Make it Count project has been that
we won’t just adopt the AL teaching sequence which was developed for
teaching narrative. We would look at the theorists whose ideas inform AL, and
bring those theories to this project.
So now we’ll have a brief reminder of some of the theorists who are travelling
with us, riding on our shoulders, whispering in our ears.

2
Most important is our friend Lev Vygotsky who gave us the learning theory
that underpins Accelerated Literacy pedagogy.
Unlike his contemporary Piaget, Vygotsky understood that learning occurs in
a social context. Not a party, but where culturally important events are
happening. The process moves from intermental social engagement, with
language being the most important cultural tool available to us, to intramental,
when that language has been internalised. That learning then becomes a
resource for further learning.
We know that children are involved in many learning events to support them
in moving to the next stage of development and that their success in moving
to that next stage of development depends on us, as teachers, making the
learning clear to them, and checking for handover.
We also know that real learning occurs in the Zone of next development, with
the support of culturally informed others. That’s where the pointy end of our
teaching / learning negotiation happens. If children can do something
independently that’s great, we’ve reached our goal, but we are no longer in
the zone of proximal development.

3
Then we have James Wertsch, who has done a lot of thinking about how we
interact with the cultural tools available to us in order to be successful.
A pole-vaulter who doesn’t know how to use the pole properlly is never going
to break a record, no matter how good the pole is.
A good pole-vaulter is going to be better, but they will be more successful with
a carbonfibre pole than a stick of bamboo. The tools we have to use matter.
A good pole-vaulter has had many years of training, learning everything they
can from other pole-vaulters’ techniques, and perhaps then developing new
techniques.
As maths teachers, our students need to know what the goal is, what we want
them to learn and why. We have to give them the useful tools, namely
language and mathematical understanding, to help them achieve those goals.
We are building common knowledge about mathematics in the classroom, so
that we all become resources or tools for each other.

4
Just as in teaching narratives in English our goal is access to literate
discourse, in mathematics our goal is access to mathematical discourse. Our
students have to think like mathematicians, care about what mathematicians
care about, talk like mathematicians, joke like mathematicians. That’s the
green circle.
Now here are teachers in the middle. We have a bit of an idea, at least we
know how to teach addition, but we’re not really in the discourse ourselves.
So there’s the first challenge: we know a lot more now about how fiction
writers think and we can talk about that when teaching narrative. What would
we say about how mathematicians think?
And here are the students. They are even further away from mathematical
discourse than we are. How do we move us all along towards the world of
maths?
The challenge for us is to build meaning, and to do that we have to know what
we’re talking about, ie we have to understand the maths really well ourselves,
and secondly, we have to know how to scaffold students to help them think
like mathematicians.

5
Jerome Bruner and David Wood were also followers of Vygotsky. From them
came the notion of scaffolding, where the adult does what the child cannot,
always expecting, and checking for handover of understanding so that the
scaffolding can be removed.
Teaching and learning cannot be separated. They are two sides of the coin:
the teacher’s teaching becomes the child’s learning. We call it ‘teaching /
learning negotiation’ because that’s what we are doing all the time. We
initiate learning, and through our conversations with the students, we work out
what bits they get and what they don’t, and negotiate our way to successful
learning. It’s also called the ‘pedagogic dance’: sometimes the teacher is
leading, sometimes the child, until eventually the child can take over the
leading. This is handover.

6
Bernstein, a sociologist, analysed all sorts of discourses to look at their
knowledge structure.
Now we are all good at teaching literature. We understand how authors work.
Although there are boundaries to that discourse, the knowledge and concepts
are more or less horizontal; it doesn’t matter whether we teach suspense or
descriptions first, or whether there are two or three characters in a book, or
whether you work on poetry or narratives. There is lots of flexibility.
This is where maths and science are very different. They are vertical
discourses: one concept builds on another. You have to be able to describe a
concept before you explain it. It matters where you start, and Rosie and Marie
will be able to talk about the false starts we made last year because we didn’t
really get this.
Secondly, discourses have boundaries. We know when we’re in maths. The
boundary is marked by mathematical language and mathematical materials. It
is important that students know when they’re crossing from the common
sense into the mathematical. It helps them understand that this is new
learning, and it helps them understand what cultural tools to call on.

7
New to our understanding is the world of neuroscience. Daniel Wllingham has
written a very good book with a bad title ‘why Don’t Children Like School’.
Amongst other important points, he explains why discovery learning does not
work for so many students:
Students are novices, they are not expert. So while you can send experts off
into groups to solve problems and come up with novel ideas, it doesn’t work
the same for novices. Experts have already acquired the cognitive and
linguistic tools to solve problems. Novices don’t have these tools. That is
what we have to teach them, and sending them off to discover for themselves
is like sending an apprentice carpenter to build a house without a hammer
and nails and tape measure.
Do you remember in the original training we talk about ‘pointing students’
brains in the right direction’ as the purpose of our preformulating questions?
Willingham supports that principle: we have to draw students’ attention to
what matters. We have to show them what to attend to, and then we help
them to build the meaning of the process or thing to which they are attending.

8
And then we have Brian Gray, the developer of the Accelerated Literacy
Program.
Brian began his research by looking at the teaching of science texts with
fringe dwelling Aboriginal students. His research moved to narrative because
the discourse and language of science was so far removed from students’
every day lives that it was very difficult to build the bridge between them.
The same could be said of mathematics: mathematical thinking is different
from common sense and it is a real challenge to make the links.
The scaffolding routine that you are familiar with in Accelerated Literacy is a
routine developed to suit the teaching of narrative. Already, in a year of this
project, Rosie, Carlie, Anna and Marie have refined and adjusted that routine
to suit the teaching of mathematics. Although the principles are the same, the
routine is not exactly the same.
The use of preformulations, ie pointing student brains to what you want to
attend to, is just as important in mathematics as it is in english.
So are reconceptualisations: developing common knowledge about what
matters. After the question has been answered, you are going to tell students
why this is important.
The challenge in mathematics is for us to know as much about maths, about
why decisions are made, about the role of the mathematician, as we know
about the authors of literature.

9
From a Vygotskian perspective, language and thinking are very closely
related. Students begin to use language even before they have a deep
understanding of what it means, and that language becomes the tool for
strengthening thinking.
Students need mathematical language to help them solve problems. Just
playing with concrete materials is not going to work. The process of becoming
embedded in mathematical discourse is that the concrete materials are
removed, and students just work with numbers on a page.
They need mathematical language to do that.
Here is the challenge for moving into scaffolding maths.
Before you start, you need have identified what you want to come out of
students’ mouths to show that there is handover. Not just a vague idea, but a
really clear understanding. You should be able to write it down.
That text becomes your guide for how you talk in your teaching / learning
negotiation. If your students can’t explain their mathematical processes, then
you haven’t focused enough on your target text.

10
So here are some of the principles that have been developed from the 2010
iteration of the project.
The teaching routine has been adjusted (I assume someone will talk about
that separately)
Included in the routine is talk about the ‘role’ of the mathematician: what do
they think is important. This has been hard for us, because we didn’t have
any idea beforehand, and it is hard for mathematicians to articulate this
themselves.
We begin where necessary with concrete materials, but if we are to move into
mathematical discourse, they are a short-term prop. Mathematicians use
language and paper. They work in the abstract, and that is what we are
aiming to do.
If we move too quickly to the abstract, then students don’t develop the
concepts, so it’s a hard call to decide when to do this. We don’t stay with
concrete materials though just because it is thought to be good pedagogy.
Concrete objects are a tool.

11
There are three important areas of teacher knowledge which are required for
successful teaching of mathematics.
The first is that you need to know your mathematics, and I know you are
working on that this afternoon.
A sub-set of that is that you need to know how to express this mathematical
knowledge in valued ways. If you are going to move students into maths, you
need to move from the common sense to the mathematical, and that includes
language. How do you produce a high quality explanation in mathematics?
What do mathematicians do when they define a maths concept? This is
learning that will continue throughout the year.
Finally, the scaffolding principles and strategies that you already know about
from AL are important here too. As you work out how to preformulate in
mathematics, you will know when you have been successful when you can
say ‘yes’ to a student’s answer and than reconceptualise successfully. That
will be one of the big bits of learning for this year.
This project has been really exciting for all of us: some hard learning from
things that didn’t work so well to start with, and lots of really positive learning
as we worked out principles that seem to work consistently.

12

Más contenido relacionado

La actualidad más candente

Franke productive struggle_5pmtalk
Franke productive struggle_5pmtalkFranke productive struggle_5pmtalk
Franke productive struggle_5pmtalk
kdtanker
 
Moscrop nov pro day updated
Moscrop nov pro day updatedMoscrop nov pro day updated
Moscrop nov pro day updated
benpare
 
Why Dont Students Like School_Pt2
Why Dont Students Like School_Pt2Why Dont Students Like School_Pt2
Why Dont Students Like School_Pt2
mark.richardson
 
Franke std explan_11amtalk
Franke std explan_11amtalkFranke std explan_11amtalk
Franke std explan_11amtalk
kdtanker
 
Eduscience Launch to Polish Schools
Eduscience Launch to Polish SchoolsEduscience Launch to Polish Schools
Eduscience Launch to Polish Schools
Colin Rose
 
Constructivism
ConstructivismConstructivism
Constructivism
ns1219
 

La actualidad más candente (20)

Kazemi am talk_powerpoint
Kazemi am talk_powerpointKazemi am talk_powerpoint
Kazemi am talk_powerpoint
 
Capstone Example (Smiles)
Capstone Example (Smiles)Capstone Example (Smiles)
Capstone Example (Smiles)
 
Teaching mathematics in the early years
Teaching mathematics in the early yearsTeaching mathematics in the early years
Teaching mathematics in the early years
 
Franke productive struggle_5pmtalk
Franke productive struggle_5pmtalkFranke productive struggle_5pmtalk
Franke productive struggle_5pmtalk
 
Active learning
Active learningActive learning
Active learning
 
Moscrop nov pro day updated
Moscrop nov pro day updatedMoscrop nov pro day updated
Moscrop nov pro day updated
 
Kazemi pm talk_powerpoint
Kazemi pm talk_powerpointKazemi pm talk_powerpoint
Kazemi pm talk_powerpoint
 
Why Dont Students Like School_Pt2
Why Dont Students Like School_Pt2Why Dont Students Like School_Pt2
Why Dont Students Like School_Pt2
 
Resilience powerpoint
Resilience powerpointResilience powerpoint
Resilience powerpoint
 
Franke std explan_11amtalk
Franke std explan_11amtalkFranke std explan_11amtalk
Franke std explan_11amtalk
 
Edpc605 9&10
Edpc605 9&10Edpc605 9&10
Edpc605 9&10
 
Mathematisation and Contextualisation
Mathematisation and ContextualisationMathematisation and Contextualisation
Mathematisation and Contextualisation
 
Collaborating between primary, secondary and higher education: The case of a ...
Collaborating between primary, secondary and higher education: The case of a ...Collaborating between primary, secondary and higher education: The case of a ...
Collaborating between primary, secondary and higher education: The case of a ...
 
Mathematical thinking ~ Kinder network
Mathematical thinking ~ Kinder networkMathematical thinking ~ Kinder network
Mathematical thinking ~ Kinder network
 
Eduscience Launch to Polish Schools
Eduscience Launch to Polish SchoolsEduscience Launch to Polish Schools
Eduscience Launch to Polish Schools
 
Constructivism
ConstructivismConstructivism
Constructivism
 
iPossibilities for Early Learning in Mathematics
iPossibilities for Early Learning in MathematicsiPossibilities for Early Learning in Mathematics
iPossibilities for Early Learning in Mathematics
 
Effectively Differentiating Mathematics Instruction to Help Struggling Students
Effectively Differentiating Mathematics Instruction to Help Struggling StudentsEffectively Differentiating Mathematics Instruction to Help Struggling Students
Effectively Differentiating Mathematics Instruction to Help Struggling Students
 
Capstone Example 1_Modified Smiles
Capstone Example 1_Modified SmilesCapstone Example 1_Modified Smiles
Capstone Example 1_Modified Smiles
 
Lethabyand harriesiatefl2017slideshare
Lethabyand harriesiatefl2017slideshareLethabyand harriesiatefl2017slideshare
Lethabyand harriesiatefl2017slideshare
 

Similar a Scaffolding maths at Noarlunga

Why Dont Students Like School: Part 1
Why Dont Students Like School: Part 1Why Dont Students Like School: Part 1
Why Dont Students Like School: Part 1
mark.richardson
 
Cognitive Learning Theory EME 2040
Cognitive Learning Theory EME 2040Cognitive Learning Theory EME 2040
Cognitive Learning Theory EME 2040
jashibelle
 
Every Teacherisa Reading Teacher(Latest)
Every Teacherisa Reading Teacher(Latest)Every Teacherisa Reading Teacher(Latest)
Every Teacherisa Reading Teacher(Latest)
bambam242
 

Similar a Scaffolding maths at Noarlunga (18)

Why Dont Students Like School: Part 1
Why Dont Students Like School: Part 1Why Dont Students Like School: Part 1
Why Dont Students Like School: Part 1
 
Newsletter marapril2021.docx
Newsletter marapril2021.docxNewsletter marapril2021.docx
Newsletter marapril2021.docx
 
Soe115slideshow
Soe115slideshowSoe115slideshow
Soe115slideshow
 
Learners and Learning: Section Three: School learning
Learners and Learning: Section Three: School learningLearners and Learning: Section Three: School learning
Learners and Learning: Section Three: School learning
 
Book choice
Book choice Book choice
Book choice
 
Passion based elpaso
Passion based elpasoPassion based elpaso
Passion based elpaso
 
Module 1 (2)
Module 1 (2)Module 1 (2)
Module 1 (2)
 
Assignment
Assignment Assignment
Assignment
 
Progressivism
ProgressivismProgressivism
Progressivism
 
1222
12221222
1222
 
Didactic Diagnostic Questionnaire
Didactic Diagnostic Questionnaire Didactic Diagnostic Questionnaire
Didactic Diagnostic Questionnaire
 
Didactics diagnostic questionnaire
Didactics diagnostic questionnaire Didactics diagnostic questionnaire
Didactics diagnostic questionnaire
 
David Explains Differentiated instruction
David Explains Differentiated instructionDavid Explains Differentiated instruction
David Explains Differentiated instruction
 
AAMT Connect with Maths webinar: The importance of talk for mathematical lear...
AAMT Connect with Maths webinar: The importance of talk for mathematical lear...AAMT Connect with Maths webinar: The importance of talk for mathematical lear...
AAMT Connect with Maths webinar: The importance of talk for mathematical lear...
 
Blended Learning
Blended LearningBlended Learning
Blended Learning
 
Cognitive Learning Theory EME 2040
Cognitive Learning Theory EME 2040Cognitive Learning Theory EME 2040
Cognitive Learning Theory EME 2040
 
Capstone Example (Smiles)
Capstone Example (Smiles)Capstone Example (Smiles)
Capstone Example (Smiles)
 
Every Teacherisa Reading Teacher(Latest)
Every Teacherisa Reading Teacher(Latest)Every Teacherisa Reading Teacher(Latest)
Every Teacherisa Reading Teacher(Latest)
 

Más de The Australian Association of Mathematics Teachers (AAMT) Inc.

Más de The Australian Association of Mathematics Teachers (AAMT) Inc. (20)

Connect with Maths ~ Discovering Sustainability & Maths in a World Heritage I...
Connect with Maths ~ Discovering Sustainability & Maths in a World Heritage I...Connect with Maths ~ Discovering Sustainability & Maths in a World Heritage I...
Connect with Maths ~ Discovering Sustainability & Maths in a World Heritage I...
 
Connect with Maths ~Maths in Action~ Pulsars in the Classroom
Connect with Maths ~Maths in Action~ Pulsars in the ClassroomConnect with Maths ~Maths in Action~ Pulsars in the Classroom
Connect with Maths ~Maths in Action~ Pulsars in the Classroom
 
Make it count and Indigenous Learners
Make it count and Indigenous LearnersMake it count and Indigenous Learners
Make it count and Indigenous Learners
 
Yumi Deadly Maths what it is and how it works
Yumi Deadly Maths what it is and how it worksYumi Deadly Maths what it is and how it works
Yumi Deadly Maths what it is and how it works
 
Using Real Life Contexts in Mathematics Teaching
Using  Real Life Contexts in Mathematics TeachingUsing  Real Life Contexts in Mathematics Teaching
Using Real Life Contexts in Mathematics Teaching
 
Parents as educators ppt
Parents as educators pptParents as educators ppt
Parents as educators ppt
 
Ipossibilities: technology in early years
Ipossibilities: technology in early yearsIpossibilities: technology in early years
Ipossibilities: technology in early years
 
Connect with Maths Early Years Learning in Mathematics: Pattern, Number and G...
Connect with Maths Early Years Learning in Mathematics: Pattern, Number and G...Connect with Maths Early Years Learning in Mathematics: Pattern, Number and G...
Connect with Maths Early Years Learning in Mathematics: Pattern, Number and G...
 
Connect with Maths Early Years Learning in Mathematics Pattern Number and Geo...
Connect with Maths Early Years Learning in Mathematics Pattern Number and Geo...Connect with Maths Early Years Learning in Mathematics Pattern Number and Geo...
Connect with Maths Early Years Learning in Mathematics Pattern Number and Geo...
 
Early Years Learning in Mathematics Pattern Number and Geometry
Early Years Learning in Mathematics Pattern Number and Geometry Early Years Learning in Mathematics Pattern Number and Geometry
Early Years Learning in Mathematics Pattern Number and Geometry
 
Six principles of effective teaching of mathematics
Six principles of effective teaching of mathematicsSix principles of effective teaching of mathematics
Six principles of effective teaching of mathematics
 
EA and AIEO Professional Learning: Counting collections
EA and AIEO Professional Learning: Counting collectionsEA and AIEO Professional Learning: Counting collections
EA and AIEO Professional Learning: Counting collections
 
EA and AIEO Professional Learning: Develop mathematical understanding
EA and AIEO Professional Learning: Develop mathematical understandingEA and AIEO Professional Learning: Develop mathematical understanding
EA and AIEO Professional Learning: Develop mathematical understanding
 
Action learning
Action learning Action learning
Action learning
 
Using scaffolding pedagogy to provide mathematics success for aboriginal stud...
Using scaffolding pedagogy to provide mathematics success for aboriginal stud...Using scaffolding pedagogy to provide mathematics success for aboriginal stud...
Using scaffolding pedagogy to provide mathematics success for aboriginal stud...
 
Nerang Cluster Leading From the Middle by Nerang State School
Nerang Cluster Leading From the Middle by Nerang State SchoolNerang Cluster Leading From the Middle by Nerang State School
Nerang Cluster Leading From the Middle by Nerang State School
 
Maths Camp and Big Day Out by Brad Jarro and Kate Naughtin
Maths Camp and Big Day Out by Brad Jarro and Kate NaughtinMaths Camp and Big Day Out by Brad Jarro and Kate Naughtin
Maths Camp and Big Day Out by Brad Jarro and Kate Naughtin
 
Nerang presentation–Make It Count conference
Nerang presentation–Make It Count conferenceNerang presentation–Make It Count conference
Nerang presentation–Make It Count conference
 
Maths is everywhere
Maths is everywhereMaths is everywhere
Maths is everywhere
 
Unit A3: Why use stories?
Unit A3: Why use stories?Unit A3: Why use stories?
Unit A3: Why use stories?
 

Último

Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
negromaestrong
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 

Último (20)

Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Magic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptxMagic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptx
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Third Battle of Panipat detailed notes.pptx
Third Battle of Panipat detailed notes.pptxThird Battle of Panipat detailed notes.pptx
Third Battle of Panipat detailed notes.pptx
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 

Scaffolding maths at Noarlunga

  • 1. 1
  • 2. One important principle underpinning this Make it Count project has been that we won’t just adopt the AL teaching sequence which was developed for teaching narrative. We would look at the theorists whose ideas inform AL, and bring those theories to this project. So now we’ll have a brief reminder of some of the theorists who are travelling with us, riding on our shoulders, whispering in our ears. 2
  • 3. Most important is our friend Lev Vygotsky who gave us the learning theory that underpins Accelerated Literacy pedagogy. Unlike his contemporary Piaget, Vygotsky understood that learning occurs in a social context. Not a party, but where culturally important events are happening. The process moves from intermental social engagement, with language being the most important cultural tool available to us, to intramental, when that language has been internalised. That learning then becomes a resource for further learning. We know that children are involved in many learning events to support them in moving to the next stage of development and that their success in moving to that next stage of development depends on us, as teachers, making the learning clear to them, and checking for handover. We also know that real learning occurs in the Zone of next development, with the support of culturally informed others. That’s where the pointy end of our teaching / learning negotiation happens. If children can do something independently that’s great, we’ve reached our goal, but we are no longer in the zone of proximal development. 3
  • 4. Then we have James Wertsch, who has done a lot of thinking about how we interact with the cultural tools available to us in order to be successful. A pole-vaulter who doesn’t know how to use the pole properlly is never going to break a record, no matter how good the pole is. A good pole-vaulter is going to be better, but they will be more successful with a carbonfibre pole than a stick of bamboo. The tools we have to use matter. A good pole-vaulter has had many years of training, learning everything they can from other pole-vaulters’ techniques, and perhaps then developing new techniques. As maths teachers, our students need to know what the goal is, what we want them to learn and why. We have to give them the useful tools, namely language and mathematical understanding, to help them achieve those goals. We are building common knowledge about mathematics in the classroom, so that we all become resources or tools for each other. 4
  • 5. Just as in teaching narratives in English our goal is access to literate discourse, in mathematics our goal is access to mathematical discourse. Our students have to think like mathematicians, care about what mathematicians care about, talk like mathematicians, joke like mathematicians. That’s the green circle. Now here are teachers in the middle. We have a bit of an idea, at least we know how to teach addition, but we’re not really in the discourse ourselves. So there’s the first challenge: we know a lot more now about how fiction writers think and we can talk about that when teaching narrative. What would we say about how mathematicians think? And here are the students. They are even further away from mathematical discourse than we are. How do we move us all along towards the world of maths? The challenge for us is to build meaning, and to do that we have to know what we’re talking about, ie we have to understand the maths really well ourselves, and secondly, we have to know how to scaffold students to help them think like mathematicians. 5
  • 6. Jerome Bruner and David Wood were also followers of Vygotsky. From them came the notion of scaffolding, where the adult does what the child cannot, always expecting, and checking for handover of understanding so that the scaffolding can be removed. Teaching and learning cannot be separated. They are two sides of the coin: the teacher’s teaching becomes the child’s learning. We call it ‘teaching / learning negotiation’ because that’s what we are doing all the time. We initiate learning, and through our conversations with the students, we work out what bits they get and what they don’t, and negotiate our way to successful learning. It’s also called the ‘pedagogic dance’: sometimes the teacher is leading, sometimes the child, until eventually the child can take over the leading. This is handover. 6
  • 7. Bernstein, a sociologist, analysed all sorts of discourses to look at their knowledge structure. Now we are all good at teaching literature. We understand how authors work. Although there are boundaries to that discourse, the knowledge and concepts are more or less horizontal; it doesn’t matter whether we teach suspense or descriptions first, or whether there are two or three characters in a book, or whether you work on poetry or narratives. There is lots of flexibility. This is where maths and science are very different. They are vertical discourses: one concept builds on another. You have to be able to describe a concept before you explain it. It matters where you start, and Rosie and Marie will be able to talk about the false starts we made last year because we didn’t really get this. Secondly, discourses have boundaries. We know when we’re in maths. The boundary is marked by mathematical language and mathematical materials. It is important that students know when they’re crossing from the common sense into the mathematical. It helps them understand that this is new learning, and it helps them understand what cultural tools to call on. 7
  • 8. New to our understanding is the world of neuroscience. Daniel Wllingham has written a very good book with a bad title ‘why Don’t Children Like School’. Amongst other important points, he explains why discovery learning does not work for so many students: Students are novices, they are not expert. So while you can send experts off into groups to solve problems and come up with novel ideas, it doesn’t work the same for novices. Experts have already acquired the cognitive and linguistic tools to solve problems. Novices don’t have these tools. That is what we have to teach them, and sending them off to discover for themselves is like sending an apprentice carpenter to build a house without a hammer and nails and tape measure. Do you remember in the original training we talk about ‘pointing students’ brains in the right direction’ as the purpose of our preformulating questions? Willingham supports that principle: we have to draw students’ attention to what matters. We have to show them what to attend to, and then we help them to build the meaning of the process or thing to which they are attending. 8
  • 9. And then we have Brian Gray, the developer of the Accelerated Literacy Program. Brian began his research by looking at the teaching of science texts with fringe dwelling Aboriginal students. His research moved to narrative because the discourse and language of science was so far removed from students’ every day lives that it was very difficult to build the bridge between them. The same could be said of mathematics: mathematical thinking is different from common sense and it is a real challenge to make the links. The scaffolding routine that you are familiar with in Accelerated Literacy is a routine developed to suit the teaching of narrative. Already, in a year of this project, Rosie, Carlie, Anna and Marie have refined and adjusted that routine to suit the teaching of mathematics. Although the principles are the same, the routine is not exactly the same. The use of preformulations, ie pointing student brains to what you want to attend to, is just as important in mathematics as it is in english. So are reconceptualisations: developing common knowledge about what matters. After the question has been answered, you are going to tell students why this is important. The challenge in mathematics is for us to know as much about maths, about why decisions are made, about the role of the mathematician, as we know about the authors of literature. 9
  • 10. From a Vygotskian perspective, language and thinking are very closely related. Students begin to use language even before they have a deep understanding of what it means, and that language becomes the tool for strengthening thinking. Students need mathematical language to help them solve problems. Just playing with concrete materials is not going to work. The process of becoming embedded in mathematical discourse is that the concrete materials are removed, and students just work with numbers on a page. They need mathematical language to do that. Here is the challenge for moving into scaffolding maths. Before you start, you need have identified what you want to come out of students’ mouths to show that there is handover. Not just a vague idea, but a really clear understanding. You should be able to write it down. That text becomes your guide for how you talk in your teaching / learning negotiation. If your students can’t explain their mathematical processes, then you haven’t focused enough on your target text. 10
  • 11. So here are some of the principles that have been developed from the 2010 iteration of the project. The teaching routine has been adjusted (I assume someone will talk about that separately) Included in the routine is talk about the ‘role’ of the mathematician: what do they think is important. This has been hard for us, because we didn’t have any idea beforehand, and it is hard for mathematicians to articulate this themselves. We begin where necessary with concrete materials, but if we are to move into mathematical discourse, they are a short-term prop. Mathematicians use language and paper. They work in the abstract, and that is what we are aiming to do. If we move too quickly to the abstract, then students don’t develop the concepts, so it’s a hard call to decide when to do this. We don’t stay with concrete materials though just because it is thought to be good pedagogy. Concrete objects are a tool. 11
  • 12. There are three important areas of teacher knowledge which are required for successful teaching of mathematics. The first is that you need to know your mathematics, and I know you are working on that this afternoon. A sub-set of that is that you need to know how to express this mathematical knowledge in valued ways. If you are going to move students into maths, you need to move from the common sense to the mathematical, and that includes language. How do you produce a high quality explanation in mathematics? What do mathematicians do when they define a maths concept? This is learning that will continue throughout the year. Finally, the scaffolding principles and strategies that you already know about from AL are important here too. As you work out how to preformulate in mathematics, you will know when you have been successful when you can say ‘yes’ to a student’s answer and than reconceptualise successfully. That will be one of the big bits of learning for this year. This project has been really exciting for all of us: some hard learning from things that didn’t work so well to start with, and lots of really positive learning as we worked out principles that seem to work consistently. 12